US6762160B2 - Composition for removing biofilms comprising a detergent and a salt forming acid - Google Patents
Composition for removing biofilms comprising a detergent and a salt forming acid Download PDFInfo
- Publication number
- US6762160B2 US6762160B2 US09/851,802 US85180201A US6762160B2 US 6762160 B2 US6762160 B2 US 6762160B2 US 85180201 A US85180201 A US 85180201A US 6762160 B2 US6762160 B2 US 6762160B2
- Authority
- US
- United States
- Prior art keywords
- acid
- composition
- salt
- mandelic
- final concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002253 acid Substances 0.000 title claims abstract description 84
- 239000000203 mixture Substances 0.000 title claims abstract description 64
- 150000003839 salts Chemical class 0.000 title claims abstract description 47
- 239000003599 detergent Substances 0.000 title claims abstract description 34
- 230000000844 anti-bacterial effect Effects 0.000 claims abstract description 49
- 239000003899 bactericide agent Substances 0.000 claims abstract description 41
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 38
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical class OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 claims description 28
- 239000003795 chemical substances by application Substances 0.000 claims description 20
- QBYIENPQHBMVBV-HFEGYEGKSA-N (2R)-2-hydroxy-2-phenylacetic acid Chemical compound O[C@@H](C(O)=O)c1ccccc1.O[C@@H](C(O)=O)c1ccccc1 QBYIENPQHBMVBV-HFEGYEGKSA-N 0.000 claims description 17
- IWYDHOAUDWTVEP-UHFFFAOYSA-N R-2-phenyl-2-hydroxyacetic acid Natural products OC(=O)C(O)C1=CC=CC=C1 IWYDHOAUDWTVEP-UHFFFAOYSA-N 0.000 claims description 17
- 229960002510 mandelic acid Drugs 0.000 claims description 17
- 230000003196 chaotropic effect Effects 0.000 claims description 16
- WZHCOOQXZCIUNC-UHFFFAOYSA-N cyclandelate Chemical compound C1C(C)(C)CC(C)CC1OC(=O)C(O)C1=CC=CC=C1 WZHCOOQXZCIUNC-UHFFFAOYSA-N 0.000 claims description 16
- 239000002738 chelating agent Substances 0.000 claims description 14
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 claims description 11
- SEQKRHFRPICQDD-UHFFFAOYSA-N N-tris(hydroxymethyl)methylglycine Chemical compound OCC(CO)(CO)[NH2+]CC([O-])=O SEQKRHFRPICQDD-UHFFFAOYSA-N 0.000 claims description 11
- 239000003623 enhancer Substances 0.000 claims description 11
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 claims description 8
- 235000004279 alanine Nutrition 0.000 claims description 8
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 claims description 8
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical group [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 7
- 239000011575 calcium Substances 0.000 claims description 7
- 229910052791 calcium Inorganic materials 0.000 claims description 7
- 229960001927 cetylpyridinium chloride Drugs 0.000 claims description 7
- YMKDRGPMQRFJGP-UHFFFAOYSA-M cetylpyridinium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+]1=CC=CC=C1 YMKDRGPMQRFJGP-UHFFFAOYSA-M 0.000 claims description 7
- FOCAUTSVDIKZOP-UHFFFAOYSA-N chloroacetic acid Chemical compound OC(=O)CCl FOCAUTSVDIKZOP-UHFFFAOYSA-N 0.000 claims description 7
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 claims description 6
- 239000004471 Glycine Substances 0.000 claims description 6
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 claims description 6
- UZMAPBJVXOGOFT-UHFFFAOYSA-N Syringetin Natural products COC1=C(O)C(OC)=CC(C2=C(C(=O)C3=C(O)C=C(O)C=C3O2)O)=C1 UZMAPBJVXOGOFT-UHFFFAOYSA-N 0.000 claims description 6
- 239000007997 Tricine buffer Substances 0.000 claims description 6
- 239000007998 bicine buffer Substances 0.000 claims description 6
- KCFYHBSOLOXZIF-UHFFFAOYSA-N dihydrochrysin Natural products COC1=C(O)C(OC)=CC(C2OC3=CC(O)=CC(O)=C3C(=O)C2)=C1 KCFYHBSOLOXZIF-UHFFFAOYSA-N 0.000 claims description 6
- WLJVXDMOQOGPHL-UHFFFAOYSA-N phenylacetic acid Chemical compound OC(=O)CC1=CC=CC=C1 WLJVXDMOQOGPHL-UHFFFAOYSA-N 0.000 claims description 6
- 229960004799 tryptophan Drugs 0.000 claims description 6
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 claims description 6
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 claims description 5
- FSVCELGFZIQNCK-UHFFFAOYSA-N N,N-bis(2-hydroxyethyl)glycine Chemical compound OCCN(CCO)CC(O)=O FSVCELGFZIQNCK-UHFFFAOYSA-N 0.000 claims description 5
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 claims description 5
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 claims description 5
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid group Chemical group C(C1=CC=CC=C1)(=O)O WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 claims description 5
- 125000001743 benzylic group Chemical group 0.000 claims description 5
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 claims description 4
- -1 maleic Chemical compound 0.000 claims description 4
- HABHUTWTLGRDDU-UHFFFAOYSA-N 2-oxopimelic acid Chemical class OC(=O)CCCCC(=O)C(O)=O HABHUTWTLGRDDU-UHFFFAOYSA-N 0.000 claims description 3
- 150000001768 cations Chemical class 0.000 claims description 3
- 150000002978 peroxides Chemical class 0.000 claims description 3
- 150000003505 terpenes Chemical class 0.000 claims description 3
- 235000007586 terpenes Nutrition 0.000 claims description 3
- 238000001228 spectrum Methods 0.000 claims description 2
- 239000006035 Tryptophane Substances 0.000 claims 2
- FWDLHTBMGQEUDU-UHFFFAOYSA-M sodium;2-hydroxy-2-phenylacetate Chemical group [Na+].[O-]C(=O)C(O)C1=CC=CC=C1 FWDLHTBMGQEUDU-UHFFFAOYSA-M 0.000 claims 2
- VQOKZOVEBYBIOG-UHFFFAOYSA-N C(C)(=O)O.C(C)(=O)O.C(C)(=O)O.C(C)NCCNCCO Chemical class C(C)(=O)O.C(C)(=O)O.C(C)(=O)O.C(C)NCCNCCO VQOKZOVEBYBIOG-UHFFFAOYSA-N 0.000 claims 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims 1
- 150000007513 acids Chemical class 0.000 abstract description 32
- 241000894006 Bacteria Species 0.000 abstract description 13
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 105
- 239000000243 solution Substances 0.000 description 42
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 41
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 31
- 238000004140 cleaning Methods 0.000 description 30
- 244000005700 microbiome Species 0.000 description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 229920002444 Exopolysaccharide Polymers 0.000 description 11
- 239000000645 desinfectant Substances 0.000 description 10
- 230000000249 desinfective effect Effects 0.000 description 9
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical class CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 8
- 235000014655 lactic acid Nutrition 0.000 description 8
- 239000004615 ingredient Substances 0.000 description 7
- 239000005708 Sodium hypochlorite Substances 0.000 description 6
- 230000001580 bacterial effect Effects 0.000 description 6
- 239000013505 freshwater Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 230000009471 action Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 5
- URDCARMUOSMFFI-UHFFFAOYSA-N 2-[2-[bis(carboxymethyl)amino]ethyl-(2-hydroxyethyl)amino]acetic acid Chemical compound OCCN(CC(O)=O)CCN(CC(O)=O)CC(O)=O URDCARMUOSMFFI-UHFFFAOYSA-N 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 4
- 229960003767 alanine Drugs 0.000 description 4
- 238000005202 decontamination Methods 0.000 description 4
- 230000003588 decontaminative effect Effects 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- WXMKPNITSTVMEF-UHFFFAOYSA-M sodium benzoate Chemical compound [Na+].[O-]C(=O)C1=CC=CC=C1 WXMKPNITSTVMEF-UHFFFAOYSA-M 0.000 description 4
- 239000004299 sodium benzoate Substances 0.000 description 4
- 235000010234 sodium benzoate Nutrition 0.000 description 4
- 229960004025 sodium salicylate Drugs 0.000 description 4
- 241000894007 species Species 0.000 description 4
- 230000001954 sterilising effect Effects 0.000 description 4
- CPKVUHPKYQGHMW-UHFFFAOYSA-N 1-ethenylpyrrolidin-2-one;molecular iodine Chemical compound II.C=CN1CCCC1=O CPKVUHPKYQGHMW-UHFFFAOYSA-N 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- 229920000153 Povidone-iodine Polymers 0.000 description 3
- ABBQHOQBGMUPJH-UHFFFAOYSA-M Sodium salicylate Chemical compound [Na+].OC1=CC=CC=C1C([O-])=O ABBQHOQBGMUPJH-UHFFFAOYSA-M 0.000 description 3
- 125000000129 anionic group Chemical group 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000001680 brushing effect Effects 0.000 description 3
- 230000002147 killing effect Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 150000002989 phenols Chemical class 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- 229920000136 polysorbate Polymers 0.000 description 3
- 229960001621 povidone-iodine Drugs 0.000 description 3
- 238000005201 scrubbing Methods 0.000 description 3
- 229960001153 serine Drugs 0.000 description 3
- 238000004659 sterilization and disinfection Methods 0.000 description 3
- 229920001817 Agar Polymers 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- 208000002064 Dental Plaque Diseases 0.000 description 2
- ZRALSGWEFCBTJO-UHFFFAOYSA-N Guanidine Chemical compound NC(N)=N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 241000186359 Mycobacterium Species 0.000 description 2
- QPCDCPDFJACHGM-UHFFFAOYSA-N N,N-bis{2-[bis(carboxymethyl)amino]ethyl}glycine Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CC(O)=O QPCDCPDFJACHGM-UHFFFAOYSA-N 0.000 description 2
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Natural products OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 2
- 229920001213 Polysorbate 20 Polymers 0.000 description 2
- 239000008272 agar Substances 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Natural products OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 229960003964 deoxycholic acid Drugs 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 235000011087 fumaric acid Nutrition 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000002324 mouth wash Substances 0.000 description 2
- 229940051866 mouthwash Drugs 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 244000052769 pathogen Species 0.000 description 2
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 2
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 2
- 238000004626 scanning electron microscopy Methods 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- FHHPUSMSKHSNKW-SMOYURAASA-M sodium deoxycholate Chemical compound [Na+].C([C@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC([O-])=O)C)[C@@]2(C)[C@@H](O)C1 FHHPUSMSKHSNKW-SMOYURAASA-M 0.000 description 2
- 239000008223 sterile water Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- 229960004441 tyrosine Drugs 0.000 description 2
- KZMRYBLIGYQPPP-UHFFFAOYSA-N 3-[[[4-[(2-chlorophenyl)-[4-[ethyl-[(3-sulfonatophenyl)methyl]azaniumylidene]cyclohexa-2,5-dien-1-ylidene]methyl]phenyl]-ethylazaniumyl]methyl]benzenesulfonate Chemical compound C=1C=C(C(=C2C=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=2C(=CC=CC=2)Cl)C=CC=1[NH+](CC)CC1=CC=CC(S([O-])(=O)=O)=C1 KZMRYBLIGYQPPP-UHFFFAOYSA-N 0.000 description 1
- 241000588624 Acinetobacter calcoaceticus Species 0.000 description 1
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Natural products OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 1
- 229910015444 B(OH)3 Inorganic materials 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- CKLJMWTZIZZHCS-UHFFFAOYSA-N D-OH-Asp Natural products OC(=O)C(N)CC(O)=O CKLJMWTZIZZHCS-UHFFFAOYSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-UHFFFAOYSA-N D-alpha-Ala Natural products CC([NH3+])C([O-])=O QNAYBMKLOCPYGJ-UHFFFAOYSA-N 0.000 description 1
- 229930182832 D-phenylalanine Natural products 0.000 description 1
- 206010016952 Food poisoning Diseases 0.000 description 1
- 208000019331 Foodborne disease Diseases 0.000 description 1
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Natural products OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 1
- DSLZVSRJTYRBFB-UHFFFAOYSA-N Galactaric acid Natural products OC(=O)C(O)C(O)C(O)C(O)C(O)=O DSLZVSRJTYRBFB-UHFFFAOYSA-N 0.000 description 1
- IAJILQKETJEXLJ-UHFFFAOYSA-N Galacturonsaeure Natural products O=CC(O)C(O)C(O)C(O)C(O)=O IAJILQKETJEXLJ-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Natural products OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- CKLJMWTZIZZHCS-UWTATZPHSA-N L-Aspartic acid Natural products OC(=O)[C@H](N)CC(O)=O CKLJMWTZIZZHCS-UWTATZPHSA-N 0.000 description 1
- 239000002211 L-ascorbic acid Substances 0.000 description 1
- 235000000069 L-ascorbic acid Nutrition 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 241001535042 Methylobacterium mesophilicum Species 0.000 description 1
- SOWBFZRMHSNYGE-UHFFFAOYSA-N Monoamide-Oxalic acid Natural products NC(=O)C(O)=O SOWBFZRMHSNYGE-UHFFFAOYSA-N 0.000 description 1
- 241000187488 Mycobacterium sp. Species 0.000 description 1
- CHJJGSNFBQVOTG-UHFFFAOYSA-N N-methyl-guanidine Natural products CNC(N)=N CHJJGSNFBQVOTG-UHFFFAOYSA-N 0.000 description 1
- LCTONWCANYUPML-UHFFFAOYSA-N PYRUVIC-ACID Natural products CC(=O)C(O)=O LCTONWCANYUPML-UHFFFAOYSA-N 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 239000001888 Peptone Substances 0.000 description 1
- 108010080698 Peptones Proteins 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 241000589540 Pseudomonas fluorescens Species 0.000 description 1
- 241000589776 Pseudomonas putida Species 0.000 description 1
- LCTONWCANYUPML-UHFFFAOYSA-M Pyruvate Chemical compound CC(=O)C([O-])=O LCTONWCANYUPML-UHFFFAOYSA-M 0.000 description 1
- YGSDEFSMJLZEOE-UHFFFAOYSA-N Salicylic acid Natural products OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000000845 anti-microbial effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 229960005261 aspartic acid Drugs 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229940087675 benzilic acid Drugs 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- KPGXRSRHYNQIFN-UHFFFAOYSA-N beta-keto-glutaric acid Natural products OC(=O)CCC(=O)C(O)=O KPGXRSRHYNQIFN-UHFFFAOYSA-N 0.000 description 1
- 231100000693 bioaccumulation Toxicity 0.000 description 1
- 239000003139 biocide Substances 0.000 description 1
- 239000006161 blood agar Substances 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 229940041514 candida albicans extract Drugs 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229960004830 cetylpyridinium Drugs 0.000 description 1
- NEUSVAOJNUQRTM-UHFFFAOYSA-N cetylpyridinium Chemical compound CCCCCCCCCCCCCCCC[N+]1=CC=CC=C1 NEUSVAOJNUQRTM-UHFFFAOYSA-N 0.000 description 1
- 229940106681 chloroacetic acid Drugs 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000001332 colony forming effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- JXTHNDFMNIQAHM-UHFFFAOYSA-N dichloro-acetic acid Natural products OC(=O)C(Cl)Cl JXTHNDFMNIQAHM-UHFFFAOYSA-N 0.000 description 1
- 229960005215 dichloroacetic acid Drugs 0.000 description 1
- SWSQBOPZIKWTGO-UHFFFAOYSA-N dimethylaminoamidine Natural products CN(C)C(N)=N SWSQBOPZIKWTGO-UHFFFAOYSA-N 0.000 description 1
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Natural products C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 1
- ZPWVASYFFYYZEW-UHFFFAOYSA-L dipotassium hydrogen phosphate Chemical compound [K+].[K+].OP([O-])([O-])=O ZPWVASYFFYYZEW-UHFFFAOYSA-L 0.000 description 1
- 229910000396 dipotassium phosphate Inorganic materials 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 229950010030 dl-alanine Drugs 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 150000002238 fumaric acids Chemical class 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229940097043 glucuronic acid Drugs 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 229940093915 gynecological organic acid Drugs 0.000 description 1
- WNLRTRBMVRJNCN-UHFFFAOYSA-N hexanedioic acid Natural products OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- IWYDHOAUDWTVEP-UHFFFAOYSA-M mandelate Chemical class [O-]C(=O)C(O)C1=CC=CC=C1 IWYDHOAUDWTVEP-UHFFFAOYSA-M 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 244000000010 microbial pathogen Species 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229940048195 n-(hydroxyethyl)ethylenediaminetriacetic acid Drugs 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-N o-dicarboxybenzene Natural products OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000000399 optical microscopy Methods 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 229960003330 pentetic acid Drugs 0.000 description 1
- 235000019319 peptone Nutrition 0.000 description 1
- 229960003424 phenylacetic acid Drugs 0.000 description 1
- 239000003279 phenylacetic acid Substances 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 229940076788 pyruvate Drugs 0.000 description 1
- 229940107700 pyruvic acid Drugs 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- YGSDEFSMJLZEOE-UHFFFAOYSA-M salicylate Chemical compound OC1=CC=CC=C1C([O-])=O YGSDEFSMJLZEOE-UHFFFAOYSA-M 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 238000010850 salt effect Methods 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 229940079862 sodium lauryl sarcosinate Drugs 0.000 description 1
- ZUFONQSOSYEWCN-UHFFFAOYSA-M sodium;2-(methylamino)acetate Chemical compound [Na+].CNCC([O-])=O ZUFONQSOSYEWCN-UHFFFAOYSA-M 0.000 description 1
- ADWNFGORSPBALY-UHFFFAOYSA-M sodium;2-[dodecyl(methyl)amino]acetate Chemical compound [Na+].CCCCCCCCCCCCN(C)CC([O-])=O ADWNFGORSPBALY-UHFFFAOYSA-M 0.000 description 1
- 230000003381 solubilizing effect Effects 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- 125000002730 succinyl group Chemical group C(CCC(=O)*)(=O)* 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- UEUXEKPTXMALOB-UHFFFAOYSA-J tetrasodium;2-[2-[bis(carboxylatomethyl)amino]ethyl-(carboxylatomethyl)amino]acetate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]C(=O)CN(CC([O-])=O)CCN(CC([O-])=O)CC([O-])=O UEUXEKPTXMALOB-UHFFFAOYSA-J 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 108010050327 trypticase-soy broth Proteins 0.000 description 1
- 239000012137 tryptone Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 239000012224 working solution Substances 0.000 description 1
- 239000012138 yeast extract Substances 0.000 description 1
- RZLVQBNCHSJZPX-UHFFFAOYSA-L zinc sulfate heptahydrate Chemical compound O.O.O.O.O.O.O.[Zn+2].[O-]S([O-])(=O)=O RZLVQBNCHSJZPX-UHFFFAOYSA-L 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2/00—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
- A61L2/16—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
- A61L2/18—Liquid substances or solutions comprising solids or dissolved gases
- A61L2/186—Peroxide solutions
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/02—Inorganic compounds ; Elemental compounds
- C11D3/04—Water-soluble compounds
- C11D3/042—Acids
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/20—Organic compounds containing oxygen
- C11D3/2075—Carboxylic acids-salts thereof
- C11D3/2082—Polycarboxylic acids-salts thereof
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/20—Organic compounds containing oxygen
- C11D3/2075—Carboxylic acids-salts thereof
- C11D3/2086—Hydroxy carboxylic acids-salts thereof
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/24—Organic compounds containing halogen
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/26—Organic compounds containing nitrogen
- C11D3/33—Amino carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/48—Medical, disinfecting agents, disinfecting, antibacterial, germicidal or antimicrobial compositions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2202/00—Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
- A61L2202/10—Apparatus features
- A61L2202/17—Combination with washing or cleaning means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2202/00—Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
- A61L2202/20—Targets to be treated
- A61L2202/24—Medical instruments, e.g. endoscopes, catheters, sharps
Definitions
- This invention relates to solutions capable of efficiently cleaning surfaces susceptible to biofilm coating thereon. It further relates to a cleaning/disinfecting solution, comprising the cleaning components and a bactericidal effective amount of a disinfectant.
- Biofilms Bacteria in natural aquatic environments have the marked tendency to interact with surfaces. The formation of surface biofilms can be regarded as a universal bacterial strategy for survival and for optimum positioning with regard to available nutrients. Bacteria growing in natural environments produce extensive exopolysaccharide (EPS) polymers that mediate both their attachment to surfaces and the formation of microcolonies and, eventually, the generation of biofilms. Biofilms are much more resistant to destruction than planktonic microorganisms. Although the mechanisms of this resistance are poorly understood, EPS are likely to play a role. In addition, biofilm bacteria are substantially resistant to surfactants, biocides and antibiotics. Two problems can arise from the presence of biofilms in a distributing aqueous system.
- EPS exopolysaccharide
- biofilm can clog pipes and tubings or interfere with the proper function of mechanical devices.
- bacterial populations living in this protected mode of growth produce planktonic cells that contaminate fluids and alter their properties or, in the case of pathogens, can result in food poisoning or infections.
- biofilms could allow the multiplication of microbial pathogens stochasticly present in freshwater, as well as providing a mechanism for bioaccumulation of toxic substances.
- microbial biofilms constitute major industrial and medical concerns. These concerns are now being realized in the dental profession.
- the average bacteria count in the water discharge of dental instruments is known to be of approximately 200,000 colony forming units per milliliter (cfu/ml) and in some extreme cases can reach 10,000,000 cfu/ml (Barbeau et al. 1996).
- Jacquelin et al. disclose compositions comprising a detergent such as sodium dodecyl sulfate (SDS) or sodium deoxycholate (SDC) and a phenolic disinfectant.
- SDS sodium dodecyl sulfate
- SDC sodium deoxycholate
- Whittaker et al. (Appl. and Env Microbiol. 43(3): 395-403 (1984)) disclose a plurality of compositions tested for their cleaning/disinfecting properties against micoorganisms. Their best composition was SDS/urea, which was efficient on chlorine-treated osmosis membranes after 11 days of treatment, which time is far from being a practical cleaning/disinfecting time for dentistry.
- European patent publication 109 279 describes a solution comprising a plurality of essential ingredients for sterilizing surgical apparatuses. Although this reference suggests that biofilm decontamination is contemplated, there is no demonstration whatsoever on that specific issue. Moreover, there is no teaching of any subset of combined ingredients which would be capable by itself to remove the biofilm, and optionally, to kill the embedded bacteria.
- a commercially available mouthwash sold under the trademark PLAX which comprises SDS 0.25%, sodium benzoate 2% and sodium salicylate 0.2%, supposedly helps in removing dental plaque prior to tooth brushing.
- PLAX which comprises SDS 0.25%, sodium benzoate 2% and sodium salicylate 0.2%
- Patent publication WO 96/20737 assigned to the present proprietor, describes compositions capable of cleaning and disinfecting biofilm-coated surfaces. These compositions comprise SDS 1%-2%, hydrogen peroxide 5%, EDTA 1%, mandelic and lactic acids in individual 1% concentration or in combined 2% concentration (mandelic acid being a bactericide). They further describe sub-compositions comprising the same concentrations of SDS/hydrogen peroxide/EDTA and SDS/acids. There is no teaching in these publications of compositions which would be different therefrom and still equivalent thereto, and there is no teaching of how specific components attack the integrity of the biofilms e.g. there is no mechanism of action proposed which would lead to establish a generic class of components useful for the purpose of removing biofilms with high efficacy.
- compositions for cleaning biofilm-coated surfaces which will effectively dislodge a biofilm and optionally kill the microorganism flora in the dislodged biofilm, these compositions being adapted upon a variety of industrial uses and needs.
- biofilm removal may be achieved, using a solution minimally comprising a detergent and acids which, at the working pH, form salts in a substantial proportion. These two components by themselves are sufficient to remove well-established biofilms in a period of time varying from within 1 hour to an indefinite time, more preferably between about 1 hour and 18 hours.
- a bactericide When destruction of microorganisms is a concern, particularly in the medical or dental professions, a bactericide must be added to the solution.
- the bactericide contacts the surface rid of biofilm and wherein residual microorganisms retained on the surface will be killed.
- the disinfecting and cleaning actions are allowed to occur concurrently.
- a solution for dislodging a biofilm from a surface which comprises an effective dislodging amount of a detergent and an effective dislodging amount of a salt or of an acid which forms a salt at a working pH value, or both, said salt being capable of displacing divalent cations present in the structure of the biofilm with the proviso that the composition is neither a mixture of SDS 1%-2% and EDTA 1%, a mixture of SDS 1%-2% and mandelic and lactic acids, each at an individual concentration of 1% or in a combined concentration of 2%, nor a mixture of SDS 0.25%, sodium salicylate 0.2% and sodium benzoate 2% (PLAX), all percentages representing final weight per volume concentrations.
- the acid or salt is preferably an organic acid or salt.
- the components of the solution would preferably exclude components that comprise or produce an oxidant namely an oxygen-producing species such as peroxide or a chlorine-producing species such as sodium hypochlorite.
- the components of the solution would preferably exclude a bactericide which is a terpene known from WO 93/17558.
- compositions of this invention Despite the fact that some components are excluded from the compositions of this invention, the use of all these compositions including the disclaimed ones for their capacity to remove biofilm is within the scope of the present invention.
- the detergent is SDS in a concentration excluding the above disclaimed species of at least about 0.1% or any detergent having a biofilm dislodging potency substantially equivalent thereto.
- the acid is mandelic acid in a concentration of at least about 0.1% at a working pH value (pH 5 is one example), or a mandelate salt, or any acid or salt having a biofilm dislodging potency substantially equivalent thereto at a suitable working pH.
- the salt or acid may interestingly be an EDTA salt or acid in a concentration of at least about 0.25% at a working pH value. At pH 5, EDTA acid forms EDTA salt and is performing when combined to SDS, with or without any other acid, although better results were obtained with another acid.
- the acid is selected from the group consisting of mandelic, 2-ketoglutaric, acetic, iminodiacetic, mucic, glycolic, fumaric, lactic, aspartic, phosphoric, pyruvic, chloroacetic, oxalic, citric, oxamic, malic, dichloroacetic, phenylacetic, benzylic, maleic, succinic, chloromandelic, glutamic, nitrilotriacetic, boric, adipic, formic, glucuronic, salicylic, benzoic, benzoyl formic, phthalic, ketopimelic acids, alanine, serine, tryptophan, tyrosine, bicine, tricine and glycine.
- the composition further comprises biofilm dislodging enhancer agents such as chaotropic agents or calcium chelators.
- a calcium chelator such as EDTA preferably in a salt form, in a concentration of at least about 0.25% or any calcium chelator having a chelating potency substantially equivalent thereto may be added.
- a chaotropic agent such as SDS in a concentration of at least about 0.1% or any chaotropic agent having a chaotropic potency substantially equivalent thereto may also be added.
- compositions comprise at least about 0.1% SDS, at least about 0.1% acid, at least about 0.25% EDTA, the acid being selected from the group consisting of 2-ketoglutaric, acetic, iminodiacetic, mucic, glycolic, fumaric, aspartic, phosphoric, pyruvic, chloroacetic acids and alanine.
- the compositions comprise at least about 0.1% but less than 1% SDS, about 0.1%-2% acid, and at least about 0.25% but less than 1% EDTA, the acid being mandelic acid or any other of 2-ketoglutaric, acetic, iminodiacetic, mucic, glycolic, fumaric, aspartic, phosphoric, pyruvic, chloroacetic acids and alanine.
- the highest concentrations confer a strength to the composition such as it is effective within one hour.
- the lowest concentrations confer a good performance within 18 hours.
- Good bactericides comprise hydrogen peroxide about 5%, or phenol derivatives at least about 0.1%, or sodium hypochlorite at least about 0.5% These bactericides are tuberculocides e.g. they are active against Mycobacterium spp. which are resistant to a large panel of bactericides.
- SDS Sodium dodecyl sulfate EDTA Ethylenediamine tetraacetic acid H 2 O 2 Hydrogen peroxide CPC Cetylpyridinium chloride Tween 20 Polyoxyethylene sorbitan monolaurate SCS Sodium cocoyl sarcosinate SLS Sodium lauryl sarcosinate SDDD Sodium n-decyl diphenylether disulfonate HEEDTA N-(hydroxyethyl)ethylenediamine triacetic acid DTPA Diethylenetriamine pentaacetic acid
- compositions were allowed to contact biofilms for 1 and 18 hours to evaluate their cleaning and disinfecting efficacy.
- tubings Two-cm long pieces of dental unit waterlines tubings were used. These tubings were taken from functional dental units installed at the faculty of dentistry of the University of Montreal. Our previous studies (1992-1996) have shown that the lumen of these tubings is covered with mature biofilms. The pieces were sectioned longitudinally with a sterile scalpel blade to expose the biofilm. Another series of tubings was left untouched. Sections of tubings were placed in sterile 5 ml disposable test tubes containing solutions to be tested.
- tubings were rinsed three times with sterile water. Examination was done first with a binocular microscope at a magnification of 40 ⁇ . Data were recorded on a arbitrary scale by two different examiners and noted as from 4+(same as control) to 0 (no biofilm).
- the disinfectant was tested in the ACCM ⁇ prototype in a closed room at the Faculty.
- the ACCM was installed on a A-dec dental unit by one of our technicians.
- water samples were taken for bacterial counts, and a two-cm piece of the air/water syringe hose was taken for SEM.
- the lines were filled with disinfectant containing alizarin green as an indicator and the setup was left unused overnight. The next day, the disinfectant was drained until no coloration was seen. Draining was done for an extra 2-min and a 4-ml water sample was taken for bacterial counts.
- Another 2-cm piece of tubing was sectioned for SEM.
- a second sample was taken at the end of the day and the lines were filled with disinfectant for 18 hours. This routine was repeated over a period of one month. In some experiments, the disinfectant was left to react for 1 hour in lieu of 18 hours.
- Control samples (20 ml) were obtained from nearest taps in each clinic and at the source upstream to the connection to the dental unit in selected units. These samples were filtered through a 25 mm polycarbonate filter (0.22 ⁇ m) (Millipore, Quebec, Canada) using a sterile syringe and a filter holder (Millipore). The filters were then placed on the surface of the culture medium in a Petri dish and incubated.
- a modification of the medium of Reasoner (termed R2Am) was used.
- the composition is as follows: starch 0.5 g, yeast extract 0.5 g, trypticase peptone 0.5 g, dextrose 0.5 g, K 2 HPO 4 0.3 g, MgSO 4 0.05 g, succinate 0.25 g, casamino acids 0.5 g, agar 7.5 g, and distilled water to 1L. Tryptone soy agar and Sheep blood agar (Difco, Quebec, Canada) were also used.
- Bacteria were cultivated in aerobiosis and anaerobiosis (10% CO 2 , 10% H 2 and 80% N 2 , anaerobic cabinet: Forma Scientific, Quebec, Canada) for the determination of their dependency on oxygen and at 25° C. and 37° C. over time between 24 and 480 hours.
- the bactericides are added in the solutions, when a bactericidal complement is desired. Any bactericide may be added to the above cleaning solution, which would have for effect to confer an additional disinfecting action thereto, which action is greatly facilitated by the dislodging action of the cleaning ingredients: detergent and salts.
- sodium hypochlorite, phenol derivatives and hydrogen peroxide showed a broad host killing activity, even against Mycobacterium sp. known for their high level of resistance towards bactericides.
- Mandelic acid has a dual role as a salt forming acid and as a bactericide.
- Povidone-iodine was also tested and had a significant efficiency when combined to the detergent Tween 20TM. All the above bactericides are non limitative examples of bactericides.
- the solution tested with 0.15% SDS also contained 6% hydrogen peroxide, and low amounts of HEEDTA (acid; 0.3%), acetic acid (0.1%) and zinc sulfate heptahydrate (0.1%).
- This solution corresponds to the best one described in EP 109 279.
- the pH of the solution was adjusted from 2.42 to pH 5, which entails of salt formation.
- the commercial mouthwash PLAXTM comprising 0.25% SDS, 2% sodium benzoate and 2% sodium salicylate (pH 7.35) showed good biofilm removal, although not perfect, after 18 hours of contact.
- the acceptable performance of that solution confirms that salts only may be used although the presence of acid(s) appears optimal.
- the effect of PLAX also confirms that a bactericide such as hydrogen peroxide is not necessary in the biofilm removal.
- EDTA is rather considered as an activity enhancer, because this compound is also a good divalent ion chelator, and as such, it may help in withdrawing Ca2+ ions from the polysaccharide biofilm matrix, leading to a faster dismantlement thereof.
- SDS was the preferred detergent and it is further worthwhile noting that this detergent is also a chaotropic agent. It is therefore contemplated that a chaotropic agent may be optionally added to increase the biofilm dislodging strength of the solution.
- chaotropic agents include but are not limited to SDS, urea and guanidine.
- the chaotropic agent is also considered as an optional activity enhancer.
- compositions of this invention for easy monitoring of the extent of rinsing.
- flavors or scents may be added to provide a pleasant taste or smell to surfaces to be cleaned.
- Fresh water lines supplying dental instruments are of a very small diameter, which excludes the possibility of scrubbing. This would not be the case for dentures, surfaces or tubings of larger diameter.
- the compositions of the present invention have the advantage of showing efficient decontamination in the complete absence of scrubbing in a convenient time of decontamination.
- the present invention is not only useful for dental instruments or protheses. It will become obvious that it is intended for other applications, e.g. cleaning or decontaminating any type of tubing or container on the surface of which microorganisms are adsorbed and form a biofilm. In such other applications, scrubbing or any other mechanical aid is not at all excluded.
- compositions be used in pipes of a larger diameter and length, for example, wherein a non-cost effective large volume of cleaning solution would be needed to fill the pipes, it is possible that a mechanical action would help in the action of the solution.
- a mechanical aid when envisaged, would help in reducing the duration of cleaning and/or in spreading the cleaning solution on a surface. It is further not excluded to add a vehicle allowing the cleaning solution to stay in contact with the surface to be decontaminated as long as possible.
- Some or all of cleaning solution components might be delivered in separate vials, in concentrated forms, to be admixed in the final reconstituted volume. This could reduce the handling and storage of large volumes of decontaminating solutions when they are used for cleaning large surfaces.
- SDS has been tried at a final concentration of 0.15% (w/v) and did work well within one hour. So, SDS certainly can be as low as about 0.1% when the duration of treatment may last about one hour or more. The most preferred SDS concentration was 1% which achieved a perfect cleaning efficacy within one hour. Any detergent at a concentration as potent as at least about 0.1% SDS is within the scope of this invention. For example, the following detergents and concentrations have been tried with success:
- detergents of all classes: non-ionic, anionic and cationic have been all successful in removing biofilms, and this invention should not be limited to the tested five detergents.
- Mandelic acid has been tried with success in a concentration extending from 1% to 10%. Besides that, acetic acid has been tried in a range of concentrations 0.1% to 1% and was very efficient. Further, a plurality of acids (1%) may substitute for mandelic acid 1% (see Table 1). It is therefore contemplated that acids can be used in a minimal concentration of about 0.1% at a salt-forming pH. Preferred acid concentration is 1% for rapidly acting solutions, with reference to mandelic acid. Any acid capable of forming salts at the working pH, in concentrations equipotent to at least about 0.1% mandelic acid, depending on the desired contacting time, is within the scope of this invention. Although a pH of about 5 has been tested, it is readily apparent to a skilled reader that the pH of the solutions is not restricted to that value.
- Tetrasodium EDTA (0.25%-1%) has been tried with a certain degree of success against biofilms. Any chelator in a concentration equipotent to the above concentrations of EDTA is within the scope of this invention. It is worthwhile noting that HEEDTA has been used in the acid form (0.3%) and was good when another salt forming acid: acetic acid, was at a concentration of 0.1% to 1% and when the pH was brought from 2.42 to 5.0. So, chelator salts can be used or chelator acid precursors can be used in salt forming conditions. It is recalled that the chelator is an optional component; it is used to increase the cleaning strength of the solution. Its function is mainly to capture divalent ions such as Ca 2+ which are involved in EPS integrity.
- SDS has a dual action as a detergent and a chaotropic agent. Since a plurality of non-chaotropic detergents may substitute for SDS, the chaotropic activity is not considered essential to the claimed compositions. However, since SDS was the preferred detergent, it is contemplated that a chaotropic agent may be useful, as an optional component, in increasing the cleaning strength of the solution. Any chaotropic agent having the potency of in a concentration of at least about 0.1% SDS is within the scope of this invention.
- a bactericide When it is desirable to complete the cleaning solution with a bactericidal activity, especially in the medical field, a bactericide can be added in an effective concentration. It is recalled that bactericides alone are less effective against biofilms than against planktonic micoorganisms. However, when bactericides are combined to a detergent/salt solution, or contacted with surfaces thereafter, they are capable of killing microorganisms which are retrieved as planktonic organisms and no longer organized as a biofilm, due to the detergent/acid/salt effect.
- Povidone-iodine 10%, mandelic acid 1%, sodium benzoate/salicylate 2%/0.2%, hydrogen peroxide 5%, sodium hypochlorite 0.5%, phenol 0.1% and CPC 0.1% -0.5% have all been tried with success, which indicates that any bactericide may be added in the cleaning solution in so far as the selected bactericide has a killing activity against the populations of microorganisms to eliminate.
- EPS exist in more or less ordered forms in natural environment. Many bacterial EPS appear to adopt a double helicoidal configuration and the association of the double helices is facilitated by ions (such as Ca2+) and by water molecules.
- ions such as Ca2+
- the physical properties of EPS and hence of biofilms may be influenced by the presence of free anionic groups (uronic acids, phosphate groups, pyruvate ketals or succinyl half esters). Hydrogen bonding involving exposed hydroxyl groups can also be significant. Localized hydrophobic regions may also exert influence. Therefore interacting with the ions involved in the maintenance of cohesive biofilms is a target for the dismantlement thereof.
- the present invention relates to compositions and methods minimally comprising or making use of salts or salt-forming acids and a detergent.
- a salt-forming acid is used to create an equilibrium between acids and salts, both of which being involved in attacking the biofilm components.
- Such salts would include salts capable of dissociating from the counter anion.
- the preferred salts include compounds of group Ia, namely lithium, sodium and potassium.
- the detergent appears to have a synergistic effect in solubilizing the components and in exposing EPS sub-layers which, in turn, become attackable by acids and salts.
- the present ingredients when combined are very efficient and achieve complete removal of biofilms.
- Bactericidal agents, when added, become efficient against biofilms, because the biofilm becomes disorganized and is no longer impermeable to the anti-microbials.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Detergent Compositions (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Apparatus For Disinfection Or Sterilisation (AREA)
Abstract
This invention relates to compositions for removing biofilms from contaminated surfaces. The compositions minimally comprise a detergent and a salt or a salt-forming acid. Preferably, the compositions comprise a detergent and a salt-forming acid, to provide salts and acids in equilibrium, in such a way that the biofilm is rapidly dismantled and removed in such an environment. The compositions may also comprise a bactericide, for destroying bacteria.
Description
This application is a Continuation-in-part of Ser. No. 09/187,249, filed November 6, 1998, now abandoned.
This invention relates to solutions capable of efficiently cleaning surfaces susceptible to biofilm coating thereon. It further relates to a cleaning/disinfecting solution, comprising the cleaning components and a bactericidal effective amount of a disinfectant.
Bacteria in natural aquatic environments have the marked tendency to interact with surfaces. The formation of surface biofilms can be regarded as a universal bacterial strategy for survival and for optimum positioning with regard to available nutrients. Bacteria growing in natural environments produce extensive exopolysaccharide (EPS) polymers that mediate both their attachment to surfaces and the formation of microcolonies and, eventually, the generation of biofilms. Biofilms are much more resistant to destruction than planktonic microorganisms. Although the mechanisms of this resistance are poorly understood, EPS are likely to play a role. In addition, biofilm bacteria are substantially resistant to surfactants, biocides and antibiotics. Two problems can arise from the presence of biofilms in a distributing aqueous system. First, the biofilm can clog pipes and tubings or interfere with the proper function of mechanical devices. Second, bacterial populations living in this protected mode of growth produce planktonic cells that contaminate fluids and alter their properties or, in the case of pathogens, can result in food poisoning or infections. It has also been proposed that biofilms could allow the multiplication of microbial pathogens stochasticly present in freshwater, as well as providing a mechanism for bioaccumulation of toxic substances. As a result, microbial biofilms constitute major industrial and medical concerns. These concerns are now being realized in the dental profession.
Dentists, dental surgeons and dental hygienists and their patients are well aware of the importance of meticulously sterilizing and disinfecting dental instruments. Indeed, since dental instruments are used directly in a patient's mouth, sometimes for invasive or surgical procedures, it is of paramount importance to minimize the presence of microorganisms carried by dental instruments. The microorganisms can range from relatively harmless bacteria to dangerous pathogens. Consequently, efforts are deployed to remove microorganisms from dental instruments and from the fresh water lines feeding dental instruments such as air/water seringes, high speed turbines, and ultrasonic scalers, or from saliva evacuation lines. For most hand held dental instruments, thermal sterilization remains one of the best methods for eradicating microorganism. However, thermal sterilization is obviously not practical for the decontaminating of fresh water lines which remain to this date difficult to rid of microorganisms.
It is well known in the dental profession that small diameter pipes carrying fresh water are contaminated by bacteria and other microorganisms contained in the water flowing through them (Barbeau et al. 1996). Some of the microorganisms inevitably adhere to the inner walls of the lines and accumulate together with microscopic sediments or other substances into what is commonly known as a biofilm (Barbeau et al. 1997). The biofilm quickly and tenaciously coats the inner walls of the lines and becomes a reservoir for the proliferation of microorganisms. Bacterial populations will rapidly reach alarming levels which will also be found in the water discharge from the dental instruments connected to the fresh water line. For example, the average bacteria count in the water discharge of dental instruments is known to be of approximately 200,000 colony forming units per milliliter (cfu/ml) and in some extreme cases can reach 10,000,000 cfu/ml (Barbeau et al. 1996).
Jacquelin et al. (Path. Biol. 42(5): 425-431 (1994)) disclose compositions comprising a detergent such as sodium dodecyl sulfate (SDS) or sodium deoxycholate (SDC) and a phenolic disinfectant. The solutions are not efficient to remove and/or destroy biofilms as seen from the photographs of FIG. 1 and from the concluding remarks of this reference.
Whittaker et al. (Appl. and Env Microbiol. 43(3): 395-403 (1984)) disclose a plurality of compositions tested for their cleaning/disinfecting properties against micoorganisms. Their best composition was SDS/urea, which was efficient on chlorine-treated osmosis membranes after 11 days of treatment, which time is far from being a practical cleaning/disinfecting time for dentistry.
European patent publication 109 279 describes a solution comprising a plurality of essential ingredients for sterilizing surgical apparatuses. Although this reference suggests that biofilm decontamination is contemplated, there is no demonstration whatsoever on that specific issue. Moreover, there is no teaching of any subset of combined ingredients which would be capable by itself to remove the biofilm, and optionally, to kill the embedded bacteria.
A commercially available mouthwash sold under the trademark PLAX which comprises SDS 0.25%, sodium benzoate 2% and sodium salicylate 0.2%, supposedly helps in removing dental plaque prior to tooth brushing. The efficacy of this solution against biofilms in general is however doubtful given the short time of contact within which dental plaque is to be removed, even when tooth brushing follows.
Patent publication WO 96/20737, assigned to the present proprietor, describes compositions capable of cleaning and disinfecting biofilm-coated surfaces. These compositions comprise SDS 1%-2%, hydrogen peroxide 5%, EDTA 1%, mandelic and lactic acids in individual 1% concentration or in combined 2% concentration (mandelic acid being a bactericide). They further describe sub-compositions comprising the same concentrations of SDS/hydrogen peroxide/EDTA and SDS/acids. There is no teaching in these publications of compositions which would be different therefrom and still equivalent thereto, and there is no teaching of how specific components attack the integrity of the biofilms e.g. there is no mechanism of action proposed which would lead to establish a generic class of components useful for the purpose of removing biofilms with high efficacy.
Accordingly there still remains a need for compositions for cleaning biofilm-coated surfaces which will effectively dislodge a biofilm and optionally kill the microorganism flora in the dislodged biofilm, these compositions being adapted upon a variety of industrial uses and needs.
Against all expectations and documented evidence, the present inventors found that effective removal of biofilm may be achieved, using a solution minimally comprising a detergent and acids which, at the working pH, form salts in a substantial proportion. These two components by themselves are sufficient to remove well-established biofilms in a period of time varying from within 1 hour to an indefinite time, more preferably between about 1 hour and 18 hours.
When destruction of microorganisms is a concern, particularly in the medical or dental professions, a bactericide must be added to the solution. The bactericide contacts the surface rid of biofilm and wherein residual microorganisms retained on the surface will be killed. Preferably, the disinfecting and cleaning actions are allowed to occur concurrently.
In accordance with the present invention is provided a solution for dislodging a biofilm from a surface, which comprises an effective dislodging amount of a detergent and an effective dislodging amount of a salt or of an acid which forms a salt at a working pH value, or both, said salt being capable of displacing divalent cations present in the structure of the biofilm with the proviso that the composition is neither a mixture of SDS 1%-2% and EDTA 1%, a mixture of SDS 1%-2% and mandelic and lactic acids, each at an individual concentration of 1% or in a combined concentration of 2%, nor a mixture of SDS 0.25%, sodium salicylate 0.2% and sodium benzoate 2% (PLAX), all percentages representing final weight per volume concentrations.
The acid or salt is preferably an organic acid or salt. The components of the solution would preferably exclude components that comprise or produce an oxidant namely an oxygen-producing species such as peroxide or a chlorine-producing species such as sodium hypochlorite.
The components of the solution would preferably exclude a bactericide which is a terpene known from WO 93/17558.
Despite the fact that some components are excluded from the compositions of this invention, the use of all these compositions including the disclaimed ones for their capacity to remove biofilm is within the scope of the present invention.
It is another object of this invention to provide a composition for dislodging and destroying a biofilm, which further comprises a bactericide although it excludes the above-disclaimed bactericides.
In preferred embodiments, the detergent is SDS in a concentration excluding the above disclaimed species of at least about 0.1% or any detergent having a biofilm dislodging potency substantially equivalent thereto. The acid is mandelic acid in a concentration of at least about 0.1% at a working pH value (pH 5 is one example), or a mandelate salt, or any acid or salt having a biofilm dislodging potency substantially equivalent thereto at a suitable working pH. For example, the salt or acid may interestingly be an EDTA salt or acid in a concentration of at least about 0.25% at a working pH value. At pH 5, EDTA acid forms EDTA salt and is performing when combined to SDS, with or without any other acid, although better results were obtained with another acid.
In more preferred embodiments, the acid is selected from the group consisting of mandelic, 2-ketoglutaric, acetic, iminodiacetic, mucic, glycolic, fumaric, lactic, aspartic, phosphoric, pyruvic, chloroacetic, oxalic, citric, oxamic, malic, dichloroacetic, phenylacetic, benzylic, maleic, succinic, chloromandelic, glutamic, nitrilotriacetic, boric, adipic, formic, glucuronic, salicylic, benzoic, benzoyl formic, phthalic, ketopimelic acids, alanine, serine, tryptophan, tyrosine, bicine, tricine and glycine. Except for phosphoric acid, all these preferred acids are organic acids. When a bactericidal activity is needed, a bactericide such as hydrogen peroxide or any bactericide having a bactericidal potency substantially equivalent thereto may be added. Other bactericides like phenol derivatives or sodium hypochlorite are examples of good bactericides. They have been used in concentrations of at least 0.1% and 0.5%, respectively. In even more preferred embodiments, the composition further comprises biofilm dislodging enhancer agents such as chaotropic agents or calcium chelators.
A calcium chelator such as EDTA, preferably in a salt form, in a concentration of at least about 0.25% or any calcium chelator having a chelating potency substantially equivalent thereto may be added.
A chaotropic agent such as SDS in a concentration of at least about 0.1% or any chaotropic agent having a chaotropic potency substantially equivalent thereto may also be added.
In more preferred embodiments, the compositions comprise at least about 0.1% SDS, at least about 0.1% acid, at least about 0.25% EDTA, the acid being selected from the group consisting of 2-ketoglutaric, acetic, iminodiacetic, mucic, glycolic, fumaric, aspartic, phosphoric, pyruvic, chloroacetic acids and alanine.
In a mostly preferred embodiment, the compositions comprise at least about 0.1% but less than 1% SDS, about 0.1%-2% acid, and at least about 0.25% but less than 1% EDTA, the acid being mandelic acid or any other of 2-ketoglutaric, acetic, iminodiacetic, mucic, glycolic, fumaric, aspartic, phosphoric, pyruvic, chloroacetic acids and alanine.
The highest concentrations confer a strength to the composition such as it is effective within one hour. The lowest concentrations confer a good performance within 18 hours.
Good bactericides comprise hydrogen peroxide about 5%, or phenol derivatives at least about 0.1%, or sodium hypochlorite at least about 0.5% These bactericides are tuberculocides e.g. they are active against Mycobacterium spp. which are resistant to a large panel of bactericides.
Each component tested in this application will be given an abbreviated name, which complete definition is as follows:
SDS | Sodium dodecyl sulfate | ||
EDTA | Ethylenediamine tetraacetic acid | ||
H2O2 | Hydrogen peroxide | ||
CPC | Cetylpyridinium chloride | ||
Tween 20 | Polyoxyethylene sorbitan monolaurate | ||
SCS | Sodium cocoyl sarcosinate | ||
SLS | Sodium lauryl sarcosinate | ||
SDDD | Sodium n-decyl diphenylether disulfonate | ||
HEEDTA | N-(hydroxyethyl)ethylenediamine triacetic acid | ||
DTPA | Diethylenetriamine pentaacetic acid | ||
Starting from the solutions already described in the patent publication WO 96/20737 assigned to the same proprietor, comprising SDS 1%-2%/mixture of mandelic and lactic acids 2%/EDTA 1%/hydrogen peroxide 5%, we first replaced mandelic and lactic acids with a plurality of acids used individually in 1% concentration (w/v), the pH of the working solution being brought to 5.0. We further tried different components with hope to find equivalents for each other essential and non-essential ingredients of the composition.
The compositions were allowed to contact biofilms for 1 and 18 hours to evaluate their cleaning and disinfecting efficacy.
Testing the Disinfectant.
Optical and Scanning Electron Microscopy.
Two-cm long pieces of dental unit waterlines tubings were used. These tubings were taken from functional dental units installed at the faculty of dentistry of the University of Montreal. Our previous studies (1992-1996) have shown that the lumen of these tubings is covered with mature biofilms. The pieces were sectioned longitudinally with a sterile scalpel blade to expose the biofilm. Another series of tubings was left untouched. Sections of tubings were placed in sterile 5 ml disposable test tubes containing solutions to be tested.
After 1 or 18 hours without agitation at room temperature, tubings were rinsed three times with sterile water. Examination was done first with a binocular microscope at a magnification of 40×. Data were recorded on a arbitrary scale by two different examiners and noted as from 4+(same as control) to 0 (no biofilm).
Selected pieces of tubings were processed for electron microscopy.
Scanning Electron Microscopy (SEM)
For SEM observations, following fixation, post-fixation and dehydration, samples were critical point dried with carbon dioxide in a Balzers CPD 030 Critical Point Dryer (Balzers, Furstentum, Liechtenstein), then mounted with a conductive carbon paint on aluminum stubs and sputtered with gold, or carbon-evaporated in a Bal-Tec MED 020 High Vacuum Coating System (Bal-Tec Products Inc., Middlebury, Conn., USA). The interior of tubing segments was examined with a field emission JEOL JSM 6300F SEM operated at an accelerating voltage of 15 kV. The gold-coated specimens were used for SEI while the carbon-coated ones were visualized by BEI.
Antibacterial Activity.
To test the antibacterial activity, we used the same setup as above. After the 1 or 18 hour incubation, tubings were rinsed with sterile water. Pieces of tubings were dropped in sterile test tubes containing 4 ml of R2Am medium. Test tubes were capped and incubated for 7 days at room temperature. These conditions proved to be best for the growth of the majority of dental unit waterlines bacteria. Data were recorded as presence or absence of growth with a spectrophotometer at λ=590 nm.
We have isolated 30 strains of DUWL bacteria among which, P. aeruginosa, P. putida, M. mesophilicum, A. calcoaceticus, P. fluorescens were the most frequent species. We tested these strains individually in the disinfectant. Pure culture of bacteria in liquid R2Am broth were used.
In Situ Testing.
The disinfectant was tested in the ACCM© prototype in a closed room at the Faculty. The ACCM was installed on a A-dec dental unit by one of our technicians. Before the study, water samples were taken for bacterial counts, and a two-cm piece of the air/water syringe hose was taken for SEM. The lines were filled with disinfectant containing alizarin green as an indicator and the setup was left unused overnight. The next day, the disinfectant was drained until no coloration was seen. Draining was done for an extra 2-min and a 4-ml water sample was taken for bacterial counts. Another 2-cm piece of tubing was sectioned for SEM. A second sample was taken at the end of the day and the lines were filled with disinfectant for 18 hours. This routine was repeated over a period of one month. In some experiments, the disinfectant was left to react for 1 hour in lieu of 18 hours.
Collection and Plating of Water Samples.
All the water samples were vigorously agitated with a vortex for 15 seconds. The plating was done by inoculating Petri dishes with 100 μl of a 1:10, 1:100 and 1:1000 dilution in duplicate, or by using an automatic spiral plating system (Meyer Service & Supply, Ontario, Canada) after a tenfold dilution of the sample. The enumeration was done using a magnifying glass and a counting grid.
Control samples (20 ml) were obtained from nearest taps in each clinic and at the source upstream to the connection to the dental unit in selected units. These samples were filtered through a 25 mm polycarbonate filter (0.22 μm) (Millipore, Montréal, Canada) using a sterile syringe and a filter holder (Millipore). The filters were then placed on the surface of the culture medium in a Petri dish and incubated.
Newly installed dental units (Kavo, Germany) at the dental school were also sampled just before their first clinical use with the same sampling technique.
Culture Conditions.
A modification of the medium of Reasoner (termed R2Am) was used. The composition is as follows: starch 0.5 g, yeast extract 0.5 g, trypticase peptone 0.5 g, dextrose 0.5 g, K2HPO4 0.3 g, MgSO4 0.05 g, succinate 0.25 g, casamino acids 0.5 g, agar 7.5 g, and distilled water to 1L. Tryptone soy agar and Sheep blood agar (Difco, Montréal, Canada) were also used. Bacteria were cultivated in aerobiosis and anaerobiosis (10% CO2, 10% H2 and 80% N2, anaerobic cabinet: Forma Scientific, Montréal, Canada) for the determination of their dependency on oxygen and at 25° C. and 37° C. over time between 24 and 480 hours.
Acid Substitutions:
We first substituted a plurality of acids for mandelic and lactic acids. All these acids were used in 1% (w/v) final concentration. Results are shown in Table 1.
TABLE 1 |
ACIDS SUBSTITUTING FOR MANDELIC OR LACTIC ACIDS |
RESULTS | |
DESCRIPTION | AFTER DISINFECTION |
Selected Acid (1%) | H2O2 | EDTA | SDS | pH | 1 hour | 18 hours | Growth |
Mandelic Acid | 5% | 1% | 1% | 5,0 (NaOH 10%) | − | − | − |
Lactic Acid | 5% | 1% | 1% | 5,0 (NaOH 10%) | + | + | − |
D-Tartric acid | 5% | 1% | 1% | 5,0 (NaOH 10%) | ++ | ++ | − |
Citric Acid | 5% | 1% | 1% | 5,0 (NaOH 10%) | +++ | + | − |
Oxalic Acid | 5% | 1% | 1% | 5,0 (NaOH 10%) | ++ | + | − |
Oxamic Acid | 5% | 1% | 1% | 5,0 (NaOH 10%) | +++ | + | − |
Sulfamic Acid | 5% | 1% | 1% | 5,0 (NaOH 10%) | +++ | ++ | |
Malonic Acid | 5% | 1% | 1% | 5,0 (NaOH 10%) | ++ | ++ | − |
Malic Acid | 5% | 1% | 1% | 5,0 (NaOH 10%) | + | + | − |
Dichloroacetic Acid | 5% | 1% | 1% | 4,99 (AcOH) | + | + | − |
2-Ketoglutaric Acid | 5% | 1% | 1% | 5,0 (NaOH 10%) | − | − | − |
Maleic Acid | 5% | 1% | 1% | 5,0 (NaOH 10%) | + | + | − |
Succinic Acid | 5% | 1% | 1% | 5,0 (NaOH 10%) | + | + | − |
Acetic Acid | 5% | 1% | 1% | 5,0 (NaOH 10%) | − | − | − |
Phenylacetic Acid | 5% | 1% | 1% | 5,0 (NaOH 10%) | ++ | + | − |
R-Chloromandelic Acid | 5% | 1% | 1% | 5,0 (NaOH 10%) | + | + | − |
L-Serine | 5% | 1% | 1% | 5,0 (AcOH) | + | + | − |
D-Phenylalanine | 5% | 1% | 1% | 5,0 (HCl 10%) | ++ | ++ | − |
Glutamic Acid | 5% | 1% | 1% | 5,0 (NaOH 10%) | + | + | − |
R-2-Phenylglycine | 5% | 1% | 1% | 5,0 (AcOH) | ++ | ++ | − |
Glycine | 5% | 1% | 1% | 5,0 (AcOH) | ++ | ++ | − |
Benzilic Acid | 5% | 1% | 1% | 5,0 (NaOH 10%) | ++ | + | − |
Iminodiacetic Acid | 5% | 1% | 1% | 5,0 (NaOH 10%) | − | − | − |
Nitrilotriacetic Acid | 5% | 1% | 1% | 5,0 (NaOH 10%) | + | + | − |
Tricine | 5% | 1% | 1% | 5,0 (AcOH) | +++ | + | − |
Bicine | 5% | 1% | 1% | 5,0 (AcOH) | ++ | + | − |
Mucic Acid | 5% | 1% | 1% | 5,0 (NaOH 10%) | − | − | − |
L-Aspartic Acid | 5% | 1% | 1% | 5,0 (NaOH 10%) | + | − | − |
L-Ascorbic Acid | 5% | 1% | 1% | 5,0 (NaOH 10%) | ++++ | +++ | − |
Phosphoric Acid (H3PO4) | 5% | 1% | 1% | 5,0 (NaOH 10%) | ++ | − | − |
Boric Acid (B(OH)3) | 5% | 1% | 1% | 4,99 (AcOH) | + | + | − |
Pyruvic Acid | 5% | 1% | 1% | 5,0 (NaOH 10%) | ++ | − | − |
Glycolic Acid | 5% | 1% | 1% | 5,0 (NaOH 10%) | − | − | − |
Adipic Acid | 5% | 1% | 1% | 5,0 (NaOH 10%) | + | + | − |
Formic Acid | 5% | 1% | 1% | 5,0 (NaOH 10%) | +++ | + | − |
Glucuronic Acid | 5% | 1% | 1% | 5,0 (NaOH 10%) | + | + | − |
Salicylic Acid | 5% | 1% | 1% | 5,0 (NaOH 10%) | ++ | + | − |
Benzoic Acid | 5% | 1% | 1% | 5,0 (NaOH 10%) | + | + | − |
Benzoylformic Acid | 5% | 1% | 1% | 5,0 (NaOH 10%) | + | + | − |
Chloroacetic Acid | 5% | 1% | 1% | 5,0 (NaOH 10%) | + | − | − |
Phthalic Acid | 5% | 1% | 1% | 5,0 (NaOH 10%) | + | + | − |
Fumaric Acid | 5% | 1% | 1% | 5,0 (NaOH 10%) | − | − | − |
Ketopimelic Acid | 5% | 1% | 1% | 5,0 (NaOH 10%) | + | + | − |
L-Tryptophan | 5% | 1% | 1% | 5,0 (AcOH) | + | + | − |
DL-Alanine | 5% | 1% | 1% | 5,0 (AcOH) | + | − | − |
DL-Tyrosine | 5% | 1% | 1% | 5,0 (AcOH) | + | + | − |
Scale evaluation: | |||||||
−: no biofilm and + ++ + : no significant removal of film. |
To our surprise, all the tested acids manifested a capacity to dislodge bioflims, leaving the biofilm constituents free for the bactericidal activity of hydrogen peroxide. Some acids conferred a slow but nevertheless significant tendency of the solution to dislodge biofilms with time, while the others were more rapid in this respect. We have selected cleaning solutions capable of performing at practical times: 1 hour or less, and overnight (about 12-18 hours). From the above list, seven acids were performing within less than 1 hour: mandelic, 2-ketoglutaric, acetic, iminodiacetic, mucic, glycolic and fumaric acids. To this restricted list of very performing acids can be added those acids performing between 1 and 18 hours: lactic, aspartic, phosphoric, pyruvic, chloroacetic acids and alanine. Since the above results are of semi-quantitative nature only, we add to the list of acceptably performing acids: oxalic, citric, oxamic, malic, dichloroacetic, phenylacetic, benzylic, maleic, succinic, chloromandelic, glutamic, nitrilotriacetic, boric, adipic, formic, glucuronic, salicylic, benzoic, benzoylformic, phthalic, ketopimilic acids as well as serine, tryptophan, tyrosine, bicine, tricine and glycine, because they all led to sufficient decontamination within the specified times. All the other acids can be used when time is not a major concern or when mechanical brushing is used to accelerate removal of biofilm. It is worthwhile noting the isomeric form of an acid does not appear to influence its dislodging capabilities.
Taking the results of acid substitution altogether, it appeared clear that the common point between the acids was that they may form salts at the working pH of 5.0.
These observations led us to appreciate why the sub-compositions already published by the present assignee minimally comprising SDS/acids were performing cleaning and disinfecting solutions. The presence of the detergent and salt forming acids is most probably responsible for breaking the integrity and dislodging the biofilm. Since mandelic acid is also a bactericide, the combination SDS/acids was also an efficient detergent/disinfectant solution.
Further, the other sub-compositions disclosed in the same patent publications minimally comprising SDS/EDTA/hydrogen peroxide, which were also performing sub-combinations revealed that EDTA used as a salt was capable of complementing SDS in the cleaning component of the solution. Hydrogen peroxide had the role of the bactericide.
It is therefore an object of this invention to provide a minimal cleaning solution comprising a detergent and a salt forming acid (direct addition of salts in the solution is also an option). The bactericides are added in the solutions, when a bactericidal complement is desired. Any bactericide may be added to the above cleaning solution, which would have for effect to confer an additional disinfecting action thereto, which action is greatly facilitated by the dislodging action of the cleaning ingredients: detergent and salts. Amongst the bactericides tested, sodium hypochlorite, phenol derivatives and hydrogen peroxide showed a broad host killing activity, even against Mycobacterium sp. known for their high level of resistance towards bactericides. Mandelic acid has a dual role as a salt forming acid and as a bactericide. Povidone-iodine was also tested and had a significant efficiency when combined to the detergent Tween 20™. All the above bactericides are non limitative examples of bactericides.
Equivalents:
The above Table I shows that many acids are equivalent to mandelic and lactic acids.
Different types of detergents have been tried, a cationic one (cetylpyridinium (CPC), also a bactericide), non-ionic ones (Tween 20™ and povidone-iodine, also a bactericide) and anionic ones (SDS, SCS and SDDD). All these detergents were capable of dislodging biofilms. SDS was the preferred one. SDS achieved very good activity even at a concentration as low as 0.15% after one hour, and a perfect efficiency at the same concentration after 18 hours. It is worthwhile noting that the solution tested with 0.15% SDS also contained 6% hydrogen peroxide, and low amounts of HEEDTA (acid; 0.3%), acetic acid (0.1%) and zinc sulfate heptahydrate (0.1%). This solution corresponds to the best one described in EP 109 279. The pH of the solution was adjusted from 2.42 to pH 5, which entails of salt formation.
Further, the commercial mouthwash PLAX™, comprising 0.25% SDS, 2% sodium benzoate and 2% sodium salicylate (pH 7.35) showed good biofilm removal, although not perfect, after 18 hours of contact. The acceptable performance of that solution confirms that salts only may be used although the presence of acid(s) appears optimal. The effect of PLAX also confirms that a bactericide such as hydrogen peroxide is not necessary in the biofilm removal.
The above results show that the concentration of detergent and salts may be quite low if the time of contacting is longer (for example overnight), while higher concentrations confer more strength and decrease the time necessary for dislodging biofilms (within 1 hour for example).
Enhancers:
As mentioned above, we already described sub-combinations which were as efficient as the complete combination SDS 1%-2%/EDTA 1%/hydrogen peroxide 5%/mandelic and lactic acids 2%. These sub-combinations comprise the ingredients SDS/EDTA/hydrogen peroxide and SDS/acids. In both cases, sub-compositions comprise the ingredients detergent and bactericide. What was not explained at the time was why EDTA was essential to the first sub-composition to perform well. The above results provide such an explanation: EDTA salts greatly improve the dislodging or cleaning capacity of the solutions. The presence of EDTA is no longer deemed necessary to present cleaning solutions, since EDTA may be replaced by other salts or salt forming acids. EDTA is rather considered as an activity enhancer, because this compound is also a good divalent ion chelator, and as such, it may help in withdrawing Ca2+ ions from the polysaccharide biofilm matrix, leading to a faster dismantlement thereof.
SDS was the preferred detergent and it is further worthwhile noting that this detergent is also a chaotropic agent. It is therefore contemplated that a chaotropic agent may be optionally added to increase the biofilm dislodging strength of the solution. Such chaotropic agents include but are not limited to SDS, urea and guanidine. The chaotropic agent is also considered as an optional activity enhancer.
Additives:
Should the detergent used in the composition produce foam, it might be desirable to add an anti-foamer. Also, a dye might be added to the compositions of this invention for easy monitoring of the extent of rinsing. Further, flavors or scents may be added to provide a pleasant taste or smell to surfaces to be cleaned.
Fresh water lines supplying dental instruments are of a very small diameter, which excludes the possibility of scrubbing. This would not be the case for dentures, surfaces or tubings of larger diameter. The compositions of the present invention have the advantage of showing efficient decontamination in the complete absence of scrubbing in a convenient time of decontamination. The present invention is not only useful for dental instruments or protheses. It will become obvious that it is intended for other applications, e.g. cleaning or decontaminating any type of tubing or container on the surface of which microorganisms are adsorbed and form a biofilm. In such other applications, scrubbing or any other mechanical aid is not at all excluded. Should these compositions be used in pipes of a larger diameter and length, for example, wherein a non-cost effective large volume of cleaning solution would be needed to fill the pipes, it is possible that a mechanical action would help in the action of the solution. A mechanical aid, when envisaged, would help in reducing the duration of cleaning and/or in spreading the cleaning solution on a surface. It is further not excluded to add a vehicle allowing the cleaning solution to stay in contact with the surface to be decontaminated as long as possible. Some or all of cleaning solution components might be delivered in separate vials, in concentrated forms, to be admixed in the final reconstituted volume. This could reduce the handling and storage of large volumes of decontaminating solutions when they are used for cleaning large surfaces.
Minimal and Optimal Effective Concentrations of Components
Detergents:
SDS has been tried at a final concentration of 0.15% (w/v) and did work well within one hour. So, SDS certainly can be as low as about 0.1% when the duration of treatment may last about one hour or more. The most preferred SDS concentration was 1% which achieved a perfect cleaning efficacy within one hour. Any detergent at a concentration as potent as at least about 0.1% SDS is within the scope of this invention. For example, the following detergents and concentrations have been tried with success:
SDDD 0.015%-1%,
SCS 0.3%-1%,
Tween 20™ 4%, and
CPC 0.1%-0.5%.
So, detergents of all classes: non-ionic, anionic and cationic, have been all successful in removing biofilms, and this invention should not be limited to the tested five detergents.
Salt-Forming Acids:
Mandelic acid has been tried with success in a concentration extending from 1% to 10%. Besides that, acetic acid has been tried in a range of concentrations 0.1% to 1% and was very efficient. Further, a plurality of acids (1%) may substitute for mandelic acid 1% (see Table 1). It is therefore contemplated that acids can be used in a minimal concentration of about 0.1% at a salt-forming pH. Preferred acid concentration is 1% for rapidly acting solutions, with reference to mandelic acid. Any acid capable of forming salts at the working pH, in concentrations equipotent to at least about 0.1% mandelic acid, depending on the desired contacting time, is within the scope of this invention. Although a pH of about 5 has been tested, it is readily apparent to a skilled reader that the pH of the solutions is not restricted to that value.
Cleaning Enhancers:
Chelators:
Tetrasodium EDTA (0.25%-1%) has been tried with a certain degree of success against biofilms. Any chelator in a concentration equipotent to the above concentrations of EDTA is within the scope of this invention. It is worthwhile noting that HEEDTA has been used in the acid form (0.3%) and was good when another salt forming acid: acetic acid, was at a concentration of 0.1% to 1% and when the pH was brought from 2.42 to 5.0. So, chelator salts can be used or chelator acid precursors can be used in salt forming conditions. It is recalled that the chelator is an optional component; it is used to increase the cleaning strength of the solution. Its function is mainly to capture divalent ions such as Ca2+ which are involved in EPS integrity.
Chaotropic Agents:
SDS has a dual action as a detergent and a chaotropic agent. Since a plurality of non-chaotropic detergents may substitute for SDS, the chaotropic activity is not considered essential to the claimed compositions. However, since SDS was the preferred detergent, it is contemplated that a chaotropic agent may be useful, as an optional component, in increasing the cleaning strength of the solution. Any chaotropic agent having the potency of in a concentration of at least about 0.1% SDS is within the scope of this invention.
Bactericides:
When it is desirable to complete the cleaning solution with a bactericidal activity, especially in the medical field, a bactericide can be added in an effective concentration. It is recalled that bactericides alone are less effective against biofilms than against planktonic micoorganisms. However, when bactericides are combined to a detergent/salt solution, or contacted with surfaces thereafter, they are capable of killing microorganisms which are retrieved as planktonic organisms and no longer organized as a biofilm, due to the detergent/acid/salt effect. Povidone-iodine 10%, mandelic acid 1%, sodium benzoate/salicylate 2%/0.2%, hydrogen peroxide 5%, sodium hypochlorite 0.5%, phenol 0.1% and CPC 0.1% -0.5% have all been tried with success, which indicates that any bactericide may be added in the cleaning solution in so far as the selected bactericide has a killing activity against the populations of microorganisms to eliminate.
Amongst the above-listed bactericides, we have preferred hydrogen peroxide, sodium hypochlorite and phenol, because these bactericides qualify as tuberculocides; they are efficient against highly resistant Mycobacterium species and they have a large spectrum of efficiency against microorganisms. Table 1 shows that hydrogen peroxide really killed the bacteria, which translated into a total absence of growth after treatment.
Dismantling the Exopolysaccharides (EPS) Present in the Biofilms:
EPS exist in more or less ordered forms in natural environment. Many bacterial EPS appear to adopt a double helicoidal configuration and the association of the double helices is facilitated by ions (such as Ca2+) and by water molecules. The physical properties of EPS and hence of biofilms may be influenced by the presence of free anionic groups (uronic acids, phosphate groups, pyruvate ketals or succinyl half esters). Hydrogen bonding involving exposed hydroxyl groups can also be significant. Localized hydrophobic regions may also exert influence. Therefore interacting with the ions involved in the maintenance of cohesive biofilms is a target for the dismantlement thereof. It has been suggested that excess Na+ may exchange with Ca2+ and that local proton gradients may convert the salt form of the EPS to the proton form, again altering its properties. (I. W. Sutherland in “Biofilms, Community Interactions and Control” ed. J. Wim-Penny, P. Handley, P. Gilbert, H. Lappin-Scott and M. Jones. Third Meeting of the British Biolfim Club, Powys, September 1997).
Even if it may have been envisaged that changes in the ionic environment of a biofilm may alter its integrity, no one has ever come up with satisfyingly performing solutions, or when such solutions exist, there has been no teaching of using them for removing biofilms and this, without any mechanical aid. The present invention relates to compositions and methods minimally comprising or making use of salts or salt-forming acids and a detergent. Preferably, a salt-forming acid is used to create an equilibrium between acids and salts, both of which being involved in attacking the biofilm components. Such salts would include salts capable of dissociating from the counter anion. The preferred salts include compounds of group Ia, namely lithium, sodium and potassium. The detergent appears to have a synergistic effect in solubilizing the components and in exposing EPS sub-layers which, in turn, become attackable by acids and salts. The present ingredients when combined are very efficient and achieve complete removal of biofilms. Bactericidal agents, when added, become efficient against biofilms, because the biofilm becomes disorganized and is no longer impermeable to the anti-microbials.
Although the present invention has been described herein above by way of preferred embodiment thereof, these embodiments can be modified at will without departing from the spirit and the nature of the subject invention. These modifications are within the scope of this invention as defined in the appended claims.
Claims (25)
1. A composition for removing a biofilm from a surface, which does not produce or comprise a peroxide, a terpene or sodium hypochiorite, which comprises an effective dislodging amount of a detergent cetylpyridinium chloride (CPC) at a final concentration of at least 0.1%, and an effective dislodging amount of a salt or of an acid which forms a salt at a working pH value, or both, said salt or acid being different from said CPC and said salt or acid when combined to the CPC is capable of displacing divalent cations, dismantling and destroying the structure of said biofilm.
2. A composition as defined in claim 1 , further comprising an effective amount of a bactericide.
3. A composition as defined in claim 1 , wherein said acid is mandelic acid achieving a final concentration of at least 0.1%.
4. A composition as defined in claim 2 , wherein said acid is mandelic acid achieving a final concentration of at least 0.1%.
5. A composition as defined in claim 1 , wherein said salt or acid is an EDTA salt or acid achieving a final concentration of at least 0.25%.
6. A composition as defined in claim 2 , wherein said salt or acid is an EDTA salt or acid achieving a final concentration of at least 0.25%.
7. A composition as defined in claim 1 , wherein said salt is sodium mandelate formed from mandelic acid achieving a final concentration range of at least 0.1% at a working pH value adjusted to 5.
8. A composition as defined in claim 2 , wherein said salt is sodium mandelate formed from mandelic acid achieving a final concentration range of at least 0.1% at a working pH value adjusted to 5.
9. A composition as defined in claim 1 , wherein said acid is selected from the group consisting of mandelic, 2-ketoglutaric, acetic, iminodiacetic, mucic, glycolic, fumaric, lactic, aspartic, phosphoric, pyruvic, chloroacetic, oxalic, citric, oxamic, malic, dichloroacetic, phenylacetic, benzylic, maleic, mandelic, succinic, chioromandelic, glutarnic, nitrilotriacetic, boric, adipic, formic, ghicuronic, salicylic, benzoic, benzoyl formic, phthalic, ketopimelic acids, alanine, serine, tryptophane, tyrosine, bicine, tricine and glycine.
10. A composition as defined in claim 5 , wherein said acid is selected from the group consisting of mandelic, 2-ketoglutaric, acetic, iminodiacetic, mucic, glycolic, fumaric, lactic, aspartic, phosphoric, pyruvic, chloroacetic, oxalic, citric, oxamic, malic, dichioroacetic, phenylacetic, benzylic, maleic, mandelic, succinic, chioromandelic, glutamic, nitrilotriacetic, boric, adipic, formic, glucuronic, salicylic, benzoic, benzoyl formic, phthalic, ketopimelic acids, alanine, serine, tryptophane, tyrosine, bicine, tricine and glycine.
11. A composition as defined in claim 2 , wherein said bactericide is any bactericide having a bactericidal potency and host spectrum substantially equivalent to hydrogen peroxide.
12. A composition as defined in claim 2 , wherein said bactericide is the same component as the acid mandelic acid.
13. A composition as defined in claim 12 , wherein the mandelic acid, achieves a final concentration of at least 0.1%.
14. A composition as defined in claim 1 , which further comprises a biofilm dislodging enhancer agent.
15. A composition as defined in claim 2 , which further comprises a biofilm dislodging enhancer agent.
16. A composition as defined in claim 14 , wherein said enhancer agent is a calcium chelator.
17. A composition as defined in claim 15 , wherein said enhancer agent is a calcium chelator.
18. A composition as defined in claim 16 , wherein said calcium chelator is the same component as the acid EDTA, which is used as the acid or as a salt of EDTA achieving a final concentration of at least 0.25%.
19. A composition as defined in claim 17 , wherein said calcium chelator is the same component as the acid EDTA, which is used as the acid or as a salt of EDTA achieving a final concentration of at least 0.25%.
20. A composition as defined in claim 14 wherein said enhancer agent is a chaotropic agent.
21. A composition as defined in claim 15 wherein said enhancer agent is a chaotropic agent.
22. A composition for removing a biofilm from a surface, which does not produce or comprise a peroxide, a terpene or sodium hypochiorite, which comprises an effective dislodging amount of a detergent cetyloyridinium chloride (CPC) and an effective dislodging amount of a salt or of an acid which forms a salt at a working pH value; said acid being selected from the group consisting of mandelic, 2-ketoglutaric, acetic, iminodiacetic, mucic, glycolic, fumaric, lactic, aspartic, phosphoric, pyruvic, chioroacetic, oxalic, citric, oxamic, malic, dichioroacetic, phenylacetic, benzylic, maleic, succinic, chioromandelic, glutamic, nitrilotriacetic, boric, adipic, formic, glucuronic, benzoyl formic, phthalic, ketopimelic, ethyl N-(hydroxyethyl) ethylenediamine triacetic acids, alanine, serine, tryptophan, tyrosine, bicine, tricine and glycine.
23. A composition as defined in claim 22 , further comprising an effective amount of a bactericide.
24. A composition as defined in claim 22 , which further comprises a divalent cation chelator, and wherein said acid is selected from the group consisting of mandelic, 2-ketoglutaric, iminodiacetic, mucic, glycolic, fumaric, lactic, aspartic, phosphoric, pyruvic, citric chloroacetic acids and alanine.
25. A composition as defined in claim 24 , which achieves a final concentration of 0.5% CPC, EDTA at least 0.25% and 0.1-1% of said acid.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/851,802 US6762160B2 (en) | 1998-11-06 | 2001-05-09 | Composition for removing biofilms comprising a detergent and a salt forming acid |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18724998A | 1998-11-06 | 1998-11-06 | |
US09/851,802 US6762160B2 (en) | 1998-11-06 | 2001-05-09 | Composition for removing biofilms comprising a detergent and a salt forming acid |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18724998A Continuation-In-Part | 1998-11-06 | 1998-11-06 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20020016278A1 US20020016278A1 (en) | 2002-02-07 |
US6762160B2 true US6762160B2 (en) | 2004-07-13 |
Family
ID=22688202
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/851,802 Expired - Fee Related US6762160B2 (en) | 1998-11-06 | 2001-05-09 | Composition for removing biofilms comprising a detergent and a salt forming acid |
Country Status (6)
Country | Link |
---|---|
US (1) | US6762160B2 (en) |
EP (1) | EP1124584A1 (en) |
JP (1) | JP2002529545A (en) |
AU (1) | AU764340B2 (en) |
CA (1) | CA2350245A1 (en) |
WO (1) | WO2000027438A1 (en) |
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040110841A1 (en) * | 2001-12-05 | 2004-06-10 | Aseptica, Inc. | Antiseptic compositions, methods and systems |
US20050075621A1 (en) * | 2003-10-03 | 2005-04-07 | Michael Rontal | Method and apparatus for the ultrasonic cleaning of biofilm coated surfaces |
US20050080396A1 (en) * | 2003-10-03 | 2005-04-14 | Michael Rontal | Method and apparatus for the ultrasonic cleaning of biofilm coated surfaces |
US20050079594A1 (en) * | 2002-10-31 | 2005-04-14 | Karine Marion | Method of removing a biofilm |
US20060014290A1 (en) * | 2004-07-14 | 2006-01-19 | Sequoia Sciences, Inc. | Inhibition of biofilm formation |
US20060069343A1 (en) * | 2003-10-03 | 2006-03-30 | Michael Rontal | Method and apparatus for the ultrasonic cleaning of biofilm coated surfaces |
US20060100121A1 (en) * | 2004-11-05 | 2006-05-11 | Tuggle Terrance F | Mold removal and cleaning solution |
US20060224103A1 (en) * | 2003-10-03 | 2006-10-05 | Michael Rontal | Method and apparatus for the ultrasonic cleaning of biofilm coated surfaces |
US20060228384A1 (en) * | 2005-04-06 | 2006-10-12 | Sequoia Sciences, Inc. | Control of biofilm with a biofilm inhibitor |
US20060264411A1 (en) * | 2005-05-20 | 2006-11-23 | Eldridge Gary R | Control of biofilm formation |
US20060275773A1 (en) * | 2003-05-19 | 2006-12-07 | Wangh Lawrence J | Nucleic acid processing methods, kits and devices |
US20070014739A1 (en) * | 2005-07-14 | 2007-01-18 | Eldridge Gary R | Compositions and methods for controlling biofilms and bacterial infections |
US7198680B1 (en) | 2006-07-26 | 2007-04-03 | Innovation Services, Inc. | Process for cleaning surfaces of medical equipment |
US20070110788A1 (en) * | 2005-11-14 | 2007-05-17 | Hissong James B | Injectable formulation capable of forming a drug-releasing device |
US7226897B1 (en) | 2006-07-26 | 2007-06-05 | Innovation Services, Inc. | Water soluble barrier film conformal coating composition |
US20070264296A1 (en) * | 2006-05-10 | 2007-11-15 | Myntti Matthew F | Biofilm extracellular polysachharide solvating system |
US20070264353A1 (en) * | 2006-05-10 | 2007-11-15 | Medtronic, Inc. | Extracellular polysaccharide solvating system for treatment of bacterial ear conditions |
US20070264310A1 (en) * | 2006-05-10 | 2007-11-15 | Medtronic, Inc. | Solvating system and sealant for medical use in the middle or inner ear |
US20070264342A1 (en) * | 2006-05-10 | 2007-11-15 | Medtronic, Inc. | Solvating system and sealant for medical use in the sinuses and nasal passages |
US20080023030A1 (en) * | 2006-07-26 | 2008-01-31 | Dooley Joseph B | Method of cleaning contaminated surfaces |
US20080195037A1 (en) * | 2007-02-08 | 2008-08-14 | James Britton Hissong | Film forming polymeric sealant for medical use |
US20090181106A1 (en) * | 2007-11-30 | 2009-07-16 | Suzanne Gordon | Compositions and methods for treating vaginal infections and pathogenic vaginal biofilms |
US7612045B2 (en) | 2004-09-14 | 2009-11-03 | Sequoia Sciences, Inc. | Compounds, compositions and methods for controlling biofilms and bacterial infections |
US20100004480A1 (en) * | 2004-07-14 | 2010-01-07 | Sequoia Sciences, Inc. | Methods and compositions for inhibiting biofilms |
US20100086576A1 (en) * | 2008-10-06 | 2010-04-08 | Myntti Matthew F | Antimicrobial composition and methods of making and using same |
US20100166809A1 (en) * | 2008-12-22 | 2010-07-01 | Oculus Innovative Sciences | Methods of treating or preventing biofilm associated infections with free available chlorine free available chlorine water |
US20120201762A1 (en) * | 2009-10-26 | 2012-08-09 | Colgate-Palmolive Company | Oral care composition |
US8324264B1 (en) | 2011-07-22 | 2012-12-04 | Sequoia Sciences, Inc. | Inhibitors of bacterial biofilms and related methods |
US8618038B1 (en) * | 2006-05-30 | 2013-12-31 | Stone Chemical Company | Compositions for removing lead from metal surfaces |
EP2617867A3 (en) * | 2012-01-23 | 2014-04-30 | Schülke & Mayr GmbH | Method and composition for preparing medical instruments |
US8784790B2 (en) | 2008-06-12 | 2014-07-22 | Medtronic Xomed, Inc. | Method for treating chronic wounds with an extracellular polymeric substance solvating system |
US9157053B1 (en) | 2009-07-01 | 2015-10-13 | Thomas Tupaj | Laundry washing machine deodorizer |
US20180177695A1 (en) * | 2016-12-27 | 2018-06-28 | Colgate-Palmolive Company | Oral Care Product and Methods of Use and Manufacture Thereof |
US10653133B2 (en) | 2011-05-10 | 2020-05-19 | Next Science IP Holdings Pty Ltd | Antimicrobial solid and methods of making and using same |
US10874108B2 (en) | 2016-05-04 | 2020-12-29 | 5d Health Protection Group Ltd. | Anti-microbial compositions |
US11376230B2 (en) | 2011-04-18 | 2022-07-05 | Rigshospitalet Copenhagen University Hospital | Wound care product |
US11717551B2 (en) | 2018-05-07 | 2023-08-08 | Georgia State University Research Foundation, Inc. | Compositions and methods related to Rhamnus prinoides (GESHO) extract for the inhibition of polymicrobial biofilm formation |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU772067B2 (en) * | 1999-02-09 | 2004-04-08 | Wobelea Pty. Limited | Method of disinfecting articles |
US7052614B2 (en) | 2001-08-06 | 2006-05-30 | A.Y. Laboratories Ltd. | Control of development of biofilms in industrial process water |
CN100384971C (en) * | 2002-10-14 | 2008-04-30 | 阿科尼亚有限公司 | Composition |
EP1791791B1 (en) * | 2004-09-27 | 2019-05-29 | Special Water Patents B.V. | Methods and compositions for treatment of water |
DE102004059041A1 (en) * | 2004-12-07 | 2006-06-08 | Schülke & Mayr GmbH | Use of a bactericide such as formaldehyde or formaldehyde releasing compound in a composition to combat Mycobacterium |
JP2007091666A (en) * | 2005-09-29 | 2007-04-12 | Daikin Ind Ltd | Slime suppression method, drain up device, air conditioner, waterway and slime remover |
WO2007131549A1 (en) * | 2006-05-15 | 2007-11-22 | Voco Gmbh | Composition and procedures for cleaning dental instruments |
PL226695B1 (en) * | 2006-07-03 | 2017-08-31 | Danuta Kruszewska | Agent for preventing and/or inhibiting the colonization of Helicobater pylori and its application |
JP5518702B2 (en) * | 2007-07-03 | 2014-06-11 | ダヌタ・クルセフスカ | Novel medical uses of α-ketoglutarate |
GB2459126A (en) * | 2008-04-10 | 2009-10-14 | Peter Wilson | Antimicrobial agent |
CN102421456A (en) * | 2009-04-22 | 2012-04-18 | 诺维信公司 | Methods for killing or inhibiting growth of mycobacteria |
US8778387B2 (en) | 2009-09-02 | 2014-07-15 | Hyprotek, Inc. | Antimicrobial medical dressings and protecting wounds and catheter sites |
JP5645558B2 (en) * | 2009-09-07 | 2014-12-24 | ライオン株式会社 | Disinfectant composition and disinfecting method |
US20120164236A1 (en) * | 2009-09-07 | 2012-06-28 | Lion Corporation | Disinfectant composition and disinfecting method |
CA2786880C (en) * | 2010-01-22 | 2018-04-24 | Hyprotek, Inc. | Antimicrobial agents and methods of use |
US20130306545A1 (en) * | 2010-12-27 | 2013-11-21 | Asahi Kasei Chemicals Corporation | Adsorption/separation membrane module, method for producing adsorption/separation membrane module, and partition member |
CN104053632A (en) * | 2011-08-26 | 2014-09-17 | 俄亥俄州大学 | Compositions and methods for treating biofilms |
US20130199946A1 (en) | 2012-02-06 | 2013-08-08 | Hyprotek, Inc. | Portable Medical Device Protectors |
JP6009320B2 (en) * | 2012-11-06 | 2016-10-19 | 花王株式会社 | Cleaning composition |
CN105283535A (en) * | 2013-05-23 | 2016-01-27 | 自然封印公司 | Antimicrobial wash |
JP2015155534A (en) * | 2014-01-17 | 2015-08-27 | 住友重機械工業株式会社 | Biofilm degradation agent and biofilm degradation method |
ES2774414T3 (en) * | 2015-02-26 | 2020-07-21 | Johnson & Johnson Consumer Inc | Compositions comprising combinations of organic acids |
WO2017032924A1 (en) | 2015-08-24 | 2017-03-02 | Kemira Oyj | Method for reducing fouling of a microbial fuel cell, cleaning agent composition and its use |
KR101807592B1 (en) * | 2015-11-26 | 2017-12-12 | 한국식품연구원 | Method of Removing Biofilm |
EP3435768A4 (en) * | 2016-04-01 | 2019-10-09 | Texas State University | COMPOSITIONS AND METHODS FOR DISPERSION OF BIOFILMS |
ES2717798B2 (en) * | 2017-12-22 | 2020-09-22 | Univ Jaen | Disinfectant composition |
NL2020701B1 (en) * | 2018-03-30 | 2019-10-07 | Dechra Veterinary Products Llc | Formulation and composition for preventing and/or dissolving biofilm on the skin of a domestic animal |
EP3866934A1 (en) | 2018-10-18 | 2021-08-25 | 3M Innovative Properties Company | Acyl-n-methylglucamide containing oral care composition for treating caries by reducing lactic acid release in oral biofilms |
CN109682575B (en) * | 2019-01-25 | 2020-06-16 | 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) | Underwater dynamic deformation binocular measurement system for rotating blades of composite propeller model |
US12324432B2 (en) | 2019-04-12 | 2025-06-10 | Ecolab Usa Inc. | Hard surface cleaning solution with rapid viricidal activity |
WO2021059151A1 (en) * | 2019-09-26 | 2021-04-01 | 3M Innovative Properties Company | Oral care composition with ammonium alkyl sulfonate or carbonate components for treating caries |
WO2021140437A1 (en) | 2020-01-08 | 2021-07-15 | 3M Innovative Properties Company | Anionic alkyl sulphate component for treating caries |
Citations (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3941696A (en) | 1973-12-20 | 1976-03-02 | Baylor College Of Medicine | Sterilization of holding tanks and toilet bowls by quaternary compounds |
US3969498A (en) | 1973-09-13 | 1976-07-13 | University Of The Pacific | Dressing and method for treating a wound |
US4115293A (en) | 1975-10-06 | 1978-09-19 | E. I. Du Pont De Nemours And Company | Denture cleanser |
US4391287A (en) | 1980-04-11 | 1983-07-05 | Olympus Optical Company Ltd. | Cleaning apparatus for endoscope |
US4448750A (en) | 1981-06-05 | 1984-05-15 | Fuesting Michael L | Sterilization method |
US4526751A (en) | 1983-12-09 | 1985-07-02 | Gartner William J | Germicidal solutions effective for solid surface disinfection |
US4545956A (en) | 1982-12-14 | 1985-10-08 | Siemens Aktiengesellschaft | Method and apparatus for disinfecting waterlines of a medical device |
US4738840A (en) | 1986-03-03 | 1988-04-19 | Simon Gilbert I | Presurgical sterilization method |
EP0109279B1 (en) | 1982-11-12 | 1988-06-15 | JOHNSON & JOHNSON MEDICAL, INC. | Hydrogen peroxide composition |
US4770884A (en) | 1987-09-18 | 1988-09-13 | Monsanto Company | Control of Salmonella on poultry carcasses |
EP0293040A1 (en) | 1987-05-27 | 1988-11-30 | The Procter & Gamble Company | Liquid detergent containing solid peroxygen bleach |
EP0313527A2 (en) | 1987-10-22 | 1989-04-26 | CASTELLINI S.p.A. | A method for continuous sterilization of the waste pipelines of medical equipment or accessories, and a relative preparation |
US4839080A (en) | 1987-04-30 | 1989-06-13 | Neutrogena Corporation | Antibacterial iodophor soap base composition and method of making same |
US4898681A (en) | 1988-08-31 | 1990-02-06 | Burton Charles D | Hypochlorite distinfectant stabilized with calcium chelant |
US4923809A (en) | 1987-03-09 | 1990-05-08 | Kao Corporation | Polysaccharide and process for preparing the same |
US4933179A (en) | 1983-08-22 | 1990-06-12 | Syntex (U.S.A.) Inc. | Feline leukemia virus antigen vaccines |
US4961923A (en) | 1988-02-19 | 1990-10-09 | Dentsply Management Corp. | Irrigants for use in scaling and/or lavage apparatus |
US4976969A (en) | 1987-11-10 | 1990-12-11 | Marc Plamondon | Ophthalmic solution comprising iodine-polyvinylpyrrolidone complex |
US5008030A (en) | 1989-01-17 | 1991-04-16 | Colgate-Palmolive Co. | Acidic disinfectant all-purpose liquid cleaning composition |
US5038769A (en) | 1983-06-29 | 1991-08-13 | Krauser Robert S | Method and apparatus for treating ailments |
US5049299A (en) | 1989-10-26 | 1991-09-17 | Kiwi Brands Incorporated | Liquid lavatory cleansing and sanitizing composition |
US5118430A (en) | 1988-05-06 | 1992-06-02 | Serge Rebouillat | Surface treatment agent for polyamide fibers |
WO1992013807A1 (en) | 1991-02-12 | 1992-08-20 | Buckman Laboratories International, Inc. | Composition and methods for removing or preventing biofilm |
US5165503A (en) | 1990-09-24 | 1992-11-24 | Hoffman Elliott S | Method and apparatus for lubricating and disinfecting dental drills |
WO1992020228A1 (en) | 1991-05-15 | 1992-11-26 | Sterilex Corporation | Methods of using a cleaner, sanitizer, disinfectant, fungicide, sporicide, chemical sterilizer |
US5227161A (en) | 1988-09-06 | 1993-07-13 | Symbollon Corporation | Method to clean and disinfect pathogens on the epidermis by applying a composition containing peroxidase, iodide compound and surfactant |
US5234832A (en) | 1988-05-17 | 1993-08-10 | Henkel Kommanditgesellschaft Auf Aktien | Process for cleaning and disinfecting heat and corrosion sensitive medical instruments |
WO1994000548A1 (en) | 1992-06-19 | 1994-01-06 | Laporte E.S.D. Limited | Compositions containing organic peracid and quaternary ammonium compound |
US5280042A (en) | 1990-11-28 | 1994-01-18 | Microcide, Inc. | Disinfecting and sanitizing compositions |
US5326492A (en) | 1991-11-18 | 1994-07-05 | Medical Polymers, Inc. | Disinfectant mixture containing water soluble lubricating and cleaning agents and method |
US5344811A (en) | 1989-10-26 | 1994-09-06 | Kiwi Brands Inc | Method for dispensing compositions in an aqueous system |
US5370534A (en) | 1992-11-09 | 1994-12-06 | Time Motion Systems Company | Water purification system for dental instrument |
WO1995020366A1 (en) | 1994-01-31 | 1995-08-03 | Prevost Andre | System for disinfecting the water lines of a dental unit |
US5460833A (en) | 1993-09-14 | 1995-10-24 | Minnesota Mining And Manufacturing Company | Disinfectant composition |
US5486304A (en) | 1993-12-01 | 1996-01-23 | Warner-Lambert Company | Fragrant denture cleanser composition |
WO1996020737A1 (en) | 1994-12-30 | 1996-07-11 | Universite De Montreal | Synergistic detergent and disinfectant combinations for decontaminating biofilm-coated surfaces |
US5622708A (en) | 1988-09-21 | 1997-04-22 | Ecolab Inc. | Erodible sanitizing caulk |
US5705160A (en) | 1985-12-31 | 1998-01-06 | Research Corporation Technologies, Inc. | Lactobacillus compositions and methods for treating urinary tract infections |
US5910420A (en) * | 1996-08-16 | 1999-06-08 | Orion-Yhtyma Oy Orion Diagnostica | Method and test kit for pretreatment of object surfaces |
WO1999051578A1 (en) * | 1998-04-02 | 1999-10-14 | Janssen Pharmaceutica N.V. | Biocidal benzylbiphenyl derivatives |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993017723A1 (en) * | 1992-03-02 | 1993-09-16 | Simmons Paul L | Biodegradable surface disinfectant |
WO1993017558A1 (en) * | 1992-03-03 | 1993-09-16 | Reginald Keith Whiteley | A disinfecting composition |
JPH1161199A (en) * | 1997-08-07 | 1999-03-05 | Lion Corp | Detergent composition |
-
1999
- 1999-11-08 AU AU11431/00A patent/AU764340B2/en not_active Ceased
- 1999-11-08 CA CA002350245A patent/CA2350245A1/en not_active Abandoned
- 1999-11-08 JP JP2000580667A patent/JP2002529545A/en active Pending
- 1999-11-08 WO PCT/CA1999/001065 patent/WO2000027438A1/en not_active Application Discontinuation
- 1999-11-08 EP EP99971720A patent/EP1124584A1/en not_active Withdrawn
-
2001
- 2001-05-09 US US09/851,802 patent/US6762160B2/en not_active Expired - Fee Related
Patent Citations (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3969498A (en) | 1973-09-13 | 1976-07-13 | University Of The Pacific | Dressing and method for treating a wound |
US3941696A (en) | 1973-12-20 | 1976-03-02 | Baylor College Of Medicine | Sterilization of holding tanks and toilet bowls by quaternary compounds |
US4115293A (en) | 1975-10-06 | 1978-09-19 | E. I. Du Pont De Nemours And Company | Denture cleanser |
US4391287A (en) | 1980-04-11 | 1983-07-05 | Olympus Optical Company Ltd. | Cleaning apparatus for endoscope |
US4448750A (en) | 1981-06-05 | 1984-05-15 | Fuesting Michael L | Sterilization method |
EP0109279B1 (en) | 1982-11-12 | 1988-06-15 | JOHNSON & JOHNSON MEDICAL, INC. | Hydrogen peroxide composition |
US4545956A (en) | 1982-12-14 | 1985-10-08 | Siemens Aktiengesellschaft | Method and apparatus for disinfecting waterlines of a medical device |
US5038769A (en) | 1983-06-29 | 1991-08-13 | Krauser Robert S | Method and apparatus for treating ailments |
US4933179A (en) | 1983-08-22 | 1990-06-12 | Syntex (U.S.A.) Inc. | Feline leukemia virus antigen vaccines |
US4526751A (en) | 1983-12-09 | 1985-07-02 | Gartner William J | Germicidal solutions effective for solid surface disinfection |
US5705160A (en) | 1985-12-31 | 1998-01-06 | Research Corporation Technologies, Inc. | Lactobacillus compositions and methods for treating urinary tract infections |
US4738840A (en) | 1986-03-03 | 1988-04-19 | Simon Gilbert I | Presurgical sterilization method |
US4923809A (en) | 1987-03-09 | 1990-05-08 | Kao Corporation | Polysaccharide and process for preparing the same |
US4839080A (en) | 1987-04-30 | 1989-06-13 | Neutrogena Corporation | Antibacterial iodophor soap base composition and method of making same |
EP0293040A1 (en) | 1987-05-27 | 1988-11-30 | The Procter & Gamble Company | Liquid detergent containing solid peroxygen bleach |
US4770884A (en) | 1987-09-18 | 1988-09-13 | Monsanto Company | Control of Salmonella on poultry carcasses |
EP0313527A2 (en) | 1987-10-22 | 1989-04-26 | CASTELLINI S.p.A. | A method for continuous sterilization of the waste pipelines of medical equipment or accessories, and a relative preparation |
US4976969A (en) | 1987-11-10 | 1990-12-11 | Marc Plamondon | Ophthalmic solution comprising iodine-polyvinylpyrrolidone complex |
US4961923A (en) | 1988-02-19 | 1990-10-09 | Dentsply Management Corp. | Irrigants for use in scaling and/or lavage apparatus |
US5118430A (en) | 1988-05-06 | 1992-06-02 | Serge Rebouillat | Surface treatment agent for polyamide fibers |
US5234832A (en) | 1988-05-17 | 1993-08-10 | Henkel Kommanditgesellschaft Auf Aktien | Process for cleaning and disinfecting heat and corrosion sensitive medical instruments |
US4898681A (en) | 1988-08-31 | 1990-02-06 | Burton Charles D | Hypochlorite distinfectant stabilized with calcium chelant |
US5227161A (en) | 1988-09-06 | 1993-07-13 | Symbollon Corporation | Method to clean and disinfect pathogens on the epidermis by applying a composition containing peroxidase, iodide compound and surfactant |
US5622708A (en) | 1988-09-21 | 1997-04-22 | Ecolab Inc. | Erodible sanitizing caulk |
US5008030A (en) | 1989-01-17 | 1991-04-16 | Colgate-Palmolive Co. | Acidic disinfectant all-purpose liquid cleaning composition |
US5049299A (en) | 1989-10-26 | 1991-09-17 | Kiwi Brands Incorporated | Liquid lavatory cleansing and sanitizing composition |
US5344811A (en) | 1989-10-26 | 1994-09-06 | Kiwi Brands Inc | Method for dispensing compositions in an aqueous system |
US5165503A (en) | 1990-09-24 | 1992-11-24 | Hoffman Elliott S | Method and apparatus for lubricating and disinfecting dental drills |
US5280042A (en) | 1990-11-28 | 1994-01-18 | Microcide, Inc. | Disinfecting and sanitizing compositions |
WO1992013807A1 (en) | 1991-02-12 | 1992-08-20 | Buckman Laboratories International, Inc. | Composition and methods for removing or preventing biofilm |
WO1992020228A1 (en) | 1991-05-15 | 1992-11-26 | Sterilex Corporation | Methods of using a cleaner, sanitizer, disinfectant, fungicide, sporicide, chemical sterilizer |
US5326492A (en) | 1991-11-18 | 1994-07-05 | Medical Polymers, Inc. | Disinfectant mixture containing water soluble lubricating and cleaning agents and method |
WO1994000548A1 (en) | 1992-06-19 | 1994-01-06 | Laporte E.S.D. Limited | Compositions containing organic peracid and quaternary ammonium compound |
US5370534A (en) | 1992-11-09 | 1994-12-06 | Time Motion Systems Company | Water purification system for dental instrument |
US5460833A (en) | 1993-09-14 | 1995-10-24 | Minnesota Mining And Manufacturing Company | Disinfectant composition |
US5486304A (en) | 1993-12-01 | 1996-01-23 | Warner-Lambert Company | Fragrant denture cleanser composition |
WO1995020366A1 (en) | 1994-01-31 | 1995-08-03 | Prevost Andre | System for disinfecting the water lines of a dental unit |
US5731275A (en) | 1994-04-05 | 1998-03-24 | Universite De Montreal | Synergistic detergent and disinfectant combinations for decontaminating biofilm-coated surfaces |
US5759970A (en) | 1994-04-05 | 1998-06-02 | Universite De Montreal | Synergistic detergent and disinfectant combinations for decontaminating biofilm- coated surfaces |
WO1996020737A1 (en) | 1994-12-30 | 1996-07-11 | Universite De Montreal | Synergistic detergent and disinfectant combinations for decontaminating biofilm-coated surfaces |
US5910420A (en) * | 1996-08-16 | 1999-06-08 | Orion-Yhtyma Oy Orion Diagnostica | Method and test kit for pretreatment of object surfaces |
WO1999051578A1 (en) * | 1998-04-02 | 1999-10-14 | Janssen Pharmaceutica N.V. | Biocidal benzylbiphenyl derivatives |
Non-Patent Citations (14)
Title |
---|
1984, Whitacker, C et al. (1984). "Evaluation of Cleaning Strategies for Removal of Biofilms from Reverse-Osmosis Membranes" Applied and Environmental Microbiology, vol. 48, No. 3: 395-403. |
1989, Stickler, D. et al. (1989) "Activity of Antiseptics against Escherichia coli Growing as Biofilms on Silicone Surfaces." Eur. J. Clin. Microbiol. Infect. Dis. vol. 8 No. 11: 974-978. |
1993, Ronner, A.R. and A.C.L. Wong (1993). "Biofilm Development and Santizer Inactivation of Listeria monocytogenes and Salmonella typhimurium on Stainless Steel and Buna-n Rubber." Journal of Food Protection, 56(9): 750-758. |
1994, Jacquelin, L.F. (1994). "Synergic de l'association d'enzymes ou de surfactanta et d'un desinfectant phenolique sur un biofilm bacterien". Pathologie Biologie. vol. 42. No. 5: 425-430. (Abstract in English). |
1994, Marchesi, J.R. et al. (1994). "SDS-degrading bacteria attach to riverine sediment in response to the surfactant or its primary biodegradation product dodecan-1ol." Microbiology, 140: 2999-3006. |
1996, Barbeau, J. et al. (1996). "Multiparametric Analysis of Waterline Contamination in Dental Units" Applied and Environmental Microbiology vol. 62, No. 11: 3954-3959. |
1997, Barbeau, J. et al. (1997). "Biofilms in Dental Unit Waterlines: Ultrastructural and Cytochemical Analysis" Cells and Materials vol. 7, No. 2: 134-146. |
1997, Blanchard, A.P. et al. (1997). "Peroxygens in Biofilms, Community Interactions and Control" ed. J. Wimpenny, P. Handley, P. Gilbert, H. Lappin-Scott and M. Jones. Third Meeting of the British Biofilm Club, Powys, Sep. 26-28, 1997. p. 235-244. |
1997, Chamberlain, A.H. L. (1997) "Biofilm Processes" In "Biofilms, Community Interaction and Control" ed. J. Wimpenny, P. Handley, P. Lappin-Scott and M. Jones. Third Meeting of the British Biofilm Club, Powys, Sep. 26-28, 1997. p. 41-46. |
1997, Stickler, D.J. (1997) "Chemical and Physical Methods of Biofilm Controls" In "Biofilms, Community Interactions and Control" ed. J. Wimpenny, P. Handley, P. Lappin-Scott and M. Jones. Third Meeting of the British Biofilm Club, Powys, Sep. 26-28, 1997. p. 215-225. |
1997, Stoodley, P. et al. (1997) "Consensus Model of Biofilm Structures" In "Biofilms, Community Interactions and Control" ed. J. Wimpenny, P. Handley, P. Lappin-Scott and M. Jones. Third Meeting of the British Biofilm Club, Powys, Sep. 26-28, 1997. p. 1-9. |
1997, Sutherland, I.W. (1997) "Exopolysaccharides Superglues or Velcro?" In "Biofilms, Community Interactions and Control" ed. J. Wimpenny, P. Handley, P. Lappin-Scott and M. Jones. Third Meeting of the British Biofilm Club, Powys, Sep. 26-28, 1997. p. 33-39. |
1997, Wood, P. et al. (1997) "Surface Catalysed Hygeine" In "Biofilms, Community Interactions and Control" ed. J. Wimpenny, P. Handley, P. Lappin-Scott and M. Jones. Third Meeting of the British Biofilm Club, Powys, Sep. 26-28, 1997. p. 227-234. |
1999, Patent Abstracts of Japan; vol. 1999, No. 8, Jun. 30, 1999, JP 11 061199A, Lion Corp. |
Cited By (69)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040110841A1 (en) * | 2001-12-05 | 2004-06-10 | Aseptica, Inc. | Antiseptic compositions, methods and systems |
US8541472B2 (en) | 2001-12-05 | 2013-09-24 | Aseptica, Inc. | Antiseptic compositions, methods and systems |
US20050079594A1 (en) * | 2002-10-31 | 2005-04-14 | Karine Marion | Method of removing a biofilm |
US7465562B2 (en) * | 2003-05-19 | 2008-12-16 | Brandeis University | Nucleic acid processing methods, kits and devices |
US20090111170A1 (en) * | 2003-05-19 | 2009-04-30 | Brandeis University | Nucleic acid processing methods, kits and devices |
US20060275773A1 (en) * | 2003-05-19 | 2006-12-07 | Wangh Lawrence J | Nucleic acid processing methods, kits and devices |
US9279121B2 (en) | 2003-05-19 | 2016-03-08 | Lawrence J Wangh | Nucleic acid processing kits and devices |
US8992460B2 (en) | 2003-10-03 | 2015-03-31 | Michael Rontal | Method and apparatus for the ultrasonic cleaning of biofilm coated surfaces |
US7522955B2 (en) | 2003-10-03 | 2009-04-21 | Michael Rontal | Method and apparatus for the ultrasonic cleaning of biofilm coated surfaces |
US20060069343A1 (en) * | 2003-10-03 | 2006-03-30 | Michael Rontal | Method and apparatus for the ultrasonic cleaning of biofilm coated surfaces |
US20060224103A1 (en) * | 2003-10-03 | 2006-10-05 | Michael Rontal | Method and apparatus for the ultrasonic cleaning of biofilm coated surfaces |
US20050080396A1 (en) * | 2003-10-03 | 2005-04-14 | Michael Rontal | Method and apparatus for the ultrasonic cleaning of biofilm coated surfaces |
US20100174226A1 (en) * | 2003-10-03 | 2010-07-08 | Michael Rontal | Method and apparatus for the ultrasonic cleaning of biofilm coated surfaces |
US20050075621A1 (en) * | 2003-10-03 | 2005-04-07 | Michael Rontal | Method and apparatus for the ultrasonic cleaning of biofilm coated surfaces |
US20100041753A1 (en) * | 2004-07-14 | 2010-02-18 | Sequoia Science, Inc. | Inhibition of biofilm formation |
US20100004480A1 (en) * | 2004-07-14 | 2010-01-07 | Sequoia Sciences, Inc. | Methods and compositions for inhibiting biofilms |
US7604978B2 (en) | 2004-07-14 | 2009-10-20 | Sequoia Sciences, Inc. | Inhibition of biofilm formation |
US20060014290A1 (en) * | 2004-07-14 | 2006-01-19 | Sequoia Sciences, Inc. | Inhibition of biofilm formation |
US7612045B2 (en) | 2004-09-14 | 2009-11-03 | Sequoia Sciences, Inc. | Compounds, compositions and methods for controlling biofilms and bacterial infections |
US20060100121A1 (en) * | 2004-11-05 | 2006-05-11 | Tuggle Terrance F | Mold removal and cleaning solution |
US7521409B2 (en) * | 2004-11-05 | 2009-04-21 | Tuggle Terrance F | Mold removal and cleaning solution |
US20060228384A1 (en) * | 2005-04-06 | 2006-10-12 | Sequoia Sciences, Inc. | Control of biofilm with a biofilm inhibitor |
US20060264411A1 (en) * | 2005-05-20 | 2006-11-23 | Eldridge Gary R | Control of biofilm formation |
US20070014739A1 (en) * | 2005-07-14 | 2007-01-18 | Eldridge Gary R | Compositions and methods for controlling biofilms and bacterial infections |
US20070110788A1 (en) * | 2005-11-14 | 2007-05-17 | Hissong James B | Injectable formulation capable of forming a drug-releasing device |
US20070264310A1 (en) * | 2006-05-10 | 2007-11-15 | Medtronic, Inc. | Solvating system and sealant for medical use in the middle or inner ear |
US20070264296A1 (en) * | 2006-05-10 | 2007-11-15 | Myntti Matthew F | Biofilm extracellular polysachharide solvating system |
US8691288B2 (en) | 2006-05-10 | 2014-04-08 | Medtronic, Inc. | Gallium-containing sealant for medical use |
US7993675B2 (en) | 2006-05-10 | 2011-08-09 | Medtronic Xomed, Inc. | Solvating system and sealant for medical use in the sinuses and nasal passages |
US20090258086A1 (en) * | 2006-05-10 | 2009-10-15 | Medtronic Xomed, Inc. | Biofilm extracellular polysaccharide solvating system |
US7976875B2 (en) | 2006-05-10 | 2011-07-12 | Medtronic Xomed, Inc. | Biofilm extracellular polysaccharide solvating system |
US7976873B2 (en) | 2006-05-10 | 2011-07-12 | Medtronic Xomed, Inc. | Extracellular polysaccharide solvating system for treatment of bacterial ear conditions |
US7959943B2 (en) | 2006-05-10 | 2011-06-14 | Medtronics Xomed, Inc. | Solvating system and sealant for medical use in the middle or inner ear |
US20070264342A1 (en) * | 2006-05-10 | 2007-11-15 | Medtronic, Inc. | Solvating system and sealant for medical use in the sinuses and nasal passages |
US20070264353A1 (en) * | 2006-05-10 | 2007-11-15 | Medtronic, Inc. | Extracellular polysaccharide solvating system for treatment of bacterial ear conditions |
US8618038B1 (en) * | 2006-05-30 | 2013-12-31 | Stone Chemical Company | Compositions for removing lead from metal surfaces |
US7226897B1 (en) | 2006-07-26 | 2007-06-05 | Innovation Services, Inc. | Water soluble barrier film conformal coating composition |
US7540926B2 (en) | 2006-07-26 | 2009-06-02 | Innovation Services, Inc. | Method of cleaning contaminated surfaces |
US7893015B2 (en) | 2006-07-26 | 2011-02-22 | Stryker Corporation | Water soluble barrier film conformal coating composition and method of cleaning contaminated surfaces |
US20110104373A1 (en) * | 2006-07-26 | 2011-05-05 | Stryker Corporation | Method of cleaning contaminated surfaces |
US20080023030A1 (en) * | 2006-07-26 | 2008-01-31 | Dooley Joseph B | Method of cleaning contaminated surfaces |
US20080023044A1 (en) * | 2006-07-26 | 2008-01-31 | Hubrig Jeffrey G | Water soluble barrier film conformal coating composition and method of cleaning contaminated surfaces with the composition |
US20090203565A1 (en) * | 2006-07-26 | 2009-08-13 | Dooley Joseph B | Water soluble barrier film conformal coating composition and method of cleaning contaminated surfaces |
US8163101B2 (en) | 2006-07-26 | 2012-04-24 | Stryker Corporation | Method of cleaning contaminated surfaces |
US7198680B1 (en) | 2006-07-26 | 2007-04-03 | Innovation Services, Inc. | Process for cleaning surfaces of medical equipment |
US7541321B2 (en) | 2006-07-26 | 2009-06-02 | Innovation Services, Inc. | Water soluble barrier film conformal coating composition |
US9119896B2 (en) | 2007-02-08 | 2015-09-01 | Medtronic Xomed, Inc. | Polymeric sealant for medical use |
US20080195037A1 (en) * | 2007-02-08 | 2008-08-14 | James Britton Hissong | Film forming polymeric sealant for medical use |
US8088095B2 (en) | 2007-02-08 | 2012-01-03 | Medtronic Xomed, Inc. | Polymeric sealant for medical use |
US8956663B2 (en) | 2007-11-30 | 2015-02-17 | Toltec Pharmaceuticals, Llc | Compositions and methods for treating vaginal infections and pathogenic vaginal biofilms |
CN101951868A (en) * | 2007-11-30 | 2011-01-19 | 托尔特克制药有限责任公司 | Compositions and methods for treating vaginal infections and pathogenic vaginal biofilms |
US20090181106A1 (en) * | 2007-11-30 | 2009-07-16 | Suzanne Gordon | Compositions and methods for treating vaginal infections and pathogenic vaginal biofilms |
US8349368B2 (en) | 2007-11-30 | 2013-01-08 | Toltec Pharmaceuticals, Llc | Compositions and methods for treating vaginal infections and pathogenic vaginal biofilms |
US9700344B2 (en) | 2008-06-12 | 2017-07-11 | Medtronic Xomed, Inc. | Method for treating chronic wounds with an extracellular polymeric substance solvating system |
US8784790B2 (en) | 2008-06-12 | 2014-07-22 | Medtronic Xomed, Inc. | Method for treating chronic wounds with an extracellular polymeric substance solvating system |
US20100086576A1 (en) * | 2008-10-06 | 2010-04-08 | Myntti Matthew F | Antimicrobial composition and methods of making and using same |
US8940792B2 (en) | 2008-10-06 | 2015-01-27 | Next Science, Llc | Antimicrobial composition and methods for using same |
US10617715B2 (en) * | 2008-12-22 | 2020-04-14 | Sonoma Pharmaceuticals, Inc. | Methods of treating or preventing biofilm associated infections with free available chlorine free available chlorine water |
US20100166809A1 (en) * | 2008-12-22 | 2010-07-01 | Oculus Innovative Sciences | Methods of treating or preventing biofilm associated infections with free available chlorine free available chlorine water |
US9157053B1 (en) | 2009-07-01 | 2015-10-13 | Thomas Tupaj | Laundry washing machine deodorizer |
US20120201762A1 (en) * | 2009-10-26 | 2012-08-09 | Colgate-Palmolive Company | Oral care composition |
US11376230B2 (en) | 2011-04-18 | 2022-07-05 | Rigshospitalet Copenhagen University Hospital | Wound care product |
US10653133B2 (en) | 2011-05-10 | 2020-05-19 | Next Science IP Holdings Pty Ltd | Antimicrobial solid and methods of making and using same |
US8324264B1 (en) | 2011-07-22 | 2012-12-04 | Sequoia Sciences, Inc. | Inhibitors of bacterial biofilms and related methods |
EP2617867A3 (en) * | 2012-01-23 | 2014-04-30 | Schülke & Mayr GmbH | Method and composition for preparing medical instruments |
US10874108B2 (en) | 2016-05-04 | 2020-12-29 | 5d Health Protection Group Ltd. | Anti-microbial compositions |
US10588835B2 (en) * | 2016-12-27 | 2020-03-17 | Colgate-Palmolive Company | Oral care product and methods of use and manufacture thereof |
US20180177695A1 (en) * | 2016-12-27 | 2018-06-28 | Colgate-Palmolive Company | Oral Care Product and Methods of Use and Manufacture Thereof |
US11717551B2 (en) | 2018-05-07 | 2023-08-08 | Georgia State University Research Foundation, Inc. | Compositions and methods related to Rhamnus prinoides (GESHO) extract for the inhibition of polymicrobial biofilm formation |
Also Published As
Publication number | Publication date |
---|---|
CA2350245A1 (en) | 2000-05-18 |
JP2002529545A (en) | 2002-09-10 |
WO2000027438A1 (en) | 2000-05-18 |
AU764340B2 (en) | 2003-08-14 |
EP1124584A1 (en) | 2001-08-22 |
AU1143100A (en) | 2000-05-29 |
US20020016278A1 (en) | 2002-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6762160B2 (en) | Composition for removing biofilms comprising a detergent and a salt forming acid | |
EP1016420B1 (en) | Synergistic detergent and disinfectant combinations for decontaminating biofilm-coated surfaces | |
Safavi et al. | Root canal dentinal tubule disinfection | |
JP5476338B2 (en) | Hydrogen peroxide disinfectant containing cyclic carboxylic acid and / or aromatic alcohol | |
US8895621B2 (en) | Composition and method for irrigation of a prepared dental root canal | |
Haapasalo et al. | Irrigants and intracanal medicaments | |
Zan et al. | Bactericidal effects of various irrigation solutions against Staphylococcus aureus in human root canal | |
Dagna et al. | In vitro evaluation of antimicrobial efficacy of endodontic irrigants | |
Dumani et al. | Efficacy of Calcium Hypoclorite with and without Er, Cr: Yttrium, Scandium, Gallium, Garnet Laser Activation on: Enterococcus faecalis: in Experimentally Infected Root Canals | |
US6469068B2 (en) | Composition for disinfecting toothbrushes and other oral cavity cleaning instruments | |
US6692757B1 (en) | Multi-component, safe biocidal complex | |
EP1269844B1 (en) | Method for disinfecting and/or sterilising a dental unit | |
Cardoso et al. | Rapid sterilization of gutta-percha cones with glutaraldehyde | |
Majhi et al. | Effectiveness of silver–graphene oxide nanoparticle against Enterococcus faecalis biofilms in the root canal | |
Jathar et al. | Comparative evaluation of various disinfectant agents to disinfect toothbrush microbiota | |
ABUELQOMSAN | A Review of Root Canal Irrigants-Their Indications, Uses and Interactions. | |
Liaqat et al. | In vitro efficacy of biocides against dental unit water line (DUWL) biofilm bacteria | |
AU2402599A (en) | Synergistic detergent and disinfectant combinations for decontaminating bio film-coated surfaces | |
Mitariu et al. | ECOLOGICAL CHEMICAL DISINFECTANTS COMPOUNDS VERSUS NONECOLOGICAL CHEMICALS IN DENTISTRY. ADVANTAGES AND DISADVANTAGES |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: UNIVERSITE DE MONTREAL, CANADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BARBEAU, JEAN;GRAVEL, DENIS;HABI, ABDELKRIM;REEL/FRAME:012048/0031 Effective date: 20010621 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20080713 |