US6518039B2 - Process for the fermentative production of deacylated cephalosporins - Google Patents
Process for the fermentative production of deacylated cephalosporins Download PDFInfo
- Publication number
- US6518039B2 US6518039B2 US09/202,798 US20279899A US6518039B2 US 6518039 B2 US6518039 B2 US 6518039B2 US 20279899 A US20279899 A US 20279899A US 6518039 B2 US6518039 B2 US 6518039B2
- Authority
- US
- United States
- Prior art keywords
- cephalosporin
- acyl
- acid
- strain
- deacylated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 29
- 230000008569 process Effects 0.000 title claims abstract description 27
- 150000001780 cephalosporins Chemical class 0.000 title claims description 34
- 238000012262 fermentative production Methods 0.000 title abstract description 5
- 229940124587 cephalosporin Drugs 0.000 claims abstract description 49
- 229930186147 Cephalosporin Natural products 0.000 claims abstract description 37
- 238000004519 manufacturing process Methods 0.000 claims abstract description 16
- -1 cephalosporin compounds Chemical class 0.000 claims abstract description 6
- 101710104123 Deacetoxycephalosporin C synthase Proteins 0.000 claims description 24
- 238000000855 fermentation Methods 0.000 claims description 20
- 230000004151 fermentation Effects 0.000 claims description 20
- 230000000813 microbial effect Effects 0.000 claims description 20
- 108700016155 Acyl transferases Proteins 0.000 claims description 18
- 102000057234 Acyl transferases Human genes 0.000 claims description 17
- 239000002243 precursor Substances 0.000 claims description 16
- 241000228150 Penicillium chrysogenum Species 0.000 claims description 15
- 150000003952 β-lactams Chemical class 0.000 claims description 15
- 125000002252 acyl group Chemical group 0.000 claims description 11
- 230000000694 effects Effects 0.000 claims description 11
- TYFQFVWCELRYAO-UHFFFAOYSA-N suberic acid group Chemical group C(CCCCCCC(=O)O)(=O)O TYFQFVWCELRYAO-UHFFFAOYSA-N 0.000 claims description 10
- CSGFFYNMTALICU-ZWNOBZJWSA-N adipyl-7-aminodesacetoxycephalosporanic acid Natural products CC1=C(N2[C@H](SC1)[C@H](NC(=O)CCCCC(O)=O)C2=O)C(O)=O CSGFFYNMTALICU-ZWNOBZJWSA-N 0.000 claims description 9
- 150000001875 compounds Chemical class 0.000 claims description 9
- 229910052717 sulfur Inorganic materials 0.000 claims description 9
- 102000008109 Mixed Function Oxygenases Human genes 0.000 claims description 8
- 108010074633 Mixed Function Oxygenases Proteins 0.000 claims description 8
- BDJRBEYXGGNYIS-UHFFFAOYSA-N azelaic acid group Chemical group C(CCCCCCCC(=O)O)(=O)O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 claims description 8
- 238000006243 chemical reaction Methods 0.000 claims description 8
- 229910052760 oxygen Inorganic materials 0.000 claims description 8
- 241000228431 Acremonium chrysogenum Species 0.000 claims description 6
- 108020002494 acetyltransferase Proteins 0.000 claims description 6
- 102000005421 acetyltransferase Human genes 0.000 claims description 6
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 claims description 6
- 230000001404 mediated effect Effects 0.000 claims description 4
- 125000006274 (C1-C3)alkoxy group Chemical group 0.000 claims description 3
- HSHGZXNAXBPPDL-HZGVNTEJSA-N 7beta-aminocephalosporanic acid Chemical compound S1CC(COC(=O)C)=C(C([O-])=O)N2C(=O)[C@@H]([NH3+])[C@@H]12 HSHGZXNAXBPPDL-HZGVNTEJSA-N 0.000 claims description 3
- 150000001408 amides Chemical class 0.000 claims description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 3
- 150000002148 esters Chemical class 0.000 claims description 3
- 229910052736 halogen Inorganic materials 0.000 claims description 3
- 150000002367 halogens Chemical group 0.000 claims description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims description 3
- 239000001257 hydrogen Substances 0.000 claims description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 3
- 238000011065 in-situ storage Methods 0.000 claims description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 3
- 150000003839 salts Chemical class 0.000 claims description 3
- 239000002253 acid Substances 0.000 claims description 2
- 238000012258 culturing Methods 0.000 claims description 2
- NVIAYEIXYQCDAN-CLZZGJSISA-N 7beta-aminodeacetoxycephalosporanic acid Chemical compound S1CC(C)=C(C(O)=O)N2C(=O)[C@@H](N)[C@@H]12 NVIAYEIXYQCDAN-CLZZGJSISA-N 0.000 claims 2
- 150000002431 hydrogen Chemical group 0.000 claims 1
- 229930182555 Penicillin Natural products 0.000 description 13
- 102000004190 Enzymes Human genes 0.000 description 11
- 108090000790 Enzymes Proteins 0.000 description 11
- 150000001991 dicarboxylic acids Chemical class 0.000 description 11
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 10
- 150000002960 penicillins Chemical class 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- NVIAYEIXYQCDAN-MHTLYPKNSA-N (6r,7s)-7-azaniumyl-3-methyl-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylate Chemical compound S1CC(C)=C(C([O-])=O)N2C(=O)[C@H]([NH3+])[C@@H]12 NVIAYEIXYQCDAN-MHTLYPKNSA-N 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- MIFYHUACUWQUKT-UHFFFAOYSA-N Isopenicillin N Natural products OC(=O)C1C(C)(C)SC2C(NC(=O)CCCC(N)C(O)=O)C(=O)N21 MIFYHUACUWQUKT-UHFFFAOYSA-N 0.000 description 6
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 6
- 229940049954 penicillin Drugs 0.000 description 6
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 5
- 125000004429 atom Chemical group 0.000 description 5
- 239000003960 organic solvent Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 4
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 4
- HOKIDJSKDBPKTQ-GLXFQSAKSA-N cephalosporin C Chemical compound S1CC(COC(=O)C)=C(C(O)=O)N2C(=O)[C@@H](NC(=O)CCC[C@@H](N)C(O)=O)[C@@H]12 HOKIDJSKDBPKTQ-GLXFQSAKSA-N 0.000 description 4
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 4
- LCPDWSOZIOUXRV-UHFFFAOYSA-N phenoxyacetic acid Chemical compound OC(=O)COC1=CC=CC=C1 LCPDWSOZIOUXRV-UHFFFAOYSA-N 0.000 description 4
- WLJVNTCWHIRURA-UHFFFAOYSA-N pimelic acid Chemical compound OC(=O)CCCCCC(O)=O WLJVNTCWHIRURA-UHFFFAOYSA-N 0.000 description 4
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 108010093096 Immobilized Enzymes Proteins 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 229950008644 adicillin Drugs 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000004128 high performance liquid chromatography Methods 0.000 description 3
- MIFYHUACUWQUKT-GTQWGBSQSA-N isopenicillin N Chemical compound OC(=O)[C@H]1C(C)(C)S[C@@H]2[C@H](NC(=O)CCC[C@H](N)C(O)=O)C(=O)N21 MIFYHUACUWQUKT-GTQWGBSQSA-N 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- MIFYHUACUWQUKT-GPUHXXMPSA-N penicillin N Chemical compound OC(=O)[C@H]1C(C)(C)S[C@@H]2[C@H](NC(=O)CCC[C@@H](N)C(O)=O)C(=O)N21 MIFYHUACUWQUKT-GPUHXXMPSA-N 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- 241000233866 Fungi Species 0.000 description 2
- 239000007836 KH2PO4 Substances 0.000 description 2
- OYIFNHCXNCRBQI-BYPYZUCNSA-N L-2-aminoadipic acid Chemical compound OC(=O)[C@@H](N)CCCC(O)=O OYIFNHCXNCRBQI-BYPYZUCNSA-N 0.000 description 2
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 2
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- 241000228143 Penicillium Species 0.000 description 2
- 235000011037 adipic acid Nutrition 0.000 description 2
- 239000001361 adipic acid Substances 0.000 description 2
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 2
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000001212 derivatisation Methods 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 230000002538 fungal effect Effects 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- SHFJWMWCIHQNCP-UHFFFAOYSA-M hydron;tetrabutylazanium;sulfate Chemical compound OS([O-])(=O)=O.CCCC[N+](CCCC)(CCCC)CCCC SHFJWMWCIHQNCP-UHFFFAOYSA-M 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 2
- 229940056360 penicillin g Drugs 0.000 description 2
- WLJVXDMOQOGPHL-UHFFFAOYSA-N phenylacetic acid Chemical compound OC(=O)CC1=CC=CC=C1 WLJVXDMOQOGPHL-UHFFFAOYSA-N 0.000 description 2
- GNSKLFRGEWLPPA-UHFFFAOYSA-M potassium dihydrogen phosphate Chemical compound [K+].OP(O)([O-])=O GNSKLFRGEWLPPA-UHFFFAOYSA-M 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000011218 seed culture Methods 0.000 description 2
- 238000004659 sterilization and disinfection Methods 0.000 description 2
- 125000004149 thio group Chemical group *S* 0.000 description 2
- DYLIWHYUXAJDOJ-OWOJBTEDSA-N (e)-4-(6-aminopurin-9-yl)but-2-en-1-ol Chemical compound NC1=NC=NC2=C1N=CN2C\C=C\CO DYLIWHYUXAJDOJ-OWOJBTEDSA-N 0.000 description 1
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- WLJVXDMOQOGPHL-PPJXEINESA-N 2-phenylacetic acid Chemical compound O[14C](=O)CC1=CC=CC=C1 WLJVXDMOQOGPHL-PPJXEINESA-N 0.000 description 1
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 1
- 241000187390 Amycolatopsis lactamdurans Species 0.000 description 1
- 241000228212 Aspergillus Species 0.000 description 1
- 241000351920 Aspergillus nidulans Species 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 230000005526 G1 to G0 transition Effects 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 101710107944 Isopenicillin N synthase Proteins 0.000 description 1
- 239000004201 L-cysteine Substances 0.000 description 1
- 235000013878 L-cysteine Nutrition 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- 229930195708 Penicillin V Natural products 0.000 description 1
- 241000864269 Penicillium nalgiovense Species 0.000 description 1
- 241000589746 Pseudomonas sp. SE83 Species 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 241000186988 Streptomyces antibioticus Species 0.000 description 1
- 241000187433 Streptomyces clavuligerus Species 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- WNLRTRBMVRJNCN-UHFFFAOYSA-L adipate(2-) Chemical compound [O-]C(=O)CCCCC([O-])=O WNLRTRBMVRJNCN-UHFFFAOYSA-L 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229940024606 amino acid Drugs 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000003782 beta lactam antibiotic agent Substances 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000006696 biosynthetic metabolic pathway Effects 0.000 description 1
- 229940041514 candida albicans extract Drugs 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000003729 cation exchange resin Substances 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- ZAIPMKNFIOOWCQ-UEKVPHQBSA-N cephalexin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@@H]3N(C2=O)C(=C(CS3)C)C(O)=O)=CC=CC=C1 ZAIPMKNFIOOWCQ-UEKVPHQBSA-N 0.000 description 1
- 229940106164 cephalexin Drugs 0.000 description 1
- UCKZMPLVLCKKMO-LHLIQPBNSA-N cephamycin Chemical compound S1CC(C)=C(C(O)=O)N2C(=O)[C@@H](C)[C@]21OC UCKZMPLVLCKKMO-LHLIQPBNSA-N 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 230000020176 deacylation Effects 0.000 description 1
- 238000005947 deacylation reaction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- JSYGRUBHOCKMGQ-UHFFFAOYSA-N dichloramine Chemical group ClNCl JSYGRUBHOCKMGQ-UHFFFAOYSA-N 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000012215 gene cloning Methods 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- YVSCCMNRWFOKDU-UHFFFAOYSA-N hexanedioic acid Chemical compound OC(=O)CCCCC(O)=O.OC(=O)CCCCC(O)=O YVSCCMNRWFOKDU-UHFFFAOYSA-N 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000006317 isomerization reaction Methods 0.000 description 1
- 239000010699 lard oil Substances 0.000 description 1
- 235000012054 meals Nutrition 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 238000005374 membrane filtration Methods 0.000 description 1
- 210000002500 microbody Anatomy 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- KINULKKPVJYRON-PVNXHVEDSA-N n-[(e)-[10-[(e)-(4,5-dihydro-1h-imidazol-2-ylhydrazinylidene)methyl]anthracen-9-yl]methylideneamino]-4,5-dihydro-1h-imidazol-2-amine;hydron;dichloride Chemical group Cl.Cl.N1CCN=C1N\N=C\C(C1=CC=CC=C11)=C(C=CC=C2)C2=C1\C=N\NC1=NCCN1 KINULKKPVJYRON-PVNXHVEDSA-N 0.000 description 1
- 210000003463 organelle Anatomy 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229940056367 penicillin v Drugs 0.000 description 1
- BPLBGHOLXOTWMN-MBNYWOFBSA-N phenoxymethylpenicillin Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)COC1=CC=CC=C1 BPLBGHOLXOTWMN-MBNYWOFBSA-N 0.000 description 1
- 229960003424 phenylacetic acid Drugs 0.000 description 1
- 239000003279 phenylacetic acid Substances 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- UHZYTMXLRWXGPK-UHFFFAOYSA-N phosphorus pentachloride Chemical compound ClP(Cl)(Cl)(Cl)Cl UHZYTMXLRWXGPK-UHFFFAOYSA-N 0.000 description 1
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 description 1
- 229910052939 potassium sulfate Inorganic materials 0.000 description 1
- 239000013587 production medium Substances 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000006049 ring expansion reaction Methods 0.000 description 1
- 238000007363 ring formation reaction Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 229960004295 valine Drugs 0.000 description 1
- 239000012138 yeast extract Substances 0.000 description 1
- 239000002132 β-lactam antibiotic Substances 0.000 description 1
- 229940124586 β-lactam antibiotics Drugs 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0071—Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1025—Acyltransferases (2.3)
- C12N9/1029—Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P35/00—Preparation of compounds having a 5-thia-1-azabicyclo [4.2.0] octane ring system, e.g. cephalosporin
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P37/00—Preparation of compounds having a 4-thia-1-azabicyclo [3.2.0] heptane ring system, e.g. penicillin
- C12P37/04—Preparation of compounds having a 4-thia-1-azabicyclo [3.2.0] heptane ring system, e.g. penicillin by acylation of the substituent in the 6 position
Definitions
- the present invention relates to the field of fermentative production of N-deacylated cephalosporin compounds, such as 7-ADCA.
- ⁇ -Lactam antibiotics constitute the most important group of antibiotic compounds, with a long history of clinical use. Among this group, the prominent ones are the penicillins and cephalosporins. These compounds are naturally produced by the filamentous fungi Penicillium chrysogenum and Acremonium chrysogenum, respectively.
- the first two steps in the biosynthesis of penicillin in P. chrysogenum are the condensation of the three amino acids L-5-amino-5-carboxypentanoic acid (L- ⁇ -aminoadipic acid) (A), L-cysteine (C) and L-valine (V) into the tripeptide LLD-ACV, followed by cyclization of this tripeptide to form isopenicillin N.
- L- ⁇ -aminoadipic acid A
- L-cysteine C
- L-valine V
- This compound contains the typical ⁇ -lactam structure.
- the third step involves the exchange of the hydrophilic D ⁇ -aminoadipic acid side chain of isopenicillin N by L-5-amino-5-carboxypentanoic acid by the action of the enzyme acyltransferase (AT).
- AT acyltransferase
- the enzymatic exchange reaction mediated by AT takes place inside a cellular organelle, the microbody, as has been described in EP-A-0448180.
- the third step is the isomerization of isopenicillin N to penicillin N by an epimerase, whereupon the five-membered ring structure characteristic of penicillins is expanded by the enzyme expandase to the six-membered ring characteristic of cephalosporins.
- penicillin V and penicillin G produced by adding the hydrophobic side chain precursors phenoxyacetic acid or phenylacetic acid, respectively, during fermentation of P. chrysogenum, thereby replacing the side chains of the natural ⁇ -lactams with phenoxyacetic acid or phenylacetic acid.
- Cephalosporins are much more expensive than penicillins.
- cephalosporins e.g. cephalexin
- Cephalosporin C by far the most important starting material in this respect, is very soluble in water at any pH, thus implying lengthy and costly isolation processes using cumbersome and expensive column technology.
- Cephalosporin C obtained in this way has to be converted into therapeutically used cephalosporins by a number of chemical and enzymatic conversions.
- the cephalosporin intermediate 7-ADCA is currently produced by chemical derivatization of penicillin G.
- the necessary chemical steps to produce 7-ADCA involve the expansion of the 5-membered penicillin ring structure to a 6-membered cephalosporin ring structure.
- the adipyl-6-APA is expanded to its corresponding cephalosporin derivative. Finally, the removal of the adipyl side chain is suggested, yielding 7-ADCA as a final product.
- EP-A-0540210 describes a similar process for the preparation of 7-ACA, including the extra steps of converting the 3-methyl group of the ADCA ring into the 3-acetoxymethyl group of ACA.
- WO95/04148 and WO95/04149 disclose a feedstock of certain thiogroup-containing dicarboxylic acids with a chain length of 6 or 7 atoms to an expandase-expressing P. chrysogenum strain, resulting in the incorporation of these precursors into the penicillin backbone and subsequent expansion to the corresponding 7-ADCA derivatives.
- the present invention discloses a process for the production of an N-deacylated cephalosporin compound comprising the steps of:
- n is an even number of at least 2
- X is (CH 2 ) p -A-(CH 2 ) q , wherein
- p and q each individually are 0, 1, 2, 3 or 4, and
- A is CH ⁇ CH, C ⁇ C, CHB, C ⁇ O, O, S, NH, the nitrogen optionally being substituted or the sulfur optionally being oxidized
- B is hydrogen, halogen, C 1-3 alkoxy, hydroxyl, or optionally substituted methyl, with the proviso that p+q should be 2 or 3, when A is CH ⁇ CH or CO ⁇ C, or p+q should be 3 or 4, when A is CHB, C ⁇ O, O, S or NH,
- said acyl-6-APA derivative being in situ expanded to the corresponding acyl-7-ADCA derivative, and optionally further reacted to the acyl-7-ADAC or acyl-7-ACA derivative,
- the present invention discloses a process for the production of N-deacylated cephalosporin compounds (7-ADCA, 7-ADAC or 7-ACA) via the fermentative production of their acylated counterparts, applying a feed of novel side chain precursors.
- the present invention surprisingly shows that fermentation of a microbial strain capable of ⁇ -lactam production and expressing acyltransferase as well as expandase activity in the presence of a dicarboxylic acid having a chain length which is longer than 7 atoms results in the formation of an acyl-7-ADAC derivative incorporating an acyl group with a chain length of 6 or 7 atoms, respectively.
- additional 7-acylated cephalosporin derivatives than acyl-7-ADCA i.e. acyl-7-ADAC or acyl-7-ACA, respectively, are produced by a microbial strain capable of ⁇ -lactam production and expressing acyltransferase as well expandase, if said microbial strain additionally expresses hydroxylase or hydroxylase plus acetyltransferase activity, respectively.
- the dicarboxylic acid to be used in the process of the invention has a structure according to formula (1):
- n is an even number of at least 2
- X is (CH 2 ) p -A- (CH 2 ) q
- A is CH ⁇ CH, C ⁇ C, CHB, C ⁇ O, 0, S. NH, the nitrogen optionally being substituted or the sulfur optionally being oxidized, and B is hydrogen, halogen, C 1-3 alkoxy, hydroxyl, or optionally substituted methyl.
- p+q should be 2 or 3, respectively, when A is CH ⁇ CH or C ⁇ C, or p+q should be 3 or 4, respectively, when A is CHB, C ⁇ O, 0, S, NH, the nitrogen optionally being substituted or the sulfur optionally being oxidized, and B is defined as above.
- a fermentation of a microbial strain capable of ⁇ -lactam production and expressing acyltransferase as well as expandase activity In the presence of a precursor compound according to formula (1) yields an acyl-6-APA derivative with an acyl group according to formula (2), which subsequently is expanded in situ to yield the corresponding acyl-7-ADCA derivative.
- said precursor compound according to formula (1) is metabolized by the microbial strain, producing an acyl group of formula (2). Said acyl group subsequently is incorporated in the ⁇ -lactam backbone via the acyltransferase-mediated reaction.
- the upper limit for the chain length of the precursor compound according to formula 1, i.e. the upper value of n, is not critical.
- the upper limit mainly will be determined by the efficiency by which said precursor is metabolized by the microbial strain.
- the precursor may have a longest chain length which is similar to the longest chain length of a fatty acid which still can be metabolized by the microbial strain.
- dicarboxylic acids are used which yield an adipyl-7-ADCA derivative upon fermentation in the presence of said dicarboxylic acid.
- Dicarboxylic acids suitable to yield adipyl-7-ADCA have a structure according to formula (1), wherein n is an even number of at least 2, and X is (CH 2 ) p -A-(CH 2 ) q , wherein p is 1 and q is 2 and A is CH 2 .
- dicarboxylic acids are used which yield an acyl-7-ADCA derivative containing a thiogroup in the acylgroup according to formula (2).
- Dicarboxylic acids suitable to yield such acyl-7-ADCA compounds have a structure according to formula (1), wherein n is an even number/of at least 2, and X is (CH 2 ) p -A-(C H 2 ) q , wherein A is S.
- p is 1 and a is 2, or p is 2 and q is 1 or 2.
- dicarboxylic acids are used which yield novel acyl-7-cephalosporin derivatives.
- dicarboxylic acids are used which yield a pimelyl-7-ADCA derivative upon fermentation in the presence of said dicarboxylic acid.
- Dicarboxylic acids suitable to yield pimelyl-7-ADCA have a structure according to formula (1), wherein n is an even number of at least 2, and X is (CH 2 ) p -A-(CH 2 ) q , wherein p and q are 2 and A is CH 2 .
- dicarboxylic acids are used which yield an acyl-7-ADCA derivative containing an unsaturated bond in the acylgroup according to formula (2).
- Dicarboxylic acids suitable to yield such acyl-7-ADCA compounds have a structure according to formula (1), wherein n is an even number of at least 2, and X is (CH 2 ) p -A-(CH 2 ) q , wherein A is CH ⁇ CH or C ⁇ C.
- A is CH ⁇ CH and p and q both are 1. The trans isomer of the latter compound thereby is most preferred.
- Microbial strains which are usable in the process of the invention are strains which are capable of ⁇ -lactam production and which express acyltransferase as well as expandase activity.
- said microbial strains additionally may express hydroxylase or hydroxylase plus acetyltransferase activity.
- the former strains enable production of acyl-7-ADCA derivatives, whereas the latter strains enable production of acyl-7-ADAC or acyl-7-ACA derivatives.
- microbial strains examples include penicillin-producing strains provided with an expression cassette providing for expandase expression and cephalosporin-producing strains provided with an expression cassette providing for acyltransferase expression.
- Expandase genes which conveniently are used may originate from Acremonium chrysogenum, Streptomyces clavuligerus, Streptomyces antibioticus or Nocardia lactamdurans.
- the acyltransferase gene may originate from P. chrysogenum, P. nalgiovense or A. nidulans.
- a penicillin producing fungal strain which recombinantly expresses expandase. More preferably, a Fungus of the genus Aspergillus or Penicillium is used, most preferably a strain of Penicillium chrysogenum.
- P. chrysogenum strain Panlabs P14-21, DS 18541 (deposited at CBS under accession number 455.95) is an example of a suitable host for expandase expression.
- recombinant expandase-expressing strains are within the knowledge of the skilled person.
- Examples of expression cassettes which can be used for the construction of recombinant expandase-expressing fungal strains are disclosed in EP-A-0532341, Crawford et al. (Biotechnol. 13 (1995), 58-62) and WO95/04148. Care should be taken to select a transformed strain which has a sufficiently high level of expandase expression.
- Such transformants can for instance be selected by testing their capacity to produce adipyl-7-ADCA as described by Crawford et al. (supra).
- a cephalosporin-producing strain which recombinantly expresses acyltransferase, for instance an acyltransferase-producing Acremonium chrysogenum strain.
- An A. chrysogenum strain recombinantly expressing acyltransferase will thereby produce an acyl-7-ACA derivative, since such a strain natively expresses hydroxylase and acetyltransferase.
- the present invention further describes a process for the recovery of an acyl-7-cephalosporin derivative from the fermentation broth of a microbial fermentation according to the invention using specific solvents, e.g. the recovery of an acyl-7-ADCA derivative, such as adipyl-, pimelyl, 2-(carboxyethylthio)acetyl-,3-carboxymethylthio)propionyl- or trans ⁇ -hydromuconyl-7-ADCA, from the fermentation broth of an expandase-expressing P. chrysogenum strain.
- an acyl-7-ADCA derivative such as adipyl-, pimelyl, 2-(carboxyethylthio)acetyl-,3-carboxymethylthio)propionyl- or trans ⁇ -hydromuconyl-7-ADCA
- a 7-acylated cephalosporin derivative is recovered from the fermentation broth by extracting the broth filtrate with an organic solvent immiscible with water at a pH of lower than about 4.5 and back-extracting the same with water at a CH between 4 and 10.
- the broth is filtered and an organic solvent immiscible with water is added to the filtrate.
- the pH is adjusted in order to extract the 7-acylated cephalosporin derivative from the aqueous layer.
- the pH range has to be lower than 4.5; preferably between 4 and 1, more preferably between 2 and 1. In this way, the 7-acylated cephalosporin derivative is separated from many other impurities present in the fermentation broth.
- a smaller volume of organic solvent is used, e.g. half the volume of solvent relative to the volume of aqueous layer, giving a concentrated solution of 7-acylated cephalosporin derivative, so achieving reduction of the volumetric flow rates.
- a second possibility is whole broth extraction at a pH of 4 or lower.
- the broth is extracted between pH 4 and 1 with an organic solvent immiscible with water.
- Any solvent that does not interfere with the cephalosporin molecule can be used.
- Suitable solvents are, for instance, butyl acetate, ethyl acetate, methyl isobutyl ketone, alcohols like butanol etc..
- Preferably 1-butanol or isobutanol are used.
- the 7-acylated cephalosporin derivative is back extracted with water at a pH between 4 and 10, preferably between 6 and 9. Again the final volume can be reduced.
- the recovery can be carried out at temperatures between 0 and 50° C., and preferably at ambient temperatures.
- of the, invention are conveniently used as an intermediate for the chemical synthesis of semisynthetic cephalosporins, since the 7-aminogroup is adequately protected by presence of an appropriate acyl side chain.
- the 7-acylated cephalosporin derivatives are deacylated in a one-step enzymatical process, using a suitable enzyme, e.g. Pseudomonas SE83 acylase.
- an immobilized enzyme is used, in order to be able to use the enzyme repeatedly.
- the methodology for the preparation of such particles and the immobilization of the enzymes have been described extensively in EP-A-0222462.
- the pH of the/aqueous solution has a value of, for example pH 4 to pH 9, a which the degradation reaction of cephalosporin is minimized and the desired conversion with the enzyme is optimized.
- the enzyme is added to the aqueous cephalosporin solution while maintaining the pH at the appropriate level by, for instance, adding an inorganic base, such as a potassium hydroxide solution, or applying a cation exchange resin.
- an inorganic base such as a potassium hydroxide solution
- a cation exchange resin When the reaction is completed the immobilized enzyme is removed by filtration.
- Another possibility is the application of the immobilized enzyme in a fixed or fluidized bed column, or using the enzyme in solution and removing the products by membrane filtration. Subsequently, the reaction mixture is acidified in the presence of an organic solvent immiscible with water. After adjusting the pH to about 0.1 to 1.5, the layers are separated and the pH of the aqueous layer is adjusted to 2 to 5. The crystalline N-deacylated cephalosporin is then filtered off.
- the deacylation can also be carried out chemically as known in the prior art, for instance via the formation of an imino-chloride side chain, by adding phosphorus pentachloride at a temperature of lower than 10° C. and subsequently isobutanol at ambient temperatures or lower.
- P. chrysogenum strain Panlabs P14-B10 deposited at CBS under the accession number 455.95, is used as the host strain for the expandase expression cassette constructs.
- Acyl-7-ADCA producing transformants are inoculated at 2.106 conidia/ml into a seed medium consisting of (g/l): glucose, 30; Pharmamedia (cotton seed meal), 10; Corn Steep Solids, 20; (NH 4 ) 2 SO 4 , 20; CaCO 3 , 5; KH 2 PO 4 , 0,5; lactose, 10; yeast extract, 10 at a pH before sterilisation of 5.6.
- the seed culture (20 ml in 250 ml Erlemeyer closed with a cottony plug) is incubated at 25° C. at 220 rpm. After 48 hours, 1 ml was used to inoculate 15 ml of production medium consisting of (g/l): KH 2 PO 4 , 0,5; K 2 SO 4 , 5; (NH 4 ) 2 SO 4 , 17,5; lactose, 140; Pharmamedia, 20; CaCO 3 , 10; lard oil, 10 at a pH before sterilisation of 6.6.
- the production culture is cultured at 25° C. and 220 rpm for 168 hours in a 250 ml Erlemeyer flask closed with a milk filter. Evaporated water is replenished every other day.
- the mycelium is removed by centrifugation or filtration and acyl-7-ADCA is analyzed by HPLC.
- HPLC high performance liquid chromatography
- the HPLC system consisted of the following components: P1000 solvent delivery system (TSP), Autosampler model basic marathon (Spark Holland) (injection volume 3), UV150 (TSP) variable wavelength detector (set at 260 nm) and a PC1000 datasystem TSP)
- TSP solvent delivery system
- the stationary phase was a YMC pack ODS AQ 150*4.6 mm column.
- the mobile phase consisted of 84% phosphate buffer pH 6.0, to which 0.17% tetrabutylammonium hydrogen sulfate has been added, and 6% acetonitril. The products were quantitated by comparison to a standard curve of the expected acyl-7-ADCA.
- a recombinant expandase-expressing P. chrysogenum strain was cultured according to Example 1 in the presence of the following precursors each: adipic acid, suberic acid, sebacic acid, pimelic acid and azelaic acid.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Cephalosporin Compounds (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
The present invention discloses a process for the production of N-deacylated cephalosporin compounds via the fermentative production of their 7-acylated counterparts.
Description
This application was filed under 35 USC 37 as the national phase of PCT/EP 98/02460 filed Apr. 22, 1998.
The present invention relates to the field of fermentative production of N-deacylated cephalosporin compounds, such as 7-ADCA.
β-Lactam antibiotics constitute the most important group of antibiotic compounds, with a long history of clinical use. Among this group, the prominent ones are the penicillins and cephalosporins. These compounds are naturally produced by the filamentous fungi Penicillium chrysogenum and Acremonium chrysogenum, respectively.
As a result of classical strain improvement techniques, the production levels of the antibiotics in Penicillium chrysogenum and Acremonium chrysogenum have increased dramatically over the past decades. With the increasing knowledge of the biosynthetic pathways leading to penicillins and cephalosporins, and the advent of recombinant DNA technology, new tools for the improvement of production strains and for the in vivo derivatization of the compounds have become available.
Most enzymes involved in β-lactam biosynthesis have been identified and their corresponding genes been cloned, as is described by Ingolia and Queener, Med. Res. Rev. 9 (1989), 245-264 (biosynthesis route and enzymes), and Aharonowitz, Cohen, and Martin, Ann. Rev. Microbiol. 46 (1992), 461-495 (gene cloning).
The first two steps in the biosynthesis of penicillin in P. chrysogenum are the condensation of the three amino acids L-5-amino-5-carboxypentanoic acid (L-β-aminoadipic acid) (A), L-cysteine (C) and L-valine (V) into the tripeptide LLD-ACV, followed by cyclization of this tripeptide to form isopenicillin N. This compound contains the typical β-lactam structure.
These first two steps in the biosynthesis of penicillins are common in penicillin, cephamycin and cephalosporin producing fungi and bacteria.
The third step involves the exchange of the hydrophilic Dβ-aminoadipic acid side chain of isopenicillin N by L-5-amino-5-carboxypentanoic acid by the action of the enzyme acyltransferase (AT). The enzymatic exchange reaction mediated by AT takes place inside a cellular organelle, the microbody, as has been described in EP-A-0448180.
In cephalosporin-producing organisms, the third step is the isomerization of isopenicillin N to penicillin N by an epimerase, whereupon the five-membered ring structure characteristic of penicillins is expanded by the enzyme expandase to the six-membered ring characteristic of cephalosporins.
The only directly fermented penicillins of industrial importance are penicillin V and penicillin G, produced by adding the hydrophobic side chain precursors phenoxyacetic acid or phenylacetic acid, respectively, during fermentation of P. chrysogenum, thereby replacing the side chains of the natural β-lactams with phenoxyacetic acid or phenylacetic acid.
Cephalosporins are much more expensive than penicillins. One reason is that some cephalosporins (e.g. cephalexin) are made from penicillins by a number of chemical conversions. Cephalosporin C, by far the most important starting material in this respect, is very soluble in water at any pH, thus implying lengthy and costly isolation processes using cumbersome and expensive column technology. Cephalosporin C obtained in this way has to be converted into therapeutically used cephalosporins by a number of chemical and enzymatic conversions.
The cephalosporin intermediate 7-ADCA is currently produced by chemical derivatization of penicillin G. The necessary chemical steps to produce 7-ADCA involve the expansion of the 5-membered penicillin ring structure to a 6-membered cephalosporin ring structure.
Recently, fermentative processes have been disclosed to obtain 7-ADCA.
In EP-A-0532341 the application of an adipate (5-carboxypentanoate) feedstock was shown to result in formation of a penicillin derivative with an adipyl side chain, viz. adipyl-6-aminopenicillanic acid. This incorporation is due to the fact that the acyltransferase has a proven wide substrate specificity (Behrens et al., J. Biol. Chem. 175 (1948), 751-809; Cole, Process. Biochem. 1 (1966), 334-338; Ballio et al., Nature 185 (1960), 97-99). In addition, when adipate is fed to a recombinant P. chrysogenum strain expressing an expandase, the adipyl-6-APA is expanded to its corresponding cephalosporin derivative. Finally, the removal of the adipyl side chain is suggested, yielding 7-ADCA as a final product.
The patent application EP-A-0540210 describes a similar process for the preparation of 7-ACA, including the extra steps of converting the 3-methyl group of the ADCA ring into the 3-acetoxymethyl group of ACA.
WO95/04148 and WO95/04149 disclose a feedstock of certain thiogroup-containing dicarboxylic acids with a chain length of 6 or 7 atoms to an expandase-expressing P. chrysogenum strain, resulting in the incorporation of these precursors into the penicillin backbone and subsequent expansion to the corresponding 7-ADCA derivatives.
In general, it is however thought that an expandase that may provide the crucial link between penicillin N and cephalosporin biosynthesis has a narrow specificity (Maea et al.,Enzyme and Microbial Technology (1995) 17: 231-234; Baldwin et al., J. Chem. Soc. Chem. Commun. 374-375, 1987), preventing the possibility for catalysing the oxidative ring expansion of penicillin N with unnatural side chains.
It now surprisingly is found that a feedstock of dicarboxylic acids with a chain length which is longer than 7 carbon atoms produce β-lactam derivatives incorporating a side chain with a chain length of either 6 or 7 atoms.
The present invention discloses a process for the production of an N-deacylated cephalosporin compound comprising the steps of:
fermenting a microbial strain capable of β-lactam production and expressing acyltransferase as well as expandase activity, and optionally acetyltransferase and/or hydroxylase activity, in the presence of a side chain precursor according to formula (1)
wherein
n is an even number of at least 2, and
X is (CH2)p-A-(CH2)q, wherein
p and q each individually are 0, 1, 2, 3 or 4, and
A is CH═CH, C≡C, CHB, C═O, O, S, NH, the nitrogen optionally being substituted or the sulfur optionally being oxidized, and B is hydrogen, halogen, C1-3 alkoxy, hydroxyl, or optionally substituted methyl, with the proviso that p+q should be 2 or 3, when A is CH═CH or CO≡C, or p+q should be 3 or 4, when A is CHB, C═O, O, S or NH,
or a salt, ester or amide thereof, said side chain precursor yielding a acyl-6-APA derivative, the acyl group having a structure according to formula (2)
wherein X is defined as above,
said acyl-6-APA derivative being in situ expanded to the corresponding acyl-7-ADCA derivative, and optionally further reacted to the acyl-7-ADAC or acyl-7-ACA derivative,
recovering the acyl-7-cephalosporin derivative from the fermentation broth
deacylating said acyl-7-cephalosporin derivative, and
recovering the crystalline 7-cephalosporin compound.
The present invention discloses a process for the production of N-deacylated cephalosporin compounds (7-ADCA, 7-ADAC or 7-ACA) via the fermentative production of their acylated counterparts, applying a feed of novel side chain precursors.
The present invention surprisingly shows that fermentation of a microbial strain capable of β-lactam production and expressing acyltransferase as well as expandase activity in the presence of a dicarboxylic acid having a chain length which is longer than 7 atoms results in the formation of an acyl-7-ADAC derivative incorporating an acyl group with a chain length of 6 or 7 atoms, respectively.
According to the invention, additional 7-acylated cephalosporin derivatives than acyl-7-ADCA, i.e. acyl-7-ADAC or acyl-7-ACA, respectively, are produced by a microbial strain capable of β-lactam production and expressing acyltransferase as well expandase, if said microbial strain additionally expresses hydroxylase or hydroxylase plus acetyltransferase activity, respectively.
The dicarboxylic acid to be used in the process of the invention has a structure according to formula (1):
wherein
n is an even number of at least 2, and
X is (CH2)p-A- (CH2)qwherein
p and a each individually are 0, 1, 2, 3 or 4, with the proviso that p+q=2, 3 or 4, and
A is CH═CH, C≡C, CHB, C═O, 0, S. NH, the nitrogen optionally being substituted or the sulfur optionally being oxidized, and B is hydrogen, halogen, C1-3 alkoxy, hydroxyl, or optionally substituted methyl.
According to the invention, the fermentation of said microbial strain in the presence of a side chain precursor according to formula (1), or a salt, an ester or an amide, thereof,results in the formation of an acyl-7-cephalosporin derivative, wherein the acyl group has a structure according to formula (2):
wherein X is defined as above.
To obtain an acyl-7-cephalosporin derivative with an acyl group having a chain length of 6 or 7 atoms, respectively, p+q should be 2 or 3, respectively, when A is CH═CH or C≡C, or p+q should be 3 or 4, respectively, when A is CHB, C═O, 0, S, NH, the nitrogen optionally being substituted or the sulfur optionally being oxidized, and B is defined as above.
Thus, a fermentation of a microbial strain capable of β-lactam production and expressing acyltransferase as well as expandase activity In the presence of a precursor compound according to formula (1) yields an acyl-6-APA derivative with an acyl group according to formula (2), which subsequently is expanded in situ to yield the corresponding acyl-7-ADCA derivative. In other words, said precursor compound according to formula (1) is metabolized by the microbial strain, producing an acyl group of formula (2). Said acyl group subsequently is incorporated in the β-lactam backbone via the acyltransferase-mediated reaction.
The upper limit for the chain length of the precursor compound according to formula 1, i.e. the upper value of n, is not critical. The upper limit mainly will be determined by the efficiency by which said precursor is metabolized by the microbial strain. Conveniently, the precursor may have a longest chain length which is similar to the longest chain length of a fatty acid which still can be metabolized by the microbial strain.
In one embodiment of the invention, dicarboxylic acids are used which yield an adipyl-7-ADCA derivative upon fermentation in the presence of said dicarboxylic acid. Dicarboxylic acids suitable to yield adipyl-7-ADCA have a structure according to formula (1), wherein n is an even number of at least 2, and X is (CH2)p-A-(CH2)q, wherein p is 1 and q is 2 and A is CH2. Preferably, said dicarboxylic acid yielding adipyl-7-ADCA is suberic acid or sebacaic acid (n=2 or 4, respectively).
In another embodiment of the invention, dicarboxylic acids are used which yield an acyl-7-ADCA derivative containing a thiogroup in the acylgroup according to formula (2). Dicarboxylic acids suitable to yield such acyl-7-ADCA compounds have a structure according to formula (1), wherein n is an even number/of at least 2, and X is (CH2)p-A-(C H2)q, wherein A is S. Prefer ably, p and q are 1, 2 or 3 and p+q=3 or 4. Most preferably, p is 1 and a is 2, or p is 2 and q is 1 or 2.
In two other embodiments of the invention, dicarboxylic acids are used which yield novel acyl-7-cephalosporin derivatives.
Firstly, dicarboxylic acids are used which yield a pimelyl-7-ADCA derivative upon fermentation in the presence of said dicarboxylic acid. Dicarboxylic acids suitable to yield pimelyl-7-ADCA have a structure according to formula (1), wherein n is an even number of at least 2, and X is (CH2)p-A-(CH2)q, wherein p and q are 2 and A is CH2. Preferably, said dicarboxylic acid yielding pimelyl-7-ADCA is azelaic acid (n=2).
In addition, dicarboxylic acids are used which yield an acyl-7-ADCA derivative containing an unsaturated bond in the acylgroup according to formula (2). Dicarboxylic acids suitable to yield such acyl-7-ADCA compounds have a structure according to formula (1), wherein n is an even number of at least 2, and X is (CH2)p-A-(CH2)q, wherein A is CH═CH or C≡C. Preferably, A is CH═CH and p and q both are 1. The trans isomer of the latter compound thereby is most preferred.
Microbial strains which are usable in the process of the invention are strains which are capable of β-lactam production and which express acyltransferase as well as expandase activity. Optionally, said microbial strains additionally may express hydroxylase or hydroxylase plus acetyltransferase activity. The former strains enable production of acyl-7-ADCA derivatives, whereas the latter strains enable production of acyl-7-ADAC or acyl-7-ACA derivatives.
Examples of such microbial strains include penicillin-producing strains provided with an expression cassette providing for expandase expression and cephalosporin-producing strains provided with an expression cassette providing for acyltransferase expression.
Expandase genes which conveniently are used may originate from Acremonium chrysogenum, Streptomyces clavuligerus, Streptomyces antibioticus or Nocardia lactamdurans. The acyltransferase gene may originate from P. chrysogenum, P. nalgiovense or A. nidulans.
In a preferred embodiment, a penicillin producing fungal strain is used which recombinantly expresses expandase. More preferably, a Fungus of the genus Aspergillus or Penicillium is used, most preferably a strain of Penicillium chrysogenum. P. chrysogenum strain Panlabs P14-21, DS 18541 (deposited at CBS under accession number 455.95) is an example of a suitable host for expandase expression.
The construction of recombinant expandase-expressing strains is within the knowledge of the skilled person. Examples of expression cassettes which can be used for the construction of recombinant expandase-expressing fungal strains are disclosed in EP-A-0532341, Crawford et al. (Biotechnol. 13 (1995), 58-62) and WO95/04148. Care should be taken to select a transformed strain which has a sufficiently high level of expandase expression. Such transformants can for instance be selected by testing their capacity to produce adipyl-7-ADCA as described by Crawford et al. (supra).
In a different embodiment, a cephalosporin-producing strain is used which recombinantly expresses acyltransferase, for instance an acyltransferase-producing Acremonium chrysogenum strain. An A. chrysogenum strain recombinantly expressing acyltransferase will thereby produce an acyl-7-ACA derivative, since such a strain natively expresses hydroxylase and acetyltransferase.
The present invention further describes a process for the recovery of an acyl-7-cephalosporin derivative from the fermentation broth of a microbial fermentation according to the invention using specific solvents, e.g. the recovery of an acyl-7-ADCA derivative, such as adipyl-, pimelyl, 2-(carboxyethylthio)acetyl-,3-carboxymethylthio)propionyl- or trans β-hydromuconyl-7-ADCA, from the fermentation broth of an expandase-expressing P. chrysogenum strain.
Specifically, a 7-acylated cephalosporin derivative is recovered from the fermentation broth by extracting the broth filtrate with an organic solvent immiscible with water at a pH of lower than about 4.5 and back-extracting the same with water at a CH between 4 and 10.
The broth is filtered and an organic solvent immiscible with water is added to the filtrate. The pH is adjusted in order to extract the 7-acylated cephalosporin derivative from the aqueous layer. The pH range has to be lower than 4.5; preferably between 4 and 1, more preferably between 2 and 1. In this way, the 7-acylated cephalosporin derivative is separated from many other impurities present in the fermentation broth. Preferably a smaller volume of organic solvent is used, e.g. half the volume of solvent relative to the volume of aqueous layer, giving a concentrated solution of 7-acylated cephalosporin derivative, so achieving reduction of the volumetric flow rates. A second possibility is whole broth extraction at a pH of 4 or lower. Preferably the broth is extracted between pH 4 and 1 with an organic solvent immiscible with water.
Any solvent that does not interfere with the cephalosporin molecule can be used. Suitable solvents are, for instance, butyl acetate, ethyl acetate, methyl isobutyl ketone, alcohols like butanol etc.. Preferably 1-butanol or isobutanol are used.
Hereafter, the 7-acylated cephalosporin derivative is back extracted with water at a pH between 4 and 10, preferably between 6 and 9. Again the final volume can be reduced. The recovery can be carried out at temperatures between 0 and 50° C., and preferably at ambient temperatures.
The 7-acylated cephalosporin derivatives produced by the process| of the, invention are conveniently used as an intermediate for the chemical synthesis of semisynthetic cephalosporins, since the 7-aminogroup is adequately protected by presence of an appropriate acyl side chain.
Alternatively, the 7-acylated cephalosporin derivatives are deacylated in a one-step enzymatical process, using a suitable enzyme, e.g. Pseudomonas SE83 acylase.
Preferably, an immobilized enzyme is used, in order to be able to use the enzyme repeatedly. The methodology for the preparation of such particles and the immobilization of the enzymes have been described extensively in EP-A-0222462. The pH of the/aqueous solution has a value of, for example pH 4 to pH 9, a which the degradation reaction of cephalosporin is minimized and the desired conversion with the enzyme is optimized. Thus, the enzyme is added to the aqueous cephalosporin solution while maintaining the pH at the appropriate level by, for instance, adding an inorganic base, such as a potassium hydroxide solution, or applying a cation exchange resin. When the reaction is completed the immobilized enzyme is removed by filtration. Another possibility is the application of the immobilized enzyme in a fixed or fluidized bed column, or using the enzyme in solution and removing the products by membrane filtration. Subsequently, the reaction mixture is acidified in the presence of an organic solvent immiscible with water. After adjusting the pH to about 0.1 to 1.5, the layers are separated and the pH of the aqueous layer is adjusted to 2 to 5. The crystalline N-deacylated cephalosporin is then filtered off.
The deacylation can also be carried out chemically as known in the prior art, for instance via the formation of an imino-chloride side chain, by adding phosphorus pentachloride at a temperature of lower than 10° C. and subsequently isobutanol at ambient temperatures or lower.
P. chrysogenum strain Panlabs P14-B10, deposited at CBS under the accession number 455.95, is used as the host strain for the expandase expression cassette constructs.
The expression cassette used containing the expandase gene under the P. chrysogenum IPNS gene transcriptional and translational regulation signals is described in Crawford et al. (supra), Transformation and culturing conditions are as described in Crawford et al. (supra). Transformants are purified and analyzed for expression of the expandase enzyme by testing their capacity to produce adipyl-7-ADCA as described by Crawford et al. (supra)
Acyl-7-ADCA producing transformants are inoculated at 2.106 conidia/ml into a seed medium consisting of (g/l): glucose, 30; Pharmamedia (cotton seed meal), 10; Corn Steep Solids, 20; (NH4)2SO4, 20; CaCO3, 5; KH2PO4, 0,5; lactose, 10; yeast extract, 10 at a pH before sterilisation of 5.6.
The seed culture (20 ml in 250 ml Erlemeyer closed with a cottony plug) is incubated at 25° C. at 220 rpm. After 48 hours, 1 ml was used to inoculate 15 ml of production medium consisting of (g/l): KH2PO4, 0,5; K2SO4, 5; (NH4)2SO4, 17,5; lactose, 140; Pharmamedia, 20; CaCO3, 10; lard oil, 10 at a pH before sterilisation of 6.6.
After inoculation with the seed culture, a 20% stock solution of the precursor of choice, adjusted to pH 6.5 with KOH, is added to the fermentation to reach a final concentration of 0.5%.
The production culture is cultured at 25° C. and 220 rpm for 168 hours in a 250 ml Erlemeyer flask closed with a milk filter. Evaporated water is replenished every other day.
At the end of the production fermentation, the mycelium is removed by centrifugation or filtration and acyl-7-ADCA is analyzed by HPLC.
Fermentation products from transformed Penicillium strains were analyzed by high performance liquid chromatography (HPLC). The HPLC system consisted of the following components: P1000 solvent delivery system (TSP), Autosampler model basic marathon (Spark Holland) (injection volume 3), UV150 (TSP) variable wavelength detector (set at 260 nm) and a PC1000 datasystem TSP) The stationary phase was a YMC pack ODS AQ 150*4.6 mm column. The mobile phase consisted of 84% phosphate buffer pH 6.0, to which 0.17% tetrabutylammonium hydrogen sulfate has been added, and 6% acetonitril. The products were quantitated by comparison to a standard curve of the expected acyl-7-ADCA.
A recombinant expandase-expressing P. chrysogenum strain was cultured according to Example 1 in the presence of the following precursors each: adipic acid, suberic acid, sebacic acid, pimelic acid and azelaic acid.
Analysis according to Example 2 of the fermentation products of these fermentations showed that fermentation in the presence of adipic acid, suberic acid and sebacic acid resulted in the formation of adipyl-7-ADCA, whereas pimelyl-7-ADCA was formed in case pimelic acid or azelaic acid were fed.
When high concentrations of suberic acid were used during fermentation (2.0% instead of 0.5%), a small but significant amount of suberyl-7-ADCA was detected next to adipyl-7-ADCA.
Claims (14)
1. A process for the production of a crystalline N-deacylated-7-cephalosporin comprising the steps of:
culturing a β-lactam-producing microbial strain with both acyltransferase and expandase activity in a medium containing a side chain precursor compound having formula (1)
or a salt, ester or amide thereof;
wherein
n is an even number of at least 2, and
X is (CH2)p-A-(CH2)q, wherein
p and q each individually is 0, 1, 2, 3 or 4, and;
A is CH═CH, C≡C, CHB, C═O, O, S, oxidized S, or NH,
wherein B is hydrogen, halogen, C1-3 alkoxy, hydroxyl, or methyl,
with the proviso that the sum of p and q is 2 or 3, when A is CH═CH or C≡C, and the sum of p and q is 3 or 4, when A is CHB, C═O, O, S or NH,
to obtain acyl-6-amino penicillanic acid (acyl-6-APA) by an acyltransferase mediated reaction wherein the acyl group has the structure HOOC—X—CO—
wherein X is defined as above,
and further to obtain an acyl-7-cephalosporin by an expandase-mediated reaction that expands said acyl-6-APA acid in situ to an acyl-7-cephalosporin which corresponds to said acyl-6-APA,
recovering the acyl-7-cephalosporin from the fermentation broth, deacylating said acyl-7-cephalosporin to obtain an N-deacylated cephalosporin, and
recovering the N-deacylated cephalosporin as a crystalline N-deacylated cephalosporin.
2. The process of claim 1 , wherein the microbial strain also has acetyltransferase and/or hydroxylase activity.
3. The process of claim 1 , wherein p is 1, q is 2 and A is CH2.
4. The process of claim 3 , wherein the side chain precursor is suberic acid or sebacic acid.
5. The process of claim 1 , wherein p and q are 2 and A is CH2.
6. The process of claim 5 , wherein the side chain precursor is azelaic acid.
7. The process of claim 1 , wherein the β-lactam-producing microbial strain comprises an expression cassette for expandase expression.
8. The process of claim 7 , wherein the β-lactam producing microbial strain is Penicillium chrysogenum.
9. The process of claim 8 , wherein the Penicillium chrysogenum is the CBS 455.95 strain.
10. The process of claim 7 , wherein the crystalline N-deacylated cephalosporin compound is 7-aminodeacetoxycephalosporanic acid (7-ADCA).
11. The process of claim 1 , wherein the β-lactam producing microbial strain is a cephalosporin-producing strain containing an expression cassette for acyltransferase expression.
12. The process of claim 1 , wherein the cephalosporin-producing strain is Acremonium chrysogenum.
13. The process of claim 1 , wherein the β-lactam-producing microbial strain further has hydroxylase activity and acetyltransferase activity.
14. The process of claim 13 , wherein the crystalline N-deacylated cephalosporin is 7-aminocephalosporanic acid (7).
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP97201196 | 1997-04-22 | ||
EP97201196.9 | 1997-04-22 | ||
EP97201196 | 1997-04-22 | ||
PCT/EP1998/002460 WO1998048034A1 (en) | 1997-04-22 | 1998-04-22 | Process for the fermentative production of deacylated cephalosporins |
Publications (2)
Publication Number | Publication Date |
---|---|
US20020037547A1 US20020037547A1 (en) | 2002-03-28 |
US6518039B2 true US6518039B2 (en) | 2003-02-11 |
Family
ID=8228236
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/202,798 Expired - Fee Related US6518039B2 (en) | 1997-04-22 | 1998-04-22 | Process for the fermentative production of deacylated cephalosporins |
Country Status (14)
Country | Link |
---|---|
US (1) | US6518039B2 (en) |
EP (1) | EP0912754B1 (en) |
JP (1) | JP2000512511A (en) |
KR (1) | KR20000022108A (en) |
CN (2) | CN1224468A (en) |
AT (1) | ATE278032T1 (en) |
AU (1) | AU7648898A (en) |
BR (1) | BR9804857A (en) |
DE (1) | DE69826604D1 (en) |
PL (1) | PL330759A1 (en) |
RU (1) | RU2208644C2 (en) |
TW (1) | TW565613B (en) |
WO (1) | WO1998048034A1 (en) |
ZA (1) | ZA983394B (en) |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6326204B1 (en) | 1997-01-17 | 2001-12-04 | Maxygen, Inc. | Evolution of whole cells and organisms by recursive sequence recombination |
US7148054B2 (en) | 1997-01-17 | 2006-12-12 | Maxygen, Inc. | Evolution of whole cells and organisms by recursive sequence recombination |
US7390619B1 (en) | 1998-02-11 | 2008-06-24 | Maxygen, Inc. | Optimization of immunomodulatory properties of genetic vaccines |
US6605430B1 (en) | 1998-08-12 | 2003-08-12 | Maxygen, Inc. | DNA shuffling of monooxygenase genes for production of industrial chemicals |
AU6510799A (en) | 1998-10-07 | 2000-04-26 | Maxygen, Inc. | Dna shuffling to produce nucleic acids for mycotoxin detoxification |
EP1129184A1 (en) | 1998-11-10 | 2001-09-05 | Maxygen, Inc. | Modified adp-glucose pyrophosphorylase for improvement and optimation of plant phenotypes |
US6376246B1 (en) | 1999-02-05 | 2002-04-23 | Maxygen, Inc. | Oligonucleotide mediated nucleic acid recombination |
US6436675B1 (en) | 1999-09-28 | 2002-08-20 | Maxygen, Inc. | Use of codon-varied oligonucleotide synthesis for synthetic shuffling |
US6917882B2 (en) | 1999-01-19 | 2005-07-12 | Maxygen, Inc. | Methods for making character strings, polynucleotides and polypeptides having desired characteristics |
WO2000042560A2 (en) | 1999-01-19 | 2000-07-20 | Maxygen, Inc. | Methods for making character strings, polynucleotides and polypeptides |
US7024312B1 (en) | 1999-01-19 | 2006-04-04 | Maxygen, Inc. | Methods for making character strings, polynucleotides and polypeptides having desired characteristics |
US6961664B2 (en) | 1999-01-19 | 2005-11-01 | Maxygen | Methods of populating data structures for use in evolutionary simulations |
IL144657A0 (en) | 1999-02-11 | 2002-06-30 | Maxygen Inc | High throughput mass spectrometry |
US6531316B1 (en) | 1999-03-05 | 2003-03-11 | Maxyag, Inc. | Encryption of traits using split gene sequences and engineered genetic elements |
US7430477B2 (en) | 1999-10-12 | 2008-09-30 | Maxygen, Inc. | Methods of populating data structures for use in evolutionary simulations |
US6686515B1 (en) | 1999-11-23 | 2004-02-03 | Maxygen, Inc. | Homologous recombination in plants |
US7115712B1 (en) | 1999-12-02 | 2006-10-03 | Maxygen, Inc. | Cytokine polypeptides |
US20010039014A1 (en) | 2000-01-11 | 2001-11-08 | Maxygen, Inc. | Integrated systems and methods for diversity generation and screening |
WO2002000897A2 (en) | 2000-06-23 | 2002-01-03 | Maxygen, Inc. | Novel chimeric promoters |
US7094875B2 (en) | 2000-06-23 | 2006-08-22 | Maxygen, Inc. | Co-stimulatory polypeptides |
US6858422B2 (en) | 2000-07-13 | 2005-02-22 | Codexis, Inc. | Lipase genes |
CN101555463B (en) * | 2008-04-08 | 2012-05-30 | 中国科学院上海生命科学研究院湖州工业生物技术中心 | Recombinant escherichia coli strain expressing cephalosporin deacetylase and construction method thereof |
EP2123772A1 (en) | 2008-04-29 | 2009-11-25 | DSM IP Assets B.V. | Beta-lactam antibiotic producing strains |
EP2310488B1 (en) | 2008-08-05 | 2012-09-19 | DSM Sinochem Pharmaceuticals Netherlands B.V. | Adipoyl-7-adca producing strains |
EP2392649A3 (en) | 2008-08-05 | 2012-01-11 | DSM IP Assets B.V. | Adipoyl-7-ADCA producing strains |
EP2414530A1 (en) | 2009-04-03 | 2012-02-08 | DSM Sinochem Pharmaceuticals Netherlands B.V. | Fermentation process |
WO2011161004A1 (en) | 2010-06-22 | 2011-12-29 | Dsm Ip Assets B.V. | Air bubble fermentation process |
BR112013022521B1 (en) | 2011-03-03 | 2019-05-07 | Dsm Sinochem Pharmaceuticals Netherlands B.V. | Process for the degradation of a ß-lactamic compound and use of sulphite in the degradation of a ß-lactamic compound |
WO2015091455A1 (en) | 2013-12-17 | 2015-06-25 | Dpx Holdings B.V. | Bioreactor |
US10208755B2 (en) | 2014-08-08 | 2019-02-19 | Baker Hughes, A Ge Company, Llc | Magnetic coupling for motor drive shaft of electrical submersible pump |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0222462A1 (en) | 1985-11-15 | 1987-05-20 | Gist-Brocades N.V. | Novel immobilized biocatalysts and their preparation and use |
EP0448180A2 (en) | 1990-03-23 | 1991-09-25 | Gist-Brocades N.V. | A method of modulating the production of secondary metabolites |
US5318896A (en) * | 1991-09-11 | 1994-06-07 | Merck & Co., Inc. | Recombinant expandase bioprocess for preparing 7-aminodesacetoxy cephalosporanic acid (7-ADCA) |
WO1995004149A1 (en) | 1993-07-30 | 1995-02-09 | Gist-Brocades B.V. | Process for the efficient production of 7-adca via 3-(carboxyethylthio)propionyl-7-adca |
WO1995004148A1 (en) * | 1993-07-30 | 1995-02-09 | Gist-Brocades B.V. | Process for the efficient production of 7-adca via 2-(carboxyethylthio)acetyl-7-adca and 3-(carboxymethylthio)propionyl-7-adca |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5671092A (en) * | 1979-11-14 | 1981-06-13 | Kyowa Hakko Kogyo Co Ltd | Optical active cephalosporin analogous derivative |
ATE15803T1 (en) * | 1980-08-01 | 1985-10-15 | Biochemie Gmbh | CEPHALOSPORIN DERIVATIVES, THEIR PREPARATION AND USE. |
WO1993008287A1 (en) * | 1991-10-15 | 1993-04-29 | Merck & Co., Inc. | Novel bioprocesses for preparing 7-aca and 7-adac |
-
1998
- 1998-04-22 CN CN98800523A patent/CN1224468A/en active Pending
- 1998-04-22 ZA ZA983394A patent/ZA983394B/en unknown
- 1998-04-22 CN CNA2005100823457A patent/CN1706963A/en active Pending
- 1998-04-22 KR KR1019980710518A patent/KR20000022108A/en not_active Ceased
- 1998-04-22 RU RU99101488/13A patent/RU2208644C2/en not_active IP Right Cessation
- 1998-04-22 JP JP10545045A patent/JP2000512511A/en active Pending
- 1998-04-22 EP EP98924209A patent/EP0912754B1/en not_active Expired - Lifetime
- 1998-04-22 PL PL98330759A patent/PL330759A1/en unknown
- 1998-04-22 WO PCT/EP1998/002460 patent/WO1998048034A1/en not_active Application Discontinuation
- 1998-04-22 AT AT98924209T patent/ATE278032T1/en not_active IP Right Cessation
- 1998-04-22 US US09/202,798 patent/US6518039B2/en not_active Expired - Fee Related
- 1998-04-22 BR BR9804857A patent/BR9804857A/en not_active IP Right Cessation
- 1998-04-22 AU AU76488/98A patent/AU7648898A/en not_active Abandoned
- 1998-04-22 DE DE69826604T patent/DE69826604D1/en not_active Expired - Lifetime
- 1998-07-10 TW TW087111260A patent/TW565613B/en not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0222462A1 (en) | 1985-11-15 | 1987-05-20 | Gist-Brocades N.V. | Novel immobilized biocatalysts and their preparation and use |
EP0448180A2 (en) | 1990-03-23 | 1991-09-25 | Gist-Brocades N.V. | A method of modulating the production of secondary metabolites |
US5318896A (en) * | 1991-09-11 | 1994-06-07 | Merck & Co., Inc. | Recombinant expandase bioprocess for preparing 7-aminodesacetoxy cephalosporanic acid (7-ADCA) |
WO1995004149A1 (en) | 1993-07-30 | 1995-02-09 | Gist-Brocades B.V. | Process for the efficient production of 7-adca via 3-(carboxyethylthio)propionyl-7-adca |
WO1995004148A1 (en) * | 1993-07-30 | 1995-02-09 | Gist-Brocades B.V. | Process for the efficient production of 7-adca via 2-(carboxyethylthio)acetyl-7-adca and 3-(carboxymethylthio)propionyl-7-adca |
Non-Patent Citations (8)
Also Published As
Publication number | Publication date |
---|---|
EP0912754B1 (en) | 2004-09-29 |
WO1998048034A1 (en) | 1998-10-29 |
ZA983394B (en) | 1998-10-30 |
AU7648898A (en) | 1998-11-13 |
US20020037547A1 (en) | 2002-03-28 |
PL330759A1 (en) | 1999-05-24 |
RU2208644C2 (en) | 2003-07-20 |
ATE278032T1 (en) | 2004-10-15 |
EP0912754A1 (en) | 1999-05-06 |
CN1224468A (en) | 1999-07-28 |
JP2000512511A (en) | 2000-09-26 |
DE69826604D1 (en) | 2004-11-04 |
CN1706963A (en) | 2005-12-14 |
KR20000022108A (en) | 2000-04-25 |
BR9804857A (en) | 1999-08-24 |
TW565613B (en) | 2003-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6518039B2 (en) | Process for the fermentative production of deacylated cephalosporins | |
JP3027847B2 (en) | New biochemical method for producing 7-ADCA | |
US5731165A (en) | Process for the production of 7-ADCA via expandase activity on penicillin G | |
US6410259B1 (en) | Process for the fermentative production of deacylated cephalosporins | |
EP1188838A1 (en) | Method for producing 7-aminodesacetoxycephalosporanic acid (7-adca) | |
US5919680A (en) | Process for the production of SSC's via expandase activity on penicillin G | |
US6020151A (en) | Process for the production of 7-ADCA via expandase activity on penicillin G | |
MXPA98010758A (en) | Process for the fermentative production of deacylated cephalosporins | |
MXPA98010757A (en) | Process for the fermentative production of deacylated cephalosporins | |
HK1020356A (en) | Process for the fermentative production of deacylated cephalosporins | |
HK1021204A (en) | Process for the permentative production of deacylated cephalosporins | |
WO1998027221A1 (en) | Process for the production of penicillin g or v, cephalosporin g or v, and derivatives thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: GIST-BROCADES, B.V., NETHERLANDS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NIEBOER, MAARTEN;DE VROOM, ERIK;LUGTENBURG, JOANNIS;AND OTHERS;REEL/FRAME:009952/0507;SIGNING DATES FROM 19981201 TO 19981207 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20070211 |