US7566738B2 - Acyloxyalkyl carbamate prodrugs of sulfinic acids, methods of synthesis, and use - Google Patents
Acyloxyalkyl carbamate prodrugs of sulfinic acids, methods of synthesis, and use Download PDFInfo
- Publication number
- US7566738B2 US7566738B2 US11/265,204 US26520405A US7566738B2 US 7566738 B2 US7566738 B2 US 7566738B2 US 26520405 A US26520405 A US 26520405A US 7566738 B2 US7566738 B2 US 7566738B2
- Authority
- US
- United States
- Prior art keywords
- butyl
- hydrogen
- substituted
- acid
- compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
- -1 Acyloxyalkyl carbamate Chemical compound 0.000 title claims abstract description 152
- 239000000651 prodrug Substances 0.000 title claims abstract description 87
- 229940002612 prodrug Drugs 0.000 title claims abstract description 87
- 238000000034 method Methods 0.000 title abstract description 146
- 238000003786 synthesis reaction Methods 0.000 title description 70
- 230000015572 biosynthetic process Effects 0.000 title description 69
- 150000003455 sulfinic acids Chemical class 0.000 title 1
- NPGXQDBNBFXJKB-UHFFFAOYSA-N 3-azaniumylpropane-1-sulfinate Chemical compound NCCCS(O)=O NPGXQDBNBFXJKB-UHFFFAOYSA-N 0.000 claims abstract description 124
- 239000008194 pharmaceutical composition Substances 0.000 claims abstract description 33
- 238000013268 sustained release Methods 0.000 claims abstract description 28
- 239000012730 sustained-release form Substances 0.000 claims abstract description 28
- 150000001875 compounds Chemical class 0.000 claims description 498
- 229910052739 hydrogen Inorganic materials 0.000 claims description 329
- 239000001257 hydrogen Substances 0.000 claims description 329
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 324
- 229910052799 carbon Inorganic materials 0.000 claims description 206
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 claims description 179
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 164
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 claims description 137
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 128
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 111
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 claims description 111
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 claims description 109
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 claims description 109
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 claims description 107
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 claims description 98
- 125000003349 3-pyridyl group Chemical group N1=C([H])C([*])=C([H])C([H])=C1[H] 0.000 claims description 97
- 239000000203 mixture Substances 0.000 claims description 67
- 125000001153 fluoro group Chemical group F* 0.000 claims description 61
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 61
- 125000003854 p-chlorophenyl group Chemical group [H]C1=C([H])C(*)=C([H])C([H])=C1Cl 0.000 claims description 61
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 claims description 48
- 125000001072 heteroaryl group Chemical group 0.000 claims description 47
- 125000003118 aryl group Chemical group 0.000 claims description 33
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 claims description 28
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 claims description 28
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 claims description 28
- 125000003548 sec-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 claims description 28
- 125000004105 2-pyridyl group Chemical group N1=C([*])C([H])=C([H])C([H])=C1[H] 0.000 claims description 27
- 125000000339 4-pyridyl group Chemical group N1=C([H])C([H])=C([*])C([H])=C1[H] 0.000 claims description 27
- 125000003710 aryl alkyl group Chemical group 0.000 claims description 27
- 125000005913 (C3-C6) cycloalkyl group Chemical group 0.000 claims description 26
- 125000004043 oxo group Chemical group O=* 0.000 claims description 25
- 125000003884 phenylalkyl group Chemical group 0.000 claims description 25
- 125000004446 heteroarylalkyl group Chemical group 0.000 claims description 23
- 150000003839 salts Chemical class 0.000 claims description 23
- 125000000217 alkyl group Chemical group 0.000 claims description 21
- 125000003107 substituted aryl group Chemical group 0.000 claims description 21
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 20
- 125000003754 ethoxycarbonyl group Chemical group C(=O)(OCC)* 0.000 claims description 16
- 125000001160 methoxycarbonyl group Chemical group [H]C([H])([H])OC(*)=O 0.000 claims description 16
- 125000002252 acyl group Chemical group 0.000 claims description 15
- 238000009472 formulation Methods 0.000 claims description 15
- 125000005928 isopropyloxycarbonyl group Chemical group [H]C([H])([H])C([H])(OC(*)=O)C([H])([H])[H] 0.000 claims description 15
- 125000005346 substituted cycloalkyl group Chemical group 0.000 claims description 15
- NZNDPBWNSJEMSJ-UHFFFAOYSA-N 3-amino-2-oxopropane-1-sulfinic acid Chemical compound NCC(=O)CS(O)=O NZNDPBWNSJEMSJ-UHFFFAOYSA-N 0.000 claims description 14
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 claims description 14
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 claims description 13
- 125000004453 alkoxycarbonyl group Chemical group 0.000 claims description 13
- 239000012453 solvate Substances 0.000 claims description 13
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 claims description 12
- 125000000094 2-phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 claims description 11
- 125000000547 substituted alkyl group Chemical group 0.000 claims description 11
- 125000004432 carbon atom Chemical group C* 0.000 claims description 10
- 125000004404 heteroalkyl group Chemical group 0.000 claims description 10
- 125000004076 pyridyl group Chemical group 0.000 claims description 10
- 125000004191 (C1-C6) alkoxy group Chemical group 0.000 claims description 8
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 claims description 7
- 125000004172 4-methoxyphenyl group Chemical group [H]C1=C([H])C(OC([H])([H])[H])=C([H])C([H])=C1* 0.000 claims description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 6
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 claims description 6
- 125000005504 styryl group Chemical group 0.000 claims description 6
- UYRCSPJNAZWIEB-GSVOUGTGSA-N (2r)-3-amino-2-fluoropropane-1-sulfinic acid Chemical compound NC[C@@H](F)CS(O)=O UYRCSPJNAZWIEB-GSVOUGTGSA-N 0.000 claims description 4
- NVIJJMLZIGNFCD-GSVOUGTGSA-N (2r)-3-amino-2-hydroxypropane-1-sulfinic acid Chemical compound NC[C@@H](O)CS(O)=O NVIJJMLZIGNFCD-GSVOUGTGSA-N 0.000 claims description 4
- UYRCSPJNAZWIEB-VKHMYHEASA-N (2s)-3-amino-2-fluoropropane-1-sulfinic acid Chemical compound NC[C@H](F)CS(O)=O UYRCSPJNAZWIEB-VKHMYHEASA-N 0.000 claims description 4
- NVIJJMLZIGNFCD-VKHMYHEASA-N (2s)-3-amino-2-hydroxypropane-1-sulfinic acid Chemical compound NC[C@H](O)CS(O)=O NVIJJMLZIGNFCD-VKHMYHEASA-N 0.000 claims description 4
- NRAKQMOQGMIXRK-UHFFFAOYSA-N 3-amino-2-(4-chlorophenyl)propane-1-sulfinic acid Chemical compound OS(=O)CC(CN)C1=CC=C(Cl)C=C1 NRAKQMOQGMIXRK-UHFFFAOYSA-N 0.000 claims description 4
- UYRCSPJNAZWIEB-UHFFFAOYSA-N 3-amino-2-fluoropropane-1-sulfinic acid Chemical compound NCC(F)CS(O)=O UYRCSPJNAZWIEB-UHFFFAOYSA-N 0.000 claims description 4
- NVIJJMLZIGNFCD-UHFFFAOYSA-N 3-amino-2-hydroxypropane-1-sulfinic acid Chemical compound NCC(O)CS(O)=O NVIJJMLZIGNFCD-UHFFFAOYSA-N 0.000 claims description 4
- 125000001246 bromo group Chemical group Br* 0.000 claims description 4
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 4
- 125000001309 chloro group Chemical group Cl* 0.000 claims description 4
- 150000002431 hydrogen Chemical group 0.000 claims 10
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 abstract description 47
- 201000010099 disease Diseases 0.000 abstract description 27
- 208000035475 disorder Diseases 0.000 abstract description 20
- 208000021302 gastroesophageal reflux disease Diseases 0.000 abstract description 15
- 208000008238 Muscle Spasticity Diseases 0.000 abstract description 13
- 208000018198 spasticity Diseases 0.000 abstract description 13
- 239000006186 oral dosage form Substances 0.000 abstract description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 190
- BUUPQKDIAURBJP-UHFFFAOYSA-N sulfinic acid Chemical compound OS=O BUUPQKDIAURBJP-UHFFFAOYSA-N 0.000 description 84
- 239000003814 drug Substances 0.000 description 75
- 239000007787 solid Substances 0.000 description 68
- 229940079593 drug Drugs 0.000 description 63
- 239000002253 acid Substances 0.000 description 47
- 239000002552 dosage form Substances 0.000 description 46
- 125000006297 carbonyl amino group Chemical group [H]N([*:2])C([*:1])=O 0.000 description 41
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 35
- 229920000642 polymer Polymers 0.000 description 34
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 33
- 239000010410 layer Substances 0.000 description 33
- 230000002194 synthesizing effect Effects 0.000 description 28
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 25
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 24
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 22
- 125000001231 benzoyloxy group Chemical group C(C1=CC=CC=C1)(=O)O* 0.000 description 22
- 238000013270 controlled release Methods 0.000 description 21
- 125000001424 substituent group Chemical group 0.000 description 21
- KQNPFQTWMSNSAP-UHFFFAOYSA-N isobutyric acid Chemical compound CC(C)C(O)=O KQNPFQTWMSNSAP-UHFFFAOYSA-N 0.000 description 20
- 239000011324 bead Substances 0.000 description 19
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 18
- 210000004369 blood Anatomy 0.000 description 18
- 239000008280 blood Substances 0.000 description 18
- 239000011541 reaction mixture Substances 0.000 description 18
- 239000000243 solution Substances 0.000 description 17
- 239000002904 solvent Substances 0.000 description 17
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 16
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 16
- 210000001035 gastrointestinal tract Anatomy 0.000 description 16
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 15
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 15
- 150000001721 carbon Chemical group 0.000 description 15
- 238000006243 chemical reaction Methods 0.000 description 15
- 239000000463 material Substances 0.000 description 15
- HRMLDMALWZLZAF-UHFFFAOYSA-N 1-methylsulfanylcarbonyloxyethyl 2-methylpropanoate Chemical compound CSC(=O)OC(C)OC(=O)C(C)C HRMLDMALWZLZAF-UHFFFAOYSA-N 0.000 description 14
- KPYSYYIEGFHWSV-UHFFFAOYSA-N Baclofen Chemical compound OC(=O)CC(CN)C1=CC=C(Cl)C=C1 KPYSYYIEGFHWSV-UHFFFAOYSA-N 0.000 description 14
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 14
- 238000002360 preparation method Methods 0.000 description 14
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 13
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 13
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 13
- 229960000794 baclofen Drugs 0.000 description 13
- 239000000047 product Substances 0.000 description 13
- KTCYBBGMKHRPEZ-UHFFFAOYSA-N 1-(2,5-dioxopyrrolidin-3-yl)oxycarbonyloxyethyl 2-methylpropanoate Chemical compound CC(C)C(=O)OC(C)OC(=O)OC1CC(=O)NC1=O KTCYBBGMKHRPEZ-UHFFFAOYSA-N 0.000 description 12
- 238000005160 1H NMR spectroscopy Methods 0.000 description 12
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 12
- 208000007848 Alcoholism Diseases 0.000 description 12
- 238000010521 absorption reaction Methods 0.000 description 12
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 11
- 239000003921 oil Substances 0.000 description 11
- 235000019198 oils Nutrition 0.000 description 11
- 230000003204 osmotic effect Effects 0.000 description 11
- 239000000725 suspension Substances 0.000 description 11
- 229940124597 therapeutic agent Drugs 0.000 description 11
- XKPXSOTXDVMZBY-UHFFFAOYSA-N 1-methylsulfanylcarbonyloxyethyl butanoate Chemical compound CCCC(=O)OC(C)OC(=O)SC XKPXSOTXDVMZBY-UHFFFAOYSA-N 0.000 description 10
- 230000001225 therapeutic effect Effects 0.000 description 10
- 239000003981 vehicle Substances 0.000 description 10
- RFKBXYVXTHLYNT-UHFFFAOYSA-N 1-chloroethyl methylsulfanylformate Chemical compound CSC(=O)OC(C)Cl RFKBXYVXTHLYNT-UHFFFAOYSA-N 0.000 description 9
- SDHABYDTXBNEDB-UHFFFAOYSA-N 1-methylsulfanylcarbonyloxyethyl 2,2-dimethylpropanoate Chemical compound CSC(=O)OC(C)OC(=O)C(C)(C)C SDHABYDTXBNEDB-UHFFFAOYSA-N 0.000 description 9
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical compound C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 9
- 241000700159 Rattus Species 0.000 description 9
- 239000012530 fluid Substances 0.000 description 9
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 9
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 239000003826 tablet Substances 0.000 description 9
- FFZUEFBJZJJIAY-UHFFFAOYSA-N 1-methylsulfanylcarbonyloxyethyl cyclohexanecarboxylate Chemical compound CSC(=O)OC(C)OC(=O)C1CCCCC1 FFZUEFBJZJJIAY-UHFFFAOYSA-N 0.000 description 8
- KFSLWBXXFJQRDL-UHFFFAOYSA-N Peracetic acid Chemical compound CC(=O)OO KFSLWBXXFJQRDL-UHFFFAOYSA-N 0.000 description 8
- 206010047700 Vomiting Diseases 0.000 description 8
- ZBJUFRRUYKKMMM-CUVVAGTFSA-N [(3s,4s)-4-benzoyloxy-1-[(1r)-2-methyl-1-(2-methylpropanoyloxy)propoxy]carbonyloxy-2,5-dioxopyrrolidin-3-yl] benzoate Chemical compound O([C@@H]1C(=O)N(C([C@H]1OC(=O)C=1C=CC=CC=1)=O)OC(=O)O[C@H](C(C)C)OC(=O)C(C)C)C(=O)C1=CC=CC=C1 ZBJUFRRUYKKMMM-CUVVAGTFSA-N 0.000 description 8
- 125000003342 alkenyl group Chemical group 0.000 description 8
- 125000000304 alkynyl group Chemical group 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 8
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 8
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 8
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 8
- 238000001294 liquid chromatography-tandem mass spectrometry Methods 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 239000012074 organic phase Substances 0.000 description 8
- 239000000546 pharmaceutical excipient Substances 0.000 description 8
- 239000006187 pill Substances 0.000 description 8
- 239000000018 receptor agonist Substances 0.000 description 8
- 229940044601 receptor agonist Drugs 0.000 description 8
- 230000001839 systemic circulation Effects 0.000 description 8
- QQPKRQRFPZLARB-UHFFFAOYSA-N (2-methyl-1-methylsulfanylcarbonylperoxypropyl) 2-methylpropanoate Chemical compound CSC(=O)OOC(C(C)C)OC(=O)C(C)C QQPKRQRFPZLARB-UHFFFAOYSA-N 0.000 description 7
- 206010011224 Cough Diseases 0.000 description 7
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 7
- ZBJUFRRUYKKMMM-KYTVRQNUSA-N [(3r,4r)-4-benzoyloxy-1-[(1s)-2-methyl-1-(2-methylpropanoyloxy)propoxy]carbonyloxy-2,5-dioxopyrrolidin-3-yl] benzoate Chemical compound O([C@H]1C(=O)N(C([C@@H]1OC(=O)C=1C=CC=CC=1)=O)OC(=O)O[C@@H](C(C)C)OC(=O)C(C)C)C(=O)C1=CC=CC=C1 ZBJUFRRUYKKMMM-KYTVRQNUSA-N 0.000 description 7
- 239000002775 capsule Substances 0.000 description 7
- 230000002496 gastric effect Effects 0.000 description 7
- 239000000017 hydrogel Substances 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 125000006239 protecting group Chemical group 0.000 description 7
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 7
- 230000002459 sustained effect Effects 0.000 description 7
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Chemical compound C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 description 6
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 6
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 6
- SJRJJKPEHAURKC-UHFFFAOYSA-N N-Methylmorpholine Chemical compound CN1CCOCC1 SJRJJKPEHAURKC-UHFFFAOYSA-N 0.000 description 6
- 206010057852 Nicotine dependence Diseases 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical compound C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 description 6
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 6
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 6
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 6
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 6
- 208000025569 Tobacco Use disease Diseases 0.000 description 6
- 206010043903 Tobacco abuse Diseases 0.000 description 6
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 6
- 0 [1*]C(=O)OC([2*])([3*])OC(=O)N([4*])C([6*])C([5*])C([7*])S(=O)O Chemical compound [1*]C(=O)OC([2*])([3*])OC(=O)N([4*])C([6*])C([5*])C([7*])S(=O)O 0.000 description 6
- 206010001584 alcohol abuse Diseases 0.000 description 6
- 208000025746 alcohol use disease Diseases 0.000 description 6
- 125000004429 atom Chemical group 0.000 description 6
- XSCHRSMBECNVNS-UHFFFAOYSA-N benzopyrazine Natural products N1=CC=NC2=CC=CC=C21 XSCHRSMBECNVNS-UHFFFAOYSA-N 0.000 description 6
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 6
- 239000001768 carboxy methyl cellulose Substances 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthene Chemical compound C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 6
- BTCSSZJGUNDROE-UHFFFAOYSA-N gamma-aminobutyric acid Chemical compound NCCCC(O)=O BTCSSZJGUNDROE-UHFFFAOYSA-N 0.000 description 6
- 238000000338 in vitro Methods 0.000 description 6
- PQNFLJBBNBOBRQ-UHFFFAOYSA-N indane Chemical compound C1=CC=C2CCCC2=C1 PQNFLJBBNBOBRQ-UHFFFAOYSA-N 0.000 description 6
- 210000004185 liver Anatomy 0.000 description 6
- 102000005962 receptors Human genes 0.000 description 6
- 108020003175 receptors Proteins 0.000 description 6
- 239000000523 sample Substances 0.000 description 6
- 229920006395 saturated elastomer Polymers 0.000 description 6
- VOYDPSYMASZGEM-UHFFFAOYSA-N (1-chloro-2-methylpropyl) methylsulfanylmethaneperoxoate Chemical compound CSC(=O)OOC(Cl)C(C)C VOYDPSYMASZGEM-UHFFFAOYSA-N 0.000 description 5
- RPORNILHJRSAHX-UHFFFAOYSA-M 2-methylpropanoate;tetramethylazanium Chemical compound C[N+](C)(C)C.CC(C)C([O-])=O RPORNILHJRSAHX-UHFFFAOYSA-M 0.000 description 5
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 5
- 102000004190 Enzymes Human genes 0.000 description 5
- 108090000790 Enzymes Proteins 0.000 description 5
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 5
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 description 5
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 5
- 239000002202 Polyethylene glycol Substances 0.000 description 5
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 5
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 5
- 229930006000 Sucrose Natural products 0.000 description 5
- YMKNXBMZYLSMNV-ZIAGYGMSSA-N [(3r,4r)-4-benzoyloxy-1-hydroxy-2,5-dioxopyrrolidin-3-yl] benzoate Chemical compound O([C@H]1C(=O)N(C([C@@H]1OC(=O)C=1C=CC=CC=1)=O)O)C(=O)C1=CC=CC=C1 YMKNXBMZYLSMNV-ZIAGYGMSSA-N 0.000 description 5
- OXIKRMSPXYQFOT-ZIAGYGMSSA-N [(3r,4r)-4-benzoyloxy-2,5-dioxooxolan-3-yl] benzoate Chemical compound O([C@@H]1[C@H](C(OC1=O)=O)OC(=O)C=1C=CC=CC=1)C(=O)C1=CC=CC=C1 OXIKRMSPXYQFOT-ZIAGYGMSSA-N 0.000 description 5
- YMKNXBMZYLSMNV-KBPBESRZSA-N [(3s,4s)-4-benzoyloxy-1-hydroxy-2,5-dioxopyrrolidin-3-yl] benzoate Chemical compound O([C@@H]1C(=O)N(C([C@H]1OC(=O)C=1C=CC=CC=1)=O)O)C(=O)C1=CC=CC=C1 YMKNXBMZYLSMNV-KBPBESRZSA-N 0.000 description 5
- OXIKRMSPXYQFOT-KBPBESRZSA-N [(3s,4s)-4-benzoyloxy-2,5-dioxooxolan-3-yl] benzoate Chemical compound O([C@H]1[C@@H](C(OC1=O)=O)OC(=O)C=1C=CC=CC=1)C(=O)C1=CC=CC=C1 OXIKRMSPXYQFOT-KBPBESRZSA-N 0.000 description 5
- XJLXINKUBYWONI-DQQFMEOOSA-N [[(2r,3r,4r,5r)-5-(6-aminopurin-9-yl)-3-hydroxy-4-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [(2s,3r,4s,5s)-5-(3-carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl phosphate Chemical compound NC(=O)C1=CC=C[N+]([C@@H]2[C@H]([C@@H](O)[C@H](COP([O-])(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](OP(O)(O)=O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 XJLXINKUBYWONI-DQQFMEOOSA-N 0.000 description 5
- 239000004480 active ingredient Substances 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 5
- 239000012267 brine Substances 0.000 description 5
- 235000010980 cellulose Nutrition 0.000 description 5
- 229920002678 cellulose Polymers 0.000 description 5
- 239000001913 cellulose Substances 0.000 description 5
- QOPVNWQGBQYBBP-UHFFFAOYSA-N chloroethyl chloroformate Chemical compound CC(Cl)OC(Cl)=O QOPVNWQGBQYBBP-UHFFFAOYSA-N 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 5
- 239000003085 diluting agent Substances 0.000 description 5
- 229940088598 enzyme Drugs 0.000 description 5
- 235000019439 ethyl acetate Nutrition 0.000 description 5
- 238000001914 filtration Methods 0.000 description 5
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 5
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 5
- 239000002207 metabolite Substances 0.000 description 5
- XAKUOMOKPDTHFY-UHFFFAOYSA-N methylsulfanylcarbonyloxymethyl 2,2-dimethylpropanoate Chemical compound CSC(=O)OCOC(=O)C(C)(C)C XAKUOMOKPDTHFY-UHFFFAOYSA-N 0.000 description 5
- TZQXANWICVHVBM-UHFFFAOYSA-N methylsulfanylcarbonyloxymethyl 2-methylpropanoate Chemical compound CSC(=O)OCOC(=O)C(C)C TZQXANWICVHVBM-UHFFFAOYSA-N 0.000 description 5
- FDQVMHOMTSYDFL-UHFFFAOYSA-N methylsulfanylcarbonyloxymethyl butanoate Chemical compound CCCC(=O)OCOC(=O)SC FDQVMHOMTSYDFL-UHFFFAOYSA-N 0.000 description 5
- INXRCDPEQDAJSW-UHFFFAOYSA-N methylsulfanylcarbonyloxymethyl cyclohexanecarboxylate Chemical compound CSC(=O)OCOC(=O)C1CCCCC1 INXRCDPEQDAJSW-UHFFFAOYSA-N 0.000 description 5
- 229920001223 polyethylene glycol Polymers 0.000 description 5
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 5
- 208000011117 substance-related disease Diseases 0.000 description 5
- 239000005720 sucrose Substances 0.000 description 5
- 208000024891 symptom Diseases 0.000 description 5
- 210000001519 tissue Anatomy 0.000 description 5
- RLTVWRCZFQPBJL-UHFFFAOYSA-N (2,5-dioxopyrrolidin-3-yl)oxycarbonyloxymethyl 2,2-dimethylpropanoate Chemical compound CC(C)(C)C(=O)OCOC(=O)OC1CC(=O)NC1=O RLTVWRCZFQPBJL-UHFFFAOYSA-N 0.000 description 4
- XUZAUMGWOVNFMV-UHFFFAOYSA-N (2,5-dioxopyrrolidin-3-yl)oxycarbonyloxymethyl 2-methylpropanoate Chemical compound CC(C)C(=O)OCOC(=O)OC1CC(=O)NC1=O XUZAUMGWOVNFMV-UHFFFAOYSA-N 0.000 description 4
- UJVKRLTVKAJJPB-UHFFFAOYSA-N (2,5-dioxopyrrolidin-3-yl)oxycarbonyloxymethyl butanoate Chemical compound CCCC(=O)OCOC(=O)OC1CC(=O)NC1=O UJVKRLTVKAJJPB-UHFFFAOYSA-N 0.000 description 4
- COKZWUJTXGJTRG-UHFFFAOYSA-N (2,5-dioxopyrrolidin-3-yl)oxycarbonyloxymethyl cyclohexanecarboxylate Chemical compound C1C(=O)NC(=O)C1OC(=O)OCOC(=O)C1CCCCC1 COKZWUJTXGJTRG-UHFFFAOYSA-N 0.000 description 4
- FZIURJGDVGCABH-UHFFFAOYSA-N (2-methyl-1-methylsulfanylcarbonylperoxypropyl) 2,2-dimethylpropanoate Chemical compound CSC(=O)OOC(C(C)C)OC(=O)C(C)(C)C FZIURJGDVGCABH-UHFFFAOYSA-N 0.000 description 4
- KMOOHYGAMCKEIV-UHFFFAOYSA-N (2-methyl-1-methylsulfanylcarbonylperoxypropyl) butanoate Chemical compound CCCC(=O)OC(C(C)C)OOC(=O)SC KMOOHYGAMCKEIV-UHFFFAOYSA-N 0.000 description 4
- UVNNPZDANHFYSD-UHFFFAOYSA-N (2-methyl-1-methylsulfanylcarbonylperoxypropyl) cyclohexanecarboxylate Chemical compound CSC(=O)OOC(C(C)C)OC(=O)C1CCCCC1 UVNNPZDANHFYSD-UHFFFAOYSA-N 0.000 description 4
- FLHNLLPNQKATTO-UHFFFAOYSA-N 1-(2,5-dioxopyrrolidin-3-yl)oxycarbonyloxyethyl 2,2-dimethylpropanoate Chemical compound CC(C)(C)C(=O)OC(C)OC(=O)OC1CC(=O)NC1=O FLHNLLPNQKATTO-UHFFFAOYSA-N 0.000 description 4
- NTKFEGPIDFUQFO-UHFFFAOYSA-N 1-(2,5-dioxopyrrolidin-3-yl)oxycarbonyloxyethyl butanoate Chemical compound CCCC(=O)OC(C)OC(=O)OC1CC(=O)NC1=O NTKFEGPIDFUQFO-UHFFFAOYSA-N 0.000 description 4
- GQQHCBCDSPNZDM-UHFFFAOYSA-N 1-(2,5-dioxopyrrolidin-3-yl)oxycarbonyloxyethyl cyclohexanecarboxylate Chemical compound C1CCCCC1C(=O)OC(C)OC(=O)OC1CC(=O)NC1=O GQQHCBCDSPNZDM-UHFFFAOYSA-N 0.000 description 4
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 4
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 4
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 4
- RYQIUCDUOOMNGR-UHFFFAOYSA-N 3-(1-butanoyloxyethoxycarbonylamino)-2-oxopropane-1-sulfinic acid Chemical compound CCCC(=O)OC(C)OC(=O)NCC(=O)CS(O)=O RYQIUCDUOOMNGR-UHFFFAOYSA-N 0.000 description 4
- GSLDNSCFLWZFHE-UHFFFAOYSA-N 3-(1-butanoyloxyethoxycarbonylamino)propane-1-sulfinic acid Chemical compound CCCC(=O)OC(C)OC(=O)NCCCS(O)=O GSLDNSCFLWZFHE-UHFFFAOYSA-N 0.000 description 4
- NRPCEQSTYDQWMJ-UHFFFAOYSA-N 3-(2,2-dimethylpropanoyloxymethoxycarbonylamino)propane-1-sulfinic acid Chemical compound CC(C)(C)C(=O)OCOC(=O)NCCCS(O)=O NRPCEQSTYDQWMJ-UHFFFAOYSA-N 0.000 description 4
- XZBXYHDTJVBHTQ-UHFFFAOYSA-N 3-(butanoyloxymethoxycarbonylamino)propane-1-sulfinic acid Chemical compound CCCC(=O)OCOC(=O)NCCCS(O)=O XZBXYHDTJVBHTQ-UHFFFAOYSA-N 0.000 description 4
- OOLUKHZHDHOIFP-UHFFFAOYSA-N 3-(cyclohexanecarbonyloxymethoxycarbonylamino)propane-1-sulfinic acid Chemical compound OS(=O)CCCNC(=O)OCOC(=O)C1CCCCC1 OOLUKHZHDHOIFP-UHFFFAOYSA-N 0.000 description 4
- YBWMUCHEEMPADR-UHFFFAOYSA-N 3-[1-(2,2-dimethylpropanoyloxy)ethoxycarbonylamino]-2-oxopropane-1-sulfinic acid Chemical compound CC(C)(C)C(=O)OC(C)OC(=O)NCC(=O)CS(O)=O YBWMUCHEEMPADR-UHFFFAOYSA-N 0.000 description 4
- FPQXCRKVWRYWQO-UHFFFAOYSA-N 3-[1-(2,2-dimethylpropanoyloxy)ethoxycarbonylamino]propane-1-sulfinic acid Chemical compound CC(C)(C)C(=O)OC(C)OC(=O)NCCCS(O)=O FPQXCRKVWRYWQO-UHFFFAOYSA-N 0.000 description 4
- YXORLFLELOFGHX-UHFFFAOYSA-N 3-[1-(2-methylpropanoyloxy)ethoxycarbonylamino]-2-oxopropane-1-sulfinic acid Chemical compound CC(C)C(=O)OC(C)OC(=O)NCC(=O)CS(O)=O YXORLFLELOFGHX-UHFFFAOYSA-N 0.000 description 4
- FWWBJJOAMRUPAD-UHFFFAOYSA-N 3-[1-(2-methylpropanoyloxy)ethoxycarbonylamino]propane-1-sulfinic acid Chemical compound CC(C)C(=O)OC(C)OC(=O)NCCCS(O)=O FWWBJJOAMRUPAD-UHFFFAOYSA-N 0.000 description 4
- TUNRLIUBSMUVNE-UHFFFAOYSA-N 3-[1-(cyclohexanecarbonyloxy)ethoxycarbonylamino]-2-oxopropane-1-sulfinic acid Chemical compound OS(=O)CC(=O)CNC(=O)OC(C)OC(=O)C1CCCCC1 TUNRLIUBSMUVNE-UHFFFAOYSA-N 0.000 description 4
- IGVCPOZCCGNLMX-UHFFFAOYSA-N 3-[1-(cyclohexanecarbonyloxy)ethoxycarbonylamino]propane-1-sulfinic acid Chemical compound OS(=O)CCCNC(=O)OC(C)OC(=O)C1CCCCC1 IGVCPOZCCGNLMX-UHFFFAOYSA-N 0.000 description 4
- BXMTYDOTUJGWDE-LLVKDONJSA-N 3-[[(1r)-2-methyl-1-(2-methylpropanoyloxy)propoxy]carbonylamino]propane-1-sulfinic acid Chemical compound CC(C)C(=O)O[C@@H](C(C)C)OC(=O)NCCCS(O)=O BXMTYDOTUJGWDE-LLVKDONJSA-N 0.000 description 4
- BXMTYDOTUJGWDE-NSHDSACASA-N 3-[[(1s)-2-methyl-1-(2-methylpropanoyloxy)propoxy]carbonylamino]propane-1-sulfinic acid Chemical compound CC(C)C(=O)O[C@H](C(C)C)OC(=O)NCCCS(O)=O BXMTYDOTUJGWDE-NSHDSACASA-N 0.000 description 4
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 4
- UJOBWOGCFQCDNV-UHFFFAOYSA-N 9H-carbazole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 description 4
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 4
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 4
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 4
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 4
- 206010013654 Drug abuse Diseases 0.000 description 4
- 239000001856 Ethyl cellulose Substances 0.000 description 4
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 4
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 4
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 4
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 4
- 241000124008 Mammalia Species 0.000 description 4
- 241001465754 Metazoa Species 0.000 description 4
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 4
- 208000018526 Narcotic-Related disease Diseases 0.000 description 4
- 108010019160 Pancreatin Proteins 0.000 description 4
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 4
- 229920002472 Starch Polymers 0.000 description 4
- 239000013543 active substance Substances 0.000 description 4
- 230000009056 active transport Effects 0.000 description 4
- 230000002411 adverse Effects 0.000 description 4
- 125000003545 alkoxy group Chemical group 0.000 description 4
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- CUFNKYGDVFVPHO-UHFFFAOYSA-N azulene Chemical compound C1=CC=CC2=CC=CC2=C1 CUFNKYGDVFVPHO-UHFFFAOYSA-N 0.000 description 4
- 239000002585 base Substances 0.000 description 4
- 239000013060 biological fluid Substances 0.000 description 4
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 4
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 4
- 210000004027 cell Anatomy 0.000 description 4
- JYWJULGYGOLCGW-UHFFFAOYSA-N chloromethyl chloroformate Chemical compound ClCOC(Cl)=O JYWJULGYGOLCGW-UHFFFAOYSA-N 0.000 description 4
- WDECIBYCCFPHNR-UHFFFAOYSA-N chrysene Chemical compound C1=CC=CC2=CC=C3C4=CC=CC=C4C=CC3=C21 WDECIBYCCFPHNR-UHFFFAOYSA-N 0.000 description 4
- 210000001072 colon Anatomy 0.000 description 4
- 239000003086 colorant Substances 0.000 description 4
- 238000002648 combination therapy Methods 0.000 description 4
- VPUGDVKSAQVFFS-UHFFFAOYSA-N coronene Chemical compound C1=C(C2=C34)C=CC3=CC=C(C=C3)C4=C4C3=CC=C(C=C3)C4=C2C3=C1 VPUGDVKSAQVFFS-UHFFFAOYSA-N 0.000 description 4
- 125000004122 cyclic group Chemical group 0.000 description 4
- NZNMSOFKMUBTKW-UHFFFAOYSA-N cyclohexanecarboxylic acid Chemical compound OC(=O)C1CCCCC1 NZNMSOFKMUBTKW-UHFFFAOYSA-N 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- ZZVUWRFHKOJYTH-UHFFFAOYSA-N diphenhydramine Chemical compound C=1C=CC=CC=1C(OCCN(C)C)C1=CC=CC=C1 ZZVUWRFHKOJYTH-UHFFFAOYSA-N 0.000 description 4
- 239000003937 drug carrier Substances 0.000 description 4
- 230000002255 enzymatic effect Effects 0.000 description 4
- 235000019325 ethyl cellulose Nutrition 0.000 description 4
- 229920001249 ethyl cellulose Polymers 0.000 description 4
- 229920000159 gelatin Polymers 0.000 description 4
- 235000019322 gelatine Nutrition 0.000 description 4
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 4
- 125000005842 heteroatom Chemical group 0.000 description 4
- 238000004128 high performance liquid chromatography Methods 0.000 description 4
- SHFJWMWCIHQNCP-UHFFFAOYSA-M hydron;tetrabutylazanium;sulfate Chemical compound OS([O-])(=O)=O.CCCC[N+](CCCC)(CCCC)CCCC SHFJWMWCIHQNCP-UHFFFAOYSA-M 0.000 description 4
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 4
- 239000012729 immediate-release (IR) formulation Substances 0.000 description 4
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 4
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 4
- 230000000968 intestinal effect Effects 0.000 description 4
- AWJUIBRHMBBTKR-UHFFFAOYSA-N isoquinoline Chemical compound C1=NC=CC2=CC=CC=C21 AWJUIBRHMBBTKR-UHFFFAOYSA-N 0.000 description 4
- 239000008101 lactose Substances 0.000 description 4
- 210000002429 large intestine Anatomy 0.000 description 4
- 150000002632 lipids Chemical class 0.000 description 4
- 210000000111 lower esophageal sphincter Anatomy 0.000 description 4
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 4
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 150000007530 organic bases Chemical class 0.000 description 4
- 229940055695 pancreatin Drugs 0.000 description 4
- YNPNZTXNASCQKK-UHFFFAOYSA-N phenanthrene Chemical compound C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 4
- RDOWQLZANAYVLL-UHFFFAOYSA-N phenanthridine Chemical compound C1=CC=C2C3=CC=CC=C3C=NC2=C1 RDOWQLZANAYVLL-UHFFFAOYSA-N 0.000 description 4
- GBROPGWFBFCKAG-UHFFFAOYSA-N picene Chemical compound C1=CC2=C3C=CC=CC3=CC=C2C2=C1C1=CC=CC=C1C=C2 GBROPGWFBFCKAG-UHFFFAOYSA-N 0.000 description 4
- 229920002451 polyvinyl alcohol Polymers 0.000 description 4
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 4
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 4
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000002035 prolonged effect Effects 0.000 description 4
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 4
- 150000003254 radicals Chemical class 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 239000008107 starch Substances 0.000 description 4
- 235000019698 starch Nutrition 0.000 description 4
- 239000006188 syrup Substances 0.000 description 4
- 235000020357 syrup Nutrition 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 239000001993 wax Substances 0.000 description 4
- AIFRHYZBTHREPW-UHFFFAOYSA-N β-carboline Chemical compound N1=CC=C2C3=CC=CC=C3NC2=C1 AIFRHYZBTHREPW-UHFFFAOYSA-N 0.000 description 4
- OISVCGZHLKNMSJ-UHFFFAOYSA-N 2,6-dimethylpyridine Chemical compound CC1=CC=CC(C)=N1 OISVCGZHLKNMSJ-UHFFFAOYSA-N 0.000 description 3
- 125000004974 2-butenyl group Chemical group C(C=CC)* 0.000 description 3
- WSAGXKJPUOCPPH-UHFFFAOYSA-N 3-(2,2-dimethylpropanoyloxymethoxycarbonylamino)-2-oxopropane-1-sulfinic acid Chemical compound CC(C)(C)C(=O)OCOC(=O)NCC(=O)CS(O)=O WSAGXKJPUOCPPH-UHFFFAOYSA-N 0.000 description 3
- ZTKNVOCWYDDMIG-UHFFFAOYSA-N 3-(2-methylpropanoyloxymethoxycarbonylamino)-2-oxopropane-1-sulfinic acid Chemical compound CC(C)C(=O)OCOC(=O)NCC(=O)CS(O)=O ZTKNVOCWYDDMIG-UHFFFAOYSA-N 0.000 description 3
- RQDBQAOYNAQYJS-UHFFFAOYSA-N 3-(butanoyloxymethoxycarbonylamino)-2-oxopropane-1-sulfinic acid Chemical compound CCCC(=O)OCOC(=O)NCC(=O)CS(O)=O RQDBQAOYNAQYJS-UHFFFAOYSA-N 0.000 description 3
- WJPPSYXLHOIWRW-UHFFFAOYSA-N 3-(cyclohexanecarbonyloxymethoxycarbonylamino)-2-oxopropane-1-sulfinic acid Chemical compound OS(=O)CC(=O)CNC(=O)OCOC(=O)C1CCCCC1 WJPPSYXLHOIWRW-UHFFFAOYSA-N 0.000 description 3
- HWANKFXISOITMQ-LLVKDONJSA-N 3-[[(1r)-2-methyl-1-(2-methylpropanoyloxy)propoxy]carbonylamino]-2-oxopropane-1-sulfinic acid Chemical compound CC(C)C(=O)O[C@@H](C(C)C)OC(=O)NCC(=O)CS(O)=O HWANKFXISOITMQ-LLVKDONJSA-N 0.000 description 3
- HWANKFXISOITMQ-NSHDSACASA-N 3-[[(1s)-2-methyl-1-(2-methylpropanoyloxy)propoxy]carbonylamino]-2-oxopropane-1-sulfinic acid Chemical compound CC(C)C(=O)O[C@H](C(C)C)OC(=O)NCC(=O)CS(O)=O HWANKFXISOITMQ-NSHDSACASA-N 0.000 description 3
- GJCOSYZMQJWQCA-UHFFFAOYSA-N 9H-xanthene Chemical compound C1=CC=C2CC3=CC=CC=C3OC2=C1 GJCOSYZMQJWQCA-UHFFFAOYSA-N 0.000 description 3
- 206010012335 Dependence Diseases 0.000 description 3
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 3
- 108010010803 Gelatin Proteins 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- ZCQWOFVYLHDMMC-UHFFFAOYSA-N Oxazole Chemical compound C1=COC=N1 ZCQWOFVYLHDMMC-UHFFFAOYSA-N 0.000 description 3
- 239000004372 Polyvinyl alcohol Substances 0.000 description 3
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 3
- 239000004809 Teflon Substances 0.000 description 3
- 229920006362 Teflon® Polymers 0.000 description 3
- 229940081735 acetylcellulose Drugs 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 239000002671 adjuvant Substances 0.000 description 3
- 125000002723 alicyclic group Chemical class 0.000 description 3
- 150000001336 alkenes Chemical class 0.000 description 3
- VREFGVBLTWBCJP-UHFFFAOYSA-N alprazolam Chemical compound C12=CC(Cl)=CC=C2N2C(C)=NN=C2CN=C1C1=CC=CC=C1 VREFGVBLTWBCJP-UHFFFAOYSA-N 0.000 description 3
- 229920002301 cellulose acetate Polymers 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- VZWXIQHBIQLMPN-UHFFFAOYSA-N chromane Chemical compound C1=CC=C2CCCOC2=C1 VZWXIQHBIQLMPN-UHFFFAOYSA-N 0.000 description 3
- QZHPTGXQGDFGEN-UHFFFAOYSA-N chromene Chemical compound C1=CC=C2C=C[CH]OC2=C1 QZHPTGXQGDFGEN-UHFFFAOYSA-N 0.000 description 3
- 238000003776 cleavage reaction Methods 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 229960000520 diphenhydramine Drugs 0.000 description 3
- 238000012377 drug delivery Methods 0.000 description 3
- 206010013663 drug dependence Diseases 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- RMBPEFMHABBEKP-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2C3=C[CH]C=CC3=CC2=C1 RMBPEFMHABBEKP-UHFFFAOYSA-N 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 229960003692 gamma aminobutyric acid Drugs 0.000 description 3
- 239000008273 gelatin Substances 0.000 description 3
- 235000011852 gelatine desserts Nutrition 0.000 description 3
- 230000014509 gene expression Effects 0.000 description 3
- 125000003976 glyceryl group Chemical group [H]C([*])([H])C(O[H])([H])C(O[H])([H])[H] 0.000 description 3
- 229920001477 hydrophilic polymer Polymers 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000007914 intraventricular administration Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000012633 leachable Substances 0.000 description 3
- QDLAGTHXVHQKRE-UHFFFAOYSA-N lichenxanthone Natural products COC1=CC(O)=C2C(=O)C3=C(C)C=C(OC)C=C3OC2=C1 QDLAGTHXVHQKRE-UHFFFAOYSA-N 0.000 description 3
- 239000003446 ligand Substances 0.000 description 3
- 239000000314 lubricant Substances 0.000 description 3
- 210000004379 membrane Anatomy 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 229920000609 methyl cellulose Polymers 0.000 description 3
- 235000010981 methylcellulose Nutrition 0.000 description 3
- 239000001923 methylcellulose Substances 0.000 description 3
- 239000004081 narcotic agent Substances 0.000 description 3
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N o-biphenylenemethane Natural products C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 230000000144 pharmacologic effect Effects 0.000 description 3
- 239000003444 phase transfer catalyst Substances 0.000 description 3
- NQFOGDIWKQWFMN-UHFFFAOYSA-N phenalene Chemical compound C1=CC([CH]C=C2)=C3C2=CC=CC3=C1 NQFOGDIWKQWFMN-UHFFFAOYSA-N 0.000 description 3
- IUGYQRQAERSCNH-UHFFFAOYSA-N pivalic acid Chemical compound CC(C)(C)C(O)=O IUGYQRQAERSCNH-UHFFFAOYSA-N 0.000 description 3
- 239000004014 plasticizer Substances 0.000 description 3
- 229920000193 polymethacrylate Polymers 0.000 description 3
- 229920001282 polysaccharide Polymers 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 238000010992 reflux Methods 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 230000007017 scission Effects 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- 210000002784 stomach Anatomy 0.000 description 3
- 125000005415 substituted alkoxy group Chemical group 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 238000010189 synthetic method Methods 0.000 description 3
- 230000009885 systemic effect Effects 0.000 description 3
- 229930192474 thiophene Natural products 0.000 description 3
- 229920003176 water-insoluble polymer Polymers 0.000 description 3
- OGNSCSPNOLGXSM-UHFFFAOYSA-N (+/-)-DABA Natural products NCCC(N)C(O)=O OGNSCSPNOLGXSM-UHFFFAOYSA-N 0.000 description 2
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 2
- DIWRORZWFLOCLC-HNNXBMFYSA-N (3s)-7-chloro-5-(2-chlorophenyl)-3-hydroxy-1,3-dihydro-1,4-benzodiazepin-2-one Chemical compound N([C@H](C(NC1=CC=C(Cl)C=C11)=O)O)=C1C1=CC=CC=C1Cl DIWRORZWFLOCLC-HNNXBMFYSA-N 0.000 description 2
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 2
- GFAZGHREJPXDMH-UHFFFAOYSA-N 1,3-dipalmitoylglycerol Chemical compound CCCCCCCCCCCCCCCC(=O)OCC(O)COC(=O)CCCCCCCCCCCCCCC GFAZGHREJPXDMH-UHFFFAOYSA-N 0.000 description 2
- FLBAYUMRQUHISI-UHFFFAOYSA-N 1,8-naphthyridine Chemical compound N1=CC=CC2=CC=CN=C21 FLBAYUMRQUHISI-UHFFFAOYSA-N 0.000 description 2
- FCEHBMOGCRZNNI-UHFFFAOYSA-N 1-benzothiophene Chemical compound C1=CC=C2SC=CC2=C1 FCEHBMOGCRZNNI-UHFFFAOYSA-N 0.000 description 2
- 125000004973 1-butenyl group Chemical group C(=CCC)* 0.000 description 2
- 125000004972 1-butynyl group Chemical group [H]C([H])([H])C([H])([H])C#C* 0.000 description 2
- PAMIQIKDUOTOBW-UHFFFAOYSA-N 1-methylpiperidine Chemical compound CN1CCCCC1 PAMIQIKDUOTOBW-UHFFFAOYSA-N 0.000 description 2
- BAXOFTOLAUCFNW-UHFFFAOYSA-N 1H-indazole Chemical compound C1=CC=C2C=NNC2=C1 BAXOFTOLAUCFNW-UHFFFAOYSA-N 0.000 description 2
- MFJCPDOGFAYSTF-UHFFFAOYSA-N 1H-isochromene Chemical compound C1=CC=C2COC=CC2=C1 MFJCPDOGFAYSTF-UHFFFAOYSA-N 0.000 description 2
- AAQTWLBJPNLKHT-UHFFFAOYSA-N 1H-perimidine Chemical compound N1C=NC2=CC=CC3=CC=CC1=C32 AAQTWLBJPNLKHT-UHFFFAOYSA-N 0.000 description 2
- ODMMNALOCMNQJZ-UHFFFAOYSA-N 1H-pyrrolizine Chemical compound C1=CC=C2CC=CN21 ODMMNALOCMNQJZ-UHFFFAOYSA-N 0.000 description 2
- MEKOFIRRDATTAG-UHFFFAOYSA-N 2,2,5,8-tetramethyl-3,4-dihydrochromen-6-ol Chemical compound C1CC(C)(C)OC2=C1C(C)=C(O)C=C2C MEKOFIRRDATTAG-UHFFFAOYSA-N 0.000 description 2
- GQHTUMJGOHRCHB-UHFFFAOYSA-N 2,3,4,6,7,8,9,10-octahydropyrimido[1,2-a]azepine Chemical compound C1CCCCN2CCCN=C21 GQHTUMJGOHRCHB-UHFFFAOYSA-N 0.000 description 2
- VEPOHXYIFQMVHW-XOZOLZJESA-N 2,3-dihydroxybutanedioic acid (2S,3S)-3,4-dimethyl-2-phenylmorpholine Chemical compound OC(C(O)C(O)=O)C(O)=O.C[C@H]1[C@@H](OCCN1C)c1ccccc1 VEPOHXYIFQMVHW-XOZOLZJESA-N 0.000 description 2
- UXGVMFHEKMGWMA-UHFFFAOYSA-N 2-benzofuran Chemical compound C1=CC=CC2=COC=C21 UXGVMFHEKMGWMA-UHFFFAOYSA-N 0.000 description 2
- BSKHPKMHTQYZBB-UHFFFAOYSA-N 2-methylpyridine Chemical compound CC1=CC=CC=N1 BSKHPKMHTQYZBB-UHFFFAOYSA-N 0.000 description 2
- 125000001494 2-propynyl group Chemical group [H]C#CC([H])([H])* 0.000 description 2
- VHMICKWLTGFITH-UHFFFAOYSA-N 2H-isoindole Chemical compound C1=CC=CC2=CNC=C21 VHMICKWLTGFITH-UHFFFAOYSA-N 0.000 description 2
- MGADZUXDNSDTHW-UHFFFAOYSA-N 2H-pyran Chemical compound C1OC=CC=C1 MGADZUXDNSDTHW-UHFFFAOYSA-N 0.000 description 2
- SOEYCMDWHXVTQC-UHFFFAOYSA-N 3-aminopropylphosphonous acid Chemical compound NCCCP(O)O SOEYCMDWHXVTQC-UHFFFAOYSA-N 0.000 description 2
- 125000000474 3-butynyl group Chemical group [H]C#CC([H])([H])C([H])([H])* 0.000 description 2
- MJKVTPMWOKAVMS-UHFFFAOYSA-N 3-hydroxy-1-benzopyran-2-one Chemical compound C1=CC=C2OC(=O)C(O)=CC2=C1 MJKVTPMWOKAVMS-UHFFFAOYSA-N 0.000 description 2
- XMIIGOLPHOKFCH-UHFFFAOYSA-N 3-phenylpropionic acid Chemical compound OC(=O)CCC1=CC=CC=C1 XMIIGOLPHOKFCH-UHFFFAOYSA-N 0.000 description 2
- MRBKEAMVRSLQPH-UHFFFAOYSA-N 3-tert-butyl-4-hydroxyanisole Chemical compound COC1=CC=C(O)C(C(C)(C)C)=C1 MRBKEAMVRSLQPH-UHFFFAOYSA-N 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 2
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 2
- GDRVFDDBLLKWRI-UHFFFAOYSA-N 4H-quinolizine Chemical compound C1=CC=CN2CC=CC=C21 GDRVFDDBLLKWRI-UHFFFAOYSA-N 0.000 description 2
- SUBDBMMJDZJVOS-UHFFFAOYSA-N 5-methoxy-2-{[(4-methoxy-3,5-dimethylpyridin-2-yl)methyl]sulfinyl}-1H-benzimidazole Chemical compound N=1C2=CC(OC)=CC=C2NC=1S(=O)CC1=NC=C(C)C(OC)=C1C SUBDBMMJDZJVOS-UHFFFAOYSA-N 0.000 description 2
- USSIQXCVUWKGNF-UHFFFAOYSA-N 6-(dimethylamino)-4,4-diphenylheptan-3-one Chemical compound C=1C=CC=CC=1C(CC(C)N(C)C)(C(=O)CC)C1=CC=CC=C1 USSIQXCVUWKGNF-UHFFFAOYSA-N 0.000 description 2
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 2
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229920000623 Cellulose acetate phthalate Polymers 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 101800001982 Cholecystokinin Proteins 0.000 description 2
- 102100025841 Cholecystokinin Human genes 0.000 description 2
- GJSURZIOUXUGAL-UHFFFAOYSA-N Clonidine Chemical compound ClC1=CC=CC(Cl)=C1NC1=NCCN1 GJSURZIOUXUGAL-UHFFFAOYSA-N 0.000 description 2
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 2
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 2
- RGHNJXZEOKUKBD-SQOUGZDYSA-N D-gluconic acid Chemical group OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- 206010019196 Head injury Diseases 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 2
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 2
- 206010052904 Musculoskeletal stiffness Diseases 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 150000001204 N-oxides Chemical class 0.000 description 2
- 239000007832 Na2SO4 Substances 0.000 description 2
- 229910004749 OS(O)2 Inorganic materials 0.000 description 2
- IQPSEEYGBUAQFF-UHFFFAOYSA-N Pantoprazole Chemical compound COC1=CC=NC(CS(=O)C=2NC3=CC=C(OC(F)F)C=C3N=2)=C1OC IQPSEEYGBUAQFF-UHFFFAOYSA-N 0.000 description 2
- RGCVKNLCSQQDEP-UHFFFAOYSA-N Perphenazine Chemical compound C1CN(CCO)CCN1CCCN1C2=CC(Cl)=CC=C2SC2=CC=CC=C21 RGCVKNLCSQQDEP-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- 229920001710 Polyorthoester Polymers 0.000 description 2
- ZTHYODDOHIVTJV-UHFFFAOYSA-N Propyl gallate Chemical compound CCCOC(=O)C1=CC(O)=C(O)C(O)=C1 ZTHYODDOHIVTJV-UHFFFAOYSA-N 0.000 description 2
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical compound C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 2
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 2
- LCTONWCANYUPML-UHFFFAOYSA-N Pyruvic acid Chemical compound CC(=O)C(O)=O LCTONWCANYUPML-UHFFFAOYSA-N 0.000 description 2
- 208000005392 Spasm Diseases 0.000 description 2
- 235000021355 Stearic acid Nutrition 0.000 description 2
- 208000006011 Stroke Diseases 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 2
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 2
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 2
- ZFOZVQLOBQUTQQ-UHFFFAOYSA-N Tributyl citrate Chemical compound CCCCOC(=O)CC(O)(C(=O)OCCCC)CC(=O)OCCCC ZFOZVQLOBQUTQQ-UHFFFAOYSA-N 0.000 description 2
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 2
- SLGBZMMZGDRARJ-UHFFFAOYSA-N Triphenylene Natural products C1=CC=C2C3=CC=CC=C3C3=CC=CC=C3C2=C1 SLGBZMMZGDRARJ-UHFFFAOYSA-N 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- QVXFGVVYTKZLJN-KHPPLWFESA-N [(z)-hexadec-7-enyl] acetate Chemical compound CCCCCCCC\C=C/CCCCCCOC(C)=O QVXFGVVYTKZLJN-KHPPLWFESA-N 0.000 description 2
- DGEZNRSVGBDHLK-UHFFFAOYSA-N [1,10]phenanthroline Chemical compound C1=CN=C2C3=NC=CC=C3C=CC2=C1 DGEZNRSVGBDHLK-UHFFFAOYSA-N 0.000 description 2
- BVKSSRSGPVOKOY-UHFFFAOYSA-N [3-amino-2-(4-chlorophenyl)-2-hydroxypropyl]phosphonous acid Chemical compound OP(O)CC(O)(CN)C1=CC=C(Cl)C=C1 BVKSSRSGPVOKOY-UHFFFAOYSA-N 0.000 description 2
- JDPAVWAQGBGGHD-UHFFFAOYSA-N aceanthrylene Chemical group C1=CC=C2C(C=CC3=CC=C4)=C3C4=CC2=C1 JDPAVWAQGBGGHD-UHFFFAOYSA-N 0.000 description 2
- 125000004054 acenaphthylenyl group Chemical group C1(=CC2=CC=CC3=CC=CC1=C23)* 0.000 description 2
- SQFPKRNUGBRTAR-UHFFFAOYSA-N acephenanthrylene Chemical group C1=CC(C=C2)=C3C2=CC2=CC=CC=C2C3=C1 SQFPKRNUGBRTAR-UHFFFAOYSA-N 0.000 description 2
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 2
- HXGDTGSAIMULJN-UHFFFAOYSA-N acetnaphthylene Natural products C1=CC(C=C2)=C3C2=CC=CC3=C1 HXGDTGSAIMULJN-UHFFFAOYSA-N 0.000 description 2
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 2
- DZBUGLKDJFMEHC-UHFFFAOYSA-N acridine Chemical compound C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 2
- 239000008186 active pharmaceutical agent Substances 0.000 description 2
- 125000004442 acylamino group Chemical group 0.000 description 2
- 125000004423 acyloxy group Chemical group 0.000 description 2
- 238000011292 agonist therapy Methods 0.000 description 2
- 230000001270 agonistic effect Effects 0.000 description 2
- 229940072056 alginate Drugs 0.000 description 2
- 235000010443 alginic acid Nutrition 0.000 description 2
- 229920000615 alginic acid Polymers 0.000 description 2
- 150000001335 aliphatic alkanes Chemical class 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 150000001345 alkine derivatives Chemical class 0.000 description 2
- 125000004466 alkoxycarbonylamino group Chemical group 0.000 description 2
- 125000005194 alkoxycarbonyloxy group Chemical group 0.000 description 2
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 2
- 229960004538 alprazolam Drugs 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 230000003078 antioxidant effect Effects 0.000 description 2
- 235000006708 antioxidants Nutrition 0.000 description 2
- 239000008346 aqueous phase Substances 0.000 description 2
- BVUSIQTYUVWOSX-UHFFFAOYSA-N arsindole Chemical compound C1=CC=C2[As]C=CC2=C1 BVUSIQTYUVWOSX-UHFFFAOYSA-N 0.000 description 2
- KNNXFYIMEYKHBZ-UHFFFAOYSA-N as-indacene Chemical compound C1=CC2=CC=CC2=C2C=CC=C21 KNNXFYIMEYKHBZ-UHFFFAOYSA-N 0.000 description 2
- 235000010323 ascorbic acid Nutrition 0.000 description 2
- 239000011668 ascorbic acid Substances 0.000 description 2
- RFRXIWQYSOIBDI-UHFFFAOYSA-N benzarone Chemical compound CCC=1OC2=CC=CC=C2C=1C(=O)C1=CC=C(O)C=C1 RFRXIWQYSOIBDI-UHFFFAOYSA-N 0.000 description 2
- 229940049706 benzodiazepine Drugs 0.000 description 2
- 150000001557 benzodiazepines Chemical class 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- UCMIRNVEIXFBKS-UHFFFAOYSA-N beta-alanine Chemical compound NCCC(O)=O UCMIRNVEIXFBKS-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000012455 biphasic mixture Substances 0.000 description 2
- 230000008499 blood brain barrier function Effects 0.000 description 2
- 210000001218 blood-brain barrier Anatomy 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- RMRJXGBAOAMLHD-IHFGGWKQSA-N buprenorphine Chemical compound C([C@]12[C@H]3OC=4C(O)=CC=C(C2=4)C[C@@H]2[C@]11CC[C@]3([C@H](C1)[C@](C)(O)C(C)(C)C)OC)CN2CC1CC1 RMRJXGBAOAMLHD-IHFGGWKQSA-N 0.000 description 2
- 229960001736 buprenorphine Drugs 0.000 description 2
- SNPPWIUOZRMYNY-UHFFFAOYSA-N bupropion Chemical compound CC(C)(C)NC(C)C(=O)C1=CC=CC(Cl)=C1 SNPPWIUOZRMYNY-UHFFFAOYSA-N 0.000 description 2
- 229960001058 bupropion Drugs 0.000 description 2
- 125000005510 but-1-en-2-yl group Chemical group 0.000 description 2
- 125000005514 but-1-yn-3-yl group Chemical group 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 229940081734 cellulose acetate phthalate Drugs 0.000 description 2
- 229920003086 cellulose ether Polymers 0.000 description 2
- 206010008129 cerebral palsy Diseases 0.000 description 2
- 229960001076 chlorpromazine Drugs 0.000 description 2
- ZPEIMTDSQAKGNT-UHFFFAOYSA-N chlorpromazine Chemical compound C1=C(Cl)C=C2N(CCCN(C)C)C3=CC=CC=C3SC2=C1 ZPEIMTDSQAKGNT-UHFFFAOYSA-N 0.000 description 2
- 229940107137 cholecystokinin Drugs 0.000 description 2
- 229960001380 cimetidine Drugs 0.000 description 2
- CCGSUNCLSOWKJO-UHFFFAOYSA-N cimetidine Chemical compound N#CNC(=N/C)\NCCSCC1=NC=N[C]1C CCGSUNCLSOWKJO-UHFFFAOYSA-N 0.000 description 2
- WCZVZNOTHYJIEI-UHFFFAOYSA-N cinnoline Chemical compound N1=NC=CC2=CC=CC=C21 WCZVZNOTHYJIEI-UHFFFAOYSA-N 0.000 description 2
- 235000015165 citric acid Nutrition 0.000 description 2
- 229960002896 clonidine Drugs 0.000 description 2
- ZPUCINDJVBIVPJ-LJISPDSOSA-N cocaine Chemical compound O([C@H]1C[C@@H]2CC[C@@H](N2C)[C@H]1C(=O)OC)C(=O)C1=CC=CC=C1 ZPUCINDJVBIVPJ-LJISPDSOSA-N 0.000 description 2
- OROGSEYTTFOCAN-DNJOTXNNSA-N codeine Chemical compound C([C@H]1[C@H](N(CC[C@@]112)C)C3)=C[C@H](O)[C@@H]1OC1=C2C3=CC=C1OC OROGSEYTTFOCAN-DNJOTXNNSA-N 0.000 description 2
- VZFUCHSFHOYXIS-UHFFFAOYSA-N cycloheptane carboxylic acid Natural products OC(=O)C1CCCCCC1 VZFUCHSFHOYXIS-UHFFFAOYSA-N 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 125000004663 dialkyl amino group Chemical group 0.000 description 2
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 2
- FLKPEMZONWLCSK-UHFFFAOYSA-N diethyl phthalate Chemical compound CCOC(=O)C1=CC=CC=C1C(=O)OCC FLKPEMZONWLCSK-UHFFFAOYSA-N 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- VYFYYTLLBUKUHU-UHFFFAOYSA-N dopamine Chemical compound NCCC1=CC=C(O)C(O)=C1 VYFYYTLLBUKUHU-UHFFFAOYSA-N 0.000 description 2
- 229960004770 esomeprazole Drugs 0.000 description 2
- SUBDBMMJDZJVOS-DEOSSOPVSA-N esomeprazole Chemical compound C([S@](=O)C1=NC2=CC=C(C=C2N1)OC)C1=NC=C(C)C(OC)=C1C SUBDBMMJDZJVOS-DEOSSOPVSA-N 0.000 description 2
- VFPFQHQNJCMNBZ-UHFFFAOYSA-N ethyl gallate Chemical compound CCOC(=O)C1=CC(O)=C(O)C(O)=C1 VFPFQHQNJCMNBZ-UHFFFAOYSA-N 0.000 description 2
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 2
- XUFQPHANEAPEMJ-UHFFFAOYSA-N famotidine Chemical compound NC(N)=NC1=NC(CSCCC(N)=NS(N)(=O)=O)=CS1 XUFQPHANEAPEMJ-UHFFFAOYSA-N 0.000 description 2
- 229960001596 famotidine Drugs 0.000 description 2
- 239000000796 flavoring agent Substances 0.000 description 2
- 235000013355 food flavoring agent Nutrition 0.000 description 2
- 235000019253 formic acid Nutrition 0.000 description 2
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 150000004676 glycans Chemical class 0.000 description 2
- 229960003878 haloperidol Drugs 0.000 description 2
- QSQIGGCOCHABAP-UHFFFAOYSA-N hexacene Chemical compound C1=CC=CC2=CC3=CC4=CC5=CC6=CC=CC=C6C=C5C=C4C=C3C=C21 QSQIGGCOCHABAP-UHFFFAOYSA-N 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical class CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- PKIFBGYEEVFWTJ-UHFFFAOYSA-N hexaphene Chemical compound C1=CC=C2C=C3C4=CC5=CC6=CC=CC=C6C=C5C=C4C=CC3=CC2=C1 PKIFBGYEEVFWTJ-UHFFFAOYSA-N 0.000 description 2
- OROGSEYTTFOCAN-UHFFFAOYSA-N hydrocodone Natural products C1C(N(CCC234)C)C2C=CC(O)C3OC2=C4C1=CC=C2OC OROGSEYTTFOCAN-UHFFFAOYSA-N 0.000 description 2
- HOBCFUWDNJPFHB-UHFFFAOYSA-N indolizine Chemical compound C1=CC=CN2C=CC=C21 HOBCFUWDNJPFHB-UHFFFAOYSA-N 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 239000000543 intermediate Substances 0.000 description 2
- SUMDYPCJJOFFON-UHFFFAOYSA-N isethionic acid Chemical compound OCCS(O)(=O)=O SUMDYPCJJOFFON-UHFFFAOYSA-N 0.000 description 2
- GWVMLCQWXVFZCN-UHFFFAOYSA-N isoindoline Chemical compound C1=CC=C2CNCC2=C1 GWVMLCQWXVFZCN-UHFFFAOYSA-N 0.000 description 2
- 125000000555 isopropenyl group Chemical group [H]\C([H])=C(\*)C([H])([H])[H] 0.000 description 2
- ZLTPDFXIESTBQG-UHFFFAOYSA-N isothiazole Chemical compound C=1C=NSC=1 ZLTPDFXIESTBQG-UHFFFAOYSA-N 0.000 description 2
- CTAPFRYPJLPFDF-UHFFFAOYSA-N isoxazole Chemical compound C=1C=NOC=1 CTAPFRYPJLPFDF-UHFFFAOYSA-N 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 229960003174 lansoprazole Drugs 0.000 description 2
- SIXIIKVOZAGHPV-UHFFFAOYSA-N lansoprazole Chemical compound CC1=C(OCC(F)(F)F)C=CN=C1CS(=O)C1=NC2=CC=C[CH]C2=N1 SIXIIKVOZAGHPV-UHFFFAOYSA-N 0.000 description 2
- 238000002386 leaching Methods 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 229960004391 lorazepam Drugs 0.000 description 2
- 229910001629 magnesium chloride Inorganic materials 0.000 description 2
- 235000019359 magnesium stearate Nutrition 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 229960001797 methadone Drugs 0.000 description 2
- 229960004503 metoclopramide Drugs 0.000 description 2
- TTWJBBZEZQICBI-UHFFFAOYSA-N metoclopramide Chemical compound CCN(CC)CCNC(=O)C1=CC(Cl)=C(N)C=C1OC TTWJBBZEZQICBI-UHFFFAOYSA-N 0.000 description 2
- 239000011859 microparticle Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- BQJCRHHNABKAKU-KBQPJGBKSA-N morphine Chemical compound O([C@H]1[C@H](C=C[C@H]23)O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4O BQJCRHHNABKAKU-KBQPJGBKSA-N 0.000 description 2
- TXXHDPDFNKHHGW-UHFFFAOYSA-N muconic acid Chemical group OC(=O)C=CC=CC(O)=O TXXHDPDFNKHHGW-UHFFFAOYSA-N 0.000 description 2
- 201000006417 multiple sclerosis Diseases 0.000 description 2
- FUZZWVXGSFPDMH-UHFFFAOYSA-N n-hexanoic acid Natural products CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 2
- DQCKKXVULJGBQN-XFWGSAIBSA-N naltrexone Chemical compound N1([C@@H]2CC3=CC=C(C=4O[C@@H]5[C@](C3=4)([C@]2(CCC5=O)O)CC1)O)CC1CC1 DQCKKXVULJGBQN-XFWGSAIBSA-N 0.000 description 2
- 229960003086 naltrexone Drugs 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- PFTXKXWAXWAZBP-UHFFFAOYSA-N octacene Chemical compound C1=CC=CC2=CC3=CC4=CC5=CC6=CC7=CC8=CC=CC=C8C=C7C=C6C=C5C=C4C=C3C=C21 PFTXKXWAXWAZBP-UHFFFAOYSA-N 0.000 description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical group CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 2
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Chemical group CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 2
- OVPVGJFDFSJUIG-UHFFFAOYSA-N octalene Chemical compound C1=CC=CC=C2C=CC=CC=CC2=C1 OVPVGJFDFSJUIG-UHFFFAOYSA-N 0.000 description 2
- WTFQBTLMPISHTA-UHFFFAOYSA-N octaphene Chemical compound C1=CC=C2C=C(C=C3C4=CC5=CC6=CC7=CC=CC=C7C=C6C=C5C=C4C=CC3=C3)C3=CC2=C1 WTFQBTLMPISHTA-UHFFFAOYSA-N 0.000 description 2
- 229960005017 olanzapine Drugs 0.000 description 2
- KVWDHTXUZHCGIO-UHFFFAOYSA-N olanzapine Chemical compound C1CN(C)CCN1C1=NC2=CC=CC=C2NC2=C1C=C(C)S2 KVWDHTXUZHCGIO-UHFFFAOYSA-N 0.000 description 2
- 229960000381 omeprazole Drugs 0.000 description 2
- 201000005040 opiate dependence Diseases 0.000 description 2
- LSQODMMMSXHVCN-UHFFFAOYSA-N ovalene Chemical compound C1=C(C2=C34)C=CC3=CC=C(C=C3C5=C6C(C=C3)=CC=C3C6=C6C(C=C3)=C3)C4=C5C6=C2C3=C1 LSQODMMMSXHVCN-UHFFFAOYSA-N 0.000 description 2
- WCPAKWJPBJAGKN-UHFFFAOYSA-N oxadiazole Chemical compound C1=CON=N1 WCPAKWJPBJAGKN-UHFFFAOYSA-N 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229960005019 pantoprazole Drugs 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- PMJHHCWVYXUKFD-UHFFFAOYSA-N penta-1,3-diene Chemical compound CC=CC=C PMJHHCWVYXUKFD-UHFFFAOYSA-N 0.000 description 2
- SLIUAWYAILUBJU-UHFFFAOYSA-N pentacene Chemical compound C1=CC=CC2=CC3=CC4=CC5=CC=CC=C5C=C4C=C3C=C21 SLIUAWYAILUBJU-UHFFFAOYSA-N 0.000 description 2
- GUVXZFRDPCKWEM-UHFFFAOYSA-N pentalene Chemical compound C1=CC2=CC=CC2=C1 GUVXZFRDPCKWEM-UHFFFAOYSA-N 0.000 description 2
- JQQSUOJIMKJQHS-UHFFFAOYSA-N pentaphene Chemical compound C1=CC=C2C=C3C4=CC5=CC=CC=C5C=C4C=CC3=CC2=C1 JQQSUOJIMKJQHS-UHFFFAOYSA-N 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 2
- 229960000762 perphenazine Drugs 0.000 description 2
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 2
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-L phthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-L 0.000 description 2
- LFSXCDWNBUNEEM-UHFFFAOYSA-N phthalazine Chemical compound C1=NN=CC2=CC=CC=C21 LFSXCDWNBUNEEM-UHFFFAOYSA-N 0.000 description 2
- DIJNSQQKNIVDPV-UHFFFAOYSA-N pleiadene Chemical compound C1=C2[CH]C=CC=C2C=C2C=CC=C3[C]2C1=CC=C3 DIJNSQQKNIVDPV-UHFFFAOYSA-N 0.000 description 2
- 229920000747 poly(lactic acid) Polymers 0.000 description 2
- 239000002745 poly(ortho ester) Substances 0.000 description 2
- 229920001515 polyalkylene glycol Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 229920002689 polyvinyl acetate Polymers 0.000 description 2
- 239000011118 polyvinyl acetate Substances 0.000 description 2
- 239000001103 potassium chloride Substances 0.000 description 2
- 235000011164 potassium chloride Nutrition 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 125000006238 prop-1-en-1-yl group Chemical group [H]\C(*)=C(/[H])C([H])([H])[H] 0.000 description 2
- 229940126409 proton pump inhibitor Drugs 0.000 description 2
- 239000000612 proton pump inhibitor Substances 0.000 description 2
- CPNGPNLZQNNVQM-UHFFFAOYSA-N pteridine Chemical compound N1=CN=CC2=NC=CN=C21 CPNGPNLZQNNVQM-UHFFFAOYSA-N 0.000 description 2
- LNKHTYQPVMAJSF-UHFFFAOYSA-N pyranthrene Chemical compound C1=C2C3=CC=CC=C3C=C(C=C3)C2=C2C3=CC3=C(C=CC=C4)C4=CC4=CC=C1C2=C34 LNKHTYQPVMAJSF-UHFFFAOYSA-N 0.000 description 2
- PBMFSQRYOILNGV-UHFFFAOYSA-N pyridazine Chemical compound C1=CC=NN=C1 PBMFSQRYOILNGV-UHFFFAOYSA-N 0.000 description 2
- JWVCLYRUEFBMGU-UHFFFAOYSA-N quinazoline Chemical compound N1=CN=CC2=CC=CC=C21 JWVCLYRUEFBMGU-UHFFFAOYSA-N 0.000 description 2
- VMXUWOKSQNHOCA-UKTHLTGXSA-N ranitidine Chemical compound [O-][N+](=O)\C=C(/NC)NCCSCC1=CC=C(CN(C)C)O1 VMXUWOKSQNHOCA-UKTHLTGXSA-N 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- FMKFBRKHHLWKDB-UHFFFAOYSA-N rubicene Chemical compound C12=CC=CC=C2C2=CC=CC3=C2C1=C1C=CC=C2C4=CC=CC=C4C3=C21 FMKFBRKHHLWKDB-UHFFFAOYSA-N 0.000 description 2
- WEMQMWWWCBYPOV-UHFFFAOYSA-N s-indacene Chemical compound C=1C2=CC=CC2=CC2=CC=CC2=1 WEMQMWWWCBYPOV-UHFFFAOYSA-N 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical group OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 230000001953 sensory effect Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- IZTQOLKUZKXIRV-YRVFCXMDSA-N sincalide Chemical compound C([C@@H](C(=O)N[C@@H](CCSC)C(=O)NCC(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(N)=O)NC(=O)[C@@H](N)CC(O)=O)C1=CC=C(OS(O)(=O)=O)C=C1 IZTQOLKUZKXIRV-YRVFCXMDSA-N 0.000 description 2
- 210000000813 small intestine Anatomy 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 2
- 235000017557 sodium bicarbonate Nutrition 0.000 description 2
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 2
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 description 2
- 239000000600 sorbitol Substances 0.000 description 2
- 210000000278 spinal cord Anatomy 0.000 description 2
- 208000020431 spinal cord injury Diseases 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 239000008117 stearic acid Chemical group 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 125000005420 sulfonamido group Chemical group S(=O)(=O)(N*)* 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011975 tartaric acid Substances 0.000 description 2
- 229960001367 tartaric acid Drugs 0.000 description 2
- 235000002906 tartaric acid Nutrition 0.000 description 2
- XOAAWQZATWQOTB-UHFFFAOYSA-N taurine Chemical compound NCCS(O)(=O)=O XOAAWQZATWQOTB-UHFFFAOYSA-N 0.000 description 2
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 2
- 150000003536 tetrazoles Chemical class 0.000 description 2
- VLLMWSRANPNYQX-UHFFFAOYSA-N thiadiazole Chemical compound C1=CSN=N1.C1=CSN=N1 VLLMWSRANPNYQX-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- URAYPUMNDPQOKB-UHFFFAOYSA-N triacetin Chemical compound CC(=O)OCC(OC(C)=O)COC(C)=O URAYPUMNDPQOKB-UHFFFAOYSA-N 0.000 description 2
- 150000003852 triazoles Chemical class 0.000 description 2
- 125000005580 triphenylene group Chemical group 0.000 description 2
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 2
- DCXXMTOCNZCJGO-UHFFFAOYSA-N tristearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCCCC DCXXMTOCNZCJGO-UHFFFAOYSA-N 0.000 description 2
- 125000002221 trityl group Chemical group [H]C1=C([H])C([H])=C([H])C([H])=C1C([*])(C1=C(C(=C(C(=C1[H])[H])[H])[H])[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 2
- 238000005292 vacuum distillation Methods 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- SNICXCGAKADSCV-JTQLQIEISA-N (-)-Nicotine Chemical compound CN1CCC[C@H]1C1=CC=CN=C1 SNICXCGAKADSCV-JTQLQIEISA-N 0.000 description 1
- BOGLZTPABVHWDD-UHFFFAOYSA-N (1-chloro-2-methylpropyl) carbonochloridate Chemical compound CC(C)C(Cl)OC(Cl)=O BOGLZTPABVHWDD-UHFFFAOYSA-N 0.000 description 1
- QBYIENPQHBMVBV-HFEGYEGKSA-N (2R)-2-hydroxy-2-phenylacetic acid Chemical compound O[C@@H](C(O)=O)c1ccccc1.O[C@@H](C(O)=O)c1ccccc1 QBYIENPQHBMVBV-HFEGYEGKSA-N 0.000 description 1
- YONLFQNRGZXBBF-ZIAGYGMSSA-N (2r,3r)-2,3-dibenzoyloxybutanedioic acid Chemical compound O([C@@H](C(=O)O)[C@@H](OC(=O)C=1C=CC=CC=1)C(O)=O)C(=O)C1=CC=CC=C1 YONLFQNRGZXBBF-ZIAGYGMSSA-N 0.000 description 1
- DSEKYWAQQVUQTP-XEWMWGOFSA-N (2r,4r,4as,6as,6as,6br,8ar,12ar,14as,14bs)-2-hydroxy-4,4a,6a,6b,8a,11,11,14a-octamethyl-2,4,5,6,6a,7,8,9,10,12,12a,13,14,14b-tetradecahydro-1h-picen-3-one Chemical compound C([C@H]1[C@]2(C)CC[C@@]34C)C(C)(C)CC[C@]1(C)CC[C@]2(C)[C@H]4CC[C@@]1(C)[C@H]3C[C@@H](O)C(=O)[C@@H]1C DSEKYWAQQVUQTP-XEWMWGOFSA-N 0.000 description 1
- VHBRTSZUHRQZQW-UHFFFAOYSA-N (3-amino-1-hydroxypropyl)-methylphosphinic acid Chemical compound CP(O)(=O)C(O)CCN VHBRTSZUHRQZQW-UHFFFAOYSA-N 0.000 description 1
- DKDBNKQPLHNBFJ-UHFFFAOYSA-N (3-amino-2-cyclohexylpropyl)phosphonous acid Chemical compound OP(O)CC(CN)C1CCCCC1 DKDBNKQPLHNBFJ-UHFFFAOYSA-N 0.000 description 1
- LRJYUBWOCIHSCA-UHFFFAOYSA-N (3-amino-2-hydroxypropyl)-(difluoromethyl)phosphinic acid Chemical compound NCC(O)CP(O)(=O)C(F)F LRJYUBWOCIHSCA-UHFFFAOYSA-N 0.000 description 1
- FUUPFUIGNBPCAY-UHFFFAOYSA-N (3-amino-2-hydroxypropyl)-methylphosphinic acid Chemical compound CP(O)(=O)CC(O)CN FUUPFUIGNBPCAY-UHFFFAOYSA-N 0.000 description 1
- SLMIPBHDRZSQTO-UHFFFAOYSA-N (3-amino-2-hydroxypropyl)phosphonous acid Chemical compound NCC(O)CP(O)O SLMIPBHDRZSQTO-UHFFFAOYSA-N 0.000 description 1
- QEQNLVGWMMRXPB-UHFFFAOYSA-N (3-amino-2-methylpropyl)phosphonous acid Chemical compound NCC(C)CP(O)O QEQNLVGWMMRXPB-UHFFFAOYSA-N 0.000 description 1
- CJTIGOOCRLKWAP-UHFFFAOYSA-N (3-amino-2-oxopropyl)-methylphosphinic acid Chemical compound CP(O)(=O)CC(=O)CN CJTIGOOCRLKWAP-UHFFFAOYSA-N 0.000 description 1
- JHXIUXDEEHTJGO-UHFFFAOYSA-N (3-amino-2-phenylpropyl)phosphonous acid Chemical compound OP(O)CC(CN)C1=CC=CC=C1 JHXIUXDEEHTJGO-UHFFFAOYSA-N 0.000 description 1
- FELGMEQIXOGIFQ-CYBMUJFWSA-N (3r)-9-methyl-3-[(2-methylimidazol-1-yl)methyl]-2,3-dihydro-1h-carbazol-4-one Chemical compound CC1=NC=CN1C[C@@H]1C(=O)C(C=2C(=CC=CC=2)N2C)=C2CC1 FELGMEQIXOGIFQ-CYBMUJFWSA-N 0.000 description 1
- XYRPBUKHKWHPDI-UHFFFAOYSA-N (4-amino-1,1,1-trifluorobutan-2-yl)-methylphosphinic acid Chemical compound CP(O)(=O)C(C(F)(F)F)CCN XYRPBUKHKWHPDI-UHFFFAOYSA-N 0.000 description 1
- KAKVFSYQVNHFBS-UHFFFAOYSA-N (5-hydroxycyclopenten-1-yl)-phenylmethanone Chemical compound OC1CCC=C1C(=O)C1=CC=CC=C1 KAKVFSYQVNHFBS-UHFFFAOYSA-N 0.000 description 1
- 125000006376 (C3-C10) cycloalkyl group Chemical group 0.000 description 1
- 125000006272 (C3-C7) cycloalkyl group Chemical group 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Chemical class CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- TVYLLZQTGLZFBW-ZBFHGGJFSA-N (R,R)-tramadol Chemical compound COC1=CC=CC([C@]2(O)[C@H](CCCC2)CN(C)C)=C1 TVYLLZQTGLZFBW-ZBFHGGJFSA-N 0.000 description 1
- MIOPJNTWMNEORI-GMSGAONNSA-N (S)-camphorsulfonic acid Chemical compound C1C[C@@]2(CS(O)(=O)=O)C(=O)C[C@@H]1C2(C)C MIOPJNTWMNEORI-GMSGAONNSA-N 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- ODIGIKRIUKFKHP-UHFFFAOYSA-N (n-propan-2-yloxycarbonylanilino) acetate Chemical compound CC(C)OC(=O)N(OC(C)=O)C1=CC=CC=C1 ODIGIKRIUKFKHP-UHFFFAOYSA-N 0.000 description 1
- WBYWAXJHAXSJNI-VOTSOKGWSA-M .beta-Phenylacrylic acid Natural products [O-]C(=O)\C=C\C1=CC=CC=C1 WBYWAXJHAXSJNI-VOTSOKGWSA-M 0.000 description 1
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 1
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- CCGFQGUALPHBIC-UHFFFAOYSA-N 1-aminopentan-3-yl(methyl)phosphinic acid Chemical compound CCC(P(C)(O)=O)CCN CCGFQGUALPHBIC-UHFFFAOYSA-N 0.000 description 1
- OKMWKBLSFKFYGZ-UHFFFAOYSA-N 1-behenoylglycerol Chemical compound CCCCCCCCCCCCCCCCCCCCCC(=O)OCC(O)CO OKMWKBLSFKFYGZ-UHFFFAOYSA-N 0.000 description 1
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- AMMPLVWPWSYRDR-UHFFFAOYSA-N 1-methylbicyclo[2.2.2]oct-2-ene-4-carboxylic acid Chemical compound C1CC2(C(O)=O)CCC1(C)C=C2 AMMPLVWPWSYRDR-UHFFFAOYSA-N 0.000 description 1
- AVFZOVWCLRSYKC-UHFFFAOYSA-N 1-methylpyrrolidine Chemical compound CN1CCCC1 AVFZOVWCLRSYKC-UHFFFAOYSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- WCOXQTXVACYMLM-UHFFFAOYSA-N 2,3-bis(12-hydroxyoctadecanoyloxy)propyl 12-hydroxyoctadecanoate Chemical compound CCCCCCC(O)CCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCC(O)CCCCCC)COC(=O)CCCCCCCCCCC(O)CCCCCC WCOXQTXVACYMLM-UHFFFAOYSA-N 0.000 description 1
- NSENZNPLAVRFMJ-UHFFFAOYSA-N 2,3-dibutylphenol Chemical compound CCCCC1=CC=CC(O)=C1CCCC NSENZNPLAVRFMJ-UHFFFAOYSA-N 0.000 description 1
- QWBBPBRQALCEIZ-UHFFFAOYSA-N 2,3-dimethylphenol Chemical compound CC1=CC=CC(O)=C1C QWBBPBRQALCEIZ-UHFFFAOYSA-N 0.000 description 1
- HUHXLHLWASNVDB-UHFFFAOYSA-N 2-(oxan-2-yloxy)oxane Chemical class O1CCCCC1OC1OCCCC1 HUHXLHLWASNVDB-UHFFFAOYSA-N 0.000 description 1
- BLJXXNIBTBFGMC-UHFFFAOYSA-N 2-[4-amino-5-(4-chlorophenyl)-5-hydroxycyclohexa-1,3-dien-1-yl]butanoic acid Chemical compound C1C(C(C(O)=O)CC)=CC=C(N)C1(O)C1=CC=C(Cl)C=C1 BLJXXNIBTBFGMC-UHFFFAOYSA-N 0.000 description 1
- UPHOPMSGKZNELG-UHFFFAOYSA-N 2-hydroxynaphthalene-1-carboxylic acid Chemical group C1=CC=C2C(C(=O)O)=C(O)C=CC2=C1 UPHOPMSGKZNELG-UHFFFAOYSA-N 0.000 description 1
- KRTGJZMJJVEKRX-UHFFFAOYSA-N 2-phenylethan-1-yl Chemical group [CH2]CC1=CC=CC=C1 KRTGJZMJJVEKRX-UHFFFAOYSA-N 0.000 description 1
- JTNCEQNHURODLX-UHFFFAOYSA-N 2-phenylethanimidamide Chemical compound NC(=N)CC1=CC=CC=C1 JTNCEQNHURODLX-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Chemical class CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- WAMWUASNGUFIPI-UHFFFAOYSA-N 3-(4-chlorophenyl)-4-(diaminomethylideneamino)butanoic acid Chemical compound NC(=N)NCC(CC(O)=O)C1=CC=C(Cl)C=C1 WAMWUASNGUFIPI-UHFFFAOYSA-N 0.000 description 1
- XLZYKTYMLBOINK-UHFFFAOYSA-N 3-(4-hydroxybenzoyl)benzoic acid Chemical compound OC(=O)C1=CC=CC(C(=O)C=2C=CC(O)=CC=2)=C1 XLZYKTYMLBOINK-UHFFFAOYSA-N 0.000 description 1
- YGWJJSDTMOQPOF-UHFFFAOYSA-N 3-aminobutylphosphonous acid Chemical compound CC(N)CCP(O)O YGWJJSDTMOQPOF-UHFFFAOYSA-N 0.000 description 1
- TXAHGWWWANKBDA-UHFFFAOYSA-N 3-aminopropyl(difluoromethyl)phosphinic acid Chemical compound NCCCP(O)(=O)C(F)F TXAHGWWWANKBDA-UHFFFAOYSA-N 0.000 description 1
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 1
- ZAQYGKUMUQDMEV-UHFFFAOYSA-N 3-azaniumylpropyl(hydroxymethyl)phosphinate Chemical compound NCCCP(O)(=O)CO ZAQYGKUMUQDMEV-UHFFFAOYSA-N 0.000 description 1
- ZRPLANDPDWYOMZ-UHFFFAOYSA-N 3-cyclopentylpropionic acid Chemical compound OC(=O)CCC1CCCC1 ZRPLANDPDWYOMZ-UHFFFAOYSA-N 0.000 description 1
- ZGDLVKWIZHHWIR-UHFFFAOYSA-N 4-[5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-2-yl]morpholine Chemical compound O1C(C)(C)C(C)(C)OB1C1=CC=C(N2CCOCC2)N=C1 ZGDLVKWIZHHWIR-UHFFFAOYSA-N 0.000 description 1
- HZRGLMRBARSCHX-UHFFFAOYSA-N 4-amino-3-(1h-imidazol-2-yl)butanoic acid Chemical compound OC(=O)CC(CN)C1=NC=CN1 HZRGLMRBARSCHX-UHFFFAOYSA-N 0.000 description 1
- RNSIJRUPQJHCBR-UHFFFAOYSA-N 4-amino-3-(2-chlorophenyl)butanoic acid Chemical compound OC(=O)CC(CN)C1=CC=CC=C1Cl RNSIJRUPQJHCBR-UHFFFAOYSA-N 0.000 description 1
- QWHXHLDNSXLAPX-UHFFFAOYSA-N 4-amino-3-(4-fluorophenyl)butanoic acid Chemical compound OC(=O)CC(CN)C1=CC=C(F)C=C1 QWHXHLDNSXLAPX-UHFFFAOYSA-N 0.000 description 1
- AGSZIPFOQSAPON-UHFFFAOYSA-N 4-amino-3-(5-bromothiophen-2-yl)butanoic acid Chemical compound OC(=O)CC(CN)C1=CC=C(Br)S1 AGSZIPFOQSAPON-UHFFFAOYSA-N 0.000 description 1
- RPNWEWXYTFWDTR-UHFFFAOYSA-N 4-amino-3-(5-methylthiophen-2-yl)butanoic acid Chemical compound CC1=CC=C(C(CN)CC(O)=O)S1 RPNWEWXYTFWDTR-UHFFFAOYSA-N 0.000 description 1
- QDVRXIPQICAUFK-UHFFFAOYSA-N 4-amino-3-thiophen-2-ylbutanoic acid Chemical compound OC(=O)CC(CN)C1=CC=CS1 QDVRXIPQICAUFK-UHFFFAOYSA-N 0.000 description 1
- CCFBFTKQKRGULP-UHFFFAOYSA-N 4-aminobutan-2-yl(methyl)phosphinic acid Chemical compound CP(=O)(O)C(C)CCN CCFBFTKQKRGULP-UHFFFAOYSA-N 0.000 description 1
- ZRFIHJNQNDPPFT-UHFFFAOYSA-N 4-aminobutan-2-ylphosphonous acid Chemical compound OP(O)C(C)CCN ZRFIHJNQNDPPFT-UHFFFAOYSA-N 0.000 description 1
- CDFQDLUHBLZCGL-UHFFFAOYSA-N 4-azaniumyl-3-(5-chlorothiophen-2-yl)butanoate Chemical compound OC(=O)CC(CN)C1=CC=C(Cl)S1 CDFQDLUHBLZCGL-UHFFFAOYSA-N 0.000 description 1
- RJWBTWIBUIGANW-UHFFFAOYSA-N 4-chlorobenzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=C(Cl)C=C1 RJWBTWIBUIGANW-UHFFFAOYSA-N 0.000 description 1
- 102100031126 6-phosphogluconolactonase Human genes 0.000 description 1
- 108010029731 6-phosphogluconolactonase Proteins 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Chemical class CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 244000215068 Acacia senegal Species 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- QZCLKYGREBVARF-UHFFFAOYSA-N Acetyl tributyl citrate Chemical compound CCCCOC(=O)CC(C(=O)OCCCC)(OC(C)=O)CC(=O)OCCCC QZCLKYGREBVARF-UHFFFAOYSA-N 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 229920000945 Amylopectin Polymers 0.000 description 1
- 244000106483 Anogeissus latifolia Species 0.000 description 1
- 235000011514 Anogeissus latifolia Nutrition 0.000 description 1
- 241000976983 Anoxia Species 0.000 description 1
- CEUORZQYGODEFX-UHFFFAOYSA-N Aripirazole Chemical compound ClC1=CC=CC(N2CCN(CCCCOC=3C=C4NC(=O)CCC4=CC=3)CC2)=C1Cl CEUORZQYGODEFX-UHFFFAOYSA-N 0.000 description 1
- 108010011485 Aspartame Proteins 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- 241000167854 Bourreria succulenta Species 0.000 description 1
- 208000002381 Brain Hypoxia Diseases 0.000 description 1
- 239000004255 Butylated hydroxyanisole Substances 0.000 description 1
- 239000004322 Butylated hydroxytoluene Substances 0.000 description 1
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 1
- 125000001313 C5-C10 heteroaryl group Chemical group 0.000 description 1
- DCERHCFNWRGHLK-UHFFFAOYSA-N C[Si](C)C Chemical compound C[Si](C)C DCERHCFNWRGHLK-UHFFFAOYSA-N 0.000 description 1
- WWZKQHOCKIZLMA-UHFFFAOYSA-N Caprylic acid Natural products CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 108010078791 Carrier Proteins Proteins 0.000 description 1
- 229920001747 Cellulose diacetate Polymers 0.000 description 1
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- WBYWAXJHAXSJNI-SREVYHEPSA-N Cinnamic acid Chemical compound OC(=O)\C=C/C1=CC=CC=C1 WBYWAXJHAXSJNI-SREVYHEPSA-N 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- PMPVIKIVABFJJI-UHFFFAOYSA-N Cyclobutane Chemical compound C1CCC1 PMPVIKIVABFJJI-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- LVZWSLJZHVFIQJ-UHFFFAOYSA-N Cyclopropane Chemical compound C1CC1 LVZWSLJZHVFIQJ-UHFFFAOYSA-N 0.000 description 1
- NBSCHQHZLSJFNQ-GASJEMHNSA-N D-Glucose 6-phosphate Chemical compound OC1O[C@H](COP(O)(O)=O)[C@@H](O)[C@H](O)[C@H]1O NBSCHQHZLSJFNQ-GASJEMHNSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Chemical group OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 1
- PYGXAGIECVVIOZ-UHFFFAOYSA-N Dibutyl decanedioate Chemical compound CCCCOC(=O)CCCCCCCCC(=O)OCCCC PYGXAGIECVVIOZ-UHFFFAOYSA-N 0.000 description 1
- RPWFJAMTCNSJKK-UHFFFAOYSA-N Dodecyl gallate Chemical compound CCCCCCCCCCCCOC(=O)C1=CC(O)=C(O)C(O)=C1 RPWFJAMTCNSJKK-UHFFFAOYSA-N 0.000 description 1
- CYQFCXCEBYINGO-DLBZAZTESA-N Dronabinol Natural products C1=C(C)CC[C@H]2C(C)(C)OC3=CC(CCCCC)=CC(O)=C3[C@H]21 CYQFCXCEBYINGO-DLBZAZTESA-N 0.000 description 1
- 208000012661 Dyskinesia Diseases 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- 239000004262 Ethyl gallate Substances 0.000 description 1
- 229920003136 Eudragit® L polymer Polymers 0.000 description 1
- 229920003163 Eudragit® NE 30 D Polymers 0.000 description 1
- 229920003157 Eudragit® RL 30 D Polymers 0.000 description 1
- 229920003151 Eudragit® RL polymer Polymers 0.000 description 1
- 229920003152 Eudragit® RS polymer Polymers 0.000 description 1
- 229920003137 Eudragit® S polymer Polymers 0.000 description 1
- 241001553290 Euphorbia antisyphilitica Species 0.000 description 1
- NIGWMJHCCYYCSF-UHFFFAOYSA-N Fenclonine Chemical compound OC(=O)C(N)CC1=CC=C(Cl)C=C1 NIGWMJHCCYYCSF-UHFFFAOYSA-N 0.000 description 1
- PLDUPXSUYLZYBN-UHFFFAOYSA-N Fluphenazine Chemical compound C1CN(CCO)CCN1CCCN1C2=CC(C(F)(F)F)=CC=C2SC2=CC=CC=C21 PLDUPXSUYLZYBN-UHFFFAOYSA-N 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 229920000855 Fucoidan Polymers 0.000 description 1
- 102000003688 G-Protein-Coupled Receptors Human genes 0.000 description 1
- 108090000045 G-Protein-Coupled Receptors Proteins 0.000 description 1
- 208000018522 Gastrointestinal disease Diseases 0.000 description 1
- 239000001828 Gelatine Substances 0.000 description 1
- VFRROHXSMXFLSN-UHFFFAOYSA-N Glc6P Natural products OP(=O)(O)OCC(O)C(O)C(O)C(O)C=O VFRROHXSMXFLSN-UHFFFAOYSA-N 0.000 description 1
- 108010018962 Glucosephosphate Dehydrogenase Proteins 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Chemical group OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- HSRJKNPTNIJEKV-UHFFFAOYSA-N Guaifenesin Chemical compound COC1=CC=CC=C1OCC(O)CO HSRJKNPTNIJEKV-UHFFFAOYSA-N 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- 239000001922 Gum ghatti Substances 0.000 description 1
- 229920000569 Gum karaya Polymers 0.000 description 1
- GVGLGOZIDCSQPN-PVHGPHFFSA-N Heroin Chemical compound O([C@H]1[C@H](C=C[C@H]23)OC(C)=O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4OC(C)=O GVGLGOZIDCSQPN-PVHGPHFFSA-N 0.000 description 1
- SQUHHTBVTRBESD-UHFFFAOYSA-N Hexa-Ac-myo-Inositol Natural products CC(=O)OC1C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C1OC(C)=O SQUHHTBVTRBESD-UHFFFAOYSA-N 0.000 description 1
- 241001428259 Hypnea Species 0.000 description 1
- WRYCSMQKUKOKBP-UHFFFAOYSA-N Imidazolidine Chemical compound C1CNCN1 WRYCSMQKUKOKBP-UHFFFAOYSA-N 0.000 description 1
- 208000015592 Involuntary movements Diseases 0.000 description 1
- 102000004310 Ion Channels Human genes 0.000 description 1
- PWWVAXIEGOYWEE-UHFFFAOYSA-N Isophenergan Chemical compound C1=CC=C2N(CC(C)N(C)C)C3=CC=CC=C3SC2=C1 PWWVAXIEGOYWEE-UHFFFAOYSA-N 0.000 description 1
- WTDRDQBEARUVNC-LURJTMIESA-N L-DOPA Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C(O)=C1 WTDRDQBEARUVNC-LURJTMIESA-N 0.000 description 1
- WTDRDQBEARUVNC-UHFFFAOYSA-N L-Dopa Natural products OC(=O)C(N)CC1=CC=C(O)C(O)=C1 WTDRDQBEARUVNC-UHFFFAOYSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical group OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- MKXZASYAUGDDCJ-SZMVWBNQSA-N LSM-2525 Chemical compound C1CCC[C@H]2[C@@]3([H])N(C)CC[C@]21C1=CC(OC)=CC=C1C3 MKXZASYAUGDDCJ-SZMVWBNQSA-N 0.000 description 1
- 229920001543 Laminarin Polymers 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 229920000161 Locust bean gum Polymers 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 244000246386 Mentha pulegium Species 0.000 description 1
- 235000016257 Mentha pulegium Nutrition 0.000 description 1
- 235000004357 Mentha x piperita Nutrition 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- KLPWJLBORRMFGK-UHFFFAOYSA-N Molindone Chemical compound O=C1C=2C(CC)=C(C)NC=2CCC1CN1CCOCC1 KLPWJLBORRMFGK-UHFFFAOYSA-N 0.000 description 1
- 208000016285 Movement disease Diseases 0.000 description 1
- TXXHDPDFNKHHGW-CCAGOZQPSA-N Muconic acid Chemical group OC(=O)\C=C/C=C\C(O)=O TXXHDPDFNKHHGW-CCAGOZQPSA-N 0.000 description 1
- 208000007101 Muscle Cramp Diseases 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical compound ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 description 1
- GXCLVBGFBYZDAG-UHFFFAOYSA-N N-[2-(1H-indol-3-yl)ethyl]-N-methylprop-2-en-1-amine Chemical compound CN(CCC1=CNC2=C1C=CC=C2)CC=C GXCLVBGFBYZDAG-UHFFFAOYSA-N 0.000 description 1
- AHVYPIQETPWLSZ-UHFFFAOYSA-N N-methyl-pyrrolidine Natural products CN1CC=CC1 AHVYPIQETPWLSZ-UHFFFAOYSA-N 0.000 description 1
- MBBZMMPHUWSWHV-BDVNFPICSA-N N-methylglucamine Chemical compound CNC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO MBBZMMPHUWSWHV-BDVNFPICSA-N 0.000 description 1
- BVMWIXWOIGJRGE-UHFFFAOYSA-N NP(O)=O Chemical class NP(O)=O BVMWIXWOIGJRGE-UHFFFAOYSA-N 0.000 description 1
- 208000012902 Nervous system disease Diseases 0.000 description 1
- 102000002002 Neurokinin-1 Receptors Human genes 0.000 description 1
- 108010040718 Neurokinin-1 Receptors Proteins 0.000 description 1
- 208000025966 Neurological disease Diseases 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Chemical class 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Chemical class CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 229920002319 Poly(methyl acrylate) Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229920002732 Polyanhydride Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- IWYDHOAUDWTVEP-UHFFFAOYSA-N R-2-phenyl-2-hydroxyacetic acid Natural products OC(=O)C(O)C1=CC=CC=C1 IWYDHOAUDWTVEP-UHFFFAOYSA-N 0.000 description 1
- MUPFEKGTMRGPLJ-RMMQSMQOSA-N Raffinose Natural products O(C[C@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@@H](O[C@@]2(CO)[C@H](O)[C@@H](O)[C@@H](CO)O2)O1)[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 MUPFEKGTMRGPLJ-RMMQSMQOSA-N 0.000 description 1
- WINXNKPZLFISPD-UHFFFAOYSA-M Saccharin sodium Chemical compound [Na+].C1=CC=C2C(=O)[N-]S(=O)(=O)C2=C1 WINXNKPZLFISPD-UHFFFAOYSA-M 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- CYQFCXCEBYINGO-UHFFFAOYSA-N THC Natural products C1=C(C)CCC2C(C)(C)OC3=CC(CCCCC)=CC(O)=C3C21 CYQFCXCEBYINGO-UHFFFAOYSA-N 0.000 description 1
- RMMPZDDLWLALLJ-UHFFFAOYSA-N Thermophillin Chemical compound COC1=CC(=O)C(OC)=CC1=O RMMPZDDLWLALLJ-UHFFFAOYSA-N 0.000 description 1
- KLBQZWRITKRQQV-UHFFFAOYSA-N Thioridazine Chemical compound C12=CC(SC)=CC=C2SC2=CC=CC=C2N1CCC1CCCCN1C KLBQZWRITKRQQV-UHFFFAOYSA-N 0.000 description 1
- GFBKORZTTCHDGY-UWVJOHFNSA-N Thiothixene Chemical compound C12=CC(S(=O)(=O)N(C)C)=CC=C2SC2=CC=CC=C2\C1=C\CCN1CCN(C)CC1 GFBKORZTTCHDGY-UWVJOHFNSA-N 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 208000030886 Traumatic Brain injury Diseases 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- DOOTYTYQINUNNV-UHFFFAOYSA-N Triethyl citrate Chemical compound CCOC(=O)CC(O)(C(=O)OCC)CC(=O)OCC DOOTYTYQINUNNV-UHFFFAOYSA-N 0.000 description 1
- HWHLPVGTWGOCJO-UHFFFAOYSA-N Trihexyphenidyl Chemical group C1CCCCC1C(C=1C=CC=CC=1)(O)CCN1CCCCC1 HWHLPVGTWGOCJO-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- MUPFEKGTMRGPLJ-UHFFFAOYSA-N UNPD196149 Natural products OC1C(O)C(CO)OC1(CO)OC1C(O)C(O)C(O)C(COC2C(C(O)C(O)C(CO)O2)O)O1 MUPFEKGTMRGPLJ-UHFFFAOYSA-N 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- 229930003427 Vitamin E Natural products 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- FZCMREWADROMJN-DUXPYHPUSA-N [(e)-3-aminoprop-1-enyl]-methylphosphinic acid Chemical compound CP(O)(=O)\C=C\CN FZCMREWADROMJN-DUXPYHPUSA-N 0.000 description 1
- VXSBXGQAODFESR-HNQUOIGGSA-N [(e)-3-aminoprop-1-enyl]phosphonous acid Chemical compound NC\C=C\P(O)O VXSBXGQAODFESR-HNQUOIGGSA-N 0.000 description 1
- DGWWZGWHAGJDNN-UHFFFAOYSA-N [2-(aminomethyl)-3-phenylpropyl]phosphonous acid Chemical compound OP(O)CC(CN)CC1=CC=CC=C1 DGWWZGWHAGJDNN-UHFFFAOYSA-N 0.000 description 1
- FFARAXAEEKVCAJ-UHFFFAOYSA-N [3-amino-2-(4-chlorophenyl)propyl]phosphonous acid Chemical compound OP(O)CC(CN)C1=CC=C(Cl)C=C1 FFARAXAEEKVCAJ-UHFFFAOYSA-N 0.000 description 1
- HKPQAZFIENQXSZ-UHFFFAOYSA-N [3-amino-2-(4-fluorophenyl)propyl]phosphonous acid Chemical compound OP(O)CC(CN)C1=CC=C(F)C=C1 HKPQAZFIENQXSZ-UHFFFAOYSA-N 0.000 description 1
- ABCIMTFCLBIYPA-UHFFFAOYSA-N [3-amino-2-(4-methoxyphenyl)propyl]phosphonous acid Chemical compound COC1=CC=C(C(CN)CP(O)O)C=C1 ABCIMTFCLBIYPA-UHFFFAOYSA-N 0.000 description 1
- MOYJLYIIPCBVCW-UHFFFAOYSA-N [3-amino-2-(4-methylphenyl)propyl]phosphonous acid Chemical compound CC1=CC=C(C(CN)CP(O)O)C=C1 MOYJLYIIPCBVCW-UHFFFAOYSA-N 0.000 description 1
- KLDCYXTXFXGPRI-UHFFFAOYSA-N [3-amino-2-[4-(trifluoromethyl)phenyl]propyl]phosphonous acid Chemical compound OP(O)CC(CN)C1=CC=C(C(F)(F)F)C=C1 KLDCYXTXFXGPRI-UHFFFAOYSA-N 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- 239000000205 acacia gum Substances 0.000 description 1
- AFCGFAGUEYAMAO-UHFFFAOYSA-N acamprosate Chemical compound CC(=O)NCCCS(O)(=O)=O AFCGFAGUEYAMAO-UHFFFAOYSA-N 0.000 description 1
- 229960004047 acamprosate Drugs 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910000288 alkali metal carbonate Chemical class 0.000 description 1
- 150000008041 alkali metal carbonates Chemical class 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- 150000001371 alpha-amino acids Chemical class 0.000 description 1
- 235000008206 alpha-amino acids Nutrition 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- JXUFISIHEZOBPI-UHFFFAOYSA-N amidosulfurous acid Chemical class NS(O)=O JXUFISIHEZOBPI-UHFFFAOYSA-N 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 229960000836 amitriptyline Drugs 0.000 description 1
- KRMDCWKBEZIMAB-UHFFFAOYSA-N amitriptyline Chemical compound C1CC2=CC=CC=C2C(=CCCN(C)C)C2=CC=CC=C21 KRMDCWKBEZIMAB-UHFFFAOYSA-N 0.000 description 1
- 239000012491 analyte Substances 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 230000000954 anitussive effect Effects 0.000 description 1
- 230000007953 anoxia Effects 0.000 description 1
- 239000005557 antagonist Substances 0.000 description 1
- 230000001078 anti-cholinergic effect Effects 0.000 description 1
- 239000000935 antidepressant agent Substances 0.000 description 1
- 229940005513 antidepressants Drugs 0.000 description 1
- 239000000739 antihistaminic agent Substances 0.000 description 1
- 229940125715 antihistaminic agent Drugs 0.000 description 1
- 239000000164 antipsychotic agent Substances 0.000 description 1
- 229940005529 antipsychotics Drugs 0.000 description 1
- 229940124584 antitussives Drugs 0.000 description 1
- ATALOFNDEOCMKK-OITMNORJSA-N aprepitant Chemical compound O([C@@H]([C@@H]1C=2C=CC(F)=CC=2)O[C@H](C)C=2C=C(C=C(C=2)C(F)(F)F)C(F)(F)F)CCN1CC1=NNC(=O)N1 ATALOFNDEOCMKK-OITMNORJSA-N 0.000 description 1
- 229960001372 aprepitant Drugs 0.000 description 1
- 229960004372 aripiprazole Drugs 0.000 description 1
- 159000000032 aromatic acids Chemical class 0.000 description 1
- 125000002014 arsindolyl group Chemical group [AsH]1C(=CC2=CC=CC=C12)* 0.000 description 1
- 125000005018 aryl alkenyl group Chemical group 0.000 description 1
- 125000005015 aryl alkynyl group Chemical group 0.000 description 1
- 210000001815 ascending colon Anatomy 0.000 description 1
- 229940072107 ascorbate Drugs 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000000605 aspartame Substances 0.000 description 1
- IAOZJIPTCAWIRG-QWRGUYRKSA-N aspartame Chemical compound OC(=O)C[C@H](N)C(=O)N[C@H](C(=O)OC)CC1=CC=CC=C1 IAOZJIPTCAWIRG-QWRGUYRKSA-N 0.000 description 1
- 235000010357 aspartame Nutrition 0.000 description 1
- 229960003438 aspartame Drugs 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 238000010533 azeotropic distillation Methods 0.000 description 1
- 150000001542 azirines Chemical class 0.000 description 1
- 235000013871 bee wax Nutrition 0.000 description 1
- 229940092738 beeswax Drugs 0.000 description 1
- 239000012166 beeswax Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 1
- 229940092714 benzenesulfonic acid Drugs 0.000 description 1
- BNBQRQQYDMDJAH-UHFFFAOYSA-N benzodioxan Chemical compound C1=CC=C2OCCOC2=C1 BNBQRQQYDMDJAH-UHFFFAOYSA-N 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- MAFMQEKGGFWBAB-UHFFFAOYSA-N benzonatate Chemical compound CCCCNC1=CC=C(C(=O)OCCOCCOCCOCCOCCOCCOCCOCCOCCOC)C=C1 MAFMQEKGGFWBAB-UHFFFAOYSA-N 0.000 description 1
- 229960003789 benzonatate Drugs 0.000 description 1
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 1
- GONOPSZTUGRENK-UHFFFAOYSA-N benzyl(trichloro)silane Chemical compound Cl[Si](Cl)(Cl)CC1=CC=CC=C1 GONOPSZTUGRENK-UHFFFAOYSA-N 0.000 description 1
- 125000001584 benzyloxycarbonyl group Chemical group C(=O)(OCC1=CC=CC=C1)* 0.000 description 1
- 229940000635 beta-alanine Drugs 0.000 description 1
- 150000001576 beta-amino acids Chemical class 0.000 description 1
- 229960000910 bethanechol Drugs 0.000 description 1
- NZUPCNDJBJXXRF-UHFFFAOYSA-O bethanechol Chemical compound C[N+](C)(C)CC(C)OC(N)=O NZUPCNDJBJXXRF-UHFFFAOYSA-O 0.000 description 1
- 239000003833 bile salt Substances 0.000 description 1
- 229940093761 bile salts Drugs 0.000 description 1
- 229920002988 biodegradable polymer Polymers 0.000 description 1
- 239000004621 biodegradable polymer Substances 0.000 description 1
- 239000007890 bioerodible dosage form Substances 0.000 description 1
- 229960000074 biopharmaceutical Drugs 0.000 description 1
- 230000036765 blood level Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 125000004369 butenyl group Chemical group C(=CCC)* 0.000 description 1
- 235000019282 butylated hydroxyanisole Nutrition 0.000 description 1
- 229940043253 butylated hydroxyanisole Drugs 0.000 description 1
- 235000010354 butylated hydroxytoluene Nutrition 0.000 description 1
- 229940095259 butylated hydroxytoluene Drugs 0.000 description 1
- 125000004744 butyloxycarbonyl group Chemical group 0.000 description 1
- 125000000480 butynyl group Chemical group [*]C#CC([H])([H])C([H])([H])[H] 0.000 description 1
- FFSAXUULYPJSKH-UHFFFAOYSA-N butyrophenone Chemical class CCCC(=O)C1=CC=CC=C1 FFSAXUULYPJSKH-UHFFFAOYSA-N 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- HRBZRZSCMANEHQ-UHFFFAOYSA-L calcium;hexadecanoate Chemical compound [Ca+2].CCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCC([O-])=O HRBZRZSCMANEHQ-UHFFFAOYSA-L 0.000 description 1
- 239000004204 candelilla wax Substances 0.000 description 1
- 235000013868 candelilla wax Nutrition 0.000 description 1
- 229940073532 candelilla wax Drugs 0.000 description 1
- 229930003827 cannabinoid Natural products 0.000 description 1
- 239000003557 cannabinoid Substances 0.000 description 1
- 229940065144 cannabinoids Drugs 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 description 1
- OJFSXZCBGQGRNV-UHFFFAOYSA-N carbinoxamine Chemical compound C=1C=CC=NC=1C(OCCN(C)C)C1=CC=C(Cl)C=C1 OJFSXZCBGQGRNV-UHFFFAOYSA-N 0.000 description 1
- 229960000428 carbinoxamine Drugs 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical class OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 229920003064 carboxyethyl cellulose Polymers 0.000 description 1
- 229920003090 carboxymethyl hydroxyethyl cellulose Polymers 0.000 description 1
- 235000010418 carrageenan Nutrition 0.000 description 1
- 229920001525 carrageenan Polymers 0.000 description 1
- 239000000679 carrageenan Substances 0.000 description 1
- 229940113118 carrageenan Drugs 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000013553 cell monolayer Substances 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 229920006217 cellulose acetate butyrate Polymers 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- UKTAZPQNNNJVKR-KJGYPYNMSA-N chembl2368925 Chemical compound C1=CC=C2C(C(O[C@@H]3C[C@@H]4C[C@H]5C[C@@H](N4CC5=O)C3)=O)=CNC2=C1 UKTAZPQNNNJVKR-KJGYPYNMSA-N 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 235000019693 cherries Nutrition 0.000 description 1
- 229960004782 chlordiazepoxide Drugs 0.000 description 1
- ANTSCNMPPGJYLG-UHFFFAOYSA-N chlordiazepoxide Chemical compound O=N=1CC(NC)=NC2=CC=C(Cl)C=C2C=1C1=CC=CC=C1 ANTSCNMPPGJYLG-UHFFFAOYSA-N 0.000 description 1
- 235000013985 cinnamic acid Nutrition 0.000 description 1
- 229930016911 cinnamic acid Natural products 0.000 description 1
- 229960003120 clonazepam Drugs 0.000 description 1
- DGBIGWXXNGSACT-UHFFFAOYSA-N clonazepam Chemical compound C12=CC([N+](=O)[O-])=CC=C2NC(=O)CN=C1C1=CC=CC=C1Cl DGBIGWXXNGSACT-UHFFFAOYSA-N 0.000 description 1
- 229960004362 clorazepate Drugs 0.000 description 1
- XDDJGVMJFWAHJX-UHFFFAOYSA-M clorazepic acid anion Chemical compound C12=CC(Cl)=CC=C2NC(=O)C(C(=O)[O-])N=C1C1=CC=CC=C1 XDDJGVMJFWAHJX-UHFFFAOYSA-M 0.000 description 1
- 229960004170 clozapine Drugs 0.000 description 1
- QZUDBNBUXVUHMW-UHFFFAOYSA-N clozapine Chemical compound C1CN(C)CCN1C1=NC2=CC(Cl)=CC=C2NC2=CC=CC=C12 QZUDBNBUXVUHMW-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229960003920 cocaine Drugs 0.000 description 1
- 235000019864 coconut oil Nutrition 0.000 description 1
- 239000003240 coconut oil Substances 0.000 description 1
- 229960004126 codeine Drugs 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 239000012230 colorless oil Substances 0.000 description 1
- 229920000891 common polymer Polymers 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000000599 controlled substance Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000003246 corticosteroid Substances 0.000 description 1
- 229960001334 corticosteroids Drugs 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 239000011243 crosslinked material Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 125000000392 cycloalkenyl group Chemical group 0.000 description 1
- 125000006639 cyclohexyl carbonyl group Chemical group 0.000 description 1
- 229960001270 d- tartaric acid Drugs 0.000 description 1
- KWGRBVOPPLSCSI-UHFFFAOYSA-N d-ephedrine Natural products CNC(C)C(O)C1=CC=CC=C1 KWGRBVOPPLSCSI-UHFFFAOYSA-N 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- CYQFCXCEBYINGO-IAGOWNOFSA-N delta1-THC Chemical compound C1=C(C)CC[C@H]2C(C)(C)OC3=CC(CCCCC)=CC(O)=C3[C@@H]21 CYQFCXCEBYINGO-IAGOWNOFSA-N 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 1
- 229960001985 dextromethorphan Drugs 0.000 description 1
- 229940099371 diacetylated monoglycerides Drugs 0.000 description 1
- 229960002069 diamorphine Drugs 0.000 description 1
- 229960003529 diazepam Drugs 0.000 description 1
- AAOVKJBEBIDNHE-UHFFFAOYSA-N diazepam Chemical compound N=1CC(=O)N(C)C2=CC=C(Cl)C=C2C=1C1=CC=CC=C1 AAOVKJBEBIDNHE-UHFFFAOYSA-N 0.000 description 1
- 229940031954 dibutyl sebacate Drugs 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- XYYVYLMBEZUESM-UHFFFAOYSA-N dihydrocodeine Natural products C1C(N(CCC234)C)C2C=CC(=O)C3OC2=C4C1=CC=C2OC XYYVYLMBEZUESM-UHFFFAOYSA-N 0.000 description 1
- 238000007907 direct compression Methods 0.000 description 1
- SDWYUQHONRZPMW-UHFFFAOYSA-L disodium;octanedioate Chemical compound [Na+].[Na+].[O-]C(=O)CCCCCCC([O-])=O SDWYUQHONRZPMW-UHFFFAOYSA-L 0.000 description 1
- 229960002563 disulfiram Drugs 0.000 description 1
- 235000010386 dodecyl gallate Nutrition 0.000 description 1
- MOTZDAYCYVMXPC-UHFFFAOYSA-N dodecyl hydrogen sulfate Chemical group CCCCCCCCCCCCOS(O)(=O)=O MOTZDAYCYVMXPC-UHFFFAOYSA-N 0.000 description 1
- 229960003413 dolasetron Drugs 0.000 description 1
- 229960003638 dopamine Drugs 0.000 description 1
- 229960004242 dronabinol Drugs 0.000 description 1
- 229960000394 droperidol Drugs 0.000 description 1
- RMEDXOLNCUSCGS-UHFFFAOYSA-N droperidol Chemical compound C1=CC(F)=CC=C1C(=O)CCCN1CC=C(N2C(NC3=CC=CC=C32)=O)CC1 RMEDXOLNCUSCGS-UHFFFAOYSA-N 0.000 description 1
- 229940126534 drug product Drugs 0.000 description 1
- 210000005069 ears Anatomy 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 150000002085 enols Chemical group 0.000 description 1
- 210000001842 enterocyte Anatomy 0.000 description 1
- 150000002118 epoxides Chemical class 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 210000003238 esophagus Anatomy 0.000 description 1
- 239000012183 esparto wax Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- AFAXGSQYZLGZPG-UHFFFAOYSA-N ethanedisulfonic acid Chemical compound OS(=O)(=O)CCS(O)(=O)=O AFAXGSQYZLGZPG-UHFFFAOYSA-N 0.000 description 1
- CCIVGXIOQKPBKL-UHFFFAOYSA-M ethanesulfonate Chemical compound CCS([O-])(=O)=O CCIVGXIOQKPBKL-UHFFFAOYSA-M 0.000 description 1
- 229940031098 ethanolamine Drugs 0.000 description 1
- 229960004667 ethyl cellulose Drugs 0.000 description 1
- 235000019277 ethyl gallate Nutrition 0.000 description 1
- 230000002964 excitative effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000013213 extrapolation Methods 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000010579 first pass effect Methods 0.000 description 1
- 238000003818 flash chromatography Methods 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 229960002690 fluphenazine Drugs 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 235000003599 food sweetener Nutrition 0.000 description 1
- 229960002737 fructose Drugs 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 235000011087 fumaric acid Nutrition 0.000 description 1
- YQGDEPYYFWUPGO-UHFFFAOYSA-N gamma-amino-beta-hydroxybutyric acid Chemical compound [NH3+]CC(O)CC([O-])=O YQGDEPYYFWUPGO-UHFFFAOYSA-N 0.000 description 1
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 1
- 239000000174 gluconic acid Chemical group 0.000 description 1
- 235000012208 gluconic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Chemical group 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 125000005456 glyceride group Chemical group 0.000 description 1
- YQEMORVAKMFKLG-UHFFFAOYSA-N glycerine monostearate Natural products CCCCCCCCCCCCCCCCCC(=O)OC(CO)CO YQEMORVAKMFKLG-UHFFFAOYSA-N 0.000 description 1
- SVUQHVRAGMNPLW-UHFFFAOYSA-N glycerol monostearate Natural products CCCCCCCCCCCCCCCCC(=O)OCC(O)CO SVUQHVRAGMNPLW-UHFFFAOYSA-N 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 229940049654 glyceryl behenate Drugs 0.000 description 1
- 229940075507 glyceryl monostearate Drugs 0.000 description 1
- FETSQPAGYOVAQU-UHFFFAOYSA-N glyceryl palmitostearate Chemical compound OCC(O)CO.CCCCCCCCCCCCCCCC(O)=O.CCCCCCCCCCCCCCCCCC(O)=O FETSQPAGYOVAQU-UHFFFAOYSA-N 0.000 description 1
- 229940046813 glyceryl palmitostearate Drugs 0.000 description 1
- 239000001087 glyceryl triacetate Substances 0.000 description 1
- 235000013773 glyceryl triacetate Nutrition 0.000 description 1
- 229960003727 granisetron Drugs 0.000 description 1
- MFWNKCLOYSRHCJ-BTTYYORXSA-N granisetron Chemical compound C1=CC=C2C(C(=O)N[C@H]3C[C@H]4CCC[C@@H](C3)N4C)=NN(C)C2=C1 MFWNKCLOYSRHCJ-BTTYYORXSA-N 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 229960002146 guaifenesin Drugs 0.000 description 1
- 235000019314 gum ghatti Nutrition 0.000 description 1
- 229940093915 gynecological organic acid Drugs 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- IUJAMGNYPWYUPM-UHFFFAOYSA-N hentriacontane Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC IUJAMGNYPWYUPM-UHFFFAOYSA-N 0.000 description 1
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 1
- 125000004447 heteroarylalkenyl group Chemical group 0.000 description 1
- 239000003485 histamine H2 receptor antagonist Substances 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 235000001050 hortel pimenta Nutrition 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- LLPOLZWFYMWNKH-CMKMFDCUSA-N hydrocodone Chemical compound C([C@H]1[C@H](N(CC[C@@]112)C)C3)CC(=O)[C@@H]1OC1=C2C3=CC=C1OC LLPOLZWFYMWNKH-CMKMFDCUSA-N 0.000 description 1
- 229960000240 hydrocodone Drugs 0.000 description 1
- 239000008172 hydrogenated vegetable oil Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- WVLOADHCBXTIJK-YNHQPCIGSA-N hydromorphone Chemical compound O([C@H]1C(CC[C@H]23)=O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4O WVLOADHCBXTIJK-YNHQPCIGSA-N 0.000 description 1
- 229960001410 hydromorphone Drugs 0.000 description 1
- 229920013821 hydroxy alkyl cellulose Polymers 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 229920003063 hydroxymethyl cellulose Polymers 0.000 description 1
- 229940031574 hydroxymethyl cellulose Drugs 0.000 description 1
- 229920003132 hydroxypropyl methylcellulose phthalate Polymers 0.000 description 1
- 229940031704 hydroxypropyl methylcellulose phthalate Drugs 0.000 description 1
- 150000004336 hydroxyquinones Chemical class 0.000 description 1
- ZQDWXGKKHFNSQK-UHFFFAOYSA-N hydroxyzine Chemical compound C1CN(CCOCCO)CCN1C(C=1C=CC(Cl)=CC=1)C1=CC=CC=C1 ZQDWXGKKHFNSQK-UHFFFAOYSA-N 0.000 description 1
- 229960000930 hydroxyzine Drugs 0.000 description 1
- 230000002102 hyperpolarization Effects 0.000 description 1
- 239000005457 ice water Substances 0.000 description 1
- 238000000099 in vitro assay Methods 0.000 description 1
- 238000005462 in vivo assay Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- CDAISMWEOUEBRE-GPIVLXJGSA-N inositol Chemical compound O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](O)[C@@H]1O CDAISMWEOUEBRE-GPIVLXJGSA-N 0.000 description 1
- 229960000367 inositol Drugs 0.000 description 1
- 239000002198 insoluble material Substances 0.000 description 1
- 210000005027 intestinal barrier Anatomy 0.000 description 1
- 210000004347 intestinal mucosa Anatomy 0.000 description 1
- 230000004673 intestinal mucosal barrier function Effects 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Chemical class CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 210000004731 jugular vein Anatomy 0.000 description 1
- 235000010494 karaya gum Nutrition 0.000 description 1
- 125000000468 ketone group Chemical group 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- DBTMGCOVALSLOR-VPNXCSTESA-N laminarin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)OC1O[C@@H]1[C@@H](O)C(O[C@H]2[C@@H]([C@@H](CO)OC(O)[C@@H]2O)O)O[C@H](CO)[C@H]1O DBTMGCOVALSLOR-VPNXCSTESA-N 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- XBMIVRRWGCYBTQ-AVRDEDQJSA-N levacetylmethadol Chemical compound C=1C=CC=CC=1C(C[C@H](C)N(C)C)([C@@H](OC(C)=O)CC)C1=CC=CC=C1 XBMIVRRWGCYBTQ-AVRDEDQJSA-N 0.000 description 1
- 229960004502 levodopa Drugs 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 1
- 235000010420 locust bean gum Nutrition 0.000 description 1
- 239000000711 locust bean gum Substances 0.000 description 1
- 229960000423 loxapine Drugs 0.000 description 1
- XJGVXQDUIWGIRW-UHFFFAOYSA-N loxapine Chemical compound C1CN(C)CCN1C1=NC2=CC=CC=C2OC2=CC=C(Cl)C=C12 XJGVXQDUIWGIRW-UHFFFAOYSA-N 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 229960002510 mandelic acid Drugs 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229940057917 medium chain triglycerides Drugs 0.000 description 1
- SLVMESMUVMCQIY-UHFFFAOYSA-N mesoridazine Chemical compound CN1CCCCC1CCN1C2=CC(S(C)=O)=CC=C2SC2=CC=CC=C21 SLVMESMUVMCQIY-UHFFFAOYSA-N 0.000 description 1
- 229960000300 mesoridazine Drugs 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 229940117841 methacrylic acid copolymer Drugs 0.000 description 1
- 229920003145 methacrylic acid copolymer Polymers 0.000 description 1
- 229940098779 methanesulfonic acid Drugs 0.000 description 1
- AXLHVTKGDPVANO-UHFFFAOYSA-N methyl 2-amino-3-[(2-methylpropan-2-yl)oxycarbonylamino]propanoate Chemical compound COC(=O)C(N)CNC(=O)OC(C)(C)C AXLHVTKGDPVANO-UHFFFAOYSA-N 0.000 description 1
- WBYWAXJHAXSJNI-UHFFFAOYSA-N methyl p-hydroxycinnamate Natural products OC(=O)C=CC1=CC=CC=C1 WBYWAXJHAXSJNI-UHFFFAOYSA-N 0.000 description 1
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 description 1
- 239000003094 microcapsule Substances 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 229960003793 midazolam Drugs 0.000 description 1
- DDLIGBOFAVUZHB-UHFFFAOYSA-N midazolam Chemical compound C12=CC(Cl)=CC=C2N2C(C)=NC=C2CN=C1C1=CC=CC=C1F DDLIGBOFAVUZHB-UHFFFAOYSA-N 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 229960004938 molindone Drugs 0.000 description 1
- 239000001788 mono and diglycerides of fatty acids Substances 0.000 description 1
- 229960005181 morphine Drugs 0.000 description 1
- 210000002161 motor neuron Anatomy 0.000 description 1
- 210000002200 mouth mucosa Anatomy 0.000 description 1
- 210000004877 mucosa Anatomy 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 229940035363 muscle relaxants Drugs 0.000 description 1
- 230000017311 musculoskeletal movement, spinal reflex action Effects 0.000 description 1
- 239000003158 myorelaxant agent Substances 0.000 description 1
- VMOWKUTXPNPTEN-UHFFFAOYSA-N n,n-dimethylpropan-2-amine Chemical compound CC(C)N(C)C VMOWKUTXPNPTEN-UHFFFAOYSA-N 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Chemical class CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- KVBGVZZKJNLNJU-UHFFFAOYSA-N naphthalene-2-sulfonic acid Chemical compound C1=CC=CC2=CC(S(=O)(=O)O)=CC=C21 KVBGVZZKJNLNJU-UHFFFAOYSA-N 0.000 description 1
- 125000004923 naphthylmethyl group Chemical group C1(=CC=CC2=CC=CC=C12)C* 0.000 description 1
- 229920001206 natural gum Polymers 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 230000004770 neurodegeneration Effects 0.000 description 1
- 208000015122 neurodegenerative disease Diseases 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 239000002858 neurotransmitter agent Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229960002715 nicotine Drugs 0.000 description 1
- SNICXCGAKADSCV-UHFFFAOYSA-N nicotine Natural products CN1CCCC1C1=CC=CN=C1 SNICXCGAKADSCV-UHFFFAOYSA-N 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 229960004872 nizatidine Drugs 0.000 description 1
- SGXXNSQHWDMGGP-IZZDOVSWSA-N nizatidine Chemical compound [O-][N+](=O)\C=C(/NC)NCCSCC1=CSC(CN(C)C)=N1 SGXXNSQHWDMGGP-IZZDOVSWSA-N 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- WWZKQHOCKIZLMA-UHFFFAOYSA-M octanoate Chemical compound CCCCCCCC([O-])=O WWZKQHOCKIZLMA-UHFFFAOYSA-M 0.000 description 1
- 239000000574 octyl gallate Substances 0.000 description 1
- 235000010387 octyl gallate Nutrition 0.000 description 1
- NRPKURNSADTHLJ-UHFFFAOYSA-N octyl gallate Chemical compound CCCCCCCCOC(=O)C1=CC(O)=C(O)C(O)=C1 NRPKURNSADTHLJ-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical class CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 235000021313 oleic acid Nutrition 0.000 description 1
- 229960005343 ondansetron Drugs 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 239000012168 ouricury wax Substances 0.000 description 1
- 229960004535 oxazepam Drugs 0.000 description 1
- ADIMAYPTOBDMTL-UHFFFAOYSA-N oxazepam Chemical compound C12=CC(Cl)=CC=C2NC(=O)C(O)N=C1C1=CC=CC=C1 ADIMAYPTOBDMTL-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- NDLPOXTZKUMGOV-UHFFFAOYSA-N oxo(oxoferriooxy)iron hydrate Chemical compound O.O=[Fe]O[Fe]=O NDLPOXTZKUMGOV-UHFFFAOYSA-N 0.000 description 1
- 239000006179 pH buffering agent Substances 0.000 description 1
- 229960002131 palonosetron Drugs 0.000 description 1
- CPZBLNMUGSZIPR-NVXWUHKLSA-N palonosetron Chemical compound C1N(CC2)CCC2[C@@H]1N1C(=O)C(C=CC=C2CCC3)=C2[C@H]3C1 CPZBLNMUGSZIPR-NVXWUHKLSA-N 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Chemical group OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 229960005489 paracetamol Drugs 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 235000010987 pectin Nutrition 0.000 description 1
- 239000001814 pectin Substances 0.000 description 1
- 229920001277 pectin Polymers 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 150000002990 phenothiazines Chemical class 0.000 description 1
- UYWQUFXKFGHYNT-UHFFFAOYSA-N phenylmethyl ester of formic acid Natural products O=COCC1=CC=CC=C1 UYWQUFXKFGHYNT-UHFFFAOYSA-N 0.000 description 1
- PTMHPRAIXMAOOB-UHFFFAOYSA-N phosphoramidic acid Chemical class NP(O)(O)=O PTMHPRAIXMAOOB-UHFFFAOYSA-N 0.000 description 1
- SXADIBFZNXBEGI-UHFFFAOYSA-N phosphoramidous acid Chemical class NP(O)O SXADIBFZNXBEGI-UHFFFAOYSA-N 0.000 description 1
- 229960003634 pimozide Drugs 0.000 description 1
- YVUQSNJEYSNKRX-UHFFFAOYSA-N pimozide Chemical compound C1=CC(F)=CC=C1C(C=1C=CC(F)=CC=1)CCCN1CCC(N2C(NC3=CC=CC=C32)=O)CC1 YVUQSNJEYSNKRX-UHFFFAOYSA-N 0.000 description 1
- 230000036470 plasma concentration Effects 0.000 description 1
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 1
- 229920001308 poly(aminoacid) Polymers 0.000 description 1
- 229920000205 poly(isobutyl methacrylate) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000307 polymer substrate Polymers 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 229910000343 potassium bisulfate Inorganic materials 0.000 description 1
- GNSKLFRGEWLPPA-UHFFFAOYSA-M potassium dihydrogen phosphate Chemical compound [K+].OP(O)([O-])=O GNSKLFRGEWLPPA-UHFFFAOYSA-M 0.000 description 1
- 229910000160 potassium phosphate Inorganic materials 0.000 description 1
- 235000011009 potassium phosphates Nutrition 0.000 description 1
- WSHYKIAQCMIPTB-UHFFFAOYSA-M potassium;2-oxo-3-(3-oxo-1-phenylbutyl)chromen-4-olate Chemical compound [K+].[O-]C=1C2=CC=CC=C2OC(=O)C=1C(CC(=O)C)C1=CC=CC=C1 WSHYKIAQCMIPTB-UHFFFAOYSA-M 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 230000003518 presynaptic effect Effects 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229960003111 prochlorperazine Drugs 0.000 description 1
- WIKYUJGCLQQFNW-UHFFFAOYSA-N prochlorperazine Chemical compound C1CN(C)CCN1CCCN1C2=CC(Cl)=CC=C2SC2=CC=CC=C21 WIKYUJGCLQQFNW-UHFFFAOYSA-N 0.000 description 1
- 229960003910 promethazine Drugs 0.000 description 1
- 125000004368 propenyl group Chemical group C(=CC)* 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 239000000473 propyl gallate Substances 0.000 description 1
- 235000010388 propyl gallate Nutrition 0.000 description 1
- 229940075579 propyl gallate Drugs 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 125000004742 propyloxycarbonyl group Chemical group 0.000 description 1
- QELSKZZBTMNZEB-UHFFFAOYSA-N propylparaben Chemical compound CCCOC(=O)C1=CC=C(O)C=C1 QELSKZZBTMNZEB-UHFFFAOYSA-N 0.000 description 1
- 229960003415 propylparaben Drugs 0.000 description 1
- 125000002568 propynyl group Chemical group [*]C#CC([H])([H])[H] 0.000 description 1
- 235000019833 protease Nutrition 0.000 description 1
- 235000018102 proteins Nutrition 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 239000003586 protic polar solvent Substances 0.000 description 1
- KWGRBVOPPLSCSI-WCBMZHEXSA-N pseudoephedrine Chemical compound CN[C@@H](C)[C@@H](O)C1=CC=CC=C1 KWGRBVOPPLSCSI-WCBMZHEXSA-N 0.000 description 1
- 229960003908 pseudoephedrine Drugs 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 210000002804 pyramidal tract Anatomy 0.000 description 1
- USPWKWBDZOARPV-UHFFFAOYSA-N pyrazolidine Chemical compound C1CNNC1 USPWKWBDZOARPV-UHFFFAOYSA-N 0.000 description 1
- 229940107700 pyruvic acid Drugs 0.000 description 1
- 229960004431 quetiapine Drugs 0.000 description 1
- URKOMYMAXPYINW-UHFFFAOYSA-N quetiapine Chemical compound C1CN(CCOCCO)CCN1C1=NC2=CC=CC=C2SC2=CC=CC=C12 URKOMYMAXPYINW-UHFFFAOYSA-N 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- SBYHFKPVCBCYGV-UHFFFAOYSA-N quinuclidine Chemical compound C1CC2CCN1CC2 SBYHFKPVCBCYGV-UHFFFAOYSA-N 0.000 description 1
- 229960004157 rabeprazole Drugs 0.000 description 1
- YREYEVIYCVEVJK-UHFFFAOYSA-N rabeprazole Chemical compound COCCCOC1=CC=NC(CS(=O)C=2NC3=CC=CC=C3N=2)=C1C YREYEVIYCVEVJK-UHFFFAOYSA-N 0.000 description 1
- 229960001778 rabeprazole sodium Drugs 0.000 description 1
- MUPFEKGTMRGPLJ-ZQSKZDJDSA-N raffinose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO[C@@H]2[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O2)O)O1 MUPFEKGTMRGPLJ-ZQSKZDJDSA-N 0.000 description 1
- 229960000620 ranitidine Drugs 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 229940044551 receptor antagonist Drugs 0.000 description 1
- 239000002464 receptor antagonist Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 229960001534 risperidone Drugs 0.000 description 1
- RAPZEAPATHNIPO-UHFFFAOYSA-N risperidone Chemical compound FC1=CC=C2C(C3CCN(CC3)CCC=3C(=O)N4CCCCC4=NC=3C)=NOC2=C1 RAPZEAPATHNIPO-UHFFFAOYSA-N 0.000 description 1
- 238000002390 rotary evaporation Methods 0.000 description 1
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 1
- 235000019204 saccharin Nutrition 0.000 description 1
- 229940081974 saccharin Drugs 0.000 description 1
- 239000000901 saccharin and its Na,K and Ca salt Substances 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- CDAISMWEOUEBRE-UHFFFAOYSA-N scyllo-inosotol Natural products OC1C(O)C(O)C(O)C(O)C1O CDAISMWEOUEBRE-UHFFFAOYSA-N 0.000 description 1
- 229940125723 sedative agent Drugs 0.000 description 1
- 239000000932 sedative agent Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000003369 serotonin 5-HT3 receptor antagonist Substances 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 229920000260 silastic Polymers 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 229920005573 silicon-containing polymer Polymers 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- NHVRIDDXGZPJTJ-UHFFFAOYSA-N skf-97,541 Chemical compound CP(O)(=O)CCCN NHVRIDDXGZPJTJ-UHFFFAOYSA-N 0.000 description 1
- 235000020183 skimmed milk Nutrition 0.000 description 1
- 230000005586 smoking cessation Effects 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- HRZFUMHJMZEROT-UHFFFAOYSA-L sodium disulfite Chemical compound [Na+].[Na+].[O-]S(=O)S([O-])(=O)=O HRZFUMHJMZEROT-UHFFFAOYSA-L 0.000 description 1
- 229940001584 sodium metabisulfite Drugs 0.000 description 1
- 235000010262 sodium metabisulphite Nutrition 0.000 description 1
- RYYKJJJTJZKILX-UHFFFAOYSA-M sodium octadecanoate Chemical compound [Na+].CCCCCCCCCCCCCCCCCC([O-])=O RYYKJJJTJZKILX-UHFFFAOYSA-M 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000012086 standard solution Substances 0.000 description 1
- 239000000021 stimulant Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 201000009032 substance abuse Diseases 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000009747 swallowing Effects 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 230000008337 systemic blood flow Effects 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 229960003080 taurine Drugs 0.000 description 1
- 125000005931 tert-butyloxycarbonyl group Chemical group [H]C([H])([H])C(OC(*)=O)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 150000005621 tetraalkylammonium salts Chemical group 0.000 description 1
- DZLFLBLQUQXARW-UHFFFAOYSA-N tetrabutylammonium Chemical group CCCC[N+](CCCC)(CCCC)CCCC DZLFLBLQUQXARW-UHFFFAOYSA-N 0.000 description 1
- AUZONCFQVSMFAP-UHFFFAOYSA-N tetraethylthiuram disulfide Natural products CCN(CC)C(=S)SSC(=S)N(CC)CC AUZONCFQVSMFAP-UHFFFAOYSA-N 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- XCTYLCDETUVOIP-UHFFFAOYSA-N thiethylperazine Chemical compound C12=CC(SCC)=CC=C2SC2=CC=CC=C2N1CCCN1CCN(C)CC1 XCTYLCDETUVOIP-UHFFFAOYSA-N 0.000 description 1
- 229960004869 thiethylperazine Drugs 0.000 description 1
- 150000003553 thiiranes Chemical class 0.000 description 1
- 229960002784 thioridazine Drugs 0.000 description 1
- 229960005013 tiotixene Drugs 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 235000010487 tragacanth Nutrition 0.000 description 1
- 239000000196 tragacanth Substances 0.000 description 1
- 229940116362 tragacanth Drugs 0.000 description 1
- 229960004380 tramadol Drugs 0.000 description 1
- TVYLLZQTGLZFBW-GOEBONIOSA-N tramadol Natural products COC1=CC=CC([C@@]2(O)[C@@H](CCCC2)CN(C)C)=C1 TVYLLZQTGLZFBW-GOEBONIOSA-N 0.000 description 1
- LLPOLZWFYMWNKH-UHFFFAOYSA-N trans-dihydrocodeinone Natural products C1C(N(CCC234)C)C2CCC(=O)C3OC2=C4C1=CC=C2OC LLPOLZWFYMWNKH-UHFFFAOYSA-N 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000009529 traumatic brain injury Effects 0.000 description 1
- 229960002622 triacetin Drugs 0.000 description 1
- IMFACGCPASFAPR-UHFFFAOYSA-N tributylamine Chemical compound CCCCN(CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-N 0.000 description 1
- WEAPVABOECTMGR-UHFFFAOYSA-N triethyl 2-acetyloxypropane-1,2,3-tricarboxylate Chemical compound CCOC(=O)CC(C(=O)OCC)(OC(C)=O)CC(=O)OCC WEAPVABOECTMGR-UHFFFAOYSA-N 0.000 description 1
- 239000001069 triethyl citrate Substances 0.000 description 1
- VMYFZRTXGLUXMZ-UHFFFAOYSA-N triethyl citrate Natural products CCOC(=O)C(O)(C(=O)OCC)C(=O)OCC VMYFZRTXGLUXMZ-UHFFFAOYSA-N 0.000 description 1
- 235000013769 triethyl citrate Nutrition 0.000 description 1
- IMNIMPAHZVJRPE-UHFFFAOYSA-N triethylenediamine Chemical compound C1CN2CCN1CC2 IMNIMPAHZVJRPE-UHFFFAOYSA-N 0.000 description 1
- 229960002324 trifluoperazine Drugs 0.000 description 1
- ZEWQUBUPAILYHI-UHFFFAOYSA-N trifluoperazine Chemical compound C1CN(C)CCN1CCCN1C2=CC(C(F)(F)F)=CC=C2SC2=CC=CC=C21 ZEWQUBUPAILYHI-UHFFFAOYSA-N 0.000 description 1
- 125000004044 trifluoroacetyl group Chemical group FC(C(=O)*)(F)F 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 229960001032 trihexyphenidyl Drugs 0.000 description 1
- 125000005591 trimellitate group Chemical group 0.000 description 1
- 125000000026 trimethylsilyl group Chemical group [H]C([H])([H])[Si]([*])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 238000001665 trituration Methods 0.000 description 1
- JABYJIQOLGWMQW-UHFFFAOYSA-N undec-4-ene Chemical compound CCCCCCC=CCCC JABYJIQOLGWMQW-UHFFFAOYSA-N 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000011709 vitamin E Substances 0.000 description 1
- 235000019165 vitamin E Nutrition 0.000 description 1
- 229940046009 vitamin E Drugs 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 239000009637 wintergreen oil Substances 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
- UHVMMEOXYDMDKI-JKYCWFKZSA-L zinc;1-(5-cyanopyridin-2-yl)-3-[(1s,2s)-2-(6-fluoro-2-hydroxy-3-propanoylphenyl)cyclopropyl]urea;diacetate Chemical compound [Zn+2].CC([O-])=O.CC([O-])=O.CCC(=O)C1=CC=C(F)C([C@H]2[C@H](C2)NC(=O)NC=2N=CC(=CC=2)C#N)=C1O UHVMMEOXYDMDKI-JKYCWFKZSA-L 0.000 description 1
- 229960000607 ziprasidone Drugs 0.000 description 1
- MVWVFYHBGMAFLY-UHFFFAOYSA-N ziprasidone Chemical compound C1=CC=C2C(N3CCN(CC3)CCC3=CC=4CC(=O)NC=4C=C3Cl)=NSC2=C1 MVWVFYHBGMAFLY-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C313/00—Sulfinic acids; Sulfenic acids; Halides, esters or anhydrides thereof; Amides of sulfinic or sulfenic acids, i.e. compounds having singly-bound oxygen atoms of sulfinic or sulfenic groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
- C07C313/02—Sulfinic acids; Derivatives thereof
- C07C313/04—Sulfinic acids; Esters thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/04—Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/30—Drugs for disorders of the nervous system for treating abuse or dependence
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2601/00—Systems containing only non-condensed rings
- C07C2601/12—Systems containing only non-condensed rings with a six-membered ring
- C07C2601/14—The ring being saturated
Definitions
- the disclosure relates to acyloxyalkyl carbamate prodrugs of 3-aminopropylsulfinic acid and analogs thereof, pharmaceutical compositions comprising 3-aminopropylsulfinic acid and analogs thereof, methods of making prodrugs of 3-aminopropylsulfinic acid and analogs thereof, and methods of using prodrugs of 3-aminopropylsulfinic acid and analogs thereof, and pharmaceutical compositions thereof to treat various diseases or disorders.
- the disclosure also relates to prodrugs of 3-aminopropylsulfinic acid and analogs thereof suitable for oral administration, and for oral administration using sustained release dosage forms.
- GABA gamma-aminobutyric acid
- GABA B receptors are located in laminae I-IV of the spinal cord, where primary sensory fibers end. These G-protein coupled receptors activate conductance by K + -selective ion channels and can reduce currents mediated by Ca 2+ channels in certain neurons.
- Baclofen has a presynaptic inhibitory effect on the release of excitatory neurotransmitters and also acts postsynaptically to decrease motor neuron firing (see Bowery, Trends Pharmacol. Sci. 1989, 10, 401-407; Misgeld et al., Prog. Neurobiol. 1995, 46, 423-462, each of which is incorporated herein by reference in its entirety).
- compounds having agonistic or partially agonistic affinity to GABA B receptors exist and include certain amino acids, aminophosphonic acids, aminophosphinic acids, aminophosphonous acids, and aminosulfinic acids.
- Examples of 4-aminobutanoic acid GABA B receptor ligands include:
- aminopropylphosphonous acid and aminopropylphosphinic analog GABA B receptor ligands include:
- 3-Aminopropylsulfinic acid analog GABA B receptor agonists are described in Carruthers et al., Bioorg. Med. Chem. Lett. 1995, 5, 237-240; Shue et al., Bioorg. Med. Chem. Lett. 1996, 6, 1709-1714; Carruthers et al., Bioorg. Med. Chem. Lett. 1998, 8, 3059-3064; and Fitzpatrick et al., International Publication No. WO 02/100823, each of which is incorporated herein by reference in its entirety.
- Examples of 3-aminopropylsulfinic acid analog GABA B receptor ligands include:
- a principal pharmacological effect of GABA B receptor agonists in mammals is reduction of muscle tone, and baclofen is frequently used in the treatment of spasticity.
- Spasticity is associated with damage to the corticospinal tract and is a common complication of neurological disease.
- Diseases and conditions in which spasticity may be a prominent symptom include cerebral palsy, multiple sclerosis, stroke, head and spinal cord injuries, traumatic brain injury, anoxia, and neurodegenerative diseases.
- Patients with spasticity complain of stiffness, involuntary spasm, and pain. These painful spasms may be spontaneous or triggered by a minor sensory stimulus, such as touching the patient.
- GABA B receptor agonists are also useful in controlling gastroesophageal reflux disease (Lidums et al., Gastroenterology 2000, 118, 7-13; Cange et al., Aliment. Pharmacol. Ther. 2002, 16, 869-873; van Herwaarden et al., Aliment. Pharmacol. Ther. 2002, 16, 1655-1662; Zhang et al., Gut 2002, 50, 19-24; Vela et al., Aliment. Pharmacol. Ther. 2003, 17, 243-251; Koek et al., Gut 2003, 52, 1397-1402; Ciccaglione et al., Gut 2003, 52, 464-470; Andrews et al., U.S. Pat.
- the lower esophageal sphincter (LES) and crural diaphragm each contribute to the sphincteric mechanism that partitions the stomach from the esophagus and guards against pathological gastroesophageal reflux (GER) (Mittal et al., Gastroenterology 1995, 109, 601-610, which is incorporated herein by reference in its entirety).
- GER gastroesophageal reflux
- TLESRs Gastric distension and elevation of serum cholecystokinin (CCK) after eating increases the frequency of TLESRs and these transient relaxations are important pathophysiologically as they occur more frequently in patients with gastroesophageal reflux disease (GERD). TLESRs are believed to account for virtually all reflux episodes in healthy individuals and most (up to 80%) episodes in patients with GERD (Tonini et al., Drugs. 2004, 64, 347-361, which is incorporated herein by reference in its entirety).
- GERD gastroesophageal reflux disease
- GABA B receptor agonists are also useful in promoting alcohol abstinence in alcoholics (Gessa et al., International Publication No. WO 01/26638, which is incorporated herein by reference in its entirety); in promoting smoking cessation (Gessa et al., International Publication No. WO 01/08675, which is incorporated herein by reference in its entirety); in reducing addiction liability of narcotic agents (Robson et al., U.S. Pat. No. 4,126,684, which is incorporated herein by reference in its entirety); in the treatment of emesis (Bountra et al., U.S. Pat. No.
- GABA B receptor agonists such as the zwitterionic 4-aminobutanoic, 3-aminopropylphosphinic, 3-aminopropylphosphonous, and 3-aminopropylsulfinic acids noted above are polar molecules that lack the requisite physicochemical characteristics for effective passive permeability across cellular membranes.
- BBB blood-brain barrier
- baclofen is a substrate for active transport mechanisms shared by neutral ⁇ -amino acids such as leucine, and ⁇ -amino acids such as ⁇ -alanine and taurine (van Bree et al., Pharm. Res. 1988, 5, 369-371; Cercos-Fortea et al., Biopharm. Drug. Disp. 1995, 16, 563-577; Deguchi et al., Pharm. Res. 1995, 12, 1838-1844; and Moll-Navarro et al., J. Pharm. Sci. 1996, 85, 1248-1254), each of which is incorporated herein by reference in its entirety.
- 3-Aminopropylsulfinic acids are also likely to exploit related active transport mechanisms to permeate the gastrointestinal (GI) mucosa following oral administration.
- baclofen and other zwitterionic GABA B receptor agonists are their rapid clearance from the systemic circulation, which leads to the necessity for frequent dosing in humans (e.g. three or four times daily) (see Bowery, supra; “Commercial and Pipeline Perspectives: Upper GI Disorders,” Data Monitor Report, September 2004, p. 147).
- Sustained released oral dosage formulations are a conventional solution to the problem of rapid systemic drug clearance, as is well known in the art (see, e.g., “Remington's Pharmaceutical Sciences,” Lippincott Williams & Wilkins, 21st Edition, 2005).
- Osmotic delivery systems are also recognized methods for sustained drug delivery (see, e.g., Verma et al., Drug Dev.
- acyloxyalkyl carbamate prodrugs of 3-aminopropylsulfinic acid and analogs thereof pharmaceutical compositions of acyloxyalkyl carbamate prodrugs of 3-aminopropylsulfinic acid and analogs thereof, methods of making acyloxyalkyl carbamate prodrugs of 3-aminopropylsulfinic acid and analogs thereof, and methods of using acyloxyalkyl carbamate prodrugs of 3-aminopropylsulfinic acid and analogs thereof and/or pharmaceutical compositions thereof to treat various medical disorders.
- a first aspect provides a compound of Formula (I):
- R 1 is selected from acyl, substituted acyl, alkyl, substituted alkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, cycloalkyl, substituted cycloalkyl, cycloheteroalkyl, substituted cycloheteroalkyl, heteroalkyl, substituted heteroalkyl, heteroaryl, substituted heteroaryl, heteroarylalkyl, and substituted heteroarylalkyl;
- R 2 and R 3 are independently selected from hydrogen, alkyl, substituted alkyl, alkoxycarbonyl, substituted alkoxycarbonyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heteroarylalkyl, and substituted heteroarylalkyl, or R 2 and R 3 together with the carbon atom to which they are bonded form a cycloalkyl, substituted cycloalkyl, cycloheteroalkyl, or substituted cycloheteroalkyl ring;
- R 4 is selected hydrogen, C 1-6 acyl, substituted C 1-6 acyl, C 1-6 alkyl, substituted C 1-6 alkyl, aryl, substituted aryl, C 3-6 cycloalkyl, substituted C 3-6 cycloalkyl, heteroaryl, substituted heteroaryl, C 7-9 phenylalkyl, and substituted C 7-9 phenylalkyl;
- R 5 is selected from hydrogen, hydroxy, mercapto, fluoro, chloro, bromo, oxo, and 4-chlorophenyl;
- R 6 and R 7 are independently selected from hydrogen, C 1-6 alkyl, substituted C 1-6 alkyl, C 1-6 alkoxy, substituted C 1-6 alkoxy, aryl, substituted aryl, C 3-6 cycloalkyl, substituted C 3-6 cycloalkyl, heteroaryl, substituted heteroaryl, C 7-9 phenylalkyl, and substituted C 7-9 phenylalkyl.
- a second aspect provides methods of synthesizing a compound of Formula (I), comprising:
- R 9 and R 10 are independently selected from hydrogen, acylamino, acyloxy, alkoxycarbonylamino, alkoxycarbonyloxy, alkyl, substituted alkyl, alkoxy, substituted alkoxy, aryl, substituted aryl, arylalkyl, carbamoyloxy, dialkylamino, heteroaryl, hydroxy, and sulfonamido, or R 9 and R 10 together with the atoms to which they are bonded form a substituted cycloalkyl, substituted cycloheteroalkyl, or substituted aryl ring; and
- R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , and R 7 are as defined, supra.
- a third aspect provides pharmaceutical compositions comprising at least one compound of Formula (I), or pharmaceutically acceptable salts thereof, or pharmaceutically acceptable solvates of any of the foregoing, and a pharmaceutically acceptable vehicle, such as a diluent, carrier, excipient, or adjuvant.
- a pharmaceutically acceptable vehicle such as a diluent, carrier, excipient, or adjuvant.
- diluent, carrier, excipient and adjuvant will depend upon, among other factors, the desired mode of administration.
- a fourth aspect provides methods of treating or preventing gastroesophageal reflux disease. Methods are also provided for treating or preventing spasticity, alcohol abuse or addiction, nicotine abuse or addiction, narcotics abuse or addiction, emesis, and cough. The methods generally involve administering to a patient in need of such treatment or prevention a therapeutically effective amount of at least one compound of Formula (I) and/or a pharmaceutical composition thereof.
- 1-Acyloxy-alkyl carbamate refers to an N-1-acyloxy-alkoxycarbonyl derivative of 3-aminopropylsulfinic acid or analog thereof as encompassed by compounds of Formula (I).
- Alkyl by itself or as part of another substituent refers to a saturated or unsaturated, branched, straight-chain, or cyclic monovalent hydrocarbon radical derived by the removal of one hydrogen atom from a single carbon atom of a parent alkane, alkene, or alkyne.
- Typical alkyl groups include, but are not limited to, methyl; ethyls such as ethanyl, ethenyl, and ethynyl; propyls such as propan-1-yl, propan-2-yl, cyclopropan-1-yl, prop-1-en-1-yl, prop-1-en-2-yl, prop-2-en-1-yl (allyl), cycloprop-1-en-1-yl; cycloprop-2-en-1-yl, prop-1-yn-1-yl, prop-2-yn-1-yl, etc.; butyls such as butan-1-yl, butan-2-yl, 2-methyl-propan-1-yl, 2-methyl-propan-2-yl, cyclobutan-1-yl, but-1-en-1-yl, but-1-en-2-yl, 2-methyl-prop-1-en-1-yl, but-2-en-2-yl, buta-1
- alkyl is specifically intended to include groups having any degree or level of saturation, i.e., groups having exclusively single carbon-carbon bonds, groups having one or more double carbon-carbon bonds, groups having one or more triple carbon-carbon bonds, and groups having mixtures of single, double, and triple carbon-carbon bonds. Where a specific level of saturation is intended, the expressions “alkanyl,” “alkenyl,” and “alkynyl” are used.
- an alkyl group comprises from 1 to 20 carbon atoms, in certain embodiments, from 1 to 10 carbon atoms, and in certain embodiments, from 1 to 6 carbon atoms.
- alkanyl by itself or as part of another substituent refers to a saturated branched, straight-chain, or cyclic alkyl radical derived by the removal of one hydrogen atom from a single carbon atom of a parent alkane.
- alkanyl groups include, but are not limited to, methanyl; ethanyl; propanyls such as propan-1-yl, propan-2-yl (isopropyl), cyclopropan-1-yl, etc.; butanyls such as butan-1-yl, butan-2-yl (sec-butyl), 2-methyl-propan-1-yl (isobutyl), 2-methyl-propan-2-yl (t-butyl), cyclobutan-1-yl, etc.; and the like.
- Alkenyl by itself or as part of another substituent refers to an unsaturated branched, straight-chain, or cyclic alkyl radical having at least one carbon-carbon double bond derived by the removal of one hydrogen atom from a single carbon atom of a parent alkene.
- the group may be in either the cis or trans conformation about the double bond(s).
- alkenyl groups include, but are not limited to, ethenyl; propenyls such as prop-1-en-1-yl, prop-1-en-2-yl, prop-2-en-1-yl (allyl), prop-2-en-2-yl, and cycloprop-1-en-1-yl; cycloprop-2-en-1-yl; butenyls such as but-1-en-1-yl, but-1-en-2-yl, 2-methyl-prop-1-en-1-yl, but-2-en-1-yl, but-2-en-1-yl, but-2-en-2-yl, buta-1,3-dien-1-yl, buta-1,3-dien-2-yl, cyclobut-1-en-1-yl, cyclobut-1-en-3-yl, cyclobuta-1,3-dien-1-yl, etc.; and the like.
- Alkynyl by itself or as part of another substituent refers to an unsaturated branched, straight-chain, or cyclic alkyl radical having at least one carbon-carbon triple bond derived by the removal of one hydrogen atom from a single carbon atom of a parent alkyne.
- alkynyl groups include, but are not limited to, ethynyl; propynyls such as prop-1-yn-1-yl, prop-2-yn-1-yl, etc.; butynyls such as but-1-yn-1-yl, but-1-yn-3-yl, but-3-yn-1-yl, etc.; and the like.
- “Acyl” by itself or as part of another substituent refers to a radical —C(O)R 30 , where R 30 is hydrogen, alkyl, cycloalkyl, cycloheteroalkyl, aryl, arylalkyl, heteroalkyl, heteroaryl, or heteroarylalkyl as defined herein. Examples include, but are not limited to formyl, acetyl, cyclohexylcarbonyl, cyclohexylmethylcarbonyl, benzoyl, benzylcarbonyl, and the like.
- Alkoxy by itself or as part of another substituent refers to a radical —OR 31 where R 31 represents an alkyl or cycloalkyl group as defined herein. Examples include, but are not limited to, methoxy, ethoxy, propoxy, butoxy, cyclohexyloxy, and the like.
- Alkoxycarbonyl by itself or as part of another substituent refers to a radical —C(O)OR 31 where R 31 represents an alkyl or cycloalkyl group as defined herein. Examples include, but are not limited to, methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, butoxycarbonyl, cyclohexyloxycarbonyl, and the like.
- 3-Aminopropylsulfinic acid analog refers to a compound of Formula (II):
- R 4 is selected from hydrogen, C 1-6 acyl, substituted C 1-6 acyl, C 1-6 alkyl, substituted C 1-6 alkyl, aryl, substituted aryl, C 3-6 cycloalkyl, substituted C 3-6 cycloalkyl, heteroaryl, substituted heteroaryl, C 7-9 phenylalkyl, and substituted C 7-9 phenylalkyl.
- R 5 is selected from hydrogen, hydroxy, mercapto, fluoro, chloro, bromo, oxo, and 4-chlorophenyl;
- R 6 and R 7 are independently selected from hydrogen, C 1-6 alkyl, substituted C 1-6 alkyl, C 1-6 alkoxy, substituted C 1-6 alkoxy, aryl, substituted aryl, C 3-6 cycloalkyl, substituted C 3-6 cycloalkyl, heteroaryl, substituted heteroaryl, C 7-9 phenylalkyl, and substituted C 7-9 phenylalkyl.
- R 5 is an oxo group the bond between R 5 and the carbon to which it is bonded is a double bond.
- Aryl by itself or as part of another substituent refers to a monovalent aromatic hydrocarbon radical derived by the removal of one hydrogen atom from a single carbon atom of a parent aromatic ring system.
- aryl groups include, but are not limited to, groups derived from aceanthrylene, acenaphthylene, acephenanthrylene, anthracene, azulene, benzene, chrysene, coronene, fluoranthene, fluorene, hexacene, hexaphene, hexalene, as-indacene, s-indacene, indane, indene, naphthalene, octacene, octaphene, octalene, ovalene, penta-2,4-diene, pentacene, pentalene, pentaphene, perylene, phenalene, phenanthrene, picene
- Arylalkyl by itself or as part of another substituent refers to an acyclic alkyl radical in which one of the hydrogen atoms bonded to a carbon atom, typically a terminal or sp 3 carbon atom, is replaced with an aryl group.
- Typical arylalkyl groups include, but are not limited to, benzyl, 2-phenylethan-1-yl, 2-phenylethen-1-yl, naphthylmethyl, 2-naphthylethan-1-yl, 2-naphthylethen-1-yl, naphthobenzyl, 2-naphthophenylethan-1-yl, and the like.
- an arylalkyl group is C 7-30 arylalkyl, e.g., the alkanyl, alkenyl, or alkynyl moiety of the arylalkyl group is C 1-10 and the aryl moiety is C 6-20 , and in certain embodiments, an arylalkyl group is C 7-20 arylalkyl, e.g., the alkanyl, alkenyl, or alkynyl moiety of the arylalkyl group is C 1- 8 and the aryl moiety is C 6-12 .
- AUC is the area under a curve representing the concentration of a compound or metabolite thereof in a biological fluid in a patient as a function of time following administration of the compound to the patient.
- the compound can be a prodrug and the metabolite can be a drug.
- biological fluids include plasma and blood.
- the AUC can be determined by measuring the concentration of a compound or metabolite thereof in a biological fluid such as the plasma or blood using methods such as liquid chromatography-tandem mass spectrometry (LC/MS/MS), at various time intervals, and calculating the area under the plasma concentration-versus-time curve. Suitable methods for calculating the AUC from a drug concentration-versus-time curve are well known in the art.
- an AUC for 3-aminopropylsulfinic acid or analogs thereof can be determined by measuring the concentration of 3-aminopropylsulfinic acid or analogs thereof in the plasma or blood of a patient following oral administration of a compound of Formula (I) to the patient.
- Bioavailability refers to the rate and amount of a drug that reaches the systemic circulation of a patient following administration of the drug or prodrug thereof to the patient and can be determined by evaluating, for example, the plasma or blood concentration-versus-time profile for the drug. Parameters useful in characterizing a plasma or blood concentration-versus-time curve include the area under the curve (AUC), the time to peak concentration (T max ), and the maximum drug concentration (C max ).
- Bioequivalence refers to equivalence of the rate and extent of absorption of a drug after administration of equal doses of the drug or prodrug to a patient.
- two plasma or blood concentration profiles are bioequivalent if the 90% confidence interval for the ratio of the mean response of the two profiles is within the limits of 0.8 and 1.25.
- the mean response includes at least one of the characteristic parameters of a profile such as C max , T max , and AUC.
- C max is the maximum concentration of a drug in the plasma or blood of a patient following administration of a dose of the drug or prodrug to the patient.
- T max is the time to the maximum concentration (C max ) of a drug in the plasma or blood of a patient following administration of a dose of the drug or prodrug to the patient.
- Compounds of the present disclosure refers to compounds encompassed by structural Formula (I) and includes specific compounds disclosed herein encompassed by Formula (I). Compounds may be identified either by their chemical structure and/or chemical name. When the chemical structure and chemical name conflict, the chemical structure is determinative of the identity of the compound.
- the compounds described herein may contain one or more chiral centers and/or double bonds and therefore, may exist as stereoisomers, such as double-bond isomers (i.e., geometric isomers), enantiomers, or diastereomers.
- the chemical structures disclosed herein encompass all possible enantiomers and stereoisomers of the illustrated compounds including the stereoisomerically pure form (e.g., geometrically pure, enantiomerically pure, or diastereomerically pure) and enantiomeric and stereoisomeric mixtures.
- Enantiomeric and stereoisomeric mixtures can be resolved into their component enantiomers or stereoisomers using separation techniques or chiral synthesis techniques well known to the skilled artisan.
- the compounds may also exist in several tautomeric forms including the enol form, the keto form, and mixtures thereof. Accordingly, the chemical structures depicted herein encompass all possible tautomeric forms of the illustrated compounds.
- the disclosed compounds also include isotopically labeled compounds where one or more atoms have an atomic mass different from the atomic mass conventionally found in nature.
- isotopes that may be incorporated into the compounds of the present disclosure include, but are not limited to, 2 H, 3 H, 11 C, 13 C, 14 C, 15 N, 18 O, 17 O, etc.
- Compounds may exist in unsolvated forms as well as solvated forms, including hydrated forms and as N-oxides. In general, compounds may be hydrated, solvated, or N-oxides. Certain compounds may exist in multiple crystalline or amorphous forms. In general, all physical forms are equivalent for the uses contemplated herein and are intended to be within the scope of the present disclosure. Further, when partial structures of the compounds are illustrated, brackets indicate the point of attachment of the partial structure to the rest of the molecule.
- “Corresponding prodrug of 3-aminopropylsulfinic acid or analog thereof” refers to a compound of Formula (I) having the same R 4 , R 5 , R 6 , and R 7 substituents as the 3-aminopropylsulfinic acid or analog thereof of Formula (II).
- the “corresponding 3-aminopropylsulfinic acid or analog thereof” refers to a compound of Formula (II) having the same R 4 , R 5 , R 6 , and R 7 substituents as the prodrug of 3-aminopropylsulfinic acid or analog thereof of Formula (I).
- a compound of Formula (II) can have one or more corresponding prodrugs of Formula (I).
- a prodrug of Formula (I) has a single corresponding 3-aminopropylsulfinic acid or analog thereof of Formula (II).
- Cycloalkoxycarbonyl by itself or as part of another substituent refers to a radical —C(O)OR 36 where R 36 represents an cycloalkyl group as defined herein. Representative examples include, but are not limited to, cyclobutyloxycarbonyl, cyclohexyloxycarbonyl, and the like.
- Cycloalkyl by itself or as part of another substituent refers to a saturated or unsaturated cyclic alkyl radical. Where a specific level of saturation is intended, the nomenclature “cycloalkanyl” or “cycloalkenyl” is used. Examples of cycloalkyl groups include, but are not limited to, groups derived from cyclopropane, cyclobutane, cyclopentane, cyclohexane, and the like. In certain embodiments, a cycloalkyl group is C 3-10 cycloalkyl, and in certain embodiments, C 3-7 cycloalkyl.
- “Cycloheteroalkyl” by itself or as part of another substituent refers to a saturated or unsaturated cyclic alkyl radical in which one or more carbon atoms (and any associated hydrogen atoms) are independently replaced with the same or different heteroatom.
- heteroatoms to replace a carbon atom(s) include, but are not limited to, N, P, O, S, Si, etc. Where a specific level of saturation is intended, the nomenclature “cycloheteroalkanyl” or “cycloheteroalkenyl” is used.
- Cycloheteroalkyl groups include, but are not limited to, groups derived from epoxides, azirines, thiiranes, imidazolidine, morpholine, piperazine, piperidine, pyrazolidine, pyrrolidine, quinuclidine, and the like.
- Heteroalkyl, heteroalkanyl, heteroalkenyl, and heteroalkynyl by themselves or as part of another substituent refer to alkyl, alkanyl, alkenyl, and alkynyl groups, respectively, in which one or more of the carbon atoms (and any associated hydrogen atoms) are independently replaced with the same or different heteroatomic groups.
- heteroatomic groups which can be included in these groups include, but are not limited to, —O—, —S—, —O—O—, —S—S—, —O—S—, —NR 37 R 38 —, ⁇ N—N ⁇ , —N ⁇ N—, —N ⁇ N—NR 39 R 40 , —PR 41 —, —P(O) 2 —, —POR 42 —, —O—P(O) 2 —SO—, —SO 2 —, —SnR 43 R 44 —, and the like, where R 37 , R 38 , R 39 , R 40 , R 41 , R 42 , R 43 , and R 44 are independently selected from hydrogen, alkyl, substituted alkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, cycloalkyl, substituted cycloalkyl, cycloheteroalkyl, substituted cyclohetero
- Heteroaryl by itself or as part of another substituent, refers to a monovalent heteroaromatic radical derived by the removal of one hydrogen atom from a single atom of a parent heteroaromatic ring system.
- heteroaryl groups include, but are not limited to, groups derived from acridine, arsindole, carbazole, ⁇ -carboline, chromane, chromene, cinnoline, furan, imidazole, indazole, indole, indoline, indolizine, isobenzofuran, isochromene, isoindole, isoindoline, isoquinoline, isothiazole, isoxazole, naphthyridine, oxadiazole, oxazole, perimidine, phenanthridine, phenanthroline, phenazine, phthalazine, pteridine, purine, pyran, pyrazine,
- a heteroaryl group is from 5-20 membered heteroaryl, and in certain embodiments from 5-10 membered heteroaryl.
- a heteroaryl group is derived from thiophene, pyrrole, benzothiophene, benzofuran, indole, pyridine, quinoline, imidazole, oxazole, and pyrazine.
- Heteroarylalkyl by itself or as part of another substituent refers to an acyclic alkyl radical in which one of the hydrogen atoms bonded to a carbon atom, typically a terminal or sp 3 carbon atom, is replaced with a heteroaryl group. Where specific alkyl moieties are intended, the nomenclature heteroarylalkanyl, heteroarylalkenyl, and/or heterorylalkynyl is used.
- a heteroarylalkyl group is a 6-30 membered heteroarylalkyl, e.g., the alkanyl, alkenyl, or alkynyl moiety of the heteroarylalkyl is 1-10 membered and the heteroaryl moiety is a 5-20-membered heteroaryl, and in certain embodiments, a 6-20 membered heteroarylalkyl, e.g., the alkanyl, alkenyl, or alkynyl moiety of the heteroarylalkyl is 1-8 membered and the heteroaryl moiety is a 5-12-membered heteroaryl.
- Parent aromatic ring system refers to an unsaturated cyclic or polycyclic ring system having a conjugated ⁇ electron system.
- parent aromatic ring system fused ring systems in which one or more of the rings are aromatic and one or more of the rings are saturated or unsaturated, such as, for example, fluorene, indane, indene, phenalene, etc.
- parent aromatic ring systems include, but are not limited to, aceanthrylene, acenaphthylene, acephenanthrylene, anthracene, azulene, benzene, chrysene, coronene, fluoranthene, fluorene, hexacene, hexaphene, hexalene, as-indacene, s-indacene, indane, indene, naphthalene, octacene, octaphene, octalene, ovalene, penta-2,4-diene, pentacene, pentalene, pentaphene, perylene, phenalene, phenanthrene, picene, pleiadene, pyrene, pyranthrene, rubicene, triphenylene, trinaphthalene, and the like.
- Parent heteroaromatic ring system refers to a parent aromatic ring system in which one or more carbon atoms (and any associated hydrogen atoms) are independently replaced with the same or different heteroatom.
- heteroatoms to replace the carbon atoms include, but are not limited to, N, P, O, S, Si, etc.
- fused ring systems in which one or more of the rings are aromatic and one or more of the rings are saturated or unsaturated, such as, for example, arsindole, benzodioxan, benzofuran, chromane, chromene, indole, indoline, xanthene, etc.
- parent heteroaromatic ring systems include, but are not limited to, arsindole, carbazole, ⁇ -carboline, chromane, chromene, cinnoline, furan, imidazole, indazole, indole, indoline, indolizine, isobenzofuran, isochromene, isoindole, isoindoline, isoquinoline, isothiazole, isoxazole, naphthyridine, oxadiazole, oxazole, perimidine, phenanthridine, phenanthroline, phenazine, phthalazine, pteridine, purine, pyran, pyrazine, pyrazole, pyridazine, pyridine, pyrimidine, pyrrole, pyrrolizine, quinazoline, quinoline, quinolizine, quinoxaline, tetrazole, thiadia
- Patient refers to a mammal, for example, a human.
- “Pharmaceutically acceptable” refers to approved or approvable by a regulatory agency of the Federal or state government or listed in the U.S. Pharmacopoeia or other generally recognized pharmacopoeia for use in animals and more particularly in humans.
- “Pharmaceutically acceptable salt” refers to a salt of a compound, which possesses the desired pharmacological activity of the parent compound.
- Such salts include: (1) acid addition salts, formed with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like; or formed with organic acids such as acetic acid, propionic acid, hexanoic acid, cyclopentanepropionic acid, glycolic acid, pyruvic acid, lactic acid, malonic acid, succinic acid, malic acid, maleic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, 3-(4-hydroxybenzoyl) benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, 1,2-ethane-disulfonic acid, 2-hydroxyethanesulfonic acid, benzenesulfonic acid, 4-
- “Pharmaceutically acceptable vehicle” refers to a diluent, adjuvant, excipient, or carrier with which a compound is administered.
- “Pharmaceutical composition” refers to at least one compound and at least one pharmaceutically acceptable vehicle, with which the compound is administered to a patient.
- Preventing refers to a reduction in risk of acquiring a disease or disorder (i.e., causing at least one of the clinical symptoms of the disease not to develop in a patient that may be exposed to or predisposed to the disease but does not yet experience or display symptoms of the disease).
- Prodrug refers to a derivative of a drug molecule that requires a transformation within the body to release the active drug.
- Compounds of Formula (I) are prodrugs that can be metabolized within a patient's body to form the corresponding parent drug, 3-aminopropylsulfinic acid or analogs thereof having Formula (II), and hence compounds of Formula (I) are prodrugs of the corresponding 3-aminopropylsulfinic acid or analogs thereof having Formula (II).
- Compounds of Formula (I) include pharmaceutically acceptable salts thereof, or pharmaceutically acceptable solvates of the free acid form of any of the foregoing, as well as crystalline forms of any of the foregoing. Prodrugs are frequently, although not necessarily, pharmacologically inactive until converted to the parent drug.
- “Promoiety” refers to a form of protecting group that when used to mask a functional group within a drug molecule converts the drug into a prodrug. Typically, the promoiety will be attached to the drug via bond(s) that are cleaved by enzymatic or non-enzymatic means in vivo.
- Protecting group refers to a grouping of atoms, which when bonded to a reactive functional group in a molecule masks, reduces, or prevents reactivity of the functional group. Examples of protecting groups can be found in Green et al., “Protective Groups in Organic Chemistry”, (Wiley, 2 nd ed. 1991) and Harrison et al., “Compendium of Synthetic Organic Methods”, Vols. 1-8 (John Wiley and Sons, 1971-1996).
- amino protecting groups include, but are not limited to, formyl, acetyl, trifluoroacetyl, benzyl, benzyloxycarbonyl (CBZ), tert-butoxycarbonyl (Boc), trimethylsilyl (TMS), 2-trimethylsilyl-ethanesulfonyl (SES), trityl and substituted trityl groups, allyloxycarbonyl, 9-fluorenylmethyloxycarbonyl (FMOC), nitro-veratryloxycarbonyl (NVOC), and the like.
- hydroxy protecting groups include, but are not limited to, those where the hydroxy group is either acylated or alkylated such as benzyl, and trityl ethers as well as alkyl ethers, tetrahydropyranyl ethers, trialkylsilyl ethers, and allyl ethers.
- solvent molecules refers to a molecular complex of a compound with one or more solvent molecules in a stoichiometric or non-stoichiometric amount.
- solvent molecules are those commonly used in the pharmaceutical art, which are known to be innocuous to a recipient, e.g., water, ethanol, and the like.
- a molecular complex of a compound or moiety of a compound and a solvent can be stabilized by non-covalent intra-molecular forces such as, for example, electrostatic forces, van der Waals forces, or hydrogen bonds.
- hydrate refers to a complex where the one or more solvent molecules are water.
- Stepoisomers refers to isomers that differ in the arrangement of the constituent atoms in space, and includes enantiomers and diastereomers. Stereoisomers that are mirror images of each other and optically active are termed “enantiomers,” and stereoisomers that are not mirror images of one another are termed “diastereoisomers.”
- sustained release refers to release of a compound of Formula (I) from a dosage form at a rate effective to achieve a therapeutic or prophylactic concentration of the compound of Formula (I), or active metabolite thereof, in the systemic blood circulation over a prolonged period of time relative to that achieved by oral administration of an immediate release formulation of the compound of Formula (I).
- release of a compound of Formula (I) occurs over a period of at least about 4 hours, such as at least about 8 hours, in some embodiments, at least about 12 hours, at least about 16 hours, at least about 20 hours, and in some embodiments, at least about 24 hours.
- substantially one diastereomer refers to a compound containing two or more stereogenic centers such that the diastereomeric excess (d.e.) of the compound is at least about 90%.
- the diastereomeric excess is the ratio of the percentage of one diastereomer in a mixture to that of another diastereomer.
- the diastereomeric excess is, for example, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99%.
- “Substituted” refers to a group in which one or more hydrogen atoms are independently replaced with the same or different substituent(s).
- Typical substituents include, but are not limited to, -M, -R 60 , —O ⁇ , ⁇ O, —OR 60 , —SR 60 , —S ⁇ , ⁇ S, —NR 60 R 61 , ⁇ NR 60 , —CF 3 , —CN, —OCN, —SCN, —NO, —NO 2 , ⁇ N 2 , —N 3 , —S(O) 2 O ⁇ , —S(O) 2 OH, —S(O) 2 R 60 , —OS(O 2 )O ⁇ , —OS(O) 2 R 60 , —P(O)(O ⁇ ) 2 , —P(O)(OR 60 )(O ⁇ ), —OP(O)(OR 60 )(OR
- substituents include -M, -R 60 , ⁇ O, —OR 60 , —SR 60 , —S ⁇ , ⁇ S, —NR 60 R 61 , ⁇ NR 60 , —CF 3 , —CN, —OCN, —SCN, —NO, —NO 2 , ⁇ N 2 , —N 3 , —S(O) 2 R 60 , —OS(O 2 )O ⁇ , —OS(O) 2 R 60 , —P(O)(O ⁇ ) 2 , —P(O)(OR 60 )(O ⁇ ), —OP(O)(OR 60 )(OR 61 ), —C(O)R 60 , —C(S)R 60 , —C(O)OR 60 , —C(O)NR 60 R 61 , —C(O)O ⁇ , and —NR 62 C(O)NR 60 R
- Treating” or “treatment” of any disease or disorder refers, in some embodiments, to ameliorating at least one disease or disorder (i.e., arresting or reducing the development of the disease or at least one of the clinical symptoms thereof). In certain embodiments “treating” or “treatment” refers to ameliorating at least one physical parameter, which may or may not be discernible by the patient. In certain embodiments, “treating” or “treatment” refers to inhibiting the disease or disorder, either physically, (e.g., stabilization of a discernible symptom), physiologically, (e.g., stabilization of a physical parameter), or both. In certain embodiments, “treating” or “treatment” refers to delaying the onset of the disease or disorder.
- “Therapeutically effective amount” means the amount of compound that, when administered to a patient for treating or preventing a disease, is sufficient to effect such treatment or prevention of the disease.
- the “therapeutically effective amount” will vary depending on the compound, the disease and its severity, and the age, weight, etc., of the patient having the disease to be treated or prevented.
- R 1 is selected from acyl, substituted acyl, alkyl, substituted alkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, cycloalkyl, substituted cycloalkyl, cycloheteroalkyl, substituted cycloheteroalkyl, heteroalkyl, substituted heteroalkyl, heteroaryl, substituted heteroaryl, heteroarylalkyl, and substituted heteroarylalkyl;
- R 2 and R 3 are independently selected from hydrogen, alkyl, substituted alkyl, alkoxycarbonyl, substituted alkoxycarbonyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heteroarylalkyl, and substituted heteroarylalkyl, or R 2 and R 3 together with the carbon atom to which they are bonded form a cycloalkyl, substituted cycloalkyl, cycloheteroalkyl, or substituted cycloheteroalkyl ring;
- R 4 is selected from hydrogen, C 1-6 acyl, substituted C 1-6 acyl, C 1-6 alkyl, substituted C 1-6 alkyl, aryl, substituted aryl, C 3-6 cycloalkyl, substituted C 3-6 cycloalkyl, heteroaryl, substituted heteroaryl, C 7-9 phenylalkyl, and substituted C 7-9 phenylalkyl;
- R 5 is selected from hydrogen, hydroxy, mercapto, fluoro, chloro, bromo, oxo, and 4-chlorophenyl;
- R 6 and R 7 are independently selected from hydrogen, C 1-6 alkyl, substituted C 1-6 alkyl, C 1-6 alkoxy, substituted C 1-6 alkoxy, aryl, substituted aryl, C 3-6 cycloalkyl, substituted C 3-6 cycloalkyl, heteroaryl, substituted heteroaryl, C 7-9 phenylalkyl, and substituted C 7-9 phenylalkyl.
- R 5 is an oxo group the bond between R 5 and the carbon to which it is bonded is a double bond.
- each of R 4 , R 6 , and R 7 are hydrogen.
- R 5 is selected from hydrogen, hydroxy, fluoro, oxo, and 4-chlorophenyl. In certain embodiments, R 5 is selected from hydrogen, hydroxy, fluoro, oxo, and 4-chlorophenyl, and each of R 4 , R 6 , and R 7 is hydrogen.
- the carbon to which R 5 is attached is of the R configuration. In certain embodiments of compounds of Formula (I), the carbon to which R 5 is attached is of the S configuration.
- R 5 is selected from hydrogen, hydroxy, fluoro, oxo, and 4-chlorophenyl, and each of R 4 , R 6 , and R 7 is hydrogen.
- R 5 is hydrogen, and each of R 4 , R 6 , and R 7 is hydrogen.
- R 5 is oxo, and each of R 4 , R 6 , and R 7 is hydrogen.
- R 5 is hydroxy, and each of R 4 , R 6 , and R 7 is hydrogen.
- R 5 is hydroxy, and each of R 4 , R 6 , and R 7 is hydrogen, and the carbon to which R 5 is bonded is of the R configuration.
- R 5 is hydroxy, and each of R 4 , R 6 , and R 7 is hydrogen, and the carbon to which R 5 is bonded is of the S configuration.
- R 5 is fluoro, and each of R 4 , R 6 , and R 7 is hydrogen.
- R 5 is fluoro, and each of R 4 , R 6 , and R 7 is hydrogen, and the carbon to which R 5 is bonded is of the R configuration.
- R 5 is fluoro, and each of R 4 , R 6 , and R 7 is hydrogen, and the carbon to which R 5 is bonded is of the S configuration.
- R 5 is 4-chlorophenyl, and each of R 4 , R 6 , and R 7 is hydrogen. In certain embodiments, R 5 is 4-chlorophenyl, and each of R 4 , R 6 , and R 7 is hydrogen, and the carbon to which R 5 is bonded is of the R configuration. In certain embodiments, R 5 is 4-chlorophenyl, and each of R 4 , R 6 , and R 7 is hydrogen, and the carbon to which R 5 is bonded is of the S configuration.
- R 1 is selected from C 1-6 alkyl, substituted C 1-6 alkyl, C 3-6 cycloalkyl, phenyl, substituted phenyl, C 7-9 phenylalky, and pyridyl.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, sec-pentyl, neopentyl, 1,1-dimethoxyethyl, 1,1-diethoxyethyl, phenyl, 4-methoxyphenyl, benzyl, phenethyl, styryl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, 2-pyridyl, 3-pyridyl, and 4-pyridyl.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, sec-pentyl, neopentyl, 1,1-diethoxyethyl, phenyl, cyclohexyl, and 3-pyridyl.
- R 2 and R 3 are independently selected from hydrogen, alkyl, substituted alkyl, alkoxycarbonyl, substituted alkoxycarbonyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, carbamoyl, cycloalkyl, substituted cycloalkyl, cycloalkoxycarbonyl, substituted cycloalkoxycarbonyl, heteroaryl, substituted heteroaryl, heteroarylalkyl, and substituted heteroarylalkyl.
- R 2 and R 3 are independently selected from hydrogen, C 1-4 alkyl, substituted C 1-4 alkyl, C 1-4 alkoxycarbonyl, C 3-6 cycloalkyl, C 3-6 cycloalkoxycarbonyl, phenyl, substituted phenyl, C 7-9 phenylalkyl, and pyridyl.
- R 2 and R 3 are independently selected from hydrogen, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, cyclopentyl, cyclohexyl, methoxycarbonyl, ethoxycarbonyl, isopropoxycarbonyl, cyclohexyloxycarbonyl, phenyl, benzyl, phenethyl, 2-pyridyl, 3-pyridyl, and 4-pyridyl.
- R 2 is selected from hydrogen, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, cyclopentyl, cyclohexyl, methoxycarbonyl, ethoxycarbonyl, isopropoxycarbonyl, cyclohexyloxycarbonyl, phenyl, benzyl, phenethyl, 2-pyridyl, 3-pyridyl, and 4-pyridyl, and R 3 is hydrogen.
- R 2 is selected from hydrogen, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, phenyl, and cyclohexyl, and R 3 is hydrogen.
- R 2 is selected from methyl, methoxycarbonyl, ethoxycarbonyl, isopropoxycarbonyl, and cyclohexyloxycarbonyl, and R 3 is methyl.
- R 2 and R 3 together with the carbon atom to which they are bonded form a cycloalkyl, substituted cycloalkyl, cycloheteroalkyl, or substituted cycloheteroalkyl ring. In certain embodiments of compounds of Formula (I), R 2 and R 3 together with the carbon atom to which they are bonded form a cyclobutyl, cyclopentyl, or cyclohexyl ring.
- R 1 is selected from C 1-6 alkyl, substituted C 1-6 alkyl, C 3-6 cycloalkyl, phenyl, substituted phenyl, C 7-9 phenylalkyl, and pyridyl
- R 2 and R 3 are independently selected from hydrogen, C 1-4 alkyl, substituted C 1-4 alkyl, C 1-4 alkoxycarbonyl, C 3-6 cycloalkyl, C 3-6 cycloalkoxycarbonyl, phenyl, substituted phenyl, C 7-9 phenylalkyl, and pyridyl.
- R 2 and R 3 are independently selected from hydrogen, C 1-4 alkyl, substituted C 1-4 alkyl, C 1-4 alkoxycarbonyl, C 3-6 cycloalkyl, C 3-6 cycloalkoxycarbonyl, phenyl, substituted phenyl, C 7-9 phenylalkyl, and pyridyl
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, sec-pentyl, neopentyl, 1,1-dimethoxyethyl, 1,1-diethoxyethyl, phenyl, 4-methoxyphenyl, benzyl, phenethyl, styryl, cyclopropyl, cyclobutyl, cyclopentyl,
- R 1 is selected from C 1-6 alkyl, substituted C 1-6 alkyl, C 3-6 cycloalkyl, phenyl, substituted phenyl, C 7-9 phenylalkyl, and pyridyl
- R 2 and R 3 are independently selected from hydrogen, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, cyclopentyl, cyclohexyl, methoxycarbonyl, ethoxycarbonyl, isopropoxycarbonyl, cyclohexyloxycarbonyl, phenyl, benzyl, phenethyl, 2-pyridyl, 3-pyridyl, and 4-pyridyl.
- R 2 and R 3 are independently selected from hydrogen, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, cyclopentyl, cyclohexyl, methoxycarbonyl, ethoxycarbonyl, isopropoxycarbonyl, cyclohexyloxycarbonyl, phenyl, benzyl, phenethyl, 2-pyridyl, 3-pyridyl, and 4-pyridyl
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, sec-pentyl, neopentyl, 1,1-dimethoxyethyl, 1,1-die
- R 1 is selected from C 1-6 alkyl, substituted C 1-6 alkyl, C 3-6 cycloalkyl, phenyl, substituted phenyl, C 7-9 phenylalkyl, and pyridyl
- R 2 is selected from hydrogen, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, phenyl, and cyclohexyl
- R 3 is hydrogen.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, sec-pentyl, neopentyl, 1,1-dimethoxyethyl, 1,1-diethoxyethyl, phenyl, 4-methoxyphenyl, benzyl, phenethyl, styryl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, 2-pyridyl, 3-pyridyl, and 4-pyridyl
- R 2 is selected from hydrogen, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, phenyl, and cyclohexyl,
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, sec-pentyl, neopentyl, 1,1-diethoxyethyl, phenyl, cyclohexyl, and 3-pyridyl
- R 2 is selected from hydrogen, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, phenyl, and cyclohexyl
- R 3 is hydrogen.
- R 5 is selected from hydrogen, hydroxy, fluoro, oxo, and 4-chlorophenyl
- each of R 4 , R 6 , and R 7 is hydrogen.
- R 1 is selected from C 1-6 alkyl, substituted C 1-6 alkyl, C 3-6 cycloalkyl, phenyl, substituted phenyl, C 7-9 phenylalkyl, and pyridyl
- R 2 is selected from methyl, methoxycarbonyl, ethoxycarbonyl, isopropoxy carbonyl, and cyclohexyloxycarbonyl
- R 3 is methyl.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, sec-pentyl, neopentyl, 1,1-dimethoxyethyl, 1,1-diethoxyethyl, phenyl, 4-methoxyphenyl, benzyl, phenethyl, styryl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, 2-pyridyl, 3-pyridyl, and 4-pyridyl, R 2 is selected from methyl, methoxycarbonyl, ethoxycarbonyl, isopropoxy carbonyl, and cyclohexyloxycarbonyl, and R 3 is methyl.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, sec-pentyl, neopentyl, 1,1-diethoxyethyl, phenyl, cyclohexyl, and 3-pyridyl
- R 2 is selected from methyl, methoxycarbonyl, ethoxycarbonyl, isopropoxy carbonyl, and cyclohexyloxycarbonyl
- R 3 is methyl.
- R 5 is selected from hydrogen, hydroxy, fluoro, oxo, and 4-chlorophenyl
- each of R 4 , R 6 , and R 7 is hydrogen.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, sec-pentyl, neopentyl, 1,1-diethoxyethyl, phenyl, cyclohexyl, 2-pyridyl, 3-pyridyl, and 4-pyridyl
- R 2 is selected from hydrogen, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, phenyl, and cyclohexyl
- R 3 is hydrogen
- R 5 is hydrogen
- each of R 4 , R 6 , and R 7 is hydrogen.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, sec-pentyl, neopentyl, 1,1-diethoxyethyl, phenyl, cyclohexyl, 2-pyridyl, 3-pyridyl, and 4-pyridyl
- R 2 is selected from hydrogen, methyl, n-propyl, and isopropyl
- R 3 is hydrogen
- R 5 is hydrogen
- each of R 4 , R 6 , and R 7 are i hydrogen.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl
- R 2 is selected from hydrogen, methyl, n-propyl, and isopropyl
- R 3 is hydrogen
- R 5 is hydrogen
- each of R 4 , R 6 , and R 7 is hydrogen.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, sec-pentyl, neopentyl, 1,1-diethoxyethyl, phenyl, cyclohexyl, 2-pyridyl, 3-pyridyl, and 4-pyridyl
- R 2 is selected from methyl, methoxycarbonyl, ethoxycarbonyl, isopropoxycarbonyl, and cyclohexyloxycarbonyl
- R 3 is methyl
- R 5 is hydrogen
- each of R 4 , R 6 , and R 7 is hydrogen.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl
- R 2 is hydrogen
- R 3 is hydrogen
- R 5 is hydrogen
- each of R 4 , R 6 , and R 7 is hydrogen.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl
- R 2 is methyl
- R 3 is hydrogen
- R 5 is hydrogen
- each of R 4 , R 6 , and R 7 is hydrogen.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl
- R 2 is n-propyl
- R 3 is hydrogen
- R 5 is hydrogen
- each of R 4 , R 6 , and R 7 is hydrogen.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl
- R 2 is isopropyl
- R 3 is hydrogen
- R 5 is hydrogen
- each of R 4 , R 6 , and R 7 is hydrogen.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, sec-pentyl, neopentyl, 1,1-diethoxyethyl, phenyl, cyclohexyl, 2-pyridyl, 3-pyridyl, and 4-pyridyl
- R 2 is selected from hydrogen, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, phenyl, and cyclohexyl
- R 3 is hydrogen
- R 5 is hydroxy
- each of R 4 , R 6 , and R 7 is hydrogen.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, sec-pentyl, neopentyl, 1,1-diethoxyethyl, phenyl, cyclohexyl, 2-pyridyl, 3-pyridyl, and 4-pyridyl
- R 2 is selected from hydrogen, methyl, n-propyl, and isopropyl
- R 3 is hydrogen
- R 5 is hydroxy
- each of R 4 , R 6 , and R 7 is hydrogen.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl
- R 2 is selected from hydrogen, methyl, n-propyl, and isopropyl
- R 3 is hydrogen
- R 5 is hydroxy
- each of R 4 , R 6 , and R 7 is hydrogen.
- the carbon to which R 5 is bonded is of the R configuration.
- the carbon to which R 5 is bonded is of the S configuration.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, sec-pentyl, neopentyl, 1,1-diethoxyethyl, phenyl, cyclohexyl, 2-pyridyl, 3-pyridyl, and 4-pyridyl
- R 2 is selected from methyl, methoxycarbonyl, ethoxycarbonyl, isopropoxycarbonyl, and cyclohexyloxycarbonyl
- R 3 is methyl
- R 5 is hydroxy
- each of R 4 , R 6 , and R 7 is hydrogen.
- the carbon to which R 5 is bonded is of the R configuration. In certain of the immediately preceding embodiments of compounds of Formula (I), the carbon to which R 5 is bonded is of the S configuration.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl
- R 2 is hydrogen
- R 3 is hydrogen
- R 5 is hydroxy
- each of R 4 , R 6 , and R 7 is hydrogen.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl
- R 2 is methyl
- R 3 is hydrogen
- R 5 is hydroxy
- each of R 4 , R 6 , and R 7 is hydrogen.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl
- R 2 is selected from n-propyl
- R 3 is hydrogen
- R 5 is hydroxy
- each of R 4 , R 6 , and R 7 is hydrogen.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl
- R 2 is isopropyl
- R 3 is hydrogen
- R 5 is hydroxy
- each of R 4 , R 6 , and R 7 is hydrogen.
- the carbon to which R 5 is bonded is of the R configuration.
- the carbon to which R 5 is bonded is of the S configuration.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, sec-pentyl, neopentyl, 1,1-diethoxyethyl, phenyl, cyclohexyl, 2-pyridyl, 3-pyridyl, and 4-pyridyl
- R 2 is selected from hydrogen, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, phenyl, and cyclohexyl
- R 3 is hydrogen
- R 5 is fluoro
- each of R 4 , R 6 , and R 7 is hydrogen.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, sec-pentyl, neopentyl, 1,1-diethoxyethyl, phenyl, cyclohexyl, 2-pyridyl, 3-pyridyl, and 4-pyridyl
- R 2 is selected from hydrogen, methyl, n-propyl, and isopropyl
- R 3 is hydrogen
- R 5 is fluoro
- each of R 4 , R 6 , and R 7 is hydrogen.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl
- R 2 is selected from hydrogen, methyl, n-propyl, and isopropyl
- R 3 is hydrogen
- R 5 is fluoro
- each of R 4 , R 6 , and R 7 is hydrogen.
- the carbon to which R 5 is bonded is of the R configuration.
- the carbon to which R 5 is bonded is of the S configuration.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, sec-pentyl, neopentyl, 1,1-diethoxyethyl, phenyl, cyclohexyl, 2-pyridyl, 3-pyridyl, and 4-pyridyl
- R 2 is selected from methyl, methoxycarbonyl, ethoxycarbonyl, isopropoxycarbonyl, and cyclohexyloxycarbonyl
- R 3 is methyl
- R 5 is fluoro
- each of R 4 , R 6 , and R 7 is hydrogen.
- the carbon to which R 5 is bonded is of the R configuration.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl
- R 2 is hydrogen
- R 3 is hydrogen
- R 5 is fluoro
- each of R 4 , R 6 , and R 7 is hydrogen.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl
- R 2 is methyl
- R 3 is hydrogen
- R 5 is fluoro
- each of R 4 , R 6 , and R 7 is hydrogen.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl
- R 2 is n-propyl
- R 3 is hydrogen
- R 5 is fluoro
- each of R 4 , R 6 , and R 7 is hydrogen.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl
- R 2 is isopropyl
- R 3 is hydrogen
- R 5 is fluoro
- each of R 4 , R 6 , and R 7 is hydrogen.
- the carbon to which R 5 is bonded is of the R configuration.
- the carbon to which R 5 is bonded is of the S configuration.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, sec-pentyl, neopentyl, 1,1-diethoxyethyl, phenyl, cyclohexyl, 2-pyridyl, 3-pyridyl, and 4-pyridyl
- R 2 is selected from hydrogen, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, phenyl, and cyclohexyl
- R 3 is hydrogen
- R 5 is oxo
- each of R 4 , R 6 , and R 7 is hydrogen.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, sec-pentyl, neopentyl, 1,1-diethoxyethyl, phenyl, cyclohexyl, 2-pyridyl, 3-pyridyl, and 4-pyridyl
- R 2 is selected from hydrogen, methyl, n-propyl, and isopropyl
- R 3 is hydrogen
- R 5 is oxo
- each of R 4 , R 6 , and R 7 is hydrogen.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl
- R 2 is selected from hydrogen, methyl, n-propyl, and isopropyl
- R 3 is hydrogen
- R 5 is oxo
- each of R 4 , R 6 , and R 7 is hydrogen.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, sec-pentyl, neopentyl, 1,1-diethoxyethyl, phenyl, cyclohexyl, 2-pyridyl, 3-pyridyl, and 4-pyridyl
- R 2 is selected from methyl, methoxycarbonyl, ethoxycarbonyl, isopropoxycarbonyl, and cyclohexyloxycarbonyl
- R 3 is methyl
- R 5 is oxo
- each of R 4 , R 6 , and R 7 is hydrogen.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl
- R 2 is hydrogen
- R 3 is hydrogen
- R 5 is oxo
- each of R 4 , R 6 , and R 7 is hydrogen.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl
- R 2 is methyl
- R 3 is hydrogen
- R 5 is oxo
- each of R 4 , R 6 , and R 7 is hydrogen.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl
- R 2 is n-propyl
- R 3 is hydrogen
- R 5 is oxo
- each of R 4 , R 6 , and R 7 is hydrogen.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl
- R 2 is isopropyl
- R 3 is hydrogen
- R 5 is oxo
- each of R 4 , R 6 , and R 7 is hydrogen.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, sec-pentyl, neopentyl, 1,1-diethoxyethyl, phenyl, cyclohexyl, 2-pyridyl, 3-pyridyl, and 4-pyridyl
- R 2 is selected from hydrogen, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, phenyl, and cyclohexyl
- R 3 is hydrogen
- R 5 is 4-chlorophenyl
- each of R 4 , R 6 , and R 7 is hydrogen.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, sec-pentyl, neopentyl, 1,1-diethoxyethyl, phenyl, cyclohexyl, 2-pyridyl, 3-pyridyl, and 4-pyridyl
- R 2 is selected from hydrogen, methyl, n-propyl, and isopropyl
- R 3 is hydrogen
- R 5 is 4-chlorophenyl
- each of R 4 , R 6 , and R 7 is hydrogen.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl
- R 2 is selected from hydrogen, methyl, n-propyl, and isopropyl
- R 3 is hydrogen
- R 5 is 4-chlorophenyl
- each of R 4 , R 6 , and R 7 is hydrogen.
- the carbon to which R 5 is bonded is of the R configuration.
- the carbon to which R 5 is bonded is of the S configuration.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, sec-pentyl, neopentyl, 1,1-diethoxyethyl, phenyl, cyclohexyl, 2-pyridyl, 3-pyridyl, and 4-pyridyl
- R 2 is selected from methyl, methoxycarbonyl, ethoxycarbonyl, isopropoxycarbonyl, and cyclohexyloxycarbonyl
- R 3 is methyl
- R 5 is 4-chlorophenyl
- each of R 4 , R 6 , and R 7 is hydrogen.
- the carbon to which R 5 is bonded is of the R configuration.
- the immediately preceding embodiments of compounds of Formula (I) the carbon to which R 5 is bonded is of the
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl
- R 2 is hydrogen
- R 3 is hydrogen
- R 5 is 4-chlorophenyl
- each of R 4 , R 6 , and R 7 is hydrogen.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl
- R 2 is methyl
- R 3 is hydrogen
- R 5 is 4-chlorophenyl
- each of R 4 , R 6 , and R 7 is hydrogen.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl
- R 2 is n-propyl
- R 3 is hydrogen
- R 5 is 4-chlorophenyl
- each of R 4 , R 6 , and R 7 is hydrogen.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl
- R 2 is isopropyl
- R 3 is hydrogen
- R 5 is 4-chlorophenyl
- each of R 4 , R 6 , and R 7 is hydrogen.
- the carbon to which R 5 is bonded is of the R configuration.
- the carbon to which R 5 is bonded is of the S configuration.
- R 2 and R 3 are different and the compound of Formula (I) is substantially one diastereomer.
- the stereochemistry at the carbon to which R 2 and R 3 are bonded is of the S-configuration and the compound of Formula (I) is substantially one diastereomer.
- the stereochemistry at the carbon to which R 2 and R 3 are bonded is of the R-configuration, and the compound of Formula (I) is substantially one diastereomer.
- R 2 is C 1-4 alkyl
- R 3 is hydrogen and the compound of Formula (I) is substantially one diastereomer.
- R 2 is C 1-4 alkyl
- R 3 is hydrogen
- the stereochemistry at the carbon to which R 2 and R 3 are bonded is of the S-configuration
- the compound of Formula (I) is substantially one diastereomer.
- R 2 is C 1-4 alkyl
- R 3 is hydrogen
- the stereochemistry at the carbon to which R 2 and R 3 are bonded is of the R-configuration
- the compound of Formula (I) is substantially one diastereomer.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl
- R 2 is methyl
- R 3 is hydrogen
- R 5 is hydroxy
- each of R 4 , R 6 , and R 7 is hydrogen
- the stereochemistry at the carbon to which R 2 and R 3 are bonded is of the S-configuration
- the stereochemistry at the carbon to which R 5 is bonded is of the R-configuration
- the compound of Formula (I) is substantially one diastereomer.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl
- R 2 is methyl
- R 3 is hydrogen
- R 5 is hydroxy
- each of R 4 , R 6 , and R 7 is hydrogen
- the stereochemistry at the carbon to which R 2 and R 3 are bonded is of the R-configuration
- the stereochemistry at the carbon to which R 5 is bonded is of the R-configuration
- the compound of Formula (I) is substantially one diastereomer.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl
- R 2 is methyl
- R 3 is hydrogen
- R 5 is hydroxy
- each of R 4 , R 6 , and R 7 is hydrogen
- the stereochemistry at the carbon to which R 2 and R 3 are bonded is of the S-configuration
- the stereochemistry at the carbon to which R 5 is bonded is of the S-configuration
- the compound of Formula (I) is substantially one diastereomer.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl
- R 2 is methyl
- R 3 is hydrogen
- R 5 is hydroxy
- each of R 4 , R 6 , and R 7 is hydrogen
- the stereochemistry at the carbon to which R 2 and R 3 are bonded is of the R-configuration
- the stereochemistry at the carbon to which R 5 is bonded is of the S-configuration
- the compound of Formula (I) is substantially one diastereomer.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl
- R 2 is n-propyl
- R 3 is hydrogen
- R 5 is hydroxy
- each of R 4 , R 6 , and R 7 is hydrogen
- the stereochemistry at the carbon to which R 2 and R 3 are bonded is of the S-configuration
- the stereochemistry at the carbon to which R 5 is bonded is of the R-configuration
- the compound of Formula (I) is substantially one diastereomer.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl
- R 2 is n-propyl
- R 3 is hydrogen
- R 5 is hydroxy
- each of R 4 , R 6 , and R 7 is hydrogen
- the stereochemistry at the carbon to which R 2 and R 3 are bonded is of the R-configuration
- the stereochemistry at the carbon to which R 5 is bonded is of the R-configuration
- the compound of Formula (I) is substantially one diastereomer.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl
- R 2 is n-propyl
- R 3 is hydrogen
- R 5 is hydroxy
- each of R 4 , R 6 , and R 7 is hydrogen
- the stereochemistry at the carbon to which R 2 and R 3 are bonded is of the S-configuration
- the stereochemistry at the carbon to which R 5 is bonded is of the S-configuration
- the compound of Formula (I) is substantially one diastereomer.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl
- R 2 is n-propyl
- R 3 is hydrogen
- R 5 is hydroxy
- each of R 4 , R 6 , and R 7 is hydrogen
- the stereochemistry at the carbon to which R 2 and R 3 are bonded is of the R-configuration
- the stereochemistry at the carbon to which R 5 is bonded is of the S-configuration
- the compound of Formula (I) is substantially one diastereomer.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl
- R 2 is isopropyl
- R 3 is hydrogen
- R 5 is hydroxy
- each of R 4 , R 6 , and R 7 is hydrogen
- the stereochemistry at the carbon to which R 2 and R 3 are bonded is of the S-configuration
- the stereochemistry at the carbon to which R 5 is bonded is of the R-configuration
- the compound of Formula (I) is substantially one diastereomer.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl
- R 2 is isopropyl
- R 3 is hydrogen
- R 5 is hydroxy
- each of R 4 , R 6 , and R 7 is hydrogen
- the stereochemistry at the carbon to which R 2 and R 3 are bonded is of the R-configuration
- the stereochemistry at the carbon to which R 5 is bonded is of the R-configuration
- the compound of Formula (I) is substantially one diastereomer.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl
- R 2 is isopropyl
- R 3 is hydrogen
- R 5 is hydroxy
- each of R 4 , R 6 , and R 7 is hydrogen
- the stereochemistry at the carbon to which R 2 and R 3 are bonded is of the S-configuration
- the stereochemistry at the carbon to which R 5 is bonded is of the S-configuration
- the compound of Formula (I) is substantially one diastereomer.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl
- R 2 is isopropyl
- R 3 is hydrogen
- R 5 is hydroxy
- each of R 4 , R 6 , and R 7 is hydrogen
- the stereochemistry at the carbon to which R 2 and R 3 are bonded is of the R-configuration
- the stereochemistry at the carbon to which R 5 is bonded is of the S-configuration
- the compound of Formula (I) is substantially one diastereomer.
- R 1 is isopropyl
- R 2 is isopropyl
- R 3 is hydrogen
- R 5 is hydroxy
- each of R 4 , R 6 , and R 7 is hydrogen
- the stereochemistry at the carbon to which R 2 and R 3 are bonded is of the S-configuration
- the stereochemistry at the carbon to which R 5 is bonded is of the R-configuration
- the compound of Formula (I) is substantially one diastereomer.
- R 1 is isopropyl
- R 2 is isopropyl
- R 3 is hydrogen
- R 5 is hydroxy
- each of R 4 , R 6 , and R 7 is hydrogen
- the stereochemistry at the carbon to which R 2 and R 3 are bonded is of the R-configuration
- the stereochemistry at the carbon to which R 5 is bonded is of the R-configuration
- the compound of Formula (I) is substantially one diastereomer.
- R 1 is isopropyl
- R 2 is isopropyl
- R 3 is hydrogen
- R 5 is hydroxy
- each of R 4 , R 6 , and R 7 is hydrogen
- the stereochemistry at the carbon to which R 2 and R 3 are bonded is of the S-configuration
- the stereochemistry at the carbon to which R 5 is bonded is of the S-configuration
- the compound of Formula (I) is substantially one diastereomer.
- R 1 is isopropyl
- R 2 is isopropyl
- R 3 is hydrogen
- R 5 is hydroxy
- each of R 4 , R 6 , and R 7 is hydrogen
- the stereochemistry at the carbon to which R 2 and R 3 are bonded is of the R-configuration
- the stereochemistry at the carbon to which R 5 is bonded is of the S-configuration
- the compound of Formula (I) is substantially one diastereomer.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl
- R 2 is methyl
- R 3 is hydrogen
- R 5 is fluoro
- each of R 4 , R 6 , and R 7 is hydrogen
- the stereochemistry at the carbon to which R 2 and R 3 are bonded is of the S-configuration
- the stereochemistry at the carbon to which R 5 is bonded is of the R-configuration
- the compound of Formula (I) is substantially one diastereomer.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl
- R 2 is methyl
- R 3 is hydrogen
- R 5 is fluoro
- each of R 4 , R 6 , and R 7 is hydrogen
- the stereochemistry at the carbon to which R 2 and R 3 are bonded is of the R-configuration
- the stereochemistry at the carbon to which R 5 is bonded is of the R-configuration
- the compound of Formula (I) is substantially one diastereomer.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl
- R 2 is methyl
- R 3 is hydrogen
- R 5 is fluoro
- each of R 4 , R 6 , and R 7 is hydrogen
- the stereochemistry at the carbon to which R 2 and R 3 are bonded is of the S-configuration
- the stereochemistry at the carbon to which R 5 is bonded is of the S-configuration
- the compound of Formula (I) is substantially one diastereomer.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl
- R 2 is methyl
- R 3 is hydrogen
- R 5 is fluoro
- each of R 4 , R 6 , and R 7 is hydrogen
- the stereochemistry at the carbon to which R 2 and R 3 are bonded is of the R-configuration
- the stereochemistry at the carbon to which R 5 is bonded is of the S-configuration
- the compound of Formula (I) is substantially one diastereomer.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl
- R 2 is n-propyl
- R 3 is hydrogen
- R 5 is fluoro
- each of R 4 , R 6 , and R 7 is hydrogen
- the stereochemistry at the carbon to which R 2 and R 3 are bonded is of the S-configuration
- the stereochemistry at the carbon to which R 5 is bonded is of the R-configuration
- the compound of Formula (I) is substantially one diastereomer.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl
- R 2 is n-propyl
- R 3 is hydrogen
- R 5 is fluoro
- each of R 4 , R 6 , and R 7 is hydrogen
- the stereochemistry at the carbon to which R 2 and R 3 are bonded is of the R-configuration
- the stereochemistry at the carbon to which R 5 is bonded is of the R-configuration
- the compound of Formula (I) is substantially one diastereomer.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl
- R 2 is n-propyl
- R 3 is hydrogen
- R 5 is fluoro
- each of R 4 , R 6 , and R 7 is hydrogen
- the stereochemistry at the carbon to which R 2 and R 3 are bonded is of the S-configuration
- the stereochemistry at the carbon to which R 5 is bonded is of the S-configuration
- the compound of Formula (I) is substantially one diastereomer.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl
- R 2 is n-propyl
- R 3 is hydrogen
- R 5 is fluoro
- each of R 4 , R 6 , and R 7 is hydrogen
- the stereochemistry at the carbon to which R 2 and R 3 are bonded is of the R-configuration
- the stereochemistry at the carbon to which R 5 is bonded is of the S-configuration
- the compound of Formula (I) is substantially one diastereomer.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl
- R 2 is isopropyl
- R 3 is hydrogen
- R 5 is fluoro
- each of R 4 , R 6 , and R 7 is hydrogen
- the stereochemistry at the carbon to which R 2 and R 3 are bonded is of the S-configuration
- the stereochemistry at the carbon to which R 5 is bonded is of the R-configuration
- the compound of Formula (I) is substantially one diastereomer.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl
- R 2 is isopropyl
- R 3 is hydrogen
- R 5 is fluoro
- each of R 4 , R 6 , and R 7 is hydrogen
- the stereochemistry at the carbon to which R 2 and R 3 are bonded is of the R-configuration
- the stereochemistry at the carbon to which R 5 is bonded is of the R-configuration
- the compound of Formula (I) is substantially one diastereomer.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl
- R 2 is isopropyl
- R 3 is hydrogen
- R 5 is fluoro
- each of R 4 , R 6 , and R 7 is hydrogen
- the stereochemistry at the carbon to which R 2 and R 3 are bonded is of the S-configuration
- the stereochemistry at the carbon to which R 5 is bonded is of the S-configuration
- the compound of Formula (I) is substantially one diastereomer.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl
- R 2 is isopropyl
- R 3 is hydrogen
- R 5 is fluoro
- each of R 4 , R 6 , and R 7 is hydrogen
- the stereochemistry at the carbon to which R 2 and R 3 are bonded is of the R-configuration
- the stereochemistry at the carbon to which R 5 is bonded is of the S-configuration
- the compound of Formula (I) is substantially one diastereomer.
- R 1 is isopropyl
- R 2 is isopropyl
- R 3 is hydrogen
- R 5 is fluoro
- each of R 4 , R 6 , and R 7 is hydrogen
- the stereochemistry at the carbon to which R 2 and R 3 are bonded is of the S-configuration
- the stereochemistry at the carbon to which R 5 is bonded is of the R-configuration
- the compound of Formula (I) is substantially one diastereomer.
- R 1 is isopropyl
- R 2 is isopropyl
- R 3 is hydrogen
- R 5 is fluoro
- each of R 4 , R 6 , and R 7 is hydrogen
- the stereochemistry at the carbon to which R 2 and R 3 are bonded is of the R-configuration
- the stereochemistry at the carbon to which R 5 is bonded is of the R-configuration
- the compound of Formula (I) is substantially one diastereomer.
- R 1 is isopropyl
- R 2 is isopropyl
- R 3 is hydrogen
- R 5 is fluoro
- each of R 4 , R 6 , and R 7 is hydrogen
- the stereochemistry at the carbon to which R 2 and R 3 are bonded is of the S-configuration
- the stereochemistry at the carbon to which R 5 is bonded is of the S-configuration
- the compound of Formula (I) is substantially one diastereomer.
- R 1 is isopropyl
- R 2 is isopropyl
- R 3 is hydrogen
- R 5 is fluoro
- each of R 4 , R 6 , and R 7 is hydrogen
- the stereochemistry at the carbon to which R 2 and R 3 are bonded is of the R-configuration
- the stereochemistry at the carbon to which R 5 is bonded is of the S-configuration
- the compound of Formula (I) is substantially one diastereomer.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl
- R 2 is methyl
- R 3 is hydrogen
- R 5 is 4-chlorophenyl
- each of R 4 , R 6 , and R 7 is hydrogen
- the stereochemistry at the carbon to which R 2 and R 3 are bonded is of the S-configuration
- the stereochemistry at the carbon to which R 5 is bonded is of the R-configuration
- the compound of Formula (I) is substantially one diastereomer.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl
- R 2 is methyl
- R 3 is hydrogen
- R 5 is 4-chlorophenyl
- each of R 4 , R 6 , and R 7 is hydrogen
- the stereochemistry at the carbon to which R 2 and R 3 are bonded is of the R-configuration
- the stereochemistry at the carbon to which R 5 is bonded is of the R-configuration
- the compound of Formula (I) is substantially one diastereomer.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl
- R 2 is methyl
- R 3 is hydrogen
- R 5 is 4-chlorophenyl
- each of R 4 , R 6 , and R 7 is hydrogen
- the stereochemistry at the carbon to which R 2 and R 3 are bonded is of the S-configuration
- the stereochemistry at the carbon to which R 5 is bonded is of the S-configuration
- the compound of Formula (I) is substantially one diastereomer.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl
- R 2 is methyl
- R 3 is hydrogen
- R 5 is 4-chlorophenyl
- each of R 4 , R 6 , and R 7 is hydrogen
- the stereochemistry at the carbon to which R 2 and R 3 are bonded is of the R-configuration
- the stereochemistry at the carbon to which R 5 is bonded is of the S-configuration
- the compound of Formula (I) is substantially one diastereomer.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl
- R 2 is n-propyl
- R 3 is hydrogen
- R 5 is 4-chlorophenyl
- each of R 4 , R 6 , and R 7 is hydrogen
- the stereochemistry at the carbon to which R 2 and R 3 are bonded is of the S-configuration
- the stereochemistry at the carbon to which R 5 is bonded is of the R-configuration
- the compound of Formula (I) is substantially one diastereomer.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl
- R 2 is n-propyl
- R 3 is hydrogen
- R 5 is 4-chlorophenyl
- each of R 4 , R 6 , and R 7 is hydrogen
- the stereochemistry at the carbon to which R 2 and R 3 are bonded is of the R-configuration
- the stereochemistry at the carbon to which R 5 is bonded is of the R-configuration
- the compound of Formula (I) is substantially one diastereomer.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl
- R 2 is n-propyl
- R 3 is hydrogen
- R 5 is 4-chlorophenyl
- each of R 4 , R 6 , and R 7 is hydrogen
- the stereochemistry at the carbon to which R 2 and R 3 are bonded is of the S-configuration
- the stereochemistry at the carbon to which R 5 is bonded is of the S-configuration
- the compound of Formula (I) is substantially one diastereomer.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl
- R 2 is n-propyl
- R 3 is hydrogen
- R 5 is 4-chlorophenyl
- each of R 4 , R 6 , and R 7 is hydrogen
- the stereochemistry at the carbon to which R 2 and R 3 are bonded is of the R-configuration
- the stereochemistry at the carbon to which R 5 is bonded is of the S-configuration
- the compound of Formula (I) is substantially one diastereomer.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl
- R 2 is isopropyl
- R 3 is hydrogen
- R 5 is 4-chlorophenyl
- each of R 4 , R 6 , and R 7 is hydrogen
- the stereochemistry at the carbon to which R 2 and R 3 are bonded is of the S-configuration
- the stereochemistry at the carbon to which R 5 is bonded is of the R-configuration
- the compound of Formula (I) is substantially one diastereomer.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl
- R 2 is isopropyl
- R 3 is hydrogen
- R 5 is 4-chlorophenyl
- each of R 4 , R 6 , and R 7 is hydrogen
- the stereochemistry at the carbon to which R 2 and R 3 are bonded is of the R-configuration
- the stereochemistry at the carbon to which R 5 is bonded is of the R-configuration
- the compound of Formula (I) is substantially one diastereomer.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl
- R 2 is isopropyl
- R 3 is hydrogen
- R 5 is 4-chlorophenyl
- each of R 4 , R 6 , and R 7 is hydrogen
- the stereochemistry at the carbon to which R 2 and R 3 are bonded is of the S-configuration
- the stereochemistry at the carbon to which R 5 is bonded is of the S-configuration
- the compound of Formula (I) is substantially one diastereomer.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl
- R 2 is isopropyl
- R 3 is hydrogen
- R 5 is 4-chlorophenyl
- each of R 4 , R 6 , and R 7 is hydrogen
- the stereochemistry at the carbon to which R 2 and R 3 are bonded is of the R-configuration
- the stereochemistry at the carbon to which R 5 is bonded is of the S-configuration
- the compound of Formula (I) is substantially one diastereomer.
- R 1 is isopropyl
- R 2 is isopropyl
- R 3 is hydrogen
- R 5 is 4-chlorophenyl
- each of R 4 , R 6 , and R 7 is hydrogen
- the stereochemistry at the carbon to which R 2 and R 3 are bonded is of the S-configuration
- the stereochemistry at the carbon to which R 5 is bonded is of the R-configuration
- the compound of Formula (I) is substantially one diastereomer.
- R 1 is isopropyl
- R 2 is isopropyl
- R 3 is hydrogen
- R 5 is 4-chlorophenyl
- each of R 4 , R 6 , and R 7 is hydrogen
- the stereochemistry at the carbon to which R 2 and R 3 are bonded is of the R-configuration
- the stereochemistry at the carbon to which R 5 is bonded is of the R-configuration
- the compound of Formula (I) is substantially one diastereomer.
- R 1 is isopropyl
- R 2 is isopropyl
- R 3 is hydrogen
- R 5 is 4-chlorophenyl
- each of R 4 , R 6 , and R 7 is hydrogen
- the stereochemistry at the carbon to which R 2 and R 3 are bonded is of the S-configuration
- the stereochemistry at the carbon to which R 5 is bonded is of the S-configuration
- the compound of Formula (I) is substantially one diastereomer.
- R 1 is isopropyl
- R 2 is isopropyl
- R 3 is hydrogen
- R 5 is 4-chlorophenyl
- each of R 4 , R 6 , and R 7 is hydrogen
- the stereochemistry at the carbon to which R 2 and R 3 are bonded is of the R-configuration
- the stereochemistry at the carbon to which R 5 is bonded is of the S-configuration
- the compound of Formula (I) is substantially one diastereomer.
- R 1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl
- R 2 is selected from hydrogen, methyl, n-propyl, and isopropyl
- R 3 is hydrogen
- R 5 is selected from hydrogen, hydroxy, fluoro, oxo, and 4-chlorophenyl
- each of R 4 , R 6 , and R 7 are hydrogen.
- R 1 is isopropyl
- R 2 is isopropyl
- R 3 is hydrogen
- R 5 is selected from hydrogen, hydroxy, fluoro, oxo, and 4-chlorophenyl
- each of R 4 , R 6 , and R 7 are hydrogen.
- the compounds disclosed herein may be obtained via the synthetic method illustrated in Scheme 1.
- a synthetic route to the disclosed compounds consists of attaching promoieties to 3-aminopropylsulfinic acid analogs.
- Numerous methods have been described in the art for the synthesis of 3-aminopropylsulfinic acid analogs (e.g., Carruthers et al., Bioorg. Med. Chem. Lett. 1995, 5, 237-240; Shue et al., Bioorg. Med. Chem. Lett. 1996, 6, 1709-1714; Carruthers et al., Bioorg. Med. Chem. Lett.
- starting materials useful for preparing compounds and intermediates thereof, and/or practicing methods described herein are commercially available or can be prepared by well-known synthetic methods.
- Other methods for synthesis of the prodrugs described herein are either described in the art or will be readily apparent to the skilled artisan in view of the references provided herein and may be used to synthesize the compounds described herein. Accordingly, the methods presented in the Schemes of the present disclosure are illustrative rather than comprehensive.
- a method for synthesizing compounds of Formula (I), illustrated in Scheme 1, employs the reaction of a 3-aminopropylsulfinic acid analog of Formula (II) with a 1-(acyloxy)-alkyl N-hydroxysuccinimidyl carbonate compound of Formula (III), optionally in the presence of a base, as described in the co-pending application Gallop et al., International Publication No. WO 2005/010011, which is incorporated herein by reference in its entirety.
- R 9 and R 10 are independently selected from hydrogen, acylamino, acyloxy, alkoxycarbonylamino, alkoxycarbonyloxy, alkyl, substituted alkyl, alkoxy, substituted alkoxy, aryl, substituted aryl, arylalkyl, carbamoyloxy, dialkylamino, heteroaryl, hydroxy, and sulfonamido, or, R 9 and R 10 together with the atoms to which they are bondedform a substituted cycloalkyl, substituted cycloheteroalkyl, or substituted aryl ring; and
- R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , and R 7 are as defined herein.
- R 2 and R 3 in the compound of Formula (III) are different, such that the carbon atom to which these substituents are bonded is a stereogenic center.
- each of R 9 and R 10 in the compound of Formula (III) is benzoyloxy, the stereochemistry at the carbon to which R 9 is bonded is of the R-configuration, and the stereochemistry at the carbon to which R 10 is bonded is of the R-configuration.
- each of R 9 and R 10 in the compound of Formula (III) is benzoyloxy, the stereochemistry at the carbon to which R 9 is bonded is of the S-configuration, and the stereochemistry at the carbon to which R 10 is bonded is of the S-configuration.
- R 2 and R 3 in the compound of Formula (I) are different and the compound of Formula (I) is substantially one diastereomer.
- R 1 is isopropyl
- R 2 is isopropyl
- R 3 is hydrogen
- the stereochemistry at the carbon to which R 2 and R 3 are bonded is of the S-configuration and the compound of Formula (I) is substantially one diastereomer.
- R 1 is isopropyl
- R 2 is isopropyl
- R 3 is hydrogen
- the stereochemistry at the carbon to which R 2 and R 3 are bonded is of the R-configuration
- the compound of Formula (I) is substantially one diastereomer.
- R 1 is C 1-6 alkyl
- R 2 is hydrogen or C 1-4 alkyl
- R 3 is hydrogen
- R 5 is selected from hydroxy, fluoro, and 4-chlorophenyl
- each of R 4 , R 6 , and R 7 is hydrogen
- each of R 9 and R 10 is benzoyloxy
- the stereochemistry at the carbon to which R 5 is bonded is of the R-configuration.
- R 1 is C 1-6 alkyl
- R 2 is hydrogen or C 1-4 alkyl
- R 3 is hydrogen
- R 5 is selected from hydroxy, fluoro, and 4-chlorophenyl
- each of R 4 , R 6 , and R 7 is hydrogen
- each of R 9 and R 10 is benzoyloxy
- the stereochemistry at the carbon to which R 5 is bonded is of the S-configuration.
- R 1 is C 1-6 alkyl
- R 2 is methyl
- R 3 is hydrogen
- R 5 is selected from hydroxy, fluoro, and 4-chlorophenyl
- each of R 4 , R 6 , and R 7 is hydrogen
- each of R 9 and R 10 is benzoyloxy
- the stereochemistry at the carbon to which R 5 is bonded is of the R-configuration.
- R 1 is C 1-6 alkyl
- R 2 is methyl
- R 3 is hydrogen
- R 5 is selected from hydroxy, fluoro, and 4-chlorophenyl
- each of R 4 , R 6 , and R 7 is hydrogen
- each of R 9 and R 10 is benzoyloxy
- the stereochemistry at the carbon to which R 5 is bonded is of the S-configuration.
- R 1 is C 1-6 alkyl
- R 2 is propyl
- R 3 is hydrogen
- R 5 is selected from hydroxy, fluoro, and 4-chlorophenyl
- each of R 4 , R 6 , and R 7 is hydrogen
- each of R 9 and R 10 is benzoyloxy
- the stereochemistry at the carbon to which R 5 is bonded is of the R-configuration.
- R 1 is C 1-6 alkyl
- R 2 is propyl
- R 3 is hydrogen
- R 5 is selected from hydroxy, fluoro, and 4-chlorophenyl
- each of R 4 , R 6 , and R 7 is hydrogen
- each of R 9 and R 10 is benzoyloxy
- the stereochemistry at the carbon to which R 5 is bonded is of the S-configuration.
- R 1 is C 1-6 alkyl
- R 2 is isopropyl
- R 3 is hydrogen
- R 5 is selected from hydroxy, fluoro, and 4-chlorophenyl
- each of R 4 , R 6 , and R 7 is hydrogen
- each of R 9 and R 10 is benzoyloxy
- the stereochemistry at the carbon to which R 5 is bonded is of the R-configuration.
- R 1 is C 1-6 alkyl
- R 2 is isopropyl
- R 3 is hydrogen
- R 5 is selected from hydroxy, fluoro, and 4-chlorophenyl
- each of R 4 , R 6 , and R 7 is hydrogen
- each of R 9 and R 10 is benzoyloxy
- the stereochemistry at the carbon to which R 5 is bonded is of the S-configuration.
- R 1 is C 1-6 alkyl
- R 2 is methyl
- R 3 is hydrogen
- R 5 is selected from hydroxy, fluoro, and 4-chlorophenyl
- each of R 4 , R 6 , and R 7 is hydrogen
- each of R 9 and R 10 is benzoyloxy
- the stereochemistry at the carbon to which R 2 and R 3 are bonded is of the S-configuration
- the stereochemistry at the carbon to which R 5 is bonded is of the R-configuration
- the stereochemistry at the carbon to which R 9 is bonded is of the R-configuration
- the stereochemistry at the carbon to which R 10 is bonded is of the R-configuration.
- R 1 is C 1-6 alkyl
- R 2 is methyl
- R 3 is hydrogen
- R 5 is selected from hydroxy, fluoro, and 4-chlorophenyl
- each of R 4 , R 6 , and R 7 is hydrogen
- each of R 9 and R 10 is benzoyloxy
- the stereochemistry at the carbon to which R 2 and R 3 are bonded is of the S-configuration
- the stereochemistry at the carbon to which R 5 is bonded is of the S-configuration
- the stereochemistry at the carbon to which R 9 is bonded is of the R-configuration
- the stereochemistry at the carbon to which R 10 is bonded is of the R-configuration.
- R 1 is C 1-6 alkyl
- R 2 is methyl
- R 3 is hydrogen
- R 5 is selected from hydroxy, fluoro, and 4-chlorophenyl
- each of R 4 , R 6 , and R 7 is hydrogen
- each of R 9 and R 10 is benzoyloxy
- the stereochemistry at the carbon to which R 2 and R 3 are bonded is of the R-configuration
- the stereochemistry at the carbon to which R 5 is bonded is of the R-configuration
- the stereochemistry at the carbon to which R 9 is bonded is of the S-configuration
- the stereochemistry at the carbon to which R 10 is bonded is of the S-configuration.
- R 1 is C 1-6 alkyl
- R 2 is methyl
- R 3 is hydrogen
- R 5 is selected from hydroxy, fluoro, and 4-chlorophenyl
- each of R 4 , R 6 , and R 7 is hydrogen
- each of R 9 and R 10 is benzoyloxy
- the stereochemistry at the carbon to which R 2 and R 3 are bonded is of the R-configuration
- the stereochemistry at the carbon to which R 5 is bonded is of the S-configuration
- the stereochemistry at the carbon to which R 9 is bonded is of the S-configuration
- the stereochemistry at the carbon to which R 10 is bonded is of the S-configuration.
- R 1 is C 1-6 alkyl
- R 2 is propyl
- R 3 is hydrogen
- R 5 is selected from hydroxy, fluoro, and 4-chlorophenyl
- each of R 4 , R 6 , and R 7 is hydrogen
- each of R 9 and R 10 is benzoyloxy
- the stereochemistry at the carbon to which R 2 and R 3 are bonded is of the S-configuration
- the stereochemistry at the carbon to which R 5 is bonded is of the R-configuration
- the stereochemistry at the carbon to which R 9 is bonded is of the R-configuration
- the stereochemistry at the carbon to which R 10 is bonded is of the R-configuration.
- R 1 is C 1-6 alkyl
- R 2 is propyl
- R 3 is hydrogen
- R 5 is selected from hydroxy, fluoro, and 4-chlorophenyl
- each of R 4 , R 6 , and R 7 is hydrogen
- each of R 9 and R 10 is benzoyloxy
- the stereochemistry at the carbon to which R 2 and R 3 are bonded is of the S-configuration
- the stereochemistry at the carbon to which R 5 is bonded is of the S-configuration
- the stereochemistry at the carbon to which R 9 is bonded is of the R-configuration
- the stereochemistry at the carbon to which R 10 is bonded is of the R-configuration.
- R 1 is C 1-6 alkyl
- R 2 is propyl
- R 3 is hydrogen
- R 5 is selected from hydroxy, fluoro, and 4-chlorophenyl
- each of R 4 , R 6 , and R 7 is hydrogen
- each of R 9 and R 10 is benzoyloxy
- the stereochemistry at the carbon to which R 2 and R 3 are bonded is of the R-configuration
- the stereochemistry at the carbon to which R 5 is bonded is of the R-configuration
- the stereochemistry at the carbon to which R 9 is bonded is of the S-configuration
- the stereochemistry at the carbon to which R 10 is bonded is of the S-configuration.
- R 1 is C 1-6 alkyl
- R 2 is propyl
- R 3 is hydrogen
- R 5 is selected from hydroxy, fluoro, and 4-chlorophenyl
- each of R 4 , R 6 , and R 7 is y hydrogen
- each of R 9 and R 10 is benzoyloxy
- the stereochemistry at the carbon to which R 2 and R 3 are bonded is of the R-configuration
- the stereochemistry at the carbon to which R 5 is bonded is of the S-configuration
- the stereochemistry at the carbon to which R 9 is bonded is of the S-configuration
- the stereochemistry at the carbon to which R 10 is bonded is of the S-configuration.
- R 1 is C 1-6 alkyl
- R 2 is isopropyl
- R 3 is hydrogen
- R 5 is selected from hydroxy, fluoro, and 4-chlorophenyl
- each of R 4 , R 6 , and R 7 is hydrogen
- each of R 9 and R 10 is benzoyloxy
- the stereochemistry at the carbon to which R 2 and R 3 are bonded is of the S-configuration
- the stereochemistry at the carbon to which R 5 is bonded is of the R-configuration
- the stereochemistry at the carbon to which R 9 is bonded is of the R-configuration
- the stereochemistry at the carbon to which R 10 is bonded is of the R-configuration.
- R 1 is C 1-6 alkyl
- R 2 is isopropyl
- R 3 is hydrogen
- R 5 is selected from hydroxy, fluoro, and 4-chlorophenyl
- each of R 4 , R 6 , and R 7 is hydrogen
- each of R 9 and R 10 is benzoyloxy
- the stereochemistry at the carbon to which R 2 and R 3 are bonded is of the S-configuration
- the stereochemistry at the carbon to which R 5 is bonded is of the S-configuration
- the stereochemistry at the carbon to which R 9 is bonded is of the R-configuration
- the stereochemistry at the carbon to which R 10 is bonded is of the R-configuration.
- R 1 is C 1-6 alkyl
- R 2 is isopropyl
- R 3 is hydrogen
- R 5 is selected from hydroxy, fluoro, and 4-chlorophenyl
- each of R 4 , R 6 , and R 7 is hydrogen
- each of R 9 and R 10 is benzoyloxy
- the stereochemistry at the carbon to which R 2 and R 3 are attached is of the R-configuration
- the stereochemistry at the carbon to which R 5 is bonded is of the R-configuration
- the stereochemistry at the carbon to which R 9 is bonded is of the S-configuration
- the stereochemistry at the carbon to which R 10 is bonded is of the S-configuration.
- R 1 is C 1-6 alkyl
- R 2 is isopropyl
- R 3 is hydrogen
- R 5 is selected from hydroxy, fluoro, and 4-chlorophenyl
- each of R 4 , R 6 , and R 7 is hydrogen
- each of R 9 and R 10 is benzoyloxy
- the stereochemistry at the carbon to which R 2 and R 3 are bonded is of the R-configuration
- the stereochemistry at the carbon to which R 5 is bonded is of the S-configuration
- the stereochemistry at the carbon to which R 9 is bonded is of the S-configuration
- the stereochemistry at the carbon to which R 10 is bonded is of the S-configuration.
- the method of Scheme 1 can be carried out in a solvent.
- solvent include, but are not limited to, acetone, acetonitrile, dichloromethane, dichloroethane, chloroform, toluene, tetrahydrofuran, dioxane, dimethylformamide, dimethylacetamide, N-methylpyrrolidinone, dimethyl sulfoxide, pyridine, ethyl acetate, methyl tert-butyl ether, methanol, ethanol, isopropanol, tert-butanol, water, or combinations thereof.
- the solvent is acetone, acetonitrile, dichloromethane, toluene, tetrahydrofuran, pyridine, methyl tert-butyl ether, methanol, ethanol, isopropanol, water, or combinations thereof.
- the solvent is a mixture of acetonitrile and water.
- the solvent is a mixture of acetonitrile and water, with a volume ratio of acetonitrile to water from about 1:5 to about 5:1.
- the solvent is a mixture of tetrahydrofuran and water, with a volume ratio of tetrahydrofuran to water from about 20:1 to about 2:1.
- the solvent is a mixture of methyl tert-butyl ether and water. In certain embodiments, the solvent is a mixture of methyl tert-butyl ether and water, with a volume ratio of methyl tert-butyl ether to water from about 20:1 to about 2:1. In certain embodiments, the solvent is a mixture of methyl tert-butyl ether and water, wherein the methyl tert-butyl ether contains from about 10% to about 50% acetone by volume. In certain embodiments, the solvent is dichloromethane, water, or a combination thereof. In certain embodiments, the solvent is a biphasic mixture of dichloromethane and water.
- the solvent is a biphasic mixture of dichloromethane and water containing from about 0.001 equivalents to about 0.1 equivalents of a phase transfer catalyst.
- the phase transfer catalyst is a tetraalkylammonium salt, and in certain embodiments, the phase transfer catalyst is a tetrabutylammonium salt.
- the method of Scheme 1 can be carried out a temperature from about ⁇ 20° C. to about 40° C. In certain embodiments, the temperature can be from about ⁇ 20° C. to about 25° C. In certain embodiments, the temperature can be from about 0° C. to about 25° C. In certain embodiments, the temperature can be from about 25° C. to about 40° C.
- the reaction can be performed in the absence of a base.
- the reaction can be performed in the presence of an inorganic base. In certain embodiments, the reaction can be performed in the presence of an alkali metal bicarbonate or alkali metal carbonate salt. In certain embodiments, the reaction can be performed in the presence of sodium bicarbonate.
- the reaction can be performed in the presence of an organic base.
- the reaction can be performed in the presence of an organic base such as triethylamine, tributylamine, diisopropylethylamine, dimethylisopropylamine, N-methylmorpholine, N-methylpyrrolidine, N-methylpiperidine, pyridine, 2-methylpyridine, 2,6-dimethylpyridine, 4-dimethylaminopyridine, 1,4-diazabicyclo[2.2.2]octane, 1,8-diazabicyclo[5.4.0]undec-7-ene, 1,5-diazabicyclo[4.3.0]undec-7-ene, or a combination of any of the foregoing, and in certain embodiments, the reaction can be performed in the presence of an organic base such as triethylamine, diisopropylethylamine, N-methylmorpholine, pyridine, or a combination of any of the
- compositions comprising a therapeutically effective amount of one or more prodrugs of 3-aminopropylsulfinic acid or analog of Formula (I), such as in purified form, together with a suitable amount of a pharmaceutically acceptable vehicle, so as to provide a form for proper administration to a patient are provided herein.
- suitable pharmaceutical vehicles include excipients such as starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene, glycol, water, ethanol, and the like.
- the present compositions if desired, can also contain minor amounts of wetting or emulsifying agents, or pH buffering agents.
- auxiliary, stabilizing, thickening, lubricating, and coloring agents may be used.
- compositions may be manufactured by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping, or lyophilizing processes.
- Pharmaceutical compositions may be formulated in conventional manner using one or more physiologically acceptable carriers, diluents, excipients, or auxiliaries, which facilitate processing of compounds disclosed herein into preparations, which can be used pharmaceutically. Proper formulation can depend upon the route of administration chosen.
- compositions can take the form of solutions, suspensions, emulsions, tablets, pills, pellets, capsules, capsules containing liquids, powders, sustained-release formulations, suppositories, emulsions, aerosols, sprays, suspensions, or any other form suitable for use.
- the pharmaceutically acceptable vehicle is a capsule (see e.g., Grosswald et al., U.S. Pat. No. 5,698,155).
- suitable pharmaceutical vehicles have been described in the art (see “Remington's Pharmaceutical Sciences,” Lippincott Williams & Wilkins, 21st Edition, 2005).
- compositions are formulated for oral delivery, particularly for sustained release oral administration.
- compositions for oral delivery may be in the form of tablets, lozenges, aqueous or oily suspensions, granules, powders, emulsions, capsules, syrups, or elixirs, for example.
- Orally administered compositions may contain one or more optional agents, for example, sweetening agents such as fructose, aspartame or saccharin, flavoring agents such as peppermint, oil of wintergreen, or cherry coloring agents, and preserving agents, to provide a pharmaceutically palatable preparation.
- a composition when in tablet or pill form, a composition may be coated to delay disintegration and absorption in the gastrointestinal tract, thereby providing a sustained action over an extended period of time.
- Oral compositions can include standard vehicles such as mannitol, lactose, starch, magnesium stearate, sodium saccharine, cellulose, magnesium carbonate, etc. Such vehicles are generally of pharmaceutical grade.
- suitable carriers, excipients, or diluents include water, saline, alkyleneglycols (e.g., propylene glycol), polyalkylene glycols (e.g., polyethylene glycol) oils, alcohols, slightly acidic buffers between pH 4 and pH 6 (e.g., acetate, citrate, ascorbate at between about 5 mM to about 50 mM), etc.
- alkyleneglycols e.g., propylene glycol
- polyalkylene glycols e.g., polyethylene glycol
- slightly acidic buffers between pH 4 and pH 6 e.g., acetate, citrate, ascorbate at between about 5 mM to about 50 mM
- flavoring agents, preservatives, coloring agents, bile salts, acylcarnitines, and the like may be added.
- a compound of Formula (I) When a compound of Formula (I) is acidic, it may be included in any of the above-described formulations as the free acid, a pharmaceutically acceptable salt, a solvate, or a hydrate. Pharmaceutically acceptable salts substantially retain the activity of the free acid, may be prepared by reaction with bases, and tend to be more soluble in aqueous and other protic solvents than the corresponding free acid form. In certain embodiments, sodium salts of a compound of Formula (I) are used in the above described formulations.
- Prodrugs of 3-aminopropylsulfinic acid or analogs thereof of Formula (I) can be used with a number of different dosage forms, which may be adapted to provide sustained release of a compound of Formula (I) upon oral administration.
- a dosage form can comprise beads that on dissolution or diffusion release a compound of the present disclosure over an extended period of hours, in certain embodiments, over a period of at least about 6 hours, such as, in certain embodiments over a period of at least about 8 hours, and in certain embodiments, over a period of at least about 12 hours.
- the beads may have a central composition or core comprising a compound of the present disclosure and pharmaceutically acceptable vehicles, including an optional lubricant, antioxidant and buffer.
- the beads may be medical preparations with a diameter of about 0.05 mm to about 2 mm.
- Individual beads may comprise doses of a compound of the present disclosure, for example, doses of up to about 40 mg of compound.
- the beads in some embodiments, can be formed of non-cross-linked materials to enhance their discharge from the gastrointestinal tract.
- the beads may be coated with a release rate-controlling polymer that gives a timed release profile.
- the time-release beads may be manufactured into a tablet for therapeutically effective administration.
- the beads can be made into matrix tablets by the direct compression of a plurality of beads coated with, for example, an acrylic resin and blended with excipients such as hydroxypropylmethyl cellulose.
- the manufacture of beads has been disclosed in the art (Lu, Int. J. Pharm. 1994, 112, 117-124 ; “Remington's Pharmaceutical Sciences” , Lippincott Williams & Wilkins, 21st Edition, 2005; Fincher, J. Pharm. Sci. 1968, 57, 1825-1835; and U.S. Pat. No. 4,083,949), as has the manufacture of tablets (“ Remington's Pharmaceutical Sciences” , Lippincott Williams & Wilkins, 21st Edition, 2005).
- sustained release oral dosage formulation that may be used with compounds of the present disclosure can comprise an inert core, such as a sugar sphere, coated with an inner drug-containing layer and an outer membrane layer controlling drug release from the inner layer.
- a “sealcoat” may be provided between the inert core and the layer containing the active ingredient.
- the sealcoat can be in the form of a relatively thick layer of a water-insoluble polymer.
- Such a controlled release beads may thus comprise: (i) a core unit of a substantially water-soluble or water-swellable inert material; (ii) a first layer on the core unit of a substantially water-insoluble polymer; (iii) a second layer covering the first layer and containing an active ingredient; and (iv) a third layer on the second layer of polymer effective for controlled release of the active ingredient, wherein the first layer is adapted to control water penetration into the core.
- the first layer (ii) above usually constitutes more than about 2% (w/w) of the final bead composition, such as more than about 3% (w/w), e.g., from about 3% to about 80% (w/w).
- the amount of the second layer (ii) above usually constitutes from about 0.05% to about 60% (w/w), such as from about 0.1% to about 30% (w/w) of the final bead composition.
- the amount of the third layer (iv) above usually constitutes from about 1% to about 50% (w/w), such as from about 2% to about 25% (w/w) of the final bead composition.
- the core unit typically can have a size ranging from about 0.05 to about 2 mm.
- the controlled release beads may be provided in a multiple unit formulation, such as a capsule or a tablet.
- the cores can comprise a water-soluble or swellable material and may be any such material that is conventionally used as cores or any other pharmaceutically acceptable water-soluble or water-swellable material made into beads or pellets.
- the cores may be spheres of materials such as sucrose/starch (Sugar Spheres NF), sucrose crystals, or extruded and dried spheres typically comprised of excipients such as microcrystalline cellulose and lactose.
- the substantially water-insoluble material in the first, or sealcoat layer is generally a “GI insoluble” or “GI partially insoluble” film forming polymer (dispersed or dissolved in a solvent).
- Examples include, but are not limited to, ethyl cellulose, cellulose acetate, cellulose acetate butyrate, polymethacrylates such as ethyl acrylate/methyl methacrylate copolymer (Eudragit® NE-30-D, Eudragit® S, and Eudragit® L) and ammonio methacrylate copolymer types A and B (Eudragit® RL30D, RS30D, Eudragit® RL, and Eudragit® RS), and silicone elastomers.
- a plasticizer is used together with the polymer.
- plasticizers include, but are not limited to, dibutylsebacate, propylene glycol, triethylcitrate, tributylcitrate, castor oil, acetylated monoglycerides, acetyl triethylcitrate, acetyl butylcitrate, diethyl phthalate, dibutyl phthalate, triacetin, and fractionated coconut oil (medium-chain triglycerides).
- the second layer containing the active ingredient can comprise the active ingredient with or without a polymer as a binder.
- the binder can be hydrophilic and can be water-soluble or water-insoluble.
- hydrophilic polymers such as, for example, polyvinylpyrrolidone (PVP), polyalkylene glycol such as polyethylene glycol, gelatine, polyvinyl alcohol, starch and derivatives thereof, cellulose derivatives such as hydroxypropylmethyl cellulose (HPMC), hydroxypropyl cellulose, carboxymethyl cellulose, methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, carboxyethyl cellulose, and carboxymethylhydroxyethyl cellulose, acrylic acid polymers, polymethacrylates, or any other pharmaceutically acceptable polymer.
- PVP polyvinylpyrrolidone
- HPMC hydroxypropylmethyl cellulose
- HPMC hydroxypropylmethyl cellulose
- acrylic acid polymers polymethacrylates, or any other pharmaceutically acceptable polymer.
- the ratio of drug to hydrophilic polymer in the second layer can be in the range of from about 1:100 to about 100:1 (w/w).
- Suitable polymers for use in the third layer, or membrane, for controlling the drug release may be selected from water-insoluble polymers or polymers with pH-dependent solubility, such as, for example, ethyl cellulose, hydroxypropylmethyl cellulose phthalate, cellulose acetate phthalate, cellulose acetate trimellitate, polymethacrylates, or mixtures thereof, optionally combined with plasticizers, such as those mentioned above.
- the controlled release layer comprises, in addition to the polymers above, other substance(s) with different solubility characteristics, to adjust the permeability and thereby the release rate, of the controlled release layer.
- polymers that may be used as a modifier together with, for example, ethyl cellulose include, but are not limited to, HPMC, hydroxyethyl cellulose, hydroxypropyl cellulose, methylcellulose, carboxymethylcellulose, polyethylene glycol, polyvinylpyrrolidone (PVP), polyvinyl alcohol, polymers with pH-dependent solubility, such as cellulose acetate phthalate or ammonio methacrylate copolymer and methacrylic acid copolymer, and mixtures thereof.
- Additives such as sucrose, lactose, and pharmaceutical grade surfactants may also be included in the controlled release layer, if desired.
- the preparation of a multiple unit formulation can comprise the additional step of transforming the prepared beads into a pharmaceutical formulation, such as by filling a predetermined amount of the beads into a capsule, or compressing the beads into tablets.
- a pharmaceutical formulation such as by filling a predetermined amount of the beads into a capsule, or compressing the beads into tablets.
- an oral sustained release pump may be used (see Langer, supra; Sefton, CRC Crit Ref Biomed. Eng. 1987, 14, 201; Saudek et al., N. Engl. J Med. 1989, 321, 574).
- polymeric materials can be used (See “Medical Applications of Controlled Release,” Langer and Wise (eds.), CRC Press., Boca Raton, Fla. (1974); “Controlled Drug Bioavailability,” Drug Product Design and Performance, Smolen and Ball (eds.), Wiley, New York (1984); Langer et al., J Macromol. Sci. Rev. Macromol Chem. 1983, 23, 61; see also Levy et al., Science 1985, 228, 190; During et al., Ann. Neurol. 1989, 25, 351; Howard et al., J. Neurosurg. 1989, 71, 105). In some embodiments, polymeric materials can be used for sustained release oral delivery.
- Polymers for sustained release oral delivery include, but are not limited to, sodium carboxymethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, and hydroxyethylcellulose (especially, hydroxypropylmethylcellulose).
- Other cellulose ethers have been described (Alderman, Int. J. Pharm. Tech . & Prod. Mfr 1984, 5(3), 1-9). Factors affecting drug release are well known to the skilled artisan and have been described in the art (Bamba et al., Int. J. Pharm. 1979, 2, 307).
- enteric-coated preparations can be used for sustained release oral administration.
- coating materials for enteric-coated preparations include polymers with a pH-dependent solubility (i.e., pH-controlled release), polymers with a slow or pH-dependent rate of swelling, dissolution or erosion (i.e., time-controlled release), polymers that are degraded by enzymes (i.e., enzyme-controlled release), and polymers that form firm layers that are destroyed by an increase in pressure (i.e., pressure-controlled release).
- drug-releasing lipid matrices can be used for sustained release oral administration.
- An example is when solid microparticles of a compound of the present disclosure are coated with a thin controlled release layer of a lipid (e.g., glyceryl behenate and/or glyceryl palmitostearate) as disclosed in Farah et al., U.S. Pat. No. 6,375,987 and Joachim et al., U.S. Pat. No. 6,379,700.
- the lipid-coated particles can optionally be compressed to form a tablet.
- Another controlled release lipid-based matrix material, which is suitable for sustained release oral administration comprises polyglycolized glycerides as disclosed in Roussin et al., U.S. Pat. No. 6,171,615.
- waxes can be used for sustained release oral administration.
- suitable sustained compound-releasing waxes are disclosed in Cain et al., U.S. Pat. No. 3,402,240 (caranauba wax, candelilla wax, esparto wax and ouricury wax); Shtohryn et al., U.S. Pat. No. 4,820,523 (hydrogenated vegetable oil, bees wax, caranauba wax, paraffin, candelilla, ozokerite, and mixtures thereof); and Walters, U.S. Pat. No. 4,421,736 (mixture of paraffin and castor wax).
- osmotic delivery systems are used for oral sustained release administration (Verma et al., Drug Dev. Ind. Pharm., 2000, 26, 695-708).
- OROS® systems made by Alza Corporation, Mountain View, Calif. are used for oral sustained release delivery devices (Theeuwes et al., U.S. Pat. No. 3,845,770; Theeuwes et al., U.S. Pat. No. 3,916,899).
- a controlled-release system can be placed in proximity of the target of at least one compound disclosed herein (e.g., within the spinal cord), thus requiring only a fraction of the systemic dose (See, e.g., Goodson, in “Medical Applications of Controlled Release,” supra, vol. 2, pp. 115-138 (1984)).
- Other controlled-release systems discussed in Langer, Science 1990, 249, 1527-1533, may also be used.
- the dosage form can comprise at least one compound of the present disclosure coated on a polymer substrate.
- the polymer can be an erodible, or a nonerodible polymer.
- the coated substrate may be folded onto itself to provide a bilayer polymer drug dosage form.
- a compound of the present disclosure can be coated onto a polymer such as a polypeptide, collagen, gelatin, polyvinyl alcohol, polyorthoester, polyacetyl, or a polyorthocarbonate and the coated polymer folded onto itself to provide a bilaminated dosage form.
- the bioerodible dosage form erodes at a controlled rate to dispense a compound disclosed herein over a sustained release period.
- biodegradable polymers include biodegradable poly(amides), poly (amino acids), poly(esters), poly(lactic acid), poly(glycolic acid), poly(carbohydrate), poly(orthoester), poly(orthocarbonate), poly(acetyl), poly(anhydrides), biodegradable poly(dihydropyrans), and poly(dioxinones), which are known in the art (Rosoff, Controlled Release of Drugs Chap. 2, pp. 53-95 (1989); and in U.S. Pat. Nos. 3,811,444; 3,962,414; 4,066,747, 4,070,347; 4,079,038; and 4,093,709).
- a dosage form comprises at least one compound of the present disclosure loaded into a polymer that releases the compound by diffusion through a polymer, by flux through pores, or by rupture of a polymer matrix.
- the drug delivery polymeric dosage form can comprise from between about 2 mg to about 500 mg of at least one compound of the present disclosure homogenously contained in or on a polymer.
- a dosage form can comprise at least one exposed surface at the beginning of dose delivery. The non-exposed surface, when present, can be coated with a pharmaceutically acceptable material impermeable to the passage of a compound of the present disclosure.
- Such dosage forms can be manufactured by procedures known in the art.
- An example of providing a dosage form comprises blending a pharmaceutically acceptable carrier such as polyethylene glycol, with a known dose of a compound at an elevated temperature, (e.g., 37° C.), and adding it to a silastic medical grade elastomer with a cross-linking agent, for example, octanoate, followed by casting in a mold. The step is repeated for each optional successive layer. The system is allowed to set for about 1 hour, to provide the dosage form.
- a pharmaceutically acceptable carrier such as polyethylene glycol
- a known dose of a compound at an elevated temperature e.g., 37° C.
- a silastic medical grade elastomer with a cross-linking agent for example, octanoate
- polymers for manufacturing a dosage form include olefinic polymers, vinyl polymers, addition polymers, condensation polymers, carbohydrate polymers, and silicone polymers such as polyethylene, polypropylene, polyvinyl acetate, polymethylacrylate, polyisobutylmethacrylate, poly alginate, polyamide, and polysilicone.
- the polymers and procedures for manufacturing them are described in the art (Coleman et al., Polymers 1990, 31, 1187-1231; Roerdink et al., Drug Carrier Systems 1989, 9, 57-10; Leong et al., Adv. Drug Delivery Rev. 1987, 1, 199-233; Roff et al., Handbook of Common Polymers 1971, CRC Press; and U.S. Pat. No. 3,992,518).
- the dosage from can comprise a plurality of pills.
- Time-release pills can provide a number of individual doses for providing various time doses for achieving a sustained-release prodrug delivery profile over an extended period of time up to about 24 hours.
- the matrix can comprise a hydrophilic polymer such as, for example, a polysaccharide, agar, agarose, natural gum, alkali alginate including sodium alginate, carrageenan, fucoidan, furcellaran, laminaran, hypnea, gum arabic, gum ghatti, gum karaya, grum tragacanth, locust bean gum, pectin, amylopectin, gelatin, or a hydrophilic colloid.
- a hydrophilic polymer such as, for example, a polysaccharide, agar, agarose, natural gum, alkali alginate including sodium alginate, carrageenan, fucoidan, furcellaran, laminaran
- the hydrophilic matrix can comprise a plurality of from about 4 to about 50 pills, each pill comprise a dose population of about 10 ng, about 0.5 mg, about 1 mg, about 1.2 mg, about 1.4 mg, about 1.6 mg, about 5.0 mg, etc.
- the pills can comprise a release rate-controlling wall of 0.001 mm up to 10 mm thickness to provide for the timed release of a compound.
- wall forming materials include triglyceryl esters such as glyceryl tristearate, glyceryl monostearate, glyceryl dipalmitate, glyceryl laureate, glyceryl didecenoate, and glyceryl tridenoate.
- Other wall forming materials comprise polyvinyl acetate, phthalate, methylcellulose phthalate, and microporous olefins. Procedures for manufacturing pills are disclosed in U.S. Pat. Nos. 4,434,153; 4,721,613; 4,853,229; 2,996,431; 3,139,383 and 4,752,470.
- a dosage form can comprise an osmotic dosage form, which comprises a semipermeable wall that surrounds a therapeutic composition comprising the compound.
- the osmotic dosage form comprising a homogenous composition, imbibes fluid through the semipermeable wall into the dosage form in response to the concentration gradient across the semipermeable wall.
- the therapeutic composition in the dosage form develops osmotic pressure differential that causes the therapeutic composition to be administered through an exit from the dosage form over a prolonged period of time up to about 24 hours (or even in some cases up to about 30 hours) to provide controlled and sustained compound release.
- a dosage form can comprise another osmotic dosage form comprising a wall surrounding a compartment, the wall comprising a semipermeable polymeric composition permeable to the passage of fluid and substantially impermeable to the passage of compound present in the compartment, a compound-containing layer composition in the compartment, a hydrogel push layer composition in the compartment comprising an osmotic formulation for imbibing and absorbing fluid for expanding in size for pushing the compound composition layer from the dosage form, and at least one passageway in the wall for releasing the prodrug composition.
- the dosage form can deliver a compound by imbibing fluid through the semipermeable wall at a fluid imbibing rate determined by the permeability of the semipermeable wall and the osmotic pressure across the semipermeable wall causing the push layer to expand, thereby delivering the compound from the dosage form through the exit passageway to a patient over a prolonged period of time (up to about 24 or even about 30 hours).
- the hydrogel layer composition can comprise from about 10 mg to about 1000 mg of a hydrogel such as a polyalkylene oxide of about 1,000,000 to about 8,000,000 weight-average molecular weight, for example, a polyethylene oxide of about 1,000,000 weight-average molecular weight, a polyethylene oxide of about 2,000,000 molecular weight, a polyethylene oxide of about 4,000,000 molecular weight, a polyethylene oxide of about 5,000,000 molecular weight, a polyethylene oxide of about 7,000,000 molecular weight, and a polypropylene oxide of the about 1,000,000 to about 8,000,000 weight-average molecular weight; or from about 10 mg to about 1000 mg of an alkali carboxymethylcellulose of about 10,000 to about 6,000,000 weight average molecular weight, such as sodium carboxymethylcellulose or potassium carboxymethylcellulose.
- a hydrogel such as a polyalkylene oxide of about 1,000,000 to about 8,000,000 weight-average molecular weight, for example, a polyethylene oxide of about 1,000,000 weight-average molecular weight, a polyethylene oxide of about 2,000,000 mole
- the hydrogel expansion layer comprises 0.0 mg to 350 mg, in present manufacture; from about 0.1 mg to about 250 mg of a hydroxyalkylcellulose of about 7,500 to about 4,500,00 weight-average molecular weight (e.g., hydroxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxybutylcellulose, or hydroxypentylcellulose) in present manufacture; from about 1 mg to about 50 mg of an agent such as sodium chloride, potassium chloride, potassium acid phosphate, tartaric acid, citric acid, raffinose, magnesium sulfate, magnesium chloride, urea, inositol, sucrose, glucose, or sorbitol; from about 0 to about 5 mg of a colorant, such as ferric oxide; from about 0 mg to about 30 mg, in a present manufacture, from about 0.1 mg to about 30 mg of a hydroxypropylalkylcellulose of about 9,000 to about 225,000 average-number molecular weight, such as, for example,
- the semipermeable wall can comprise a composition that is permeable to the passage of fluid and impermeable to the passage of prodrug.
- the wall is nontoxic and comprises a polymer such as cellulose acylate, cellulose diacylate, cellulose triacylate, cellulose acetate, cellulose diacetate, or cellulose triacetate.
- the wall can comprise from about 75 wt % (weight percent) to about 100 wt % of the cellulosic wall-forming polymer or, the wall can comprise additionally from about 0.01 wt % to about 80 wt % of polyethylene glycol, or from about 1 wt % to about 25 wt % of a cellulose ether such as hydroxypropylcellulose or a hydroxypropylalkycellulose such as hydroxypropylmethylcellulose.
- the total weight percent of all components comprising the wall is equal to 100 wt %.
- the internal compartment can comprise the compound-containing composition alone or in layered position with an expandable hydrogel composition.
- the expandable hydrogel composition in the compartment can increase in dimension by imbibing the fluid through the semipermeable wall, causing the hydrogel to expand and occupy space in the compartment, whereby the drug composition is pushed from the dosage form.
- the therapeutic layer and the expandable layer act together during the operation of the dosage form for the release of prodrug to a patient over time.
- the dosage form can comprise a passageway in the wall that connects the exterior of the dosage form with the internal compartment.
- the osmotic powered dosage form can be made to deliver prodrug from the dosage form to the patient at a zero order rate of release over a period of up to about 24 hours.
- the expression “passageway” as used herein can comprise means and methods suitable for the metered release of the compound from the compartment of the dosage form.
- the exit means can comprise at least one passageway, including orifice, bore, aperture, pore, porous element, hollow fiber, capillary tube, channel, porous overlay, or porous element that provides for the osmotic controlled release of compound.
- the passageway can include a material that erodes or is leached from the wall in a fluid environment of use to produce at least one controlled-release dimensioned passageway.
- Examples of materials suitable for forming a passageway, or a multiplicity of passageways include a leachable poly(glycolic) acid or poly(lactic) acid polymer in the wall, a gelatinous filament, poly(vinyl alcohol), leach-able polysaccharides, salts, and oxides.
- a pore passageway, or more than one pore passageway can be formed by leaching a leachable compound, such as sorbitol, from the wall.
- the passageway can have controlled-release dimensions, such as round, triangular, square and elliptical, for the metered release of prodrug from the dosage form.
- the dosage form can be constructed with one or more passageways in spaced apart relationship on a single surface or on more than one surface of the wall.
- fluid environment denotes an aqueous or biological fluid as in a human patient, including the gastrointestinal tract.
- Passageways and equipment for forming passageways are disclosed in U.S. Pat. Nos. 3,845,770; 3,916,899; 4,063,064; 4,088,864; and 4,816,263.
- Passageways formed by leaching are disclosed in U.S. Pat. Nos. 4,200,098 and 4,285,987.
- compounds can be released from the dosage form over a period of at least about 4 hours, at least about 8 hours, at least about 12 hours, at least about 16 hours at least about 20 hours, and in certain embodiments, at least about 24 hours.
- a dosage form can release from about 0% to about 30% of the prodrug in about 0 to about 2 hours, from about 20% to about 50% of the prodrug in about 2 to about 12 hours, from about 50% to about 85% of the prodrug in about 3 to about 20 hours and greater than about 75% of the prodrug in about 5 to about 18 hours.
- a sustained release oral dosage form of the present disclosure can further provide a concentration of 3-aminopropylsulfinic acid or analog thereof in the plasma and/or blood of a patient over time, which curve has an area under the curve (AUC) that is proportional to the dose of the prodrug of 3-aminopropylsulfinic acid or analog thereof administered, and a maximum concentration C max .
- the C max is less than about 75%, such as less than about 60%, of the C max obtained from administering an equivalent dose of the compound from an immediate release oral dosage form and the AUC is substantially the same as the AUC obtained from administering an equivalent dose of the prodrug from an immediate release oral dosage form.
- compositions or dosage forms of the present disclosure can be administered once or twice per day, and in certain embodiments, once per day.
- a therapeutically effective amount of one or more compounds of Formula (I) can be administered to a patient, such as a human, suffering from stiffness, involuntary movements, and/or pain associated with spasticity.
- the underlying etiology of the spasticity being so treated may have a multiplicity of origins, including, e.g., cerebral palsy, multiple sclerosis, stroke, and head and spinal cord injuries.
- a therapeutically effective amount of one or more compounds of Formula (I) can be administered to a patient, such as a human, suffering from gastroesophageal reflux disease.
- a therapeutically effective amount of one or more compounds of Formula (I) can be administered to a patient, such as a human, suffering from emesis. In certain embodiments, a therapeutically effective amount of one or more compounds of Formula (I) can be administered to a patient, such as a human, suffering from cough. In certain embodiments, a therapeutically effective amount of one or more compounds of Formula (I) can be administered to a patient, such as a human, suffering from drug addiction. Addiction to stimulants such as cocaine or amphetamines, or narcotics such as morphine or heroin may be effectively treated by administration of one or more compounds of Formula (I).
- a therapeutically effective amount of one or more compounds of Formula (I) can be administered to a patient, such as a human, suffering from alcohol abuse or addiction, or nicotine abuse or addiction.
- sustained release oral dosage forms comprising a therapeutically effective amount of one or more compounds of Formula (I) can be administered to the patients.
- a therapeutically effective amount of one or more compounds of Formula (I) can be administered to a patient, such as a human, as a preventative measure against various diseases or disorders.
- a therapeutically effective amount of one or more compounds of Formula (I) can be administered as a preventative measure to a patient having a predisposition for spasticity, gastroesophageal reflux disease, emesis, cough, alcohol addiction or abuse, nicotine addiction or abuse, or other drug addiction or abuse.
- a therapeutically effective amount of one or more compounds of Formula (I) may be administered or applied singly, or in combination with other agents including pharmaceutically acceptable vehicles and/or pharmaceutically active agent for treating a disease or disorder, which may be the same or different disease or disorder as the disease or disorder being treated by the one or more compounds of Formula (I).
- a therapeutically effective amount of one or more compounds of Formula (I) may be delivered together with a compound disclosed herein or in combination with another pharmaceutically active agent.
- a dosage form comprising a compound of Formula (I) may be administered in conjunction with a proton pump inhibitor, such as omeprazole, esomeprazole, pantoprazole, lansoprazole, or rabeprazole sodium, or with an H 2 antagonist such as rantidine, cimetidine, or famotidine.
- a proton pump inhibitor such as omeprazole, esomeprazole, pantoprazole, lansoprazole, or rabeprazole sodium
- an H 2 antagonist such as rantidine, cimetidine, or famotidine.
- Dosage forms upon releasing a prodrug of 3-aminopropylsulfinic acid or analog thereof, can provide the corresponding 3-aminopropylsulfinic acid or analog thereof upon in vivo administration to a patient.
- the promoiety or promoieties of the prodrug may be cleaved either chemically and/or enzymatically.
- One or more enzymes present in the stomach, intestinal lumen, intestinal tissue, blood, liver, brain, or any other suitable tissue of a mammal may enzymatically cleave the promoiety or promoieties of the prodrug.
- the promoiety or promoieties are cleaved after absorption by the gastrointestinal tract, the prodrugs of 3-aminopropylsulfinic acid or analogs thereof may have the opportunity to be absorbed into the systemic circulation from the large intestine. In certain embodiments, the promoiety or promoieties are cleaved after absorption by the gastrointestinal tract.
- the promoiety of a 3-aminopropylsulfinic acid analog prodrug of Formula (I) may be cleaved prior to absorption by the gastrointestinal tract (e.g., within the stomach or intestinal lumen) and/or after absorption by the gastrointestinal tract (e.g., in intestinal tissue, blood, liver, or other suitable tissue of a mammal).
- 3-aminopropylsulfinic acid or analog thereof remains conjugated to the prodrug promoiety during transit across the intestinal mucosal barrier to provide protection from presystemic metabolism.
- a prodrug of 3-aminopropylsulfinic acid or analog thereof of Formula (I) is essentially not metabolized to the corresponding 3-aminopropylsulfinic acid or analog thereof of Formula (II) within enterocytes but is metabolized to the parent drug within the systemic circulation. Cleavage of the promoiety of the prodrug of 3-aminopropylsulfinic acid or analog thereof of Formula (I) after absorption by the gastrointestinal tract may allow these prodrugs to be absorbed into the systemic circulation either by active transport, passive diffusion, or by a combination of both active and passive processes.
- a pharmaceutical composition, formulation, or dosage form of the present disclosure is capable of maintaining a therapeutically effective concentration of 3-aminopropylsulfinic acid or analog thereof in the plasma or blood of a patient for a time period of at least about 4 hours, for at least about 8 hours, for a period of at least about 12 hours, at least about 16 hours, at least about 20 hours, and in certain embodiments for at least about 24 hours, after the pharmaceutical composition, formulation, or dosage form comprising a corresponding prodrug of 3-aminopropylsulfinic acid or analog thereof of Formula (I) and a pharmaceutically acceptable vehicle is orally administered to the patient.
- a prodrug of a 3-aminopropylsulfinic acid or analog thereof of Formula (I) is selected from a prodrug of:
- Prodrugs of 3-aminopropylsulfinic acid and analogs thereof of Formula (I) or pharmaceutically acceptable salts thereof, or pharmaceutically acceptable solvates of any of the foregoing as disclosed herein, and/or pharmaceutical compositions thereof can be administered orally.
- Prodrugs of 3-aminopropylsulfinic acid and analogs thereof of Formula (I) and/or pharmaceutical compositions thereof can also be administered by any other convenient route, for example, by infusion or bolus injection, by absorption through epithelial or mucocutaneous linings (e.g., oral mucosa, rectal, and intestinal mucosa, etc.). Administration can be systemic or local.
- Various delivery systems are known, (e.g., encapsulation in liposomes, microparticles, microcapsules, capsules, etc.) that can be used to administer a compound and/or pharmaceutical composition.
- Methods of administration include, but are not limited to, intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, intranasal, epidural, oral, sublingual, intranasal, intracerebral, intravaginal, transdermal, rectally, inhalation, or topically, particularly to the ears, nose, eyes, or skin.
- an intraventricular catheter may facilitate intraventricular injection, and can be, for example, attached to a reservoir, such as an Ommaya reservoir.
- prodrugs of 3-aminopropylsulfinic acid and analogs thereof of Formula (I) and/or pharmaceutical compositions thereof can be delivered via sustained release systems, such as oral sustained release systems.
- sustained release systems such as oral sustained release systems.
- a pump may be used (Langer, supra; Sefton, 1987 CRC Crit Ref Biomed Eng. 14:201; Saudek et al., 1989 N. Engl. J Med. 321:574).
- Prodrugs of 3-aminopropylsulfinic acid or analogs thereof of Formula (I) can be administered to treat or prevent diseases or disorders such as spasticity, gastroesophageal reflux disease, emesis, cough, alcohol addiction or abuse, nicotine addiction or abuse, or other drug addiction or abuse.
- diseases or disorders such as spasticity, gastroesophageal reflux disease, emesis, cough, alcohol addiction or abuse, nicotine addiction or abuse, or other drug addiction or abuse.
- the amount of a compound of Formula (I) that will be effective in the treatment of a particular disease or disorder disclosed herein will depend on the nature of the disease or disorder, and can be determined by standard clinical techniques known in the art. In addition, in vitro or in vivo assays may optionally be employed to help identify optimal dosage ranges.
- the amount of a compound administered will, of course, depend on, among other factors, the subject being treated, the weight of the subject, the severity of the disease or disorder, the manner of administration, and the judgment of the prescribing physician.
- dosage forms can be adapted to be administered to a patient no more than twice per day, and in certain embodiments, only once per day. Dosing may be provided alone or in combination with other drugs and may continue as long as required for effective treatment of the disease state or disorder.
- Suitable dosage ranges for oral administration can depend on the potency of the parent 3-aminopropylsulfinic acid or analog thereof.
- doses are generally between about 0.15 mg to about 20 mg per kilogram body weight.
- Certain 3-aminopropylsulfinic acid analogs may be more potent and lower doses may be appropriate for both the parent drug and any prodrug (measured on an equivalent molar basis). Dosage ranges may be readily determined by methods known to the skilled artisan.
- prodrugs of 3-aminopropylsulfinic acid or analogs thereof of Formula (I) or pharmaceutically acceptable salts thereof, or pharmaceutically acceptable solvates of any of the foregoing can be used in combination therapy with at least one other therapeutic agent.
- Prodrugs of 3-aminopropylsulfinic acid or analogs thereof of Formula (I) and the at least one other therapeutic agent(s) can act additively or, in certain embodiments, synergistically.
- prodrugs of 3-aminopropylsulfinic acid or analogs thereof of Formula (I) can be administered concurrently with the administration of another therapeutic agent.
- prodrugs of 3-aminopropylsulfinic acid or analogs thereof of Formula (I) or pharmaceutically acceptable salts thereof, or solvates of any of the foregoing can be administered prior or subsequent to administration of another therapeutic agent.
- the at least one other therapeutic agent can be effective for treating the same or different disease, disorder, or condition.
- Methods of the present disclosure include administration of one or more compounds or pharmaceutical compositions of the present disclosure and one or more other therapeutic agents provided that the combined administration does not inhibit the therapeutic efficacy of the one or more compounds of the present disclosure and/or does not produce adverse combination effects.
- compositions of the present disclosure can be administered concurrently with the administration of another therapeutic agent, which can be part of the same pharmaceutical composition as, or in a different composition from, that containing the compounds of the present disclosure.
- compounds of the present disclosure can be administered prior or subsequent to administration of another therapeutic agent.
- the combination therapy comprises alternating between administering a composition of the present disclosure and a composition comprising another therapeutic agent, e.g., to minimize adverse side effects associated with a particular drug.
- the therapeutic agent can advantageously be administered at a dose that falls below the threshold at which the adverse side effect is elicited.
- a pharmaceutical composition can further comprise substances to enhance, modulate and/or control release, bioavailability, therapeutic efficacy, therapeutic potency, stability, and the like.
- the compound can be co-administered with one or more active agents to increase the absorption or diffusion of the compound from the gastrointestinal tract, or to inhibit degradation of the drug in the systemic circulation.
- at least one compound of the present disclosure can be co-administered with active agents having a pharmacological effect that enhance the therapeutic efficacy of the drug.
- compounds or pharmaceutical compositions of the present disclosure include, or can be administered to a patient together with, another compound for treating or preventing spasticity, drugs for treating or preventing gastroesophageal reflux disease, drugs for treating or preventing narcotic addiction or abuse, drugs for treating or preventing alcohol addiction or abuse, drugs for treating or preventing nicotine addiction or abuse, or drugs for treating or preventing emesis or cough.
- Examples of drugs for treating or preventing movement disorders such as spasticity include levodopa, mild sedatives such as benzodiazepines including alprazolam, chlordiazepoxide, clonazepam, clorazepate, diazepam, lorazepam, and oxazepam; muscle relaxants such as baclofen, anticholinergic drugs such as trihexyphenidyl and diphenhydramine; antipsychotics such as chlorpromazine, fluphenazine, haloperidol, loxapine, mesoridazine, molindone, perphenazine, pimozide, thioridazine, thiothixene, trifluoperazine, aripiprazole, clozapine, olanzapine, quetiapine, risperidone, and ziprasidone; and antidepressants such as amitriptyline.
- Examples of drugs for treating or preventing gastrointestinal disorders such as gastroesophageal reflux disease include H2 inhibitors such as cimetidine, famotidine, nizatidine, and ranitidine; proton pump inhibitors such as omeprazole, lansoprazole, pantoprazole, rabeprazole, and esomeprazole; and prokinetics such as cisparide, bethanechol, and metoclopramide.
- H2 inhibitors such as cimetidine, famotidine, nizatidine, and ranitidine
- proton pump inhibitors such as omeprazole, lansoprazole, pantoprazole, rabeprazole, and esomeprazole
- prokinetics such as cisparide, bethanechol, and metoclopramide.
- drugs for treating or preventing emesis include benzamines such as metoclopramide; phenothiazines such as prochlorperazine, perphenazine, chlorpromazine, promethazine, and thiethylperazine; butyrophenones such as droperidol and haloperidol; dopamine 2 antagonists such as metoclorpamide; 5-HT3 antagonists such as ondansetron, granisetron, dolasetron, palonosetron; NK-1 receptor antagonists such as aprepitant, corticosteroids such as dexamethazone; antihistamines such as diphenhydramine and hydroxyzine; cannabinoids such as dronabinol; and benzodiazepines such as lorazepam, midazolam, alprazolam, and olanzapine
- benzamines such as metoclopramide
- phenothiazines such as prochlorpera
- Examples of drugs for treating or preventing alcohol addiction or abuse include disulfiram, naltrexone, acamprosate, clonidine, methadone, 1-alpha-acetylmethadol, buprenorphine, bupropion, and baclofen.
- Examples of drugs for treating or preventing narcotic addiction or abuse include buprenorphine, tramadol, methadone, and naltrexone.
- Examples of drugs for treating or preventing nicotine addiction or abuse include bupropion, clonidine, and nicotine.
- drugs for treating or preventing cough include codeine, dextromethorphan, guaifenesin, hydrocodone, hydromorphone, benzonatate, diphenhydramine, pseudoephedrine, acetaminophen, and carbinoxamine.
- Step A O-(1-Chloroethyl) S-Methyl Thiocarbonate (3)
- Step B O-(1-Isobutanoyloxyethyl) S-Methyl Thiocarbonate (2)
- reaction mixture was diluted with ether (50 mL) and sequentially washed with water (2 ⁇ 10 mL), saturated sodium bicarbonate solution (10 mL), and brine (10 mL), then dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo to give the title compound (17) as a colorless oil (1 g, 77% yield). After trituration with hexane (20 mL) the product solidified to a white solid. m.p: 50-54° C.
- Step B 1-Hydroxy-(3S,4S)-2,5-Dioxo-3,4-dibenzoyloxypyrrolidine (27)
- Step C (1R)-1-[((3S,4S)-2,5-Dioxo-3,4-dibenzoyloxypyrrolidinyl)-oxycarbonyloxy]-2-methylpropyl 2-methylpropanoate (25)
- Step B 1-Hydroxy-(3R,4R)-2,5-Dioxo-3,4-dibenzoyloxypyrrolidine (30)
- Step C (1S)-1-[((3R,4R)-2,5-Dioxo-3,4-dibenzoyloxypyrrolidinyl)-oxycarbonyloxy]-2-methylpropyl 2-methylpropanoate (28)
- the prodrug remains intact (i.e., uncleaved) while in the gastrointestinal tract and be cleaved (i.e., to release the parent drug) while in the systemic circulation.
- a useful level of stability can at least in part be determined by the mechanism and kinetics of absorption of the prodrug by the gastrointestinal tract.
- a useful level of lability can at least in part be determined by the pharmacokinetics of the prodrug and parent drug in the systemic circulation.
- prodrugs that are more stable in a Caco-2 S9 and/or pancreatin assay and are more labile in a rat plasma, human plasma, rat liver S9, and/or human liver S9 preparation can be useful as an orally administered prodrug.
- the results of tests, such as those described in this example, for determining the enzymatic cleavage of prodrugs in vitro can be used to select prodrugs for in vivo testing.
- the stabilities of prodrugs are evaluated in one or more in vitro systems using a variety of preparations following methods known in the art. Tissues and preparations are obtained from commercial sources (e.g., Pel-Freez Biologicals, Rogers, A R, or GenTest Corporation, Woburn, Mass.). Experimental conditions useful for the in vitro studies are described in Table 1. Each preparation is incubated with test compound at 37° C. for one hour. Aliquots (50 ⁇ L) are removed at 0, 30, and 60 min and quenched with 0.1% trifluoroacetic acid in acetonitrile. Samples are then centrifuged and analyzed by LC/MS/MS. Stability of prodrugs towards specific enzymes (e.g., peptidases, etc.) are also assessed in vitro by incubation with the purified enzyme:
- specific enzymes e.g., peptidases, etc.
- Pancreatin Stability Stability studies are conducted by incubating prodrug (5 ⁇ M) with 1% (w/v) pancreatin (Sigma, P-1625, from porcine pancreas) in 0.025 M Tris buffer containing 0.5 M NaCl (pH 7.5) at 37° C. for 60 min. The reaction is stopped by addition of 2 volumes of methanol. After centrifugation at 14,000 rpm for 10 min, the supernatant is removed and analyzed by LC/MS/MS.
- Caco-2 Homogenate S9 Stability Caco-2 cells are grown for 21 days prior to harvesting. Culture medium are removed and cell monolayers are rinsed and scraped off into ice-cold 10 mM sodium phosphate/0.15 M potassium chloride, pH 7.4. Cells are lysed by sonication at 4° C. using a probe sonicator. Lysed cells are then transferred into 1.5 mL centrifuge vials and centrifuged at 9000 g for 20 min at 4° C. The resulting supernatant (Caco-2 cell homogenate S9 fraction) is aliquoted into 0.5 mL vials and stored at ⁇ 80° C. until used.
- prodrug (5 ⁇ M) is incubated in Caco-2 homogenate S9 fraction (0.5 mg protein per mL) for 60 min at 37° C. Concentrations of intact prodrug and released parent drug are determined at zero time and 60 minutes using LC/MS/MS.
- Rats are obtained commercially and are pre-cannulated in the both the ascending colon and the jugular vein. Animals are conscious at the time of the experiment. All animals are fasted overnight and until 4 hours post-dosing of a prodrug of 3-aminopropylsulfinic acid or analog thereof. A 3-aminopropylsulfinic acid or analog thereof or the corresponding prodrug is administered as a solution (in water) directly into the colon via the cannula at a dose equivalent to about 75 mg or other appropriate dose of 3-aminopropylsulfinic acid or analog thereof per kg body weight.
- Blood samples (0.3 mL) are obtained from the jugular cannula at intervals over 8 hours and are quenched immediately by addition of sodium metabisulfite to prevent oxidation of 3-aminopropylsulfinic acid or analog thereof. Blood is then further quenched with methanol/perchloric acid to prevent hydrolysis of the prodrug. Blood samples are analyzed as described in Steps B and C.
- Step B Sample Preparation for Colonically Absorbed Drug
- 300 ⁇ L of methanol is added to 1.5 mL tubes. Rat blood (100 ⁇ L) is collected at different times into the tubes and vortexed to mix. 90 ⁇ L of rat blood is quenched with 300 ⁇ L methanol. 10 ⁇ L of a standard stock solution containing 3-aminopropylsulfinic acid or analog thereof (0.04, 0.2, 1, 5, 25, and 100 ⁇ g/mL) and 20 ⁇ L of p-chlorophenylalanine is added to 90 ⁇ L of rat blood to make up a final calibration standard (0.004, 0.02, 0.1, 0.5, 2.5, and 10 ⁇ g/mL). Samples are vortexed and centrifuged at 3400 rpm for 20 min. The supernatant is analyzed by LC/MS/MS.
- An API 4000 LC/MS/MS spectrometer equipped with Agilent 100 binary pumps and a CTC HTS-PAL autosampler are used in the analysis.
- a ThermoHypersil-Keystone Betasil C18 100 ⁇ 4.6 mm, 5 ⁇ M column is used during the analysis.
- the mobile phase is 0.1% formic acid in water (A) and 0.1% formic acid in acetonitrile (B).
- the flow rate is 1.2 mL/min.
- the gradient condition is: 1% B for 0.5 min, then to 95% B for 1.8 min, and maintained at 95% B for 1.7 min. Then the mobile phase is returned to 1% B for 2.5 min.
- a TurboIonSpray source is used on the API 4000.
- the analysis is done in negative ion mode for 3-aminopropylsulfinic acid and positive ion mode for analogs of 3-aminopropylsulfinic acid and the MRM transition for each analyte is optimized using standard solution. 20 ⁇ L of the samples are injected. Non-compartmental analysis is performed using WinNonlin software (v.3.1 Professional Version, Pharsight Corporation, Mountain View, Calif.) on individual animal profiles.
- C max peak observed concentration following dosing
- T max time to maximum concentration is the time at which the peak concentration was observed
- AUC (0-t) area under the plasma concentration-time curve from time zero to last collection time, estimated using the log-linear trapezoidal method
- AUC (0- ⁇ ) area under the plasma concentration time curve from time zero to infinity, estimated using the log-linear trapezoidal method to the last collection time with extrapolation to infinity
- t 1/2,z terminal half-life
- Prodrugs that provide a bioavailability of the corresponding parent drug that is greater than the bioavailability provided by an equimolar dose of the parent drug administered to a patient by the same route can be useful as therapeutic agents.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Addiction (AREA)
- Psychiatry (AREA)
- Neurosurgery (AREA)
- Neurology (AREA)
- Biomedical Technology (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Acyloxyalkyl carbamate prodrugs of 3-aminopropylsulfinic acid and analogs thereof, pharmaceutical compositions of 3-aminopropylsulfinic acid and analogs thereof, methods of making prodrugs of 3-aminopropylsulfinic acid and analogs thereof, methods of using prodrugs of 3-aminopropylsulfinic acid and analogs thereof, and pharmaceutical compositions thereof for treating or preventing diseases or disorders such as spasticity or gastroesophageal reflux disease are disclosed. Acyloxyalkyl carbamate prodrugs of 3-aminopropylsulfinic acid and analogs thereof and sustained release oral dosage forms thereof, which are suitable for oral administration, are also disclosed.
Description
This application claims the benefit under 35 U.S.C. § 119(e) from U.S. Provisional Application Ser. No. 60/625,050 filed Nov. 3, 2004, which is incorporated herein by reference in its entirety.
The disclosure relates to acyloxyalkyl carbamate prodrugs of 3-aminopropylsulfinic acid and analogs thereof, pharmaceutical compositions comprising 3-aminopropylsulfinic acid and analogs thereof, methods of making prodrugs of 3-aminopropylsulfinic acid and analogs thereof, and methods of using prodrugs of 3-aminopropylsulfinic acid and analogs thereof, and pharmaceutical compositions thereof to treat various diseases or disorders. The disclosure also relates to prodrugs of 3-aminopropylsulfinic acid and analogs thereof suitable for oral administration, and for oral administration using sustained release dosage forms.
(±)-4-Amino-3-(4-chlorophenyl)butanoic acid (baclofen), (1),
is an analog of gamma-aminobutyric acid (GABA) that selectively activates GABAB receptors resulting in neuronal hyperpolarization. GABAB receptors are located in laminae I-IV of the spinal cord, where primary sensory fibers end. These G-protein coupled receptors activate conductance by K+-selective ion channels and can reduce currents mediated by Ca2+ channels in certain neurons. Baclofen has a presynaptic inhibitory effect on the release of excitatory neurotransmitters and also acts postsynaptically to decrease motor neuron firing (see Bowery, Trends Pharmacol. Sci. 1989, 10, 401-407; Misgeld et al., Prog. Neurobiol. 1995, 46, 423-462, each of which is incorporated herein by reference in its entirety).
Many examples of compounds having agonistic or partially agonistic affinity to GABAB receptors exist and include certain amino acids, aminophosphonic acids, aminophosphinic acids, aminophosphonous acids, and aminosulfinic acids.
Examples of 4-aminobutanoic acid GABAB receptor ligands include:
- 4-amino-3-(2-chlorophenyl)butanoic acid;
- 4-amino-3-(4-fluorophenyl)butanoic acid;
- 4-amino-3-hydroxybutanoic acid;
- 4-amino-3-(4-chlorophenyl)-3-hydroxyphenylbutanoic acid;
- 4-amino-3-(thien-2-yl)butanoic acid;
- 4-amino-3-(5-chlorothien-2-yl)butanoic acid;
- 4-amino-3-(5-bromothien-2-yl)butanoic acid;
- 4-amino-3-(5-methylthien-2-yl)butanoic acid;
- 4-amino-3-(2-imidazolyl)butanoic acid; and
- 4-guanidino-3-(4-chlorophenyl)butanoic acid.
Examples of aminopropylphosphonous acid and aminopropylphosphinic analog GABAB receptor ligands include:
- (3-aminopropyl)phosphonous acid;
- (4-aminobut-2-yl)phosphonous acid;
- (3-amino-2-methylpropyl)phosphonous acid;
- (3-aminobutyl)phosphonous acid;
- (3-amino-2-(4-chlorophenyl)propyl)phosphonous acid;
- (3-amino-2-(4-chlorophenyl)-2-hydroxypropyl)phosphonous acid;
- (3-amino-2-(4-fluorophenyl)propyl)phosphonous acid;
- (3-amino-2-phenylpropyl)phosphonous acid;
- (3-amino-2-hydroxypropyl)phosphonous acid;
- (E)-(3-aminopropen-1-yl)phosphonous acid;
- (3-amino-2-cyclohexylpropyl)phosphonous acid;
- (3-amino-2-benzylpropyl)phosphonous acid;
- [3-amino-2-(4-methylphenyl)propyl]phosphonous acid;
- [3-amino-2-(4-trifluoromethylphenyl)propyl]phosphonous acid;
- [3-amino-2-(4-methoxyphenyl)propyl]phosphonous acid;
- [3-amino-2-(4-chlorophenyl)-2-hydroxypropyl]phosphonous acid;
- (3-aminopropyl)methylphosphinic acid;
- (3-amino-2-hydroxypropyl)methylphosphinic acid;
- (3-aminopropyl)(difluoromethyl)phosphinic acid;
- (4-aminobut-2-yl)methylphosphinic acid;
- (3-amino-1-hydroxypropyl)methylphosphinic acid;
- (3-amino-2-hydroxypropyl)(difluoromethyl)phosphinic acid;
- (E)-(3-aminopropen-1-yl)methylphosphinic acid;
- (3-amino-2-oxo-propyl)methyl phosphinic acid;
- (3-aminopropyl)hydroxymethylphosphinic acid;
- (5-aminopent-3-yl)methylphosphinic acid; and
- (4-amino-1,1,1-trifluorobut-2-yl)methylphosphinic acid.
3-Aminopropylsulfinic acid analog GABAB receptor agonists are described in Carruthers et al., Bioorg. Med. Chem. Lett. 1995, 5, 237-240; Shue et al., Bioorg. Med. Chem. Lett. 1996, 6, 1709-1714; Carruthers et al., Bioorg. Med. Chem. Lett. 1998, 8, 3059-3064; and Fitzpatrick et al., International Publication No. WO 02/100823, each of which is incorporated herein by reference in its entirety. Examples of 3-aminopropylsulfinic acid analog GABAB receptor ligands include:
- 3-aminopropylsulfinic acid;
- (3-amino-2-(4-chlorophenyl)propyl)sulfinic acid;
- (3-amino-2-hydroxypropyl)sulfinic acid;
- (2S)-(3-amino-2-hydroxypropyl)sulfinic acid;
- (2R)-(3-amino-2-hydroxypropyl)sulfinic acid;
- (3-amino-2-fluoropropyl)sulfinic acid;
- (2S)-(3-amino-2-fluoropropyl)sulfinic acid;
- (2R)-(3-amino-2-fluoropropyl)sulfinic acid; and
- (3-amino-2-oxopropyl)sulfinic acid.
A principal pharmacological effect of GABAB receptor agonists in mammals is reduction of muscle tone, and baclofen is frequently used in the treatment of spasticity. Spasticity is associated with damage to the corticospinal tract and is a common complication of neurological disease. Diseases and conditions in which spasticity may be a prominent symptom include cerebral palsy, multiple sclerosis, stroke, head and spinal cord injuries, traumatic brain injury, anoxia, and neurodegenerative diseases. Patients with spasticity complain of stiffness, involuntary spasm, and pain. These painful spasms may be spontaneous or triggered by a minor sensory stimulus, such as touching the patient.
GABAB receptor agonists are also useful in controlling gastroesophageal reflux disease (Lidums et al., Gastroenterology 2000, 118, 7-13; Cange et al., Aliment. Pharmacol. Ther. 2002, 16, 869-873; van Herwaarden et al., Aliment. Pharmacol. Ther. 2002, 16, 1655-1662; Zhang et al., Gut 2002, 50, 19-24; Vela et al., Aliment. Pharmacol. Ther. 2003, 17, 243-251; Koek et al., Gut 2003, 52, 1397-1402; Ciccaglione et al., Gut 2003, 52, 464-470; Andrews et al., U.S. Pat. No. 6,117,908; Andrews et al., U.S. Pat. No. 6,664,069; Fara et al., International Publication No. WO 02/096404; and Fitzpatrick et al., International Publication No. WO 02/100823, each of which is incorporated herein by reference in its entirety). The physiologic process by which most reflux episodes occur is transient lower esophageal sphincter relaxation (TLESR). The lower esophageal sphincter (LES) and crural diaphragm each contribute to the sphincteric mechanism that partitions the stomach from the esophagus and guards against pathological gastroesophageal reflux (GER) (Mittal et al., Gastroenterology 1995, 109, 601-610, which is incorporated herein by reference in its entirety). TLESRs are rapid and prolonged relaxations of the LES and inhibitions of the crural diaphragm that are not initiated by swallowing. Gastric distension and elevation of serum cholecystokinin (CCK) after eating increases the frequency of TLESRs and these transient relaxations are important pathophysiologically as they occur more frequently in patients with gastroesophageal reflux disease (GERD). TLESRs are believed to account for virtually all reflux episodes in healthy individuals and most (up to 80%) episodes in patients with GERD (Tonini et al., Drugs. 2004, 64, 347-361, which is incorporated herein by reference in its entirety).
GABAB receptor agonists are also useful in promoting alcohol abstinence in alcoholics (Gessa et al., International Publication No. WO 01/26638, which is incorporated herein by reference in its entirety); in promoting smoking cessation (Gessa et al., International Publication No. WO 01/08675, which is incorporated herein by reference in its entirety); in reducing addiction liability of narcotic agents (Robson et al., U.S. Pat. No. 4,126,684, which is incorporated herein by reference in its entirety); in the treatment of emesis (Bountra et al., U.S. Pat. No. 5,719,185, which is incorporated herein by reference in its entirety); and as an anti-tussive for the treatment of cough (Kreutner et al., U.S. Pat. No. 5,006,560, which is incorporated herein by reference in its entirety).
Typical GABAB receptor agonists such as the zwitterionic 4-aminobutanoic, 3-aminopropylphosphinic, 3-aminopropylphosphonous, and 3-aminopropylsulfinic acids noted above are polar molecules that lack the requisite physicochemical characteristics for effective passive permeability across cellular membranes. For baclofen, passage of the drug across the gastrointestinal tract and the blood-brain barrier (BBB) is mediated primarily by active transport processes, rather than by passive diffusion. Accordingly, baclofen is a substrate for active transport mechanisms shared by neutral α-amino acids such as leucine, and β-amino acids such as β-alanine and taurine (van Bree et al., Pharm. Res. 1988, 5, 369-371; Cercos-Fortea et al., Biopharm. Drug. Disp. 1995, 16, 563-577; Deguchi et al., Pharm. Res. 1995, 12, 1838-1844; and Moll-Navarro et al., J. Pharm. Sci. 1996, 85, 1248-1254), each of which is incorporated herein by reference in its entirety. 3-Aminopropylsulfinic acids are also likely to exploit related active transport mechanisms to permeate the gastrointestinal (GI) mucosa following oral administration.
Another common feature shared by baclofen and other zwitterionic GABAB receptor agonists is their rapid clearance from the systemic circulation, which leads to the necessity for frequent dosing in humans (e.g. three or four times daily) (see Bowery, supra; “Commercial and Pipeline Perspectives: Upper GI Disorders,” Data Monitor Report, September 2004, p. 147). Sustained released oral dosage formulations are a conventional solution to the problem of rapid systemic drug clearance, as is well known in the art (see, e.g., “Remington's Pharmaceutical Sciences,” Lippincott Williams & Wilkins, 21st Edition, 2005). Osmotic delivery systems are also recognized methods for sustained drug delivery (see, e.g., Verma et al., Drug Dev. Ind. Pharm. 2000, 26, 695-708). Successful application of these technologies depends on the drug of interest having an effective level of absorption from the large intestine (also referred to herein as the colon), where the dosage form spends a majority of its time during its passage down the gastrointestinal tract. Baclofen is poorly absorbed following administration into the colon in animal models (Merino et al., Biopharm. Drug. Disp. 1989, 10, 279-297) presumably because the transporter proteins mediating baclofen absorption in the upper region of the small intestine are not expressed in the large intestine. Development of an oral controlled release formulation for baclofen and other zwitterionic GABAB receptor agonists should considerably improve the convenience, efficacy, and side effect profile of GABAB agonist therapy. However, the rapid passage of conventional dosage forms through the proximal absorptive region of the small intestine has thus far prevented the successful application of sustained release technologies to this drug. A number of exploratory delivery technologies, which rely on either mucoadhesion or gastric retention have been suggested to achieve sustained delivery of baclofen (Sinnreich, U.S. Pat. No. 4,996,058; Khanna, U.S. Pat. No. 5,091,184; Fara et al., supra; Dudhara et al., International Publication No. WO 03/011255) though to date none of these appear to be able to achieve sustained blood levels of baclofen in human subjects.
Thus, there is a significant need for new prodrugs of 3-aminopropylsulfinic acid GABAB receptor agonists which are well absorbed in the large intestine and/or colon and hence suitable for oral sustained release formulations, thus improving the convenience, efficacy, and side effect profile of GABAB agonist therapy, particularly for the treatment of spasticity and gastroesophageal reflux disease.
These and other needs can be satisfied by the disclosure herein of acyloxyalkyl carbamate prodrugs of 3-aminopropylsulfinic acid and analogs thereof, pharmaceutical compositions of acyloxyalkyl carbamate prodrugs of 3-aminopropylsulfinic acid and analogs thereof, methods of making acyloxyalkyl carbamate prodrugs of 3-aminopropylsulfinic acid and analogs thereof, and methods of using acyloxyalkyl carbamate prodrugs of 3-aminopropylsulfinic acid and analogs thereof and/or pharmaceutical compositions thereof to treat various medical disorders.
A first aspect provides a compound of Formula (I):
stereoisomers thereof, pharmaceutically acceptable salts of any of the foregoing, pharmaceutically acceptable solvates of any of the foregoing, and combinations of any of the foregoing, wherein:
R1 is selected from acyl, substituted acyl, alkyl, substituted alkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, cycloalkyl, substituted cycloalkyl, cycloheteroalkyl, substituted cycloheteroalkyl, heteroalkyl, substituted heteroalkyl, heteroaryl, substituted heteroaryl, heteroarylalkyl, and substituted heteroarylalkyl;
R2 and R3 are independently selected from hydrogen, alkyl, substituted alkyl, alkoxycarbonyl, substituted alkoxycarbonyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heteroarylalkyl, and substituted heteroarylalkyl, or R2 and R3 together with the carbon atom to which they are bonded form a cycloalkyl, substituted cycloalkyl, cycloheteroalkyl, or substituted cycloheteroalkyl ring;
R4 is selected hydrogen, C1-6 acyl, substituted C1-6 acyl, C1-6 alkyl, substituted C1-6 alkyl, aryl, substituted aryl, C3-6 cycloalkyl, substituted C3-6 cycloalkyl, heteroaryl, substituted heteroaryl, C7-9 phenylalkyl, and substituted C7-9 phenylalkyl;
R5 is selected from hydrogen, hydroxy, mercapto, fluoro, chloro, bromo, oxo, and 4-chlorophenyl; and
R6 and R7 are independently selected from hydrogen, C1-6 alkyl, substituted C1-6 alkyl, C1-6alkoxy, substituted C1-6 alkoxy, aryl, substituted aryl, C3-6 cycloalkyl, substituted C3-6 cycloalkyl, heteroaryl, substituted heteroaryl, C7-9 phenylalkyl, and substituted C7-9 phenylalkyl.
A second aspect provides methods of synthesizing a compound of Formula (I), comprising:
contacting a compound of Formula (II) and a compound of Formula (III), optionally in the presence of a base, wherein:
R9 and R10 are independently selected from hydrogen, acylamino, acyloxy, alkoxycarbonylamino, alkoxycarbonyloxy, alkyl, substituted alkyl, alkoxy, substituted alkoxy, aryl, substituted aryl, arylalkyl, carbamoyloxy, dialkylamino, heteroaryl, hydroxy, and sulfonamido, or R9 and R10 together with the atoms to which they are bonded form a substituted cycloalkyl, substituted cycloheteroalkyl, or substituted aryl ring; and
R1, R2, R3, R4, R5, R6, and R7 are as defined, supra.
A third aspect provides pharmaceutical compositions comprising at least one compound of Formula (I), or pharmaceutically acceptable salts thereof, or pharmaceutically acceptable solvates of any of the foregoing, and a pharmaceutically acceptable vehicle, such as a diluent, carrier, excipient, or adjuvant. The choice of diluent, carrier, excipient and adjuvant will depend upon, among other factors, the desired mode of administration.
A fourth aspect provides methods of treating or preventing gastroesophageal reflux disease. Methods are also provided for treating or preventing spasticity, alcohol abuse or addiction, nicotine abuse or addiction, narcotics abuse or addiction, emesis, and cough. The methods generally involve administering to a patient in need of such treatment or prevention a therapeutically effective amount of at least one compound of Formula (I) and/or a pharmaceutical composition thereof.
Unless otherwise indicated, all numbers expressing quantities of ingredients, reaction conditions, and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are approximations that may vary depending upon the properties sought to be obtained. At the very least, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.
Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the embodiments are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical values, however, inherently contain certain errors necessarily resulting form the standard deviation found in their respective testing measurements.
The section headings used herein are for organizational purposes only, and are not to be construed as limiting the subject matter disclosed.
To the extent the definitions of terms in the publications, patents, and patent applications incorporated herein by reference are not the same as the definitions set forth in this specification, the definitions in this specification control for the entire specification, including the claims. Any other definitions in the publications, patents, and patent applications incorporated herein by reference that are not explicitly provided in this specification apply only to the embodiments discussed in the publications, patents, and patent applications incorporated herein by reference.
“1-Acyloxy-alkyl carbamate” refers to an N-1-acyloxy-alkoxycarbonyl derivative of 3-aminopropylsulfinic acid or analog thereof as encompassed by compounds of Formula (I).
“Alkyl” by itself or as part of another substituent refers to a saturated or unsaturated, branched, straight-chain, or cyclic monovalent hydrocarbon radical derived by the removal of one hydrogen atom from a single carbon atom of a parent alkane, alkene, or alkyne. Typical alkyl groups include, but are not limited to, methyl; ethyls such as ethanyl, ethenyl, and ethynyl; propyls such as propan-1-yl, propan-2-yl, cyclopropan-1-yl, prop-1-en-1-yl, prop-1-en-2-yl, prop-2-en-1-yl (allyl), cycloprop-1-en-1-yl; cycloprop-2-en-1-yl, prop-1-yn-1-yl, prop-2-yn-1-yl, etc.; butyls such as butan-1-yl, butan-2-yl, 2-methyl-propan-1-yl, 2-methyl-propan-2-yl, cyclobutan-1-yl, but-1-en-1-yl, but-1-en-2-yl, 2-methyl-prop-1-en-1-yl, but-2-en-1-yl, but-2-en-2-yl, buta-1,3-dien-1-yl, buta-1,3-dien-2-yl, cyclobut-1-en-1-yl, cyclobut-1-en-3-yl, cyclobuta-1,3-dien-1-yl, but-1-yn-1-yl, but-1-yn-3-yl, but-3-yn-1-yl, etc.; and the like.
The term “alkyl” is specifically intended to include groups having any degree or level of saturation, i.e., groups having exclusively single carbon-carbon bonds, groups having one or more double carbon-carbon bonds, groups having one or more triple carbon-carbon bonds, and groups having mixtures of single, double, and triple carbon-carbon bonds. Where a specific level of saturation is intended, the expressions “alkanyl,” “alkenyl,” and “alkynyl” are used. In certain embodiments, an alkyl group comprises from 1 to 20 carbon atoms, in certain embodiments, from 1 to 10 carbon atoms, and in certain embodiments, from 1 to 6 carbon atoms.
“Alkanyl” by itself or as part of another substituent refers to a saturated branched, straight-chain, or cyclic alkyl radical derived by the removal of one hydrogen atom from a single carbon atom of a parent alkane. Examples of alkanyl groups include, but are not limited to, methanyl; ethanyl; propanyls such as propan-1-yl, propan-2-yl (isopropyl), cyclopropan-1-yl, etc.; butanyls such as butan-1-yl, butan-2-yl (sec-butyl), 2-methyl-propan-1-yl (isobutyl), 2-methyl-propan-2-yl (t-butyl), cyclobutan-1-yl, etc.; and the like.
“Alkenyl” by itself or as part of another substituent refers to an unsaturated branched, straight-chain, or cyclic alkyl radical having at least one carbon-carbon double bond derived by the removal of one hydrogen atom from a single carbon atom of a parent alkene. The group may be in either the cis or trans conformation about the double bond(s). Examples of alkenyl groups include, but are not limited to, ethenyl; propenyls such as prop-1-en-1-yl, prop-1-en-2-yl, prop-2-en-1-yl (allyl), prop-2-en-2-yl, and cycloprop-1-en-1-yl; cycloprop-2-en-1-yl; butenyls such as but-1-en-1-yl, but-1-en-2-yl, 2-methyl-prop-1-en-1-yl, but-2-en-1-yl, but-2-en-1-yl, but-2-en-2-yl, buta-1,3-dien-1-yl, buta-1,3-dien-2-yl, cyclobut-1-en-1-yl, cyclobut-1-en-3-yl, cyclobuta-1,3-dien-1-yl, etc.; and the like.
“Alkynyl” by itself or as part of another substituent refers to an unsaturated branched, straight-chain, or cyclic alkyl radical having at least one carbon-carbon triple bond derived by the removal of one hydrogen atom from a single carbon atom of a parent alkyne. Examples of alkynyl groups include, but are not limited to, ethynyl; propynyls such as prop-1-yn-1-yl, prop-2-yn-1-yl, etc.; butynyls such as but-1-yn-1-yl, but-1-yn-3-yl, but-3-yn-1-yl, etc.; and the like.
“Acyl” by itself or as part of another substituent refers to a radical —C(O)R30, where R30 is hydrogen, alkyl, cycloalkyl, cycloheteroalkyl, aryl, arylalkyl, heteroalkyl, heteroaryl, or heteroarylalkyl as defined herein. Examples include, but are not limited to formyl, acetyl, cyclohexylcarbonyl, cyclohexylmethylcarbonyl, benzoyl, benzylcarbonyl, and the like.
“Alkoxy” by itself or as part of another substituent refers to a radical —OR31 where R31 represents an alkyl or cycloalkyl group as defined herein. Examples include, but are not limited to, methoxy, ethoxy, propoxy, butoxy, cyclohexyloxy, and the like.
“Alkoxycarbonyl” by itself or as part of another substituent refers to a radical —C(O)OR31 where R31 represents an alkyl or cycloalkyl group as defined herein. Examples include, but are not limited to, methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, butoxycarbonyl, cyclohexyloxycarbonyl, and the like.
“3-Aminopropylsulfinic acid analog” refers to a compound of Formula (II):
wherein:
R4 is selected from hydrogen, C1-6 acyl, substituted C1-6 acyl, C1-6 alkyl, substituted C1-6 alkyl, aryl, substituted aryl, C3-6 cycloalkyl, substituted C3-6 cycloalkyl, heteroaryl, substituted heteroaryl, C7-9 phenylalkyl, and substituted C7-9 phenylalkyl.
R5 is selected from hydrogen, hydroxy, mercapto, fluoro, chloro, bromo, oxo, and 4-chlorophenyl; and
R6 and R7 are independently selected from hydrogen, C1-6 alkyl, substituted C1-6 alkyl, C1-6 alkoxy, substituted C1-6 alkoxy, aryl, substituted aryl, C3-6 cycloalkyl, substituted C3-6 cycloalkyl, heteroaryl, substituted heteroaryl, C7-9 phenylalkyl, and substituted C7-9 phenylalkyl.
Within the scope of this disclosure, it is to be understood that when R5 is an oxo group the bond between R5 and the carbon to which it is bonded is a double bond.
“Aryl” by itself or as part of another substituent refers to a monovalent aromatic hydrocarbon radical derived by the removal of one hydrogen atom from a single carbon atom of a parent aromatic ring system. Examples of aryl groups include, but are not limited to, groups derived from aceanthrylene, acenaphthylene, acephenanthrylene, anthracene, azulene, benzene, chrysene, coronene, fluoranthene, fluorene, hexacene, hexaphene, hexalene, as-indacene, s-indacene, indane, indene, naphthalene, octacene, octaphene, octalene, ovalene, penta-2,4-diene, pentacene, pentalene, pentaphene, perylene, phenalene, phenanthrene, picene, pleiadene, pyrene, pyranthrene, rubicene, triphenylene, trinaphthalene, and the like. In certain embodiments, an aryl group comprises from 6 to 20 carbon atoms, and in certain embodiments, from 6 to 12 carbon atoms.
“Arylalkyl” by itself or as part of another substituent refers to an acyclic alkyl radical in which one of the hydrogen atoms bonded to a carbon atom, typically a terminal or sp3 carbon atom, is replaced with an aryl group. Typical arylalkyl groups include, but are not limited to, benzyl, 2-phenylethan-1-yl, 2-phenylethen-1-yl, naphthylmethyl, 2-naphthylethan-1-yl, 2-naphthylethen-1-yl, naphthobenzyl, 2-naphthophenylethan-1-yl, and the like. Where specific alkyl moieties are intended, the nomenclature arylalkanyl, arylalkenyl, and/or arylalkynyl is used. In certain embodiments, an arylalkyl group is C7-30 arylalkyl, e.g., the alkanyl, alkenyl, or alkynyl moiety of the arylalkyl group is C1-10 and the aryl moiety is C6-20, and in certain embodiments, an arylalkyl group is C7-20 arylalkyl, e.g., the alkanyl, alkenyl, or alkynyl moiety of the arylalkyl group is C1-8 and the aryl moiety is C6-12.
“AUC” is the area under a curve representing the concentration of a compound or metabolite thereof in a biological fluid in a patient as a function of time following administration of the compound to the patient. In certain embodiments, the compound can be a prodrug and the metabolite can be a drug. Examples of biological fluids include plasma and blood. The AUC can be determined by measuring the concentration of a compound or metabolite thereof in a biological fluid such as the plasma or blood using methods such as liquid chromatography-tandem mass spectrometry (LC/MS/MS), at various time intervals, and calculating the area under the plasma concentration-versus-time curve. Suitable methods for calculating the AUC from a drug concentration-versus-time curve are well known in the art. As relevant to the disclosure here, an AUC for 3-aminopropylsulfinic acid or analogs thereof can be determined by measuring the concentration of 3-aminopropylsulfinic acid or analogs thereof in the plasma or blood of a patient following oral administration of a compound of Formula (I) to the patient.
“Bioavailability” refers to the rate and amount of a drug that reaches the systemic circulation of a patient following administration of the drug or prodrug thereof to the patient and can be determined by evaluating, for example, the plasma or blood concentration-versus-time profile for the drug. Parameters useful in characterizing a plasma or blood concentration-versus-time curve include the area under the curve (AUC), the time to peak concentration (Tmax), and the maximum drug concentration (Cmax).
“Bioequivalence” refers to equivalence of the rate and extent of absorption of a drug after administration of equal doses of the drug or prodrug to a patient. As used herein, two plasma or blood concentration profiles are bioequivalent if the 90% confidence interval for the ratio of the mean response of the two profiles is within the limits of 0.8 and 1.25. The mean response includes at least one of the characteristic parameters of a profile such as Cmax, Tmax, and AUC.
“Cmax” is the maximum concentration of a drug in the plasma or blood of a patient following administration of a dose of the drug or prodrug to the patient.
“Tmax” is the time to the maximum concentration (Cmax) of a drug in the plasma or blood of a patient following administration of a dose of the drug or prodrug to the patient.
“Compounds of the present disclosure” refers to compounds encompassed by structural Formula (I) and includes specific compounds disclosed herein encompassed by Formula (I). Compounds may be identified either by their chemical structure and/or chemical name. When the chemical structure and chemical name conflict, the chemical structure is determinative of the identity of the compound. The compounds described herein may contain one or more chiral centers and/or double bonds and therefore, may exist as stereoisomers, such as double-bond isomers (i.e., geometric isomers), enantiomers, or diastereomers. Accordingly, the chemical structures disclosed herein encompass all possible enantiomers and stereoisomers of the illustrated compounds including the stereoisomerically pure form (e.g., geometrically pure, enantiomerically pure, or diastereomerically pure) and enantiomeric and stereoisomeric mixtures. Enantiomeric and stereoisomeric mixtures can be resolved into their component enantiomers or stereoisomers using separation techniques or chiral synthesis techniques well known to the skilled artisan. The compounds may also exist in several tautomeric forms including the enol form, the keto form, and mixtures thereof. Accordingly, the chemical structures depicted herein encompass all possible tautomeric forms of the illustrated compounds. The disclosed compounds also include isotopically labeled compounds where one or more atoms have an atomic mass different from the atomic mass conventionally found in nature. Examples of isotopes that may be incorporated into the compounds of the present disclosure include, but are not limited to, 2H, 3H, 11C, 13C, 14C, 15N, 18O, 17O, etc. Compounds may exist in unsolvated forms as well as solvated forms, including hydrated forms and as N-oxides. In general, compounds may be hydrated, solvated, or N-oxides. Certain compounds may exist in multiple crystalline or amorphous forms. In general, all physical forms are equivalent for the uses contemplated herein and are intended to be within the scope of the present disclosure. Further, when partial structures of the compounds are illustrated, brackets indicate the point of attachment of the partial structure to the rest of the molecule.
“Corresponding prodrug of 3-aminopropylsulfinic acid or analog thereof” refers to a compound of Formula (I) having the same R4, R5, R6, and R7 substituents as the 3-aminopropylsulfinic acid or analog thereof of Formula (II). Likewise, the “corresponding 3-aminopropylsulfinic acid or analog thereof” refers to a compound of Formula (II) having the same R4, R5, R6, and R7 substituents as the prodrug of 3-aminopropylsulfinic acid or analog thereof of Formula (I). A compound of Formula (II) can have one or more corresponding prodrugs of Formula (I). A prodrug of Formula (I) has a single corresponding 3-aminopropylsulfinic acid or analog thereof of Formula (II).
“Cycloalkoxycarbonyl” by itself or as part of another substituent refers to a radical —C(O)OR36 where R36 represents an cycloalkyl group as defined herein. Representative examples include, but are not limited to, cyclobutyloxycarbonyl, cyclohexyloxycarbonyl, and the like.
“Cycloalkyl” by itself or as part of another substituent refers to a saturated or unsaturated cyclic alkyl radical. Where a specific level of saturation is intended, the nomenclature “cycloalkanyl” or “cycloalkenyl” is used. Examples of cycloalkyl groups include, but are not limited to, groups derived from cyclopropane, cyclobutane, cyclopentane, cyclohexane, and the like. In certain embodiments, a cycloalkyl group is C3-10 cycloalkyl, and in certain embodiments, C3-7 cycloalkyl.
“Cycloheteroalkyl” by itself or as part of another substituent refers to a saturated or unsaturated cyclic alkyl radical in which one or more carbon atoms (and any associated hydrogen atoms) are independently replaced with the same or different heteroatom. Examples of heteroatoms to replace a carbon atom(s) include, but are not limited to, N, P, O, S, Si, etc. Where a specific level of saturation is intended, the nomenclature “cycloheteroalkanyl” or “cycloheteroalkenyl” is used. Cycloheteroalkyl groups include, but are not limited to, groups derived from epoxides, azirines, thiiranes, imidazolidine, morpholine, piperazine, piperidine, pyrazolidine, pyrrolidine, quinuclidine, and the like.
“Heteroalkyl, heteroalkanyl, heteroalkenyl, and heteroalkynyl” by themselves or as part of another substituent refer to alkyl, alkanyl, alkenyl, and alkynyl groups, respectively, in which one or more of the carbon atoms (and any associated hydrogen atoms) are independently replaced with the same or different heteroatomic groups. Examples of heteroatomic groups which can be included in these groups include, but are not limited to, —O—, —S—, —O—O—, —S—S—, —O—S—, —NR37R38—, ═N—N═, —N═N—, —N═N—NR39R40, —PR41—, —P(O)2—, —POR42—, —O—P(O)2—SO—, —SO2—, —SnR43R44—, and the like, where R37, R38, R39, R40, R41, R42, R43, and R44 are independently selected from hydrogen, alkyl, substituted alkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, cycloalkyl, substituted cycloalkyl, cycloheteroalkyl, substituted cycloheteroalkyl, heteroalkyl, substituted heteroalkyl, heteroaryl, substituted heteroaryl, heteroarylalkyl, and substituted heteroarylalkyl.
“Heteroaryl” by itself or as part of another substituent, refers to a monovalent heteroaromatic radical derived by the removal of one hydrogen atom from a single atom of a parent heteroaromatic ring system. Examples of heteroaryl groups include, but are not limited to, groups derived from acridine, arsindole, carbazole, β-carboline, chromane, chromene, cinnoline, furan, imidazole, indazole, indole, indoline, indolizine, isobenzofuran, isochromene, isoindole, isoindoline, isoquinoline, isothiazole, isoxazole, naphthyridine, oxadiazole, oxazole, perimidine, phenanthridine, phenanthroline, phenazine, phthalazine, pteridine, purine, pyran, pyrazine, pyrazole, pyridazine, pyridine, pyrimidine, pyrrole, pyrrolizine, quinazoline, quinoline, quinolizine, quinoxaline, tetrazole, thiadiazole, thiazole, thiophene, triazole, xanthene, and the like. In certain embodiments, a heteroaryl group is from 5-20 membered heteroaryl, and in certain embodiments from 5-10 membered heteroaryl. In certain embodiments, a heteroaryl group is derived from thiophene, pyrrole, benzothiophene, benzofuran, indole, pyridine, quinoline, imidazole, oxazole, and pyrazine.
“Heteroarylalkyl” by itself or as part of another substituent refers to an acyclic alkyl radical in which one of the hydrogen atoms bonded to a carbon atom, typically a terminal or sp3 carbon atom, is replaced with a heteroaryl group. Where specific alkyl moieties are intended, the nomenclature heteroarylalkanyl, heteroarylalkenyl, and/or heterorylalkynyl is used. In certain embodiments, a heteroarylalkyl group is a 6-30 membered heteroarylalkyl, e.g., the alkanyl, alkenyl, or alkynyl moiety of the heteroarylalkyl is 1-10 membered and the heteroaryl moiety is a 5-20-membered heteroaryl, and in certain embodiments, a 6-20 membered heteroarylalkyl, e.g., the alkanyl, alkenyl, or alkynyl moiety of the heteroarylalkyl is 1-8 membered and the heteroaryl moiety is a 5-12-membered heteroaryl.
“Immediately preceding embodiments” refers to the embodiments disclosed in the paragraph.
“Parent aromatic ring system” refers to an unsaturated cyclic or polycyclic ring system having a conjugated π electron system. Specifically included within the definition of “parent aromatic ring system” are fused ring systems in which one or more of the rings are aromatic and one or more of the rings are saturated or unsaturated, such as, for example, fluorene, indane, indene, phenalene, etc. Examples of parent aromatic ring systems include, but are not limited to, aceanthrylene, acenaphthylene, acephenanthrylene, anthracene, azulene, benzene, chrysene, coronene, fluoranthene, fluorene, hexacene, hexaphene, hexalene, as-indacene, s-indacene, indane, indene, naphthalene, octacene, octaphene, octalene, ovalene, penta-2,4-diene, pentacene, pentalene, pentaphene, perylene, phenalene, phenanthrene, picene, pleiadene, pyrene, pyranthrene, rubicene, triphenylene, trinaphthalene, and the like.
“Parent heteroaromatic ring system” refers to a parent aromatic ring system in which one or more carbon atoms (and any associated hydrogen atoms) are independently replaced with the same or different heteroatom. Examples of heteroatoms to replace the carbon atoms include, but are not limited to, N, P, O, S, Si, etc. Specifically included within the definition of “parent heteroaromatic ring systems” are fused ring systems in which one or more of the rings are aromatic and one or more of the rings are saturated or unsaturated, such as, for example, arsindole, benzodioxan, benzofuran, chromane, chromene, indole, indoline, xanthene, etc. Examples of parent heteroaromatic ring systems include, but are not limited to, arsindole, carbazole, β-carboline, chromane, chromene, cinnoline, furan, imidazole, indazole, indole, indoline, indolizine, isobenzofuran, isochromene, isoindole, isoindoline, isoquinoline, isothiazole, isoxazole, naphthyridine, oxadiazole, oxazole, perimidine, phenanthridine, phenanthroline, phenazine, phthalazine, pteridine, purine, pyran, pyrazine, pyrazole, pyridazine, pyridine, pyrimidine, pyrrole, pyrrolizine, quinazoline, quinoline, quinolizine, quinoxaline, tetrazole, thiadiazole, thiazole, thiophene, triazole, xanthene, and the like.
“Patient” refers to a mammal, for example, a human.
“Pharmaceutically acceptable” refers to approved or approvable by a regulatory agency of the Federal or state government or listed in the U.S. Pharmacopoeia or other generally recognized pharmacopoeia for use in animals and more particularly in humans.
“Pharmaceutically acceptable salt” refers to a salt of a compound, which possesses the desired pharmacological activity of the parent compound. Such salts include: (1) acid addition salts, formed with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like; or formed with organic acids such as acetic acid, propionic acid, hexanoic acid, cyclopentanepropionic acid, glycolic acid, pyruvic acid, lactic acid, malonic acid, succinic acid, malic acid, maleic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, 3-(4-hydroxybenzoyl) benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, 1,2-ethane-disulfonic acid, 2-hydroxyethanesulfonic acid, benzenesulfonic acid, 4-chlorobenzenesulfonic acid, 2-naphthalenesulfonic acid, 4-toluenesulfonic acid, camphorsulfonic acid, 4-methylbicyclo[2.2.2]-oct-2-ene-1-carboxylic acid, glucoheptonic acid, 3-phenylpropionic acid, trimethylacetic acid, tertiary butylacetic acid, lauryl sulfuric acid, gluconic acid, glutamic acid, hydroxynaphthoic acid, salicylic acid, stearic acid, muconic acid, and the like; or (2) salts formed when an acidic proton present in the parent compound is replaced by a metal ion, e.g., an alkali metal ion, an alkaline earth ion, or an aluminum ion; or coordinates with an organic base such as ethanolamine, diethanolamine, triethanolamine, N-methylglucamine, and the like.
“Pharmaceutically acceptable vehicle” refers to a diluent, adjuvant, excipient, or carrier with which a compound is administered.
“Pharmaceutical composition” refers to at least one compound and at least one pharmaceutically acceptable vehicle, with which the compound is administered to a patient.
“Preventing” or “prevention” refers to a reduction in risk of acquiring a disease or disorder (i.e., causing at least one of the clinical symptoms of the disease not to develop in a patient that may be exposed to or predisposed to the disease but does not yet experience or display symptoms of the disease).
“Prodrug” refers to a derivative of a drug molecule that requires a transformation within the body to release the active drug. Compounds of Formula (I) are prodrugs that can be metabolized within a patient's body to form the corresponding parent drug, 3-aminopropylsulfinic acid or analogs thereof having Formula (II), and hence compounds of Formula (I) are prodrugs of the corresponding 3-aminopropylsulfinic acid or analogs thereof having Formula (II). Compounds of Formula (I) include pharmaceutically acceptable salts thereof, or pharmaceutically acceptable solvates of the free acid form of any of the foregoing, as well as crystalline forms of any of the foregoing. Prodrugs are frequently, although not necessarily, pharmacologically inactive until converted to the parent drug.
“Promoiety” refers to a form of protecting group that when used to mask a functional group within a drug molecule converts the drug into a prodrug. Typically, the promoiety will be attached to the drug via bond(s) that are cleaved by enzymatic or non-enzymatic means in vivo.
“Protecting group” refers to a grouping of atoms, which when bonded to a reactive functional group in a molecule masks, reduces, or prevents reactivity of the functional group. Examples of protecting groups can be found in Green et al., “Protective Groups in Organic Chemistry”, (Wiley, 2nd ed. 1991) and Harrison et al., “Compendium of Synthetic Organic Methods”, Vols. 1-8 (John Wiley and Sons, 1971-1996). Examples of amino protecting groups include, but are not limited to, formyl, acetyl, trifluoroacetyl, benzyl, benzyloxycarbonyl (CBZ), tert-butoxycarbonyl (Boc), trimethylsilyl (TMS), 2-trimethylsilyl-ethanesulfonyl (SES), trityl and substituted trityl groups, allyloxycarbonyl, 9-fluorenylmethyloxycarbonyl (FMOC), nitro-veratryloxycarbonyl (NVOC), and the like. Examples of hydroxy protecting groups include, but are not limited to, those where the hydroxy group is either acylated or alkylated such as benzyl, and trityl ethers as well as alkyl ethers, tetrahydropyranyl ethers, trialkylsilyl ethers, and allyl ethers.
“Solvate” refers to a molecular complex of a compound with one or more solvent molecules in a stoichiometric or non-stoichiometric amount. Such solvent molecules are those commonly used in the pharmaceutical art, which are known to be innocuous to a recipient, e.g., water, ethanol, and the like. A molecular complex of a compound or moiety of a compound and a solvent can be stabilized by non-covalent intra-molecular forces such as, for example, electrostatic forces, van der Waals forces, or hydrogen bonds. The term “hydrate” refers to a complex where the one or more solvent molecules are water.
“Stereoisomers” refers to isomers that differ in the arrangement of the constituent atoms in space, and includes enantiomers and diastereomers. Stereoisomers that are mirror images of each other and optically active are termed “enantiomers,” and stereoisomers that are not mirror images of one another are termed “diastereoisomers.”
“Sustained release” refers to release of a compound of Formula (I) from a dosage form at a rate effective to achieve a therapeutic or prophylactic concentration of the compound of Formula (I), or active metabolite thereof, in the systemic blood circulation over a prolonged period of time relative to that achieved by oral administration of an immediate release formulation of the compound of Formula (I). In some embodiments, release of a compound of Formula (I) occurs over a period of at least about 4 hours, such as at least about 8 hours, in some embodiments, at least about 12 hours, at least about 16 hours, at least about 20 hours, and in some embodiments, at least about 24 hours.
“Substantially one diastereomer” refers to a compound containing two or more stereogenic centers such that the diastereomeric excess (d.e.) of the compound is at least about 90%. The diastereomeric excess is the ratio of the percentage of one diastereomer in a mixture to that of another diastereomer. In some embodiments, the diastereomeric excess is, for example, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99%.
“Substituted” refers to a group in which one or more hydrogen atoms are independently replaced with the same or different substituent(s). Typical substituents include, but are not limited to, -M, -R60, —O−, ═O, —OR60, —SR60, —S−, ═S, —NR60R61, ═NR60, —CF3, —CN, —OCN, —SCN, —NO, —NO2, ═N2, —N3, —S(O)2O−, —S(O)2OH, —S(O)2R60, —OS(O2)O−, —OS(O)2R60, —P(O)(O−)2, —P(O)(OR60)(O−), —OP(O)(OR60)(OR61), —C(O)R60, —C(S)R60, —C(O)OR60, —C(O)NR60R61, —C(O)O−, —C(S)OR60, —NR62C(O)NR60R61, —NR62C(S)NR60R61, —NR62C(NR63)NR60R61, and —C(NR62)NR60R61 where M is independently a halogen; R60, R61, R62, and R63 are independently hydrogen, alkyl, substituted alkyl, alkoxy, substituted alkoxy, cycloalkyl, substituted cycloalkyl, cycloheteroalkyl, substituted cycloheteroalkyl, aryl, substituted aryl, heteroaryl, or substituted heteroaryl, or R60 and R61 together with the nitrogen atom to which they are bonded form a cycloheteroalkyl or substituted cycloheteroalkyl ring. In certain embodiments, substituents include -M, -R60, ═O, —OR60, —SR60, —S−, ═S, —NR60R61, ═NR60, —CF3, —CN, —OCN, —SCN, —NO, —NO2, ═N2, —N3, —S(O)2R60, —OS(O2)O−, —OS(O)2R60, —P(O)(O−)2, —P(O)(OR60)(O−), —OP(O)(OR60)(OR61), —C(O)R60, —C(S)R60, —C(O)OR60, —C(O)NR60R61, —C(O)O−, and —NR62C(O)NR60R61, in certain embodiments, -M, -R60, ═O, —OR60, —SR60, —NR60R61, —CF3, —CN, —NO2, —S(O)2R60, —P(O)(OR60)(O−), —OP(O)(OR60)(OR61), —C(O)R60, —C(O)OR60, —C(O)NR60R61, and —C(O)O−, and in certain embodiments, -M, -R60, ═O, —OR60, —SR60, —NR60R61, —CF3, —CN, —NO2, —S(O)2R60, —OP(O)(OR60)(OR61), —C(O)R60, —C(O)OR60, and —C(O)O−, where R60, R61, and R62 are as defined above.
“Treating” or “treatment” of any disease or disorder refers, in some embodiments, to ameliorating at least one disease or disorder (i.e., arresting or reducing the development of the disease or at least one of the clinical symptoms thereof). In certain embodiments “treating” or “treatment” refers to ameliorating at least one physical parameter, which may or may not be discernible by the patient. In certain embodiments, “treating” or “treatment” refers to inhibiting the disease or disorder, either physically, (e.g., stabilization of a discernible symptom), physiologically, (e.g., stabilization of a physical parameter), or both. In certain embodiments, “treating” or “treatment” refers to delaying the onset of the disease or disorder.
“Therapeutically effective amount” means the amount of compound that, when administered to a patient for treating or preventing a disease, is sufficient to effect such treatment or prevention of the disease. The “therapeutically effective amount” will vary depending on the compound, the disease and its severity, and the age, weight, etc., of the patient having the disease to be treated or prevented.
Reference will now be made in detail to certain embodiments of compounds and methods. The disclosed embodiments are not intended to be limiting of the claims. To the contrary, the claims are intended to cover all alternatives, modifications, and equivalents of the disclosed embodiments.
Certain embodiments provide a compound of Formula (I):
stereoisomers thereof, pharmaceutically acceptable salts of any of the foregoing, pharmaceutically acceptable solvates of any of the foregoing, and combinations of any of the foregoing, wherein:
R1 is selected from acyl, substituted acyl, alkyl, substituted alkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, cycloalkyl, substituted cycloalkyl, cycloheteroalkyl, substituted cycloheteroalkyl, heteroalkyl, substituted heteroalkyl, heteroaryl, substituted heteroaryl, heteroarylalkyl, and substituted heteroarylalkyl;
R2 and R3 are independently selected from hydrogen, alkyl, substituted alkyl, alkoxycarbonyl, substituted alkoxycarbonyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heteroarylalkyl, and substituted heteroarylalkyl, or R2 and R3 together with the carbon atom to which they are bonded form a cycloalkyl, substituted cycloalkyl, cycloheteroalkyl, or substituted cycloheteroalkyl ring;
R4 is selected from hydrogen, C1-6 acyl, substituted C1-6 acyl, C1-6 alkyl, substituted C1-6 alkyl, aryl, substituted aryl, C3-6 cycloalkyl, substituted C3-6 cycloalkyl, heteroaryl, substituted heteroaryl, C7-9 phenylalkyl, and substituted C7-9 phenylalkyl;
R5 is selected from hydrogen, hydroxy, mercapto, fluoro, chloro, bromo, oxo, and 4-chlorophenyl; and
R6 and R7 are independently selected from hydrogen, C1-6 alkyl, substituted C1-6 alkyl, C1-6 alkoxy, substituted C1-6 alkoxy, aryl, substituted aryl, C3-6 cycloalkyl, substituted C3-6 cycloalkyl, heteroaryl, substituted heteroaryl, C7-9 phenylalkyl, and substituted C7-9 phenylalkyl.
Within the scope of this disclosure, it is to be understood that when R5 is an oxo group the bond between R5 and the carbon to which it is bonded is a double bond.
In certain embodiments, each of R4, R6, and R7 are hydrogen.
In certain embodiments, R5 is selected from hydrogen, hydroxy, fluoro, oxo, and 4-chlorophenyl. In certain embodiments, R5 is selected from hydrogen, hydroxy, fluoro, oxo, and 4-chlorophenyl, and each of R4, R6, and R7 is hydrogen.
In certain embodiments of compounds of Formula (I), the carbon to which R5 is attached is of the R configuration. In certain embodiments of compounds of Formula (I), the carbon to which R5 is attached is of the S configuration.
In certain embodiments of compounds of Formula (I), R5 is selected from hydrogen, hydroxy, fluoro, oxo, and 4-chlorophenyl, and each of R4, R6, and R7 is hydrogen. In certain embodiments, R5 is hydrogen, and each of R4, R6, and R7 is hydrogen. In certain embodiments, R5 is oxo, and each of R4, R6, and R7 is hydrogen. In certain embodiments, R5 is hydroxy, and each of R4, R6, and R7 is hydrogen. In certain embodiments, R5 is hydroxy, and each of R4, R6, and R7 is hydrogen, and the carbon to which R5 is bonded is of the R configuration. In certain embodiments, R5 is hydroxy, and each of R4, R6, and R7 is hydrogen, and the carbon to which R5 is bonded is of the S configuration. In certain embodiments, R5 is fluoro, and each of R4, R6, and R7 is hydrogen. In certain embodiments, R5 is fluoro, and each of R4, R6, and R7 is hydrogen, and the carbon to which R5 is bonded is of the R configuration. In certain embodiments, R5 is fluoro, and each of R4, R6, and R7 is hydrogen, and the carbon to which R5 is bonded is of the S configuration. In certain embodiments, R5 is 4-chlorophenyl, and each of R4, R6, and R7 is hydrogen. In certain embodiments, R5 is 4-chlorophenyl, and each of R4, R6, and R7 is hydrogen, and the carbon to which R5 is bonded is of the R configuration. In certain embodiments, R5 is 4-chlorophenyl, and each of R4, R6, and R7 is hydrogen, and the carbon to which R5 is bonded is of the S configuration.
In certain embodiments of compounds of Formula (I), R1 is selected from C1-6 alkyl, substituted C1-6 alkyl, C3-6 cycloalkyl, phenyl, substituted phenyl, C7-9 phenylalky, and pyridyl. In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, sec-pentyl, neopentyl, 1,1-dimethoxyethyl, 1,1-diethoxyethyl, phenyl, 4-methoxyphenyl, benzyl, phenethyl, styryl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, 2-pyridyl, 3-pyridyl, and 4-pyridyl. In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, sec-pentyl, neopentyl, 1,1-diethoxyethyl, phenyl, cyclohexyl, and 3-pyridyl.
In certain embodiments of compounds of Formula (I), R2 and R3 are independently selected from hydrogen, alkyl, substituted alkyl, alkoxycarbonyl, substituted alkoxycarbonyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, carbamoyl, cycloalkyl, substituted cycloalkyl, cycloalkoxycarbonyl, substituted cycloalkoxycarbonyl, heteroaryl, substituted heteroaryl, heteroarylalkyl, and substituted heteroarylalkyl. In certain embodiments of compounds of Formula (I), R2 and R3 are independently selected from hydrogen, C1-4 alkyl, substituted C1-4 alkyl, C1-4 alkoxycarbonyl, C3-6 cycloalkyl, C3-6 cycloalkoxycarbonyl, phenyl, substituted phenyl, C7-9 phenylalkyl, and pyridyl. In certain embodiments of compounds of Formula (I), R2 and R3 are independently selected from hydrogen, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, cyclopentyl, cyclohexyl, methoxycarbonyl, ethoxycarbonyl, isopropoxycarbonyl, cyclohexyloxycarbonyl, phenyl, benzyl, phenethyl, 2-pyridyl, 3-pyridyl, and 4-pyridyl. In certain embodiments of compounds of Formula (I), R2 is selected from hydrogen, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, cyclopentyl, cyclohexyl, methoxycarbonyl, ethoxycarbonyl, isopropoxycarbonyl, cyclohexyloxycarbonyl, phenyl, benzyl, phenethyl, 2-pyridyl, 3-pyridyl, and 4-pyridyl, and R3 is hydrogen. In certain embodiments of compounds of Formula (I), R2 is selected from hydrogen, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, phenyl, and cyclohexyl, and R3 is hydrogen. In certain embodiments of compounds of Formula (I), R2 is selected from methyl, methoxycarbonyl, ethoxycarbonyl, isopropoxycarbonyl, and cyclohexyloxycarbonyl, and R3 is methyl.
In certain embodiments of compounds of Formula (I), R2 and R3 together with the carbon atom to which they are bonded form a cycloalkyl, substituted cycloalkyl, cycloheteroalkyl, or substituted cycloheteroalkyl ring. In certain embodiments of compounds of Formula (I), R2 and R3 together with the carbon atom to which they are bonded form a cyclobutyl, cyclopentyl, or cyclohexyl ring.
In certain embodiments of compounds of Formula (I), R1 is selected from C1-6 alkyl, substituted C1-6 alkyl, C3-6 cycloalkyl, phenyl, substituted phenyl, C7-9 phenylalkyl, and pyridyl, and R2 and R3 are independently selected from hydrogen, C1-4 alkyl, substituted C1-4 alkyl, C1-4 alkoxycarbonyl, C3-6 cycloalkyl, C3-6 cycloalkoxycarbonyl, phenyl, substituted phenyl, C7-9 phenylalkyl, and pyridyl. In certain embodiments where R2 and R3 are independently selected from hydrogen, C1-4 alkyl, substituted C1-4 alkyl, C1-4 alkoxycarbonyl, C3-6 cycloalkyl, C3-6 cycloalkoxycarbonyl, phenyl, substituted phenyl, C7-9 phenylalkyl, and pyridyl, R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, sec-pentyl, neopentyl, 1,1-dimethoxyethyl, 1,1-diethoxyethyl, phenyl, 4-methoxyphenyl, benzyl, phenethyl, styryl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, 2-pyridyl, 3-pyridyl, and 4-pyridyl, and in certain embodiments, R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, sec-pentyl, neopentyl, 1,1-diethoxyethyl, phenyl, cyclohexyl, and 3-pyridyl. In certain of the immediately preceding embodiments of compounds of Formula (I), R5 is selected from hydrogen, hydroxy, fluoro, oxo, and 4-chlorophenyl.
In certain embodiments of compounds of Formula (I), R1 is selected from C1-6 alkyl, substituted C1-6 alkyl, C3-6 cycloalkyl, phenyl, substituted phenyl, C7-9 phenylalkyl, and pyridyl, and R2 and R3 are independently selected from hydrogen, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, cyclopentyl, cyclohexyl, methoxycarbonyl, ethoxycarbonyl, isopropoxycarbonyl, cyclohexyloxycarbonyl, phenyl, benzyl, phenethyl, 2-pyridyl, 3-pyridyl, and 4-pyridyl. In certain of the embodiments where R2 and R3 are independently selected from hydrogen, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, cyclopentyl, cyclohexyl, methoxycarbonyl, ethoxycarbonyl, isopropoxycarbonyl, cyclohexyloxycarbonyl, phenyl, benzyl, phenethyl, 2-pyridyl, 3-pyridyl, and 4-pyridyl, R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, sec-pentyl, neopentyl, 1,1-dimethoxyethyl, 1,1-diethoxyethyl, phenyl, 4-methoxyphenyl, benzyl, phenethyl, styryl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, 2-pyridyl, 3-pyridyl, and 4-pyridyl, and in certain embodiments, R1 is methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, sec-pentyl, neopentyl, 1,1-diethoxyethyl, phenyl, cyclohexyl, and 3-pyridyl. In certain of the immediately preceding embodiments of compounds of Formula (I), R5 is selected from hydrogen, hydroxy, fluoro, oxo, and 4-chlorophenyl, and each of R4, R6, and R7 are hydrogen.
In certain embodiments of compounds of Formula (I), R1 is selected from C1-6 alkyl, substituted C1-6 alkyl, C3-6 cycloalkyl, phenyl, substituted phenyl, C7-9 phenylalkyl, and pyridyl, R2 is selected from hydrogen, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, phenyl, and cyclohexyl, and R3 is hydrogen. In certain embodiments, R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, sec-pentyl, neopentyl, 1,1-dimethoxyethyl, 1,1-diethoxyethyl, phenyl, 4-methoxyphenyl, benzyl, phenethyl, styryl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, 2-pyridyl, 3-pyridyl, and 4-pyridyl, R2 is selected from hydrogen, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, phenyl, and cyclohexyl, and R3 is hydrogen. In certain embodiments, R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, sec-pentyl, neopentyl, 1,1-diethoxyethyl, phenyl, cyclohexyl, and 3-pyridyl, R2 is selected from hydrogen, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, phenyl, and cyclohexyl, and R3 is hydrogen. In certain of the immediately preceding embodiments of compounds of Formula (I), R5 is selected from hydrogen, hydroxy, fluoro, oxo, and 4-chlorophenyl, and each of R4, R6, and R7 is hydrogen.
In certain embodiments of compounds of Formula (I), R1 is selected from C1-6 alkyl, substituted C1-6 alkyl, C3-6 cycloalkyl, phenyl, substituted phenyl, C7-9 phenylalkyl, and pyridyl, R2 is selected from methyl, methoxycarbonyl, ethoxycarbonyl, isopropoxy carbonyl, and cyclohexyloxycarbonyl, and R3 is methyl. In certain embodiments, R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, sec-pentyl, neopentyl, 1,1-dimethoxyethyl, 1,1-diethoxyethyl, phenyl, 4-methoxyphenyl, benzyl, phenethyl, styryl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, 2-pyridyl, 3-pyridyl, and 4-pyridyl, R2 is selected from methyl, methoxycarbonyl, ethoxycarbonyl, isopropoxy carbonyl, and cyclohexyloxycarbonyl, and R3 is methyl. In certain embodiments, R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, sec-pentyl, neopentyl, 1,1-diethoxyethyl, phenyl, cyclohexyl, and 3-pyridyl, R2 is selected from methyl, methoxycarbonyl, ethoxycarbonyl, isopropoxy carbonyl, and cyclohexyloxycarbonyl, and R3 is methyl. In certain of the immediately preceding embodiments of compounds of Formula (I), R5 is selected from hydrogen, hydroxy, fluoro, oxo, and 4-chlorophenyl, and each of R4, R6, and R7 is hydrogen.
In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, sec-pentyl, neopentyl, 1,1-diethoxyethyl, phenyl, cyclohexyl, 2-pyridyl, 3-pyridyl, and 4-pyridyl, R2 is selected from hydrogen, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, phenyl, and cyclohexyl, R3 is hydrogen, R5 is hydrogen, and each of R4, R6, and R7 is hydrogen. In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, sec-pentyl, neopentyl, 1,1-diethoxyethyl, phenyl, cyclohexyl, 2-pyridyl, 3-pyridyl, and 4-pyridyl, R2 is selected from hydrogen, methyl, n-propyl, and isopropyl, R3 is hydrogen, R5 is hydrogen, and each of R4, R6, and R7 are i hydrogen. In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl, R2 is selected from hydrogen, methyl, n-propyl, and isopropyl, R3 is hydrogen, R5 is hydrogen, and each of R4, R6, and R7 is hydrogen.
In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, sec-pentyl, neopentyl, 1,1-diethoxyethyl, phenyl, cyclohexyl, 2-pyridyl, 3-pyridyl, and 4-pyridyl, R2 is selected from methyl, methoxycarbonyl, ethoxycarbonyl, isopropoxycarbonyl, and cyclohexyloxycarbonyl, R3 is methyl, R5 is hydrogen, and each of R4, R6, and R7 is hydrogen.
In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl, R2 is hydrogen, R3 is hydrogen, R5 is hydrogen, and each of R4, R6, and R7 is hydrogen. In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl, R2 is methyl, R3 is hydrogen, R5 is hydrogen, and each of R4, R6, and R7 is hydrogen. In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl, R2 is n-propyl, R3 is hydrogen, R5 is hydrogen, and each of R4, R6, and R7 is hydrogen. In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl, R2 is isopropyl, R3 is hydrogen, R5 is hydrogen, and each of R4, R6, and R7 is hydrogen.
In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, sec-pentyl, neopentyl, 1,1-diethoxyethyl, phenyl, cyclohexyl, 2-pyridyl, 3-pyridyl, and 4-pyridyl, R2 is selected from hydrogen, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, phenyl, and cyclohexyl, R3 is hydrogen, R5 is hydroxy, and each of R4, R6, and R7 is hydrogen. In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, sec-pentyl, neopentyl, 1,1-diethoxyethyl, phenyl, cyclohexyl, 2-pyridyl, 3-pyridyl, and 4-pyridyl, R2 is selected from hydrogen, methyl, n-propyl, and isopropyl, R3 is hydrogen, R5 is hydroxy, and each of R4, R6, and R7 is hydrogen. In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl, R2 is selected from hydrogen, methyl, n-propyl, and isopropyl, R3 is hydrogen, R5 is hydroxy, and each of R4, R6, and R7 is hydrogen. In certain of the immediately preceding embodiments of compounds of Formula (I), the carbon to which R5 is bonded is of the R configuration. In certain of the immediately preceding embodiments of compounds of Formula (I), the carbon to which R5 is bonded is of the S configuration.
In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, sec-pentyl, neopentyl, 1,1-diethoxyethyl, phenyl, cyclohexyl, 2-pyridyl, 3-pyridyl, and 4-pyridyl, R2 is selected from methyl, methoxycarbonyl, ethoxycarbonyl, isopropoxycarbonyl, and cyclohexyloxycarbonyl, R3 is methyl, R5 is hydroxy, and each of R4, R6, and R7 is hydrogen. In s certain of the immediately preceding embodiments of compounds of Formula (I), the carbon to which R5 is bonded is of the R configuration. In certain of the immediately preceding embodiments of compounds of Formula (I), the carbon to which R5 is bonded is of the S configuration.
In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl, R2 is hydrogen, R3 is hydrogen, R5 is hydroxy, and each of R4, R6, and R7 is hydrogen. In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl, R2 is methyl, R3 is hydrogen, R5 is hydroxy, and each of R4, R6, and R7 is hydrogen. In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl, R2 is selected from n-propyl, R3 is hydrogen, R5 is hydroxy, and each of R4, R6, and R7 is hydrogen. In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl, R2 is isopropyl, R3 is hydrogen, R5 is hydroxy, and each of R4, R6, and R7 is hydrogen. In certain of the immediately preceding embodiments of compounds of Formula (I), the carbon to which R5 is bonded is of the R configuration. In certain of the immediately preceding embodiments of compounds of Formula (I), the carbon to which R5 is bonded is of the S configuration.
In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, sec-pentyl, neopentyl, 1,1-diethoxyethyl, phenyl, cyclohexyl, 2-pyridyl, 3-pyridyl, and 4-pyridyl, R2 is selected from hydrogen, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, phenyl, and cyclohexyl, R3 is hydrogen, R5 is fluoro, and each of R4, R6, and R7 is hydrogen. In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, sec-pentyl, neopentyl, 1,1-diethoxyethyl, phenyl, cyclohexyl, 2-pyridyl, 3-pyridyl, and 4-pyridyl, R2 is selected from hydrogen, methyl, n-propyl, and isopropyl, R3 is hydrogen, R5 is fluoro, and each of R4, R6, and R7 is hydrogen. In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl, R2 is selected from hydrogen, methyl, n-propyl, and isopropyl, R3 is hydrogen, R5 is fluoro, and each of R4, R6, and R7 is hydrogen. In certain of the immediately preceding embodiments of compounds of Formula (I), the carbon to which R5 is bonded is of the R configuration. In certain of the immediately preceding embodiments of compounds of Formula (I), the carbon to which R5 is bonded is of the S configuration.
In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, sec-pentyl, neopentyl, 1,1-diethoxyethyl, phenyl, cyclohexyl, 2-pyridyl, 3-pyridyl, and 4-pyridyl, R2 is selected from methyl, methoxycarbonyl, ethoxycarbonyl, isopropoxycarbonyl, and cyclohexyloxycarbonyl, R3 is methyl, R5 is fluoro, and each of R4, R6, and R7 is hydrogen. In certain of the immediately preceding embodiments of compounds of Formula (I), the carbon to which R5 is bonded is of the R configuration. In other of the immediately preceding embodiments of compounds of Formula (I), the carbon to which R5 is bonded is of the S configuration.
In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl, R2 is hydrogen, R3 is hydrogen, R5 is fluoro, and each of R4, R6, and R7 is hydrogen. In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl, R2 is methyl, R3 is hydrogen, R5 is fluoro, and each of R4, R6, and R7 is hydrogen. In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl, R2 is n-propyl, R3 is hydrogen, R5 is fluoro, and each of R4, R6, and R7 is hydrogen. In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl, R2 is isopropyl, R3 is hydrogen, R5 is fluoro, and each of R4, R6, and R7 is hydrogen. In certain of the immediately preceding embodiments of compounds of Formula (I), the carbon to which R5 is bonded is of the R configuration. In certain of the immediately preceding embodiments of compounds of Formula (I), the carbon to which R5 is bonded is of the S configuration.
In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, sec-pentyl, neopentyl, 1,1-diethoxyethyl, phenyl, cyclohexyl, 2-pyridyl, 3-pyridyl, and 4-pyridyl, R2 is selected from hydrogen, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, phenyl, and cyclohexyl, R3 is hydrogen, R5 is oxo, and each of R4, R6, and R7 is hydrogen. In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, sec-pentyl, neopentyl, 1,1-diethoxyethyl, phenyl, cyclohexyl, 2-pyridyl, 3-pyridyl, and 4-pyridyl, R2 is selected from hydrogen, methyl, n-propyl, and isopropyl, R3 is hydrogen, R5 is oxo, and each of R4, R6, and R7 is hydrogen. In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl, R2 is selected from hydrogen, methyl, n-propyl, and isopropyl, R3 is hydrogen, R5 is oxo, and each of R4, R6, and R7 is hydrogen.
In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, sec-pentyl, neopentyl, 1,1-diethoxyethyl, phenyl, cyclohexyl, 2-pyridyl, 3-pyridyl, and 4-pyridyl, R2 is selected from methyl, methoxycarbonyl, ethoxycarbonyl, isopropoxycarbonyl, and cyclohexyloxycarbonyl, R3 is methyl, R5 is oxo, and each of R4, R6, and R7 is hydrogen.
In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl, R2 is hydrogen, R3 is hydrogen, R5 is oxo, and each of R4, R6, and R7 is hydrogen. In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl, R2 is methyl, R3 is hydrogen, R5 is oxo, and each of R4, R6, and R7 is hydrogen. In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl, R2 is n-propyl, R3 is hydrogen, R5 is oxo, and each of R4, R6, and R7 is hydrogen. In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl, R2 is isopropyl, R3 is hydrogen, R5 is oxo, and each of R4, R6, and R7 is hydrogen.
In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, sec-pentyl, neopentyl, 1,1-diethoxyethyl, phenyl, cyclohexyl, 2-pyridyl, 3-pyridyl, and 4-pyridyl, R2 is selected from hydrogen, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, phenyl, and cyclohexyl, R3 is hydrogen, R5 is 4-chlorophenyl, and each of R4, R6, and R7 is hydrogen. In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, sec-pentyl, neopentyl, 1,1-diethoxyethyl, phenyl, cyclohexyl, 2-pyridyl, 3-pyridyl, and 4-pyridyl, R2 is selected from hydrogen, methyl, n-propyl, and isopropyl, R3 is hydrogen, R5 is 4-chlorophenyl, and each of R4, R6, and R7 is hydrogen. In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl, R2 is selected from hydrogen, methyl, n-propyl, and isopropyl, R3 is hydrogen, R5 is 4-chlorophenyl, and each of R4, R6, and R7 is hydrogen. In certain of the immediately preceding embodiments of compounds of Formula (I), the carbon to which R5 is bonded is of the R configuration. In certain of the immediately preceding embodiments of compounds of Formula (I), the carbon to which R5 is bonded is of the S configuration.
In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, sec-pentyl, neopentyl, 1,1-diethoxyethyl, phenyl, cyclohexyl, 2-pyridyl, 3-pyridyl, and 4-pyridyl, R2 is selected from methyl, methoxycarbonyl, ethoxycarbonyl, isopropoxycarbonyl, and cyclohexyloxycarbonyl, R3 is methyl, R5 is 4-chlorophenyl, and each of R4, R6, and R7 is hydrogen. In certain of the immediately preceding embodiments of compounds of Formula (I), the carbon to which R5 is bonded is of the R configuration. In certain of the immediately preceding embodiments of compounds of Formula (I), the carbon to which R5 is bonded is of the S configuration.
In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl, R2 is hydrogen, R3 is hydrogen, R5 is 4-chlorophenyl, and each of R4, R6, and R7 is hydrogen. In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl, R2 is methyl, R3 is hydrogen, R5 is 4-chlorophenyl, and each of R4, R6, and R7 is hydrogen. In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl, R2 is n-propyl, R3 is hydrogen, R5 is 4-chlorophenyl, and each of R4, R6, and R7 is hydrogen. In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl, R2 is isopropyl, R3 is hydrogen, R5 is 4-chlorophenyl, and each of R4, R6, and R7 is hydrogen. In certain of the immediately preceding embodiments of compounds of Formula (I), the carbon to which R5 is bonded is of the R configuration. In certain of the immediately preceding embodiments of compounds of Formula (I), the carbon to which R5 is bonded is of the S configuration.
In certain embodiments of compounds of Formula (I), R2 and R3 are different and the compound of Formula (I) is substantially one diastereomer. In certain embodiments of compounds of Formula (I), the stereochemistry at the carbon to which R2 and R3 are bonded is of the S-configuration and the compound of Formula (I) is substantially one diastereomer. In certain embodiments of compounds of Formula (I), the stereochemistry at the carbon to which R2 and R3 are bonded is of the R-configuration, and the compound of Formula (I) is substantially one diastereomer. In certain embodiments of compounds of Formula (I), R2 is C1-4 alkyl, R3 is hydrogen and the compound of Formula (I) is substantially one diastereomer. In certain embodiments of compounds of Formula (I), R2 is C1-4 alkyl, R3 is hydrogen, the stereochemistry at the carbon to which R2 and R3 are bonded is of the S-configuration and the compound of Formula (I) is substantially one diastereomer. In certain embodiments of compounds of Formula (I), R2 is C1-4 alkyl, R3 is hydrogen, the stereochemistry at the carbon to which R2 and R3 are bonded is of the R-configuration, and the compound of Formula (I) is substantially one diastereomer.
In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl, R2 is methyl, R3 is hydrogen, R5 is hydroxy, each of R4, R6, and R7 is hydrogen, the stereochemistry at the carbon to which R2 and R3 are bonded is of the S-configuration, the stereochemistry at the carbon to which R5 is bonded is of the R-configuration, and the compound of Formula (I) is substantially one diastereomer. In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl, R2 is methyl, R3 is hydrogen, R5 is hydroxy, each of R4, R6, and R7 is hydrogen, the stereochemistry at the carbon to which R2 and R3 are bonded is of the R-configuration, the stereochemistry at the carbon to which R5 is bonded is of the R-configuration, and the compound of Formula (I) is substantially one diastereomer. In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl, R2 is methyl, R3 is hydrogen, R5 is hydroxy, each of R4, R6, and R7 is hydrogen, the stereochemistry at the carbon to which R2 and R3 are bonded is of the S-configuration, the stereochemistry at the carbon to which R5 is bonded is of the S-configuration, and the compound of Formula (I) is substantially one diastereomer. In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl, R2 is methyl, R3 is hydrogen, R5 is hydroxy, each of R4, R6, and R7 is hydrogen, the stereochemistry at the carbon to which R2 and R3 are bonded is of the R-configuration, the stereochemistry at the carbon to which R5 is bonded is of the S-configuration, and the compound of Formula (I) is substantially one diastereomer. In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl, R2 is n-propyl, R3 is hydrogen, R5 is hydroxy, each of R4, R6, and R7 is hydrogen, the stereochemistry at the carbon to which R2 and R3 are bonded is of the S-configuration, the stereochemistry at the carbon to which R5 is bonded is of the R-configuration, and the compound of Formula (I) is substantially one diastereomer. In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl, R2 is n-propyl, R3 is hydrogen, R5 is hydroxy, each of R4, R6, and R7 is hydrogen, the stereochemistry at the carbon to which R2 and R3 are bonded is of the R-configuration, the stereochemistry at the carbon to which R5 is bonded is of the R-configuration, and the compound of Formula (I) is substantially one diastereomer. In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl, R2 is n-propyl, R3 is hydrogen, R5 is hydroxy, each of R4, R6, and R7 is hydrogen, the stereochemistry at the carbon to which R2 and R3 are bonded is of the S-configuration, the stereochemistry at the carbon to which R5 is bonded is of the S-configuration, and the compound of Formula (I) is substantially one diastereomer. In still other embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl, R2 is n-propyl, R3 is hydrogen, R5 is hydroxy, each of R4, R6, and R7 is hydrogen, the stereochemistry at the carbon to which R2 and R3 are bonded is of the R-configuration, the stereochemistry at the carbon to which R5 is bonded is of the S-configuration, and the compound of Formula (I) is substantially one diastereomer. In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl, R2 is isopropyl, R3 is hydrogen, R5 is hydroxy, each of R4, R6, and R7 is hydrogen, the stereochemistry at the carbon to which R2 and R3 are bonded is of the S-configuration, the stereochemistry at the carbon to which R5 is bonded is of the R-configuration, and the compound of Formula (I) is substantially one diastereomer. In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl, R2 is isopropyl, R3 is hydrogen, R5 is hydroxy, each of R4, R6, and R7 is hydrogen, the stereochemistry at the carbon to which R2 and R3 are bonded is of the R-configuration, the stereochemistry at the carbon to which R5 is bonded is of the R-configuration, and the compound of Formula (I) is substantially one diastereomer. In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl, R2 is isopropyl, R3 is hydrogen, R5 is hydroxy, each of R4, R6, and R7 is hydrogen, the stereochemistry at the carbon to which R2 and R3 are bonded is of the S-configuration, the stereochemistry at the carbon to which R5 is bonded is of the S-configuration, and the compound of Formula (I) is substantially one diastereomer. In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl, R2 is isopropyl, R3 is hydrogen, R5 is hydroxy, each of R4, R6, and R7 is hydrogen, the stereochemistry at the carbon to which R2 and R3 are bonded is of the R-configuration, the stereochemistry at the carbon to which R5 is bonded is of the S-configuration, and the compound of Formula (I) is substantially one diastereomer. In certain embodiments of compounds of Formula (I), R1 is isopropyl, R2 is isopropyl, R3 is hydrogen, R5 is hydroxy, each of R4, R6, and R7 is hydrogen, the stereochemistry at the carbon to which R2 and R3 are bonded is of the S-configuration, the stereochemistry at the carbon to which R5 is bonded is of the R-configuration, and the compound of Formula (I) is substantially one diastereomer. In certain embodiments of compounds of Formula (I), R1 is isopropyl, R2 is isopropyl, R3 is hydrogen, R5 is hydroxy, each of R4, R6, and R7 is hydrogen, the stereochemistry at the carbon to which R2 and R3 are bonded is of the R-configuration, the stereochemistry at the carbon to which R5 is bonded is of the R-configuration, and the compound of Formula (I) is substantially one diastereomer. In certain embodiments of compounds of Formula (I), R1 is isopropyl, R2 is isopropyl, R3 is hydrogen, R5 is hydroxy, each of R4, R6, and R7 is hydrogen, the stereochemistry at the carbon to which R2 and R3 are bonded is of the S-configuration, the stereochemistry at the carbon to which R5 is bonded is of the S-configuration, and the compound of Formula (I) is substantially one diastereomer. In certain embodiments of compounds of Formula (I), R1 is isopropyl, R2 is isopropyl, R3 is hydrogen, R5 is hydroxy, each of R4, R6, and R7 is hydrogen, the stereochemistry at the carbon to which R2 and R3 are bonded is of the R-configuration, the stereochemistry at the carbon to which R5 is bonded is of the S-configuration, and the compound of Formula (I) is substantially one diastereomer.
In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl, R2 is methyl, R3 is hydrogen, R5 is fluoro, each of R4, R6, and R7 is hydrogen, the stereochemistry at the carbon to which R2 and R3 are bonded is of the S-configuration, the stereochemistry at the carbon to which R5 is bonded is of the R-configuration, and the compound of Formula (I) is substantially one diastereomer. In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl, R2 is methyl, R3 is hydrogen, R5 is fluoro, each of R4, R6, and R7 is hydrogen, the stereochemistry at the carbon to which R2 and R3 are bonded is of the R-configuration, the stereochemistry at the carbon to which R5 is bonded is of the R-configuration, and the compound of Formula (I) is substantially one diastereomer. In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl, R2 is methyl, R3 is hydrogen, R5 is fluoro, each of R4, R6, and R7 is hydrogen, the stereochemistry at the carbon to which R2 and R3 are bonded is of the S-configuration, the stereochemistry at the carbon to which R5 is bonded is of the S-configuration, and the compound of Formula (I) is substantially one diastereomer. In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl, R2 is methyl, R3 is hydrogen, R5 is fluoro, each of R4, R6, and R7 is hydrogen, the stereochemistry at the carbon to which R2 and R3 are bonded is of the R-configuration, the stereochemistry at the carbon to which R5 is bonded is of the S-configuration, and the compound of Formula (I) is substantially one diastereomer. In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl, R2 is n-propyl, R3 is hydrogen, R5 is fluoro, each of R4, R6, and R7 is hydrogen, the stereochemistry at the carbon to which R2 and R3 are bonded is of the S-configuration, the stereochemistry at the carbon to which R5 is bonded is of the R-configuration, and the compound of Formula (I) is substantially one diastereomer. In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl, R2 is n-propyl, R3 is hydrogen, R5 is fluoro, each of R4, R6, and R7 is hydrogen, the stereochemistry at the carbon to which R2 and R3 are bonded is of the R-configuration, the stereochemistry at the carbon to which R5 is bonded is of the R-configuration, and the compound of Formula (I) is substantially one diastereomer. In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl, R2 is n-propyl, R3 is hydrogen, R5 is fluoro, each of R4, R6, and R7 is hydrogen, the stereochemistry at the carbon to which R2 and R3 are bonded is of the S-configuration, the stereochemistry at the carbon to which R5 is bonded is of the S-configuration, and the compound of Formula (I) is substantially one diastereomer. In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl, R2 is n-propyl, R3 is hydrogen, R5 is fluoro, each of R4, R6, and R7 is hydrogen, the stereochemistry at the carbon to which R2 and R3 are bonded is of the R-configuration, the stereochemistry at the carbon to which R5 is bonded is of the S-configuration, and the compound of Formula (I) is substantially one diastereomer. In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl, R2 is isopropyl, R3 is hydrogen, R5 is fluoro, each of R4, R6, and R7 is hydrogen, the stereochemistry at the carbon to which R2 and R3 are bonded is of the S-configuration, the stereochemistry at the carbon to which R5 is bonded is of the R-configuration, and the compound of Formula (I) is substantially one diastereomer. In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl, R2 is isopropyl, R3 is hydrogen, R5 is fluoro, each of R4, R6, and R7 is hydrogen, the stereochemistry at the carbon to which R2 and R3 are bonded is of the R-configuration, the stereochemistry at the carbon to which R5 is bonded is of the R-configuration, and the compound of Formula (I) is substantially one diastereomer. In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl, R2 is isopropyl, R3 is hydrogen, R5 is fluoro, each of R4, R6, and R7 is hydrogen, the stereochemistry at the carbon to which R2 and R3 are bonded is of the S-configuration, the stereochemistry at the carbon to which R5 is bonded is of the S-configuration, and the compound of Formula (I) is substantially one diastereomer. In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl, R2 is isopropyl, R3 is hydrogen, R5 is fluoro, each of R4, R6, and R7 is hydrogen, the stereochemistry at the carbon to which R2 and R3 are bonded is of the R-configuration, the stereochemistry at the carbon to which R5 is bonded is of the S-configuration, and the compound of Formula (I) is substantially one diastereomer. In certain embodiments of compounds of Formula (I), R1 is isopropyl, R2 is isopropyl, R3 is hydrogen, R5 is fluoro, each of R4, R6, and R7 is hydrogen, the stereochemistry at the carbon to which R2 and R3 are bonded is of the S-configuration, the stereochemistry at the carbon to which R5 is bonded is of the R-configuration, and the compound of Formula (I) is substantially one diastereomer. In certain embodiments of compounds of Formula (I), R1 is isopropyl, R2 is isopropyl, R3 is hydrogen, R5 is fluoro, each of R4, R6, and R7 is hydrogen, the stereochemistry at the carbon to which R2 and R3 are bonded is of the R-configuration, the stereochemistry at the carbon to which R5 is bonded is of the R-configuration, and the compound of Formula (I) is substantially one diastereomer. In certain embodiments of compounds of Formula (I), R1 is isopropyl, R2 is isopropyl, R3 is hydrogen, R5 is fluoro, each of R4, R6, and R7 is hydrogen, the stereochemistry at the carbon to which R2 and R3 are bonded is of the S-configuration, the stereochemistry at the carbon to which R5 is bonded is of the S-configuration, and the compound of Formula (I) is substantially one diastereomer. In certain embodiments of compounds of Formula (I), R1 is isopropyl, R2 is isopropyl, R3 is hydrogen, R5 is fluoro, each of R4, R6, and R7 is hydrogen, the stereochemistry at the carbon to which R2 and R3 are bonded is of the R-configuration, the stereochemistry at the carbon to which R5 is bonded is of the S-configuration, and the compound of Formula (I) is substantially one diastereomer.
In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl, R2 is methyl, R3 is hydrogen, R5 is 4-chlorophenyl, each of R4, R6, and R7 is hydrogen, the stereochemistry at the carbon to which R2 and R3 are bonded is of the S-configuration, the stereochemistry at the carbon to which R5 is bonded is of the R-configuration, and the compound of Formula (I) is substantially one diastereomer. In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl, R2 is methyl, R3 is hydrogen, R5 is 4-chlorophenyl, each of R4, R6, and R7 is hydrogen, the stereochemistry at the carbon to which R2 and R3 are bonded is of the R-configuration, the stereochemistry at the carbon to which R5 is bonded is of the R-configuration, and the compound of Formula (I) is substantially one diastereomer. In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl, R2 is methyl, R3 is hydrogen, R5 is 4-chlorophenyl, each of R4, R6, and R7 is hydrogen, the stereochemistry at the carbon to which R2 and R3 are bonded is of the S-configuration, the stereochemistry at the carbon to which R5 is bonded is of the S-configuration, and the compound of Formula (I) is substantially one diastereomer. In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl, R2 is methyl, R3 is hydrogen, R5 is 4-chlorophenyl, each of R4, R6, and R7 is hydrogen, the stereochemistry at the carbon to which R2 and R3 are bonded is of the R-configuration, the stereochemistry at the carbon to which R5 is bonded is of the S-configuration, and the compound of Formula (I) is substantially one diastereomer. In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl, R2 is n-propyl, R3 is hydrogen, R5 is 4-chlorophenyl, each of R4, R6, and R7 is hydrogen, the stereochemistry at the carbon to which R2 and R3 are bonded is of the S-configuration, the stereochemistry at the carbon to which R5 is bonded is of the R-configuration, and the compound of Formula (I) is substantially one diastereomer. In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl, R2 is n-propyl, R3 is hydrogen, R5 is 4-chlorophenyl, each of R4, R6, and R7 is hydrogen, the stereochemistry at the carbon to which R2 and R3 are bonded is of the R-configuration, the stereochemistry at the carbon to which R5 is bonded is of the R-configuration, and the compound of Formula (I) is substantially one diastereomer. In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl, R2 is n-propyl, R3 is hydrogen, R5 is 4-chlorophenyl, each of R4, R6, and R7 is hydrogen, the stereochemistry at the carbon to which R2 and R3 are bonded is of the S-configuration, the stereochemistry at the carbon to which R5 is bonded is of the S-configuration, and the compound of Formula (I) is substantially one diastereomer. In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl, R2 is n-propyl, R3 is hydrogen, R5 is 4-chlorophenyl, each of R4, R6, and R7 is hydrogen, the stereochemistry at the carbon to which R2 and R3 are bonded is of the R-configuration, the stereochemistry at the carbon to which R5 is bonded is of the S-configuration, and the compound of Formula (I) is substantially one diastereomer. In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl, R2 is isopropyl, R3 is hydrogen, R5 is 4-chlorophenyl, each of R4, R6, and R7 is hydrogen, the stereochemistry at the carbon to which R2 and R3 are bonded is of the S-configuration, the stereochemistry at the carbon to which R5 is bonded is of the R-configuration, and the compound of Formula (I) is substantially one diastereomer. In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl, R2 is isopropyl, R3 is hydrogen, R5 is 4-chlorophenyl, each of R4, R6, and R7 is hydrogen, the stereochemistry at the carbon to which R2 and R3 are bonded is of the R-configuration, the stereochemistry at the carbon to which R5 is bonded is of the R-configuration, and the compound of Formula (I) is substantially one diastereomer. In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl, R2 is isopropyl, R3 is hydrogen, R5 is 4-chlorophenyl, each of R4, R6, and R7 is hydrogen, the stereochemistry at the carbon to which R2 and R3 are bonded is of the S-configuration, the stereochemistry at the carbon to which R5 is bonded is of the S-configuration, and the compound of Formula (I) is substantially one diastereomer. In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl, R2 is isopropyl, R3 is hydrogen, R5 is 4-chlorophenyl, each of R4, R6, and R7 is hydrogen, the stereochemistry at the carbon to which R2 and R3 are bonded is of the R-configuration, the stereochemistry at the carbon to which R5 is bonded is of the S-configuration, and the compound of Formula (I) is substantially one diastereomer. In certain embodiments of compounds of Formula (I), R1 is isopropyl, R2 is isopropyl, R3 is hydrogen, R5 is 4-chlorophenyl, each of R4, R6, and R7 is hydrogen, the stereochemistry at the carbon to which R2 and R3 are bonded is of the S-configuration, the stereochemistry at the carbon to which R5 is bonded is of the R-configuration, and the compound of Formula (I) is substantially one diastereomer. In certain embodiments of compounds of Formula (I), R1 is isopropyl, R2 is isopropyl, R3 is hydrogen, R5 is 4-chlorophenyl, each of R4, R6, and R7 is hydrogen, the stereochemistry at the carbon to which R2 and R3 are bonded is of the R-configuration, the stereochemistry at the carbon to which R5 is bonded is of the R-configuration, and the compound of Formula (I) is substantially one diastereomer. In certain embodiments of compounds of Formula (I), R1 is isopropyl, R2 is isopropyl, R3 is hydrogen, R5 is 4-chlorophenyl, each of R4, R6, and R7 is hydrogen, the stereochemistry at the carbon to which R2 and R3 are bonded is of the S-configuration, the stereochemistry at the carbon to which R5 is bonded is of the S-configuration, and the compound of Formula (I) is substantially one diastereomer. In certain embodiments of compounds of Formula (I), R1 is isopropyl, R2 is isopropyl, R3 is hydrogen, R5 is 4-chlorophenyl, each of R4, R6, and R7 is hydrogen, the stereochemistry at the carbon to which R2 and R3 are bonded is of the R-configuration, the stereochemistry at the carbon to which R5 is bonded is of the S-configuration, and the compound of Formula (I) is substantially one diastereomer.
In certain embodiments of compounds of Formula (I), R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl, R2 is selected from hydrogen, methyl, n-propyl, and isopropyl, R3 is hydrogen, R5 is selected from hydrogen, hydroxy, fluoro, oxo, and 4-chlorophenyl, and each of R4, R6, and R7 are hydrogen.
In certain embodiments of compounds of Formula (I), R1 is isopropyl, R2 is isopropyl, R3 is hydrogen, R5 is selected from hydrogen, hydroxy, fluoro, oxo, and 4-chlorophenyl, and each of R4, R6, and R7 are hydrogen.
The compounds disclosed herein may be obtained via the synthetic method illustrated in Scheme 1. Those of ordinary skill in the art will appreciate that a synthetic route to the disclosed compounds consists of attaching promoieties to 3-aminopropylsulfinic acid analogs. Numerous methods have been described in the art for the synthesis of 3-aminopropylsulfinic acid analogs (e.g., Carruthers et al., Bioorg. Med. Chem. Lett. 1995, 5, 237-240; Shue et al., Bioorg. Med. Chem. Lett. 1996, 6, 1709-1714; Carruthers et al., Bioorg. Med. Chem. Lett. 1998, 8, 3059-3064; and Fitzpatrick et al., International Publication No. WO 02/100823, each of which is incorporated herein by reference in its entirety). General synthetic methods useful in the synthesis of the compounds described herein are also available in the art (e.g., Green et al., “Protective Groups in Organic Chemistry,” Wiley, 2nd ed. 1991; Harrison et al., “Compendium of Synthetic Organic Methods,” Vols. 1-8 (John Wiley and Sons, 1971-1996; Larock “Comprehensive Organic Transformations,” VCH Publishers, 1989; and Paquette, “Encyclopedia of Reagents for Organic Synthesis,” John Wiley & Sons, 1995).
Accordingly, starting materials useful for preparing compounds and intermediates thereof, and/or practicing methods described herein are commercially available or can be prepared by well-known synthetic methods. Other methods for synthesis of the prodrugs described herein are either described in the art or will be readily apparent to the skilled artisan in view of the references provided herein and may be used to synthesize the compounds described herein. Accordingly, the methods presented in the Schemes of the present disclosure are illustrative rather than comprehensive.
A method for synthesizing compounds of Formula (I), illustrated in Scheme 1, employs the reaction of a 3-aminopropylsulfinic acid analog of Formula (II) with a 1-(acyloxy)-alkyl N-hydroxysuccinimidyl carbonate compound of Formula (III), optionally in the presence of a base, as described in the co-pending application Gallop et al., International Publication No. WO 2005/010011, which is incorporated herein by reference in its entirety.
wherein:
R9 and R10 are independently selected from hydrogen, acylamino, acyloxy, alkoxycarbonylamino, alkoxycarbonyloxy, alkyl, substituted alkyl, alkoxy, substituted alkoxy, aryl, substituted aryl, arylalkyl, carbamoyloxy, dialkylamino, heteroaryl, hydroxy, and sulfonamido, or, R9 and R10 together with the atoms to which they are bondedform a substituted cycloalkyl, substituted cycloheteroalkyl, or substituted aryl ring; and
R1, R2, R3, R4, R5, R6, and R7 are as defined herein.
In certain embodiments of the method of Scheme 1 for synthesizing a compound of Formula (I), R2 and R3 in the compound of Formula (III) are different, such that the carbon atom to which these substituents are bonded is a stereogenic center.
In certain embodiments of the method of Scheme 1 for synthesizing a compound of Formula (I), each of R9 and R10 in the compound of Formula (III) is benzoyloxy, the stereochemistry at the carbon to which R9 is bonded is of the R-configuration, and the stereochemistry at the carbon to which R10 is bonded is of the R-configuration. In certain embodiments of the method of Scheme 1 for synthesizing a compound of Formula (I), each of R9 and R10 in the compound of Formula (III) is benzoyloxy, the stereochemistry at the carbon to which R9 is bonded is of the S-configuration, and the stereochemistry at the carbon to which R10 is bonded is of the S-configuration.
In certain embodiments of the method of Scheme 1 for synthesizing a compound of Formula (I), R2 and R3 in the compound of Formula (I) are different and the compound of Formula (I) is substantially one diastereomer. In certain embodiments of the method of Scheme 1 for synthesizing a compound of Formula (I), R1 is isopropyl, R2 is isopropyl, R3 is hydrogen, the stereochemistry at the carbon to which R2 and R3 are bonded is of the S-configuration and the compound of Formula (I) is substantially one diastereomer. In certain embodiments of the method of Scheme 1 for synthesizing a compound of Formula (I), R1 is isopropyl, R2 is isopropyl, R3 is hydrogen, the stereochemistry at the carbon to which R2 and R3 are bonded is of the R-configuration, and the compound of Formula (I) is substantially one diastereomer.
In certain embodiments of the method of Scheme 1 for synthesizing a compound of Formula (I), R1 is C1-6 alkyl, R2 is hydrogen or C1-4 alkyl, R3 is hydrogen, R5 is selected from hydroxy, fluoro, and 4-chlorophenyl, each of R4, R6, and R7 is hydrogen, each of R9 and R10 is benzoyloxy, and the stereochemistry at the carbon to which R5 is bonded is of the R-configuration. In certain embodiments of the method of Scheme 1 for synthesizing a compound of Formula (I), R1 is C1-6 alkyl, R2 is hydrogen or C1-4 alkyl, R3 is hydrogen, R5 is selected from hydroxy, fluoro, and 4-chlorophenyl, each of R4, R6, and R7 is hydrogen, each of R9 and R10 is benzoyloxy, and the stereochemistry at the carbon to which R5 is bonded is of the S-configuration. In certain embodiments of the method of Scheme 1 for synthesizing a compound of Formula (I), R1 is C1-6 alkyl, R2 is methyl, R3 is hydrogen, R5 is selected from hydroxy, fluoro, and 4-chlorophenyl, each of R4, R6, and R7 is hydrogen, each of R9 and R10 is benzoyloxy, and the stereochemistry at the carbon to which R5 is bonded is of the R-configuration. In certain embodiments of the method of Scheme 1 for synthesizing a compound of Formula (I), R1 is C1-6 alkyl, R2 is methyl, R3 is hydrogen, R5 is selected from hydroxy, fluoro, and 4-chlorophenyl, each of R4, R6, and R7 is hydrogen, each of R9 and R10 is benzoyloxy, and the stereochemistry at the carbon to which R5 is bonded is of the S-configuration. In certain embodiments of the method of Scheme 1 for synthesizing a compound of Formula (I), R1 is C1-6 alkyl, R2 is propyl, R3 is hydrogen, R5 is selected from hydroxy, fluoro, and 4-chlorophenyl, each of R4, R6, and R7 is hydrogen, each of R9 and R10 is benzoyloxy, and the stereochemistry at the carbon to which R5 is bonded is of the R-configuration. In certain embodiments of the method of Scheme 1 for synthesizing a compound of Formula (I), R1 is C1-6 alkyl, R2 is propyl, R3 is hydrogen, R5 is selected from hydroxy, fluoro, and 4-chlorophenyl, each of R4, R6, and R7 is hydrogen, each of R9 and R10 is benzoyloxy, and the stereochemistry at the carbon to which R5 is bonded is of the S-configuration. In certain embodiments of the method of Scheme 1 for synthesizing a compound of Formula (I), R1 is C1-6 alkyl, R2 is isopropyl, R3 is hydrogen, R5 is selected from hydroxy, fluoro, and 4-chlorophenyl, each of R4, R6, and R7 is hydrogen, each of R9 and R10 is benzoyloxy, and the stereochemistry at the carbon to which R5 is bonded is of the R-configuration. In certain embodiments of the method of Scheme 1 for synthesizing a compound of Formula (I), R1 is C1-6 alkyl, R2 is isopropyl, R3 is hydrogen, R5 is selected from hydroxy, fluoro, and 4-chlorophenyl, each of R4, R6, and R7 is hydrogen, each of R9 and R10 is benzoyloxy, and the stereochemistry at the carbon to which R5 is bonded is of the S-configuration.
In certain embodiments of the method of Scheme 1 for synthesizing a compound of Formula (I), R1 is C1-6 alkyl, R2 is methyl, R3 is hydrogen, R5 is selected from hydroxy, fluoro, and 4-chlorophenyl, each of R4, R6, and R7 is hydrogen, each of R9 and R10 is benzoyloxy, the stereochemistry at the carbon to which R2 and R3 are bonded is of the S-configuration, the stereochemistry at the carbon to which R5 is bonded is of the R-configuration, the stereochemistry at the carbon to which R9 is bonded is of the R-configuration, and the stereochemistry at the carbon to which R10 is bonded is of the R-configuration. In certain embodiments of the method of Scheme 1 for synthesizing a compound of Formula (I), R1 is C1-6 alkyl, R2 is methyl, R3 is hydrogen, R5 is selected from hydroxy, fluoro, and 4-chlorophenyl, each of R4, R6, and R7 is hydrogen, each of R9 and R10 is benzoyloxy, the stereochemistry at the carbon to which R2 and R3 are bonded is of the S-configuration, the stereochemistry at the carbon to which R5 is bonded is of the S-configuration, the stereochemistry at the carbon to which R9 is bonded is of the R-configuration, and the stereochemistry at the carbon to which R10 is bonded is of the R-configuration. In certain embodiments of the method of Scheme 1 for synthesizing a compound of Formula (I), R1 is C1-6 alkyl, R2 is methyl, R3 is hydrogen, R5 is selected from hydroxy, fluoro, and 4-chlorophenyl, each of R4, R6, and R7 is hydrogen, each of R9 and R10 is benzoyloxy, the stereochemistry at the carbon to which R2 and R3 are bonded is of the R-configuration, the stereochemistry at the carbon to which R5 is bonded is of the R-configuration, the stereochemistry at the carbon to which R9 is bonded is of the S-configuration and the stereochemistry at the carbon to which R10 is bonded is of the S-configuration. In certain embodiments of the method of Scheme 1 for synthesizing a compound of Formula (I), R1 is C1-6 alkyl, R2 is methyl, R3 is hydrogen, R5 is selected from hydroxy, fluoro, and 4-chlorophenyl, each of R4, R6, and R7 is hydrogen, each of R9 and R10 is benzoyloxy, the stereochemistry at the carbon to which R2 and R3 are bonded is of the R-configuration, the stereochemistry at the carbon to which R5 is bonded is of the S-configuration, the stereochemistry at the carbon to which R9 is bonded is of the S-configuration and the stereochemistry at the carbon to which R10 is bonded is of the S-configuration. In certain embodiments of the method of Scheme 1 for synthesizing a compound of Formula (I), R1 is C1-6 alkyl, R2 is propyl, R3 is hydrogen, R5 is selected from hydroxy, fluoro, and 4-chlorophenyl, each of R4, R6, and R7 is hydrogen, each of R9 and R10 is benzoyloxy, the stereochemistry at the carbon to which R2 and R3 are bonded is of the S-configuration, the stereochemistry at the carbon to which R5 is bonded is of the R-configuration, the stereochemistry at the carbon to which R9 is bonded is of the R-configuration, and the stereochemistry at the carbon to which R10 is bonded is of the R-configuration. In certain embodiments of the method of Scheme 1 for synthesizing a compound of Formula (I), R1 is C1-6 alkyl, R2 is propyl, R3 is hydrogen, R5 is selected from hydroxy, fluoro, and 4-chlorophenyl, each of R4, R6, and R7 is hydrogen, each of R9 and R10 is benzoyloxy, the stereochemistry at the carbon to which R2 and R3 are bonded is of the S-configuration, the stereochemistry at the carbon to which R5 is bonded is of the S-configuration, the stereochemistry at the carbon to which R9 is bonded is of the R-configuration, and the stereochemistry at the carbon to which R10 is bonded is of the R-configuration. In certain embodiments of the method of Scheme 1 for synthesizing a compound of Formula (I), R1 is C1-6 alkyl, R2 is propyl, R3 is hydrogen, R5 is selected from hydroxy, fluoro, and 4-chlorophenyl, each of R4, R6, and R7 is hydrogen, each of R9 and R10 is benzoyloxy, the stereochemistry at the carbon to which R2 and R3 are bonded is of the R-configuration, the stereochemistry at the carbon to which R5 is bonded is of the R-configuration, the stereochemistry at the carbon to which R9 is bonded is of the S-configuration and the stereochemistry at the carbon to which R10 is bonded is of the S-configuration. In certain embodiments of the method of Scheme 1 for synthesizing a compound of Formula (I), R1 is C1-6 alkyl, R2 is propyl, R3 is hydrogen, R5 is selected from hydroxy, fluoro, and 4-chlorophenyl, each of R4, R6, and R7 is y hydrogen, each of R9 and R10 is benzoyloxy, the stereochemistry at the carbon to which R2 and R3 are bonded is of the R-configuration, the stereochemistry at the carbon to which R5 is bonded is of the S-configuration, the stereochemistry at the carbon to which R9 is bonded is of the S-configuration and the stereochemistry at the carbon to which R10 is bonded is of the S-configuration. In certain embodiments of the method of Scheme 1 for synthesizing a compound of Formula (I), R1 is C1-6 alkyl, R2 is isopropyl, R3 is hydrogen, R5 is selected from hydroxy, fluoro, and 4-chlorophenyl, each of R4, R6, and R7 is hydrogen, each of R9 and R10 is benzoyloxy, the stereochemistry at the carbon to which R2 and R3 are bonded is of the S-configuration, the stereochemistry at the carbon to which R5 is bonded is of the R-configuration, the stereochemistry at the carbon to which R9 is bonded is of the R-configuration, and the stereochemistry at the carbon to which R10 is bonded is of the R-configuration. In certain embodiments of the method of Scheme 1 for synthesizing a compound of Formula (I), R1 is C1-6 alkyl, R2 is isopropyl, R3 is hydrogen, R5 is selected from hydroxy, fluoro, and 4-chlorophenyl, each of R4, R6, and R7 is hydrogen, each of R9 and R10 is benzoyloxy, the stereochemistry at the carbon to which R2 and R3 are bonded is of the S-configuration, the stereochemistry at the carbon to which R5 is bonded is of the S-configuration, the stereochemistry at the carbon to which R9 is bonded is of the R-configuration, and the stereochemistry at the carbon to which R10 is bonded is of the R-configuration. In certain embodiments of the method of Scheme 1 for synthesizing a compound of Formula (I), R1 is C1-6 alkyl, R2 is isopropyl, R3 is hydrogen, R5 is selected from hydroxy, fluoro, and 4-chlorophenyl, each of R4, R6, and R7 is hydrogen, each of R9 and R10 is benzoyloxy, the stereochemistry at the carbon to which R2 and R3 are attached is of the R-configuration, the stereochemistry at the carbon to which R5 is bonded is of the R-configuration, the stereochemistry at the carbon to which R9 is bonded is of the S-configuration and the stereochemistry at the carbon to which R10 is bonded is of the S-configuration. In certain embodiments of the method of Scheme 1 for synthesizing a compound of Formula (I), R1 is C1-6 alkyl, R2 is isopropyl, R3 is hydrogen, R5 is selected from hydroxy, fluoro, and 4-chlorophenyl, each of R4, R6, and R7 is hydrogen, each of R9 and R10 is benzoyloxy, the stereochemistry at the carbon to which R2 and R3 are bonded is of the R-configuration, the stereochemistry at the carbon to which R5 is bonded is of the S-configuration, the stereochemistry at the carbon to which R9 is bonded is of the S-configuration and the stereochemistry at the carbon to which R10 is bonded is of the S-configuration.
In certain embodiments, the method of Scheme 1 can be carried out in a solvent. Useful solvent include, but are not limited to, acetone, acetonitrile, dichloromethane, dichloroethane, chloroform, toluene, tetrahydrofuran, dioxane, dimethylformamide, dimethylacetamide, N-methylpyrrolidinone, dimethyl sulfoxide, pyridine, ethyl acetate, methyl tert-butyl ether, methanol, ethanol, isopropanol, tert-butanol, water, or combinations thereof. In certain embodiments, the solvent is acetone, acetonitrile, dichloromethane, toluene, tetrahydrofuran, pyridine, methyl tert-butyl ether, methanol, ethanol, isopropanol, water, or combinations thereof. In certain embodiments, the solvent is a mixture of acetonitrile and water. In certain embodiments, the solvent is a mixture of acetonitrile and water, with a volume ratio of acetonitrile to water from about 1:5 to about 5:1. In certain embodiments, the solvent is a mixture of tetrahydrofuran and water, with a volume ratio of tetrahydrofuran to water from about 20:1 to about 2:1. In certain embodiments, the solvent is a mixture of methyl tert-butyl ether and water. In certain embodiments, the solvent is a mixture of methyl tert-butyl ether and water, with a volume ratio of methyl tert-butyl ether to water from about 20:1 to about 2:1. In certain embodiments, the solvent is a mixture of methyl tert-butyl ether and water, wherein the methyl tert-butyl ether contains from about 10% to about 50% acetone by volume. In certain embodiments, the solvent is dichloromethane, water, or a combination thereof. In certain embodiments, the solvent is a biphasic mixture of dichloromethane and water. In certain embodiments, the solvent is a biphasic mixture of dichloromethane and water containing from about 0.001 equivalents to about 0.1 equivalents of a phase transfer catalyst. In certain embodiments, the phase transfer catalyst is a tetraalkylammonium salt, and in certain embodiments, the phase transfer catalyst is a tetrabutylammonium salt.
The method of Scheme 1 can be carried out a temperature from about −20° C. to about 40° C. In certain embodiments, the temperature can be from about −20° C. to about 25° C. In certain embodiments, the temperature can be from about 0° C. to about 25° C. In certain embodiments, the temperature can be from about 25° C. to about 40° C.
In certain embodiments of the method of Scheme 1, the reaction can be performed in the absence of a base.
In certain embodiments of the method of Scheme 1, the reaction can be performed in the presence of an inorganic base. In certain embodiments, the reaction can be performed in the presence of an alkali metal bicarbonate or alkali metal carbonate salt. In certain embodiments, the reaction can be performed in the presence of sodium bicarbonate.
In certain embodiments of the method of Scheme 1, the reaction can be performed in the presence of an organic base. In certain embodiments, the reaction can be performed in the presence of an organic base such as triethylamine, tributylamine, diisopropylethylamine, dimethylisopropylamine, N-methylmorpholine, N-methylpyrrolidine, N-methylpiperidine, pyridine, 2-methylpyridine, 2,6-dimethylpyridine, 4-dimethylaminopyridine, 1,4-diazabicyclo[2.2.2]octane, 1,8-diazabicyclo[5.4.0]undec-7-ene, 1,5-diazabicyclo[4.3.0]undec-7-ene, or a combination of any of the foregoing, and in certain embodiments, the reaction can be performed in the presence of an organic base such as triethylamine, diisopropylethylamine, N-methylmorpholine, pyridine, or a combination of any of the foregoing.
Pharmaceutical compositions comprising a therapeutically effective amount of one or more prodrugs of 3-aminopropylsulfinic acid or analog of Formula (I), such as in purified form, together with a suitable amount of a pharmaceutically acceptable vehicle, so as to provide a form for proper administration to a patient are provided herein. Suitable pharmaceutical vehicles include excipients such as starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene, glycol, water, ethanol, and the like. The present compositions, if desired, can also contain minor amounts of wetting or emulsifying agents, or pH buffering agents. In addition, auxiliary, stabilizing, thickening, lubricating, and coloring agents may be used.
Pharmaceutical compositions may be manufactured by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping, or lyophilizing processes. Pharmaceutical compositions may be formulated in conventional manner using one or more physiologically acceptable carriers, diluents, excipients, or auxiliaries, which facilitate processing of compounds disclosed herein into preparations, which can be used pharmaceutically. Proper formulation can depend upon the route of administration chosen.
The present pharmaceutical compositions can take the form of solutions, suspensions, emulsions, tablets, pills, pellets, capsules, capsules containing liquids, powders, sustained-release formulations, suppositories, emulsions, aerosols, sprays, suspensions, or any other form suitable for use. In some embodiments, the pharmaceutically acceptable vehicle is a capsule (see e.g., Grosswald et al., U.S. Pat. No. 5,698,155). Other examples of suitable pharmaceutical vehicles have been described in the art (see “Remington's Pharmaceutical Sciences,” Lippincott Williams & Wilkins, 21st Edition, 2005). In some embodiments, compositions are formulated for oral delivery, particularly for sustained release oral administration.
Pharmaceutical compositions for oral delivery may be in the form of tablets, lozenges, aqueous or oily suspensions, granules, powders, emulsions, capsules, syrups, or elixirs, for example. Orally administered compositions may contain one or more optional agents, for example, sweetening agents such as fructose, aspartame or saccharin, flavoring agents such as peppermint, oil of wintergreen, or cherry coloring agents, and preserving agents, to provide a pharmaceutically palatable preparation. Moreover, when in tablet or pill form, a composition may be coated to delay disintegration and absorption in the gastrointestinal tract, thereby providing a sustained action over an extended period of time. Oral compositions can include standard vehicles such as mannitol, lactose, starch, magnesium stearate, sodium saccharine, cellulose, magnesium carbonate, etc. Such vehicles are generally of pharmaceutical grade.
For oral liquid preparations such as, for example, suspensions, elixirs and solutions, suitable carriers, excipients, or diluents include water, saline, alkyleneglycols (e.g., propylene glycol), polyalkylene glycols (e.g., polyethylene glycol) oils, alcohols, slightly acidic buffers between pH 4 and pH 6 (e.g., acetate, citrate, ascorbate at between about 5 mM to about 50 mM), etc. Additionally, flavoring agents, preservatives, coloring agents, bile salts, acylcarnitines, and the like may be added.
When a compound of Formula (I) is acidic, it may be included in any of the above-described formulations as the free acid, a pharmaceutically acceptable salt, a solvate, or a hydrate. Pharmaceutically acceptable salts substantially retain the activity of the free acid, may be prepared by reaction with bases, and tend to be more soluble in aqueous and other protic solvents than the corresponding free acid form. In certain embodiments, sodium salts of a compound of Formula (I) are used in the above described formulations.
Prodrugs of 3-aminopropylsulfinic acid or analogs thereof of Formula (I) can be used with a number of different dosage forms, which may be adapted to provide sustained release of a compound of Formula (I) upon oral administration.
In some embodiments, a dosage form can comprise beads that on dissolution or diffusion release a compound of the present disclosure over an extended period of hours, in certain embodiments, over a period of at least about 6 hours, such as, in certain embodiments over a period of at least about 8 hours, and in certain embodiments, over a period of at least about 12 hours. The beads may have a central composition or core comprising a compound of the present disclosure and pharmaceutically acceptable vehicles, including an optional lubricant, antioxidant and buffer. The beads may be medical preparations with a diameter of about 0.05 mm to about 2 mm. Individual beads may comprise doses of a compound of the present disclosure, for example, doses of up to about 40 mg of compound. The beads, in some embodiments, can be formed of non-cross-linked materials to enhance their discharge from the gastrointestinal tract. The beads may be coated with a release rate-controlling polymer that gives a timed release profile.
The time-release beads may be manufactured into a tablet for therapeutically effective administration. The beads can be made into matrix tablets by the direct compression of a plurality of beads coated with, for example, an acrylic resin and blended with excipients such as hydroxypropylmethyl cellulose. The manufacture of beads has been disclosed in the art (Lu, Int. J. Pharm. 1994, 112, 117-124; “Remington's Pharmaceutical Sciences”, Lippincott Williams & Wilkins, 21st Edition, 2005; Fincher, J. Pharm. Sci. 1968, 57, 1825-1835; and U.S. Pat. No. 4,083,949), as has the manufacture of tablets (“Remington's Pharmaceutical Sciences”, Lippincott Williams & Wilkins, 21st Edition, 2005).
One type of sustained release oral dosage formulation that may be used with compounds of the present disclosure can comprise an inert core, such as a sugar sphere, coated with an inner drug-containing layer and an outer membrane layer controlling drug release from the inner layer. A “sealcoat” may be provided between the inert core and the layer containing the active ingredient. When the core is comprised of a water-soluble or water-swellable inert material, the sealcoat can be in the form of a relatively thick layer of a water-insoluble polymer. Such a controlled release beads may thus comprise: (i) a core unit of a substantially water-soluble or water-swellable inert material; (ii) a first layer on the core unit of a substantially water-insoluble polymer; (iii) a second layer covering the first layer and containing an active ingredient; and (iv) a third layer on the second layer of polymer effective for controlled release of the active ingredient, wherein the first layer is adapted to control water penetration into the core.
In certain embodiments, the first layer (ii) above usually constitutes more than about 2% (w/w) of the final bead composition, such as more than about 3% (w/w), e.g., from about 3% to about 80% (w/w). The amount of the second layer (ii) above usually constitutes from about 0.05% to about 60% (w/w), such as from about 0.1% to about 30% (w/w) of the final bead composition. The amount of the third layer (iv) above usually constitutes from about 1% to about 50% (w/w), such as from about 2% to about 25% (w/w) of the final bead composition. The core unit typically can have a size ranging from about 0.05 to about 2 mm. The controlled release beads may be provided in a multiple unit formulation, such as a capsule or a tablet.
The cores can comprise a water-soluble or swellable material and may be any such material that is conventionally used as cores or any other pharmaceutically acceptable water-soluble or water-swellable material made into beads or pellets. The cores may be spheres of materials such as sucrose/starch (Sugar Spheres NF), sucrose crystals, or extruded and dried spheres typically comprised of excipients such as microcrystalline cellulose and lactose. The substantially water-insoluble material in the first, or sealcoat layer is generally a “GI insoluble” or “GI partially insoluble” film forming polymer (dispersed or dissolved in a solvent). Examples include, but are not limited to, ethyl cellulose, cellulose acetate, cellulose acetate butyrate, polymethacrylates such as ethyl acrylate/methyl methacrylate copolymer (Eudragit® NE-30-D, Eudragit® S, and Eudragit® L) and ammonio methacrylate copolymer types A and B (Eudragit® RL30D, RS30D, Eudragit® RL, and Eudragit® RS), and silicone elastomers. Usually, a plasticizer is used together with the polymer. Exemples of plasticizers include, but are not limited to, dibutylsebacate, propylene glycol, triethylcitrate, tributylcitrate, castor oil, acetylated monoglycerides, acetyl triethylcitrate, acetyl butylcitrate, diethyl phthalate, dibutyl phthalate, triacetin, and fractionated coconut oil (medium-chain triglycerides). The second layer containing the active ingredient can comprise the active ingredient with or without a polymer as a binder. When used, the binder can be hydrophilic and can be water-soluble or water-insoluble. Exemples of polymers that may be used in the second layer containing the active drug are hydrophilic polymers such as, for example, polyvinylpyrrolidone (PVP), polyalkylene glycol such as polyethylene glycol, gelatine, polyvinyl alcohol, starch and derivatives thereof, cellulose derivatives such as hydroxypropylmethyl cellulose (HPMC), hydroxypropyl cellulose, carboxymethyl cellulose, methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, carboxyethyl cellulose, and carboxymethylhydroxyethyl cellulose, acrylic acid polymers, polymethacrylates, or any other pharmaceutically acceptable polymer. The ratio of drug to hydrophilic polymer in the second layer can be in the range of from about 1:100 to about 100:1 (w/w). Suitable polymers for use in the third layer, or membrane, for controlling the drug release may be selected from water-insoluble polymers or polymers with pH-dependent solubility, such as, for example, ethyl cellulose, hydroxypropylmethyl cellulose phthalate, cellulose acetate phthalate, cellulose acetate trimellitate, polymethacrylates, or mixtures thereof, optionally combined with plasticizers, such as those mentioned above. Optionally, the controlled release layer comprises, in addition to the polymers above, other substance(s) with different solubility characteristics, to adjust the permeability and thereby the release rate, of the controlled release layer. Examples of polymers that may be used as a modifier together with, for example, ethyl cellulose include, but are not limited to, HPMC, hydroxyethyl cellulose, hydroxypropyl cellulose, methylcellulose, carboxymethylcellulose, polyethylene glycol, polyvinylpyrrolidone (PVP), polyvinyl alcohol, polymers with pH-dependent solubility, such as cellulose acetate phthalate or ammonio methacrylate copolymer and methacrylic acid copolymer, and mixtures thereof. Additives such as sucrose, lactose, and pharmaceutical grade surfactants may also be included in the controlled release layer, if desired.
The preparation of a multiple unit formulation can comprise the additional step of transforming the prepared beads into a pharmaceutical formulation, such as by filling a predetermined amount of the beads into a capsule, or compressing the beads into tablets. Examples of multi-particulate sustained release oral dosage forms are described in, for example, U.S. Pat. Nos. 6,627,223 and 5,229,135.
In certain embodiments, an oral sustained release pump may be used (see Langer, supra; Sefton, CRC Crit Ref Biomed. Eng. 1987, 14, 201; Saudek et al., N. Engl. J Med. 1989, 321, 574).
In certain embodiments, polymeric materials can be used (See “Medical Applications of Controlled Release,” Langer and Wise (eds.), CRC Press., Boca Raton, Fla. (1974); “Controlled Drug Bioavailability,” Drug Product Design and Performance, Smolen and Ball (eds.), Wiley, New York (1984); Langer et al., J Macromol. Sci. Rev. Macromol Chem. 1983, 23, 61; see also Levy et al., Science 1985, 228, 190; During et al., Ann. Neurol. 1989, 25, 351; Howard et al., J. Neurosurg. 1989, 71, 105). In some embodiments, polymeric materials can be used for sustained release oral delivery. Polymers for sustained release oral delivery include, but are not limited to, sodium carboxymethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, and hydroxyethylcellulose (especially, hydroxypropylmethylcellulose). Other cellulose ethers have been described (Alderman, Int. J. Pharm. Tech. & Prod. Mfr 1984, 5(3), 1-9). Factors affecting drug release are well known to the skilled artisan and have been described in the art (Bamba et al., Int. J. Pharm. 1979, 2, 307).
In certain embodiments, enteric-coated preparations can be used for sustained release oral administration. Examples of coating materials for enteric-coated preparations include polymers with a pH-dependent solubility (i.e., pH-controlled release), polymers with a slow or pH-dependent rate of swelling, dissolution or erosion (i.e., time-controlled release), polymers that are degraded by enzymes (i.e., enzyme-controlled release), and polymers that form firm layers that are destroyed by an increase in pressure (i.e., pressure-controlled release).
In certain embodiments, drug-releasing lipid matrices can be used for sustained release oral administration. An example is when solid microparticles of a compound of the present disclosure are coated with a thin controlled release layer of a lipid (e.g., glyceryl behenate and/or glyceryl palmitostearate) as disclosed in Farah et al., U.S. Pat. No. 6,375,987 and Joachim et al., U.S. Pat. No. 6,379,700. The lipid-coated particles can optionally be compressed to form a tablet. Another controlled release lipid-based matrix material, which is suitable for sustained release oral administration comprises polyglycolized glycerides as disclosed in Roussin et al., U.S. Pat. No. 6,171,615.
In certain embodiments, waxes can be used for sustained release oral administration. Examples of suitable sustained compound-releasing waxes are disclosed in Cain et al., U.S. Pat. No. 3,402,240 (caranauba wax, candelilla wax, esparto wax and ouricury wax); Shtohryn et al., U.S. Pat. No. 4,820,523 (hydrogenated vegetable oil, bees wax, caranauba wax, paraffin, candelilla, ozokerite, and mixtures thereof); and Walters, U.S. Pat. No. 4,421,736 (mixture of paraffin and castor wax).
In certain embodiments, osmotic delivery systems are used for oral sustained release administration (Verma et al., Drug Dev. Ind. Pharm., 2000, 26, 695-708). In some embodiments, OROS® systems made by Alza Corporation, Mountain View, Calif. are used for oral sustained release delivery devices (Theeuwes et al., U.S. Pat. No. 3,845,770; Theeuwes et al., U.S. Pat. No. 3,916,899).
In certain embodiments, a controlled-release system can be placed in proximity of the target of at least one compound disclosed herein (e.g., within the spinal cord), thus requiring only a fraction of the systemic dose (See, e.g., Goodson, in “Medical Applications of Controlled Release,” supra, vol. 2, pp. 115-138 (1984)). Other controlled-release systems discussed in Langer, Science 1990, 249, 1527-1533, may also be used.
In certain embodiments, the dosage form can comprise at least one compound of the present disclosure coated on a polymer substrate. The polymer can be an erodible, or a nonerodible polymer. The coated substrate may be folded onto itself to provide a bilayer polymer drug dosage form. For example, a compound of the present disclosure can be coated onto a polymer such as a polypeptide, collagen, gelatin, polyvinyl alcohol, polyorthoester, polyacetyl, or a polyorthocarbonate and the coated polymer folded onto itself to provide a bilaminated dosage form. In operation, the bioerodible dosage form erodes at a controlled rate to dispense a compound disclosed herein over a sustained release period. Examples of biodegradable polymers include biodegradable poly(amides), poly (amino acids), poly(esters), poly(lactic acid), poly(glycolic acid), poly(carbohydrate), poly(orthoester), poly(orthocarbonate), poly(acetyl), poly(anhydrides), biodegradable poly(dihydropyrans), and poly(dioxinones), which are known in the art (Rosoff, Controlled Release of Drugs Chap. 2, pp. 53-95 (1989); and in U.S. Pat. Nos. 3,811,444; 3,962,414; 4,066,747, 4,070,347; 4,079,038; and 4,093,709).
In certain embodiments, a dosage form comprises at least one compound of the present disclosure loaded into a polymer that releases the compound by diffusion through a polymer, by flux through pores, or by rupture of a polymer matrix. The drug delivery polymeric dosage form can comprise from between about 2 mg to about 500 mg of at least one compound of the present disclosure homogenously contained in or on a polymer. A dosage form can comprise at least one exposed surface at the beginning of dose delivery. The non-exposed surface, when present, can be coated with a pharmaceutically acceptable material impermeable to the passage of a compound of the present disclosure. Such dosage forms can be manufactured by procedures known in the art. An example of providing a dosage form comprises blending a pharmaceutically acceptable carrier such as polyethylene glycol, with a known dose of a compound at an elevated temperature, (e.g., 37° C.), and adding it to a silastic medical grade elastomer with a cross-linking agent, for example, octanoate, followed by casting in a mold. The step is repeated for each optional successive layer. The system is allowed to set for about 1 hour, to provide the dosage form. Examples of polymers for manufacturing a dosage form include olefinic polymers, vinyl polymers, addition polymers, condensation polymers, carbohydrate polymers, and silicone polymers such as polyethylene, polypropylene, polyvinyl acetate, polymethylacrylate, polyisobutylmethacrylate, poly alginate, polyamide, and polysilicone. The polymers and procedures for manufacturing them are described in the art (Coleman et al., Polymers 1990, 31, 1187-1231; Roerdink et al., Drug Carrier Systems 1989, 9, 57-10; Leong et al., Adv. Drug Delivery Rev. 1987, 1, 199-233; Roff et al., Handbook of Common Polymers 1971, CRC Press; and U.S. Pat. No. 3,992,518).
In certain embodiments, the dosage from can comprise a plurality of pills. Time-release pills can provide a number of individual doses for providing various time doses for achieving a sustained-release prodrug delivery profile over an extended period of time up to about 24 hours. The matrix can comprise a hydrophilic polymer such as, for example, a polysaccharide, agar, agarose, natural gum, alkali alginate including sodium alginate, carrageenan, fucoidan, furcellaran, laminaran, hypnea, gum arabic, gum ghatti, gum karaya, grum tragacanth, locust bean gum, pectin, amylopectin, gelatin, or a hydrophilic colloid. The hydrophilic matrix can comprise a plurality of from about 4 to about 50 pills, each pill comprise a dose population of about 10 ng, about 0.5 mg, about 1 mg, about 1.2 mg, about 1.4 mg, about 1.6 mg, about 5.0 mg, etc. The pills can comprise a release rate-controlling wall of 0.001 mm up to 10 mm thickness to provide for the timed release of a compound. Examples of wall forming materials include triglyceryl esters such as glyceryl tristearate, glyceryl monostearate, glyceryl dipalmitate, glyceryl laureate, glyceryl didecenoate, and glyceryl tridenoate. Other wall forming materials comprise polyvinyl acetate, phthalate, methylcellulose phthalate, and microporous olefins. Procedures for manufacturing pills are disclosed in U.S. Pat. Nos. 4,434,153; 4,721,613; 4,853,229; 2,996,431; 3,139,383 and 4,752,470.
In certain embodiments, a dosage form can comprise an osmotic dosage form, which comprises a semipermeable wall that surrounds a therapeutic composition comprising the compound. In use within a patient, the osmotic dosage form comprising a homogenous composition, imbibes fluid through the semipermeable wall into the dosage form in response to the concentration gradient across the semipermeable wall. The therapeutic composition in the dosage form develops osmotic pressure differential that causes the therapeutic composition to be administered through an exit from the dosage form over a prolonged period of time up to about 24 hours (or even in some cases up to about 30 hours) to provide controlled and sustained compound release. These delivery platforms can provide an essentially zero order delivery profile as opposed to the spiked profiles of immediate release formulations.
In certain embodiments, a dosage form can comprise another osmotic dosage form comprising a wall surrounding a compartment, the wall comprising a semipermeable polymeric composition permeable to the passage of fluid and substantially impermeable to the passage of compound present in the compartment, a compound-containing layer composition in the compartment, a hydrogel push layer composition in the compartment comprising an osmotic formulation for imbibing and absorbing fluid for expanding in size for pushing the compound composition layer from the dosage form, and at least one passageway in the wall for releasing the prodrug composition. The dosage form can deliver a compound by imbibing fluid through the semipermeable wall at a fluid imbibing rate determined by the permeability of the semipermeable wall and the osmotic pressure across the semipermeable wall causing the push layer to expand, thereby delivering the compound from the dosage form through the exit passageway to a patient over a prolonged period of time (up to about 24 or even about 30 hours). The hydrogel layer composition can comprise from about 10 mg to about 1000 mg of a hydrogel such as a polyalkylene oxide of about 1,000,000 to about 8,000,000 weight-average molecular weight, for example, a polyethylene oxide of about 1,000,000 weight-average molecular weight, a polyethylene oxide of about 2,000,000 molecular weight, a polyethylene oxide of about 4,000,000 molecular weight, a polyethylene oxide of about 5,000,000 molecular weight, a polyethylene oxide of about 7,000,000 molecular weight, and a polypropylene oxide of the about 1,000,000 to about 8,000,000 weight-average molecular weight; or from about 10 mg to about 1000 mg of an alkali carboxymethylcellulose of about 10,000 to about 6,000,000 weight average molecular weight, such as sodium carboxymethylcellulose or potassium carboxymethylcellulose. The hydrogel expansion layer comprises 0.0 mg to 350 mg, in present manufacture; from about 0.1 mg to about 250 mg of a hydroxyalkylcellulose of about 7,500 to about 4,500,00 weight-average molecular weight (e.g., hydroxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxybutylcellulose, or hydroxypentylcellulose) in present manufacture; from about 1 mg to about 50 mg of an agent such as sodium chloride, potassium chloride, potassium acid phosphate, tartaric acid, citric acid, raffinose, magnesium sulfate, magnesium chloride, urea, inositol, sucrose, glucose, or sorbitol; from about 0 to about 5 mg of a colorant, such as ferric oxide; from about 0 mg to about 30 mg, in a present manufacture, from about 0.1 mg to about 30 mg of a hydroxypropylalkylcellulose of about 9,000 to about 225,000 average-number molecular weight, such as, for example, hydroxypropylethylcellulose, hydroxypropypentylcellulose, hydroxypropylmethylcellulose, and hydropropylbutylcellulose; from about 0.00 to about 1.5 mg of an antioxidant such as ascorbic acid, butylated hydroxyanisole, butylated hydroxyquinone, butylhydroxyanisol, hydroxycoumarin, butylated hydroxytoluene, cephalm, ethyl gallate, propyl gallate, octyl gallate, lauryl gallate, propyl-hydroxybenzoate, trihydroxybutylrophenone, dimethylphenol, dibutylphenol, vitamin E, lecithin, or ethanolamine; and 0.0 mg to 7 mg of a lubricant such as calcium stearate, magnesium stearate, zinc stearate, magnesium oleate, calcium palmitate, sodium suberate, potassium laurate, salts of fatty acids, salts of alicyclic acids, salts of aromatic acids, stearic acid, oleic acid, palmitic acid, a mixture of a salt of a fatty, alicyclic or aromatic acid, and a fatty, alicyclic, or aromatic acid.
In the osmotic dosage forms, the semipermeable wall can comprise a composition that is permeable to the passage of fluid and impermeable to the passage of prodrug. The wall is nontoxic and comprises a polymer such as cellulose acylate, cellulose diacylate, cellulose triacylate, cellulose acetate, cellulose diacetate, or cellulose triacetate. The wall can comprise from about 75 wt % (weight percent) to about 100 wt % of the cellulosic wall-forming polymer or, the wall can comprise additionally from about 0.01 wt % to about 80 wt % of polyethylene glycol, or from about 1 wt % to about 25 wt % of a cellulose ether such as hydroxypropylcellulose or a hydroxypropylalkycellulose such as hydroxypropylmethylcellulose. The total weight percent of all components comprising the wall is equal to 100 wt %. The internal compartment can comprise the compound-containing composition alone or in layered position with an expandable hydrogel composition. The expandable hydrogel composition in the compartment can increase in dimension by imbibing the fluid through the semipermeable wall, causing the hydrogel to expand and occupy space in the compartment, whereby the drug composition is pushed from the dosage form. The therapeutic layer and the expandable layer act together during the operation of the dosage form for the release of prodrug to a patient over time. The dosage form can comprise a passageway in the wall that connects the exterior of the dosage form with the internal compartment. The osmotic powered dosage form can be made to deliver prodrug from the dosage form to the patient at a zero order rate of release over a period of up to about 24 hours.
The expression “passageway” as used herein can comprise means and methods suitable for the metered release of the compound from the compartment of the dosage form. The exit means can comprise at least one passageway, including orifice, bore, aperture, pore, porous element, hollow fiber, capillary tube, channel, porous overlay, or porous element that provides for the osmotic controlled release of compound. The passageway can include a material that erodes or is leached from the wall in a fluid environment of use to produce at least one controlled-release dimensioned passageway. Examples of materials suitable for forming a passageway, or a multiplicity of passageways include a leachable poly(glycolic) acid or poly(lactic) acid polymer in the wall, a gelatinous filament, poly(vinyl alcohol), leach-able polysaccharides, salts, and oxides. A pore passageway, or more than one pore passageway, can be formed by leaching a leachable compound, such as sorbitol, from the wall. The passageway can have controlled-release dimensions, such as round, triangular, square and elliptical, for the metered release of prodrug from the dosage form. The dosage form can be constructed with one or more passageways in spaced apart relationship on a single surface or on more than one surface of the wall. The expression “fluid environment” denotes an aqueous or biological fluid as in a human patient, including the gastrointestinal tract. Passageways and equipment for forming passageways are disclosed in U.S. Pat. Nos. 3,845,770; 3,916,899; 4,063,064; 4,088,864; and 4,816,263. Passageways formed by leaching are disclosed in U.S. Pat. Nos. 4,200,098 and 4,285,987.
Regardless of the specific form of sustained release oral dosage form used, in certain embodiments, compounds can be released from the dosage form over a period of at least about 4 hours, at least about 8 hours, at least about 12 hours, at least about 16 hours at least about 20 hours, and in certain embodiments, at least about 24 hours. In certain embodiments, a dosage form can release from about 0% to about 30% of the prodrug in about 0 to about 2 hours, from about 20% to about 50% of the prodrug in about 2 to about 12 hours, from about 50% to about 85% of the prodrug in about 3 to about 20 hours and greater than about 75% of the prodrug in about 5 to about 18 hours. A sustained release oral dosage form of the present disclosure can further provide a concentration of 3-aminopropylsulfinic acid or analog thereof in the plasma and/or blood of a patient over time, which curve has an area under the curve (AUC) that is proportional to the dose of the prodrug of 3-aminopropylsulfinic acid or analog thereof administered, and a maximum concentration Cmax. The Cmax is less than about 75%, such as less than about 60%, of the Cmax obtained from administering an equivalent dose of the compound from an immediate release oral dosage form and the AUC is substantially the same as the AUC obtained from administering an equivalent dose of the prodrug from an immediate release oral dosage form.
In certain embodiments, compositions or dosage forms of the present disclosure can be administered once or twice per day, and in certain embodiments, once per day.
In certain embodiments, a therapeutically effective amount of one or more compounds of Formula (I) can be administered to a patient, such as a human, suffering from stiffness, involuntary movements, and/or pain associated with spasticity. The underlying etiology of the spasticity being so treated may have a multiplicity of origins, including, e.g., cerebral palsy, multiple sclerosis, stroke, and head and spinal cord injuries. In certain embodiments, a therapeutically effective amount of one or more compounds of Formula (I) can be administered to a patient, such as a human, suffering from gastroesophageal reflux disease. In certain embodiments, a therapeutically effective amount of one or more compounds of Formula (I) can be administered to a patient, such as a human, suffering from emesis. In certain embodiments, a therapeutically effective amount of one or more compounds of Formula (I) can be administered to a patient, such as a human, suffering from cough. In certain embodiments, a therapeutically effective amount of one or more compounds of Formula (I) can be administered to a patient, such as a human, suffering from drug addiction. Addiction to stimulants such as cocaine or amphetamines, or narcotics such as morphine or heroin may be effectively treated by administration of one or more compounds of Formula (I). In certain embodiments, a therapeutically effective amount of one or more compounds of Formula (I) can be administered to a patient, such as a human, suffering from alcohol abuse or addiction, or nicotine abuse or addiction. In certain of the above embodiments, sustained release oral dosage forms comprising a therapeutically effective amount of one or more compounds of Formula (I) can be administered to the patients.
Further, in certain embodiments, a therapeutically effective amount of one or more compounds of Formula (I) can be administered to a patient, such as a human, as a preventative measure against various diseases or disorders. Thus, a therapeutically effective amount of one or more compounds of Formula (I) can be administered as a preventative measure to a patient having a predisposition for spasticity, gastroesophageal reflux disease, emesis, cough, alcohol addiction or abuse, nicotine addiction or abuse, or other drug addiction or abuse.
When used to treat or prevent the above diseases or disorders a therapeutically effective amount of one or more compounds of Formula (I) may be administered or applied singly, or in combination with other agents including pharmaceutically acceptable vehicles and/or pharmaceutically active agent for treating a disease or disorder, which may be the same or different disease or disorder as the disease or disorder being treated by the one or more compounds of Formula (I). A therapeutically effective amount of one or more compounds of Formula (I) may be delivered together with a compound disclosed herein or in combination with another pharmaceutically active agent. For example, in the treatment of a patient suffering from gastroesophageal reflux disease, a dosage form comprising a compound of Formula (I) may be administered in conjunction with a proton pump inhibitor, such as omeprazole, esomeprazole, pantoprazole, lansoprazole, or rabeprazole sodium, or with an H2 antagonist such as rantidine, cimetidine, or famotidine.
Dosage forms, upon releasing a prodrug of 3-aminopropylsulfinic acid or analog thereof, can provide the corresponding 3-aminopropylsulfinic acid or analog thereof upon in vivo administration to a patient. The promoiety or promoieties of the prodrug may be cleaved either chemically and/or enzymatically. One or more enzymes present in the stomach, intestinal lumen, intestinal tissue, blood, liver, brain, or any other suitable tissue of a mammal may enzymatically cleave the promoiety or promoieties of the prodrug. If the promoiety or promoieties are cleaved after absorption by the gastrointestinal tract, the prodrugs of 3-aminopropylsulfinic acid or analogs thereof may have the opportunity to be absorbed into the systemic circulation from the large intestine. In certain embodiments, the promoiety or promoieties are cleaved after absorption by the gastrointestinal tract.
The promoiety of a 3-aminopropylsulfinic acid analog prodrug of Formula (I) may be cleaved prior to absorption by the gastrointestinal tract (e.g., within the stomach or intestinal lumen) and/or after absorption by the gastrointestinal tract (e.g., in intestinal tissue, blood, liver, or other suitable tissue of a mammal). In certain embodiments, 3-aminopropylsulfinic acid or analog thereof remains conjugated to the prodrug promoiety during transit across the intestinal mucosal barrier to provide protection from presystemic metabolism. In certain embodiments, a prodrug of 3-aminopropylsulfinic acid or analog thereof of Formula (I) is essentially not metabolized to the corresponding 3-aminopropylsulfinic acid or analog thereof of Formula (II) within enterocytes but is metabolized to the parent drug within the systemic circulation. Cleavage of the promoiety of the prodrug of 3-aminopropylsulfinic acid or analog thereof of Formula (I) after absorption by the gastrointestinal tract may allow these prodrugs to be absorbed into the systemic circulation either by active transport, passive diffusion, or by a combination of both active and passive processes. Accordingly, in certain embodiments, a pharmaceutical composition, formulation, or dosage form of the present disclosure is capable of maintaining a therapeutically effective concentration of 3-aminopropylsulfinic acid or analog thereof in the plasma or blood of a patient for a time period of at least about 4 hours, for at least about 8 hours, for a period of at least about 12 hours, at least about 16 hours, at least about 20 hours, and in certain embodiments for at least about 24 hours, after the pharmaceutical composition, formulation, or dosage form comprising a corresponding prodrug of 3-aminopropylsulfinic acid or analog thereof of Formula (I) and a pharmaceutically acceptable vehicle is orally administered to the patient.
In certain embodiments, a prodrug of a 3-aminopropylsulfinic acid or analog thereof of Formula (I) is selected from a prodrug of:
- 3-aminopropylsulfinic acid;
- (3-amino-2-(4-chlorophenyl)propyl)sulfinic acid;
- (3-amino-2-hydroxypropyl)sulfinic acid;
- (2S)-(3-amino-2-hydroxypropyl)sulfinic acid;
- (2R)-(3-amino-2-hydroxypropyl)sulfinic acid;
- (3-amino-2-fluoropropyl)sulfinic acid;
- (2S)-(3-amino-2-fluoropropyl)sulfinic acid;
- (2R)-(3-amino-2-fluoropropyl)sulfinic acid,; and
- (3-amino-2-oxopropyl)sulfinic acid;
and pharmaceutically acceptable salts thereof, and pharmaceutically acceptable solvates of any of the foregoing.
Prodrugs of 3-aminopropylsulfinic acid and analogs thereof of Formula (I) or pharmaceutically acceptable salts thereof, or pharmaceutically acceptable solvates of any of the foregoing as disclosed herein, and/or pharmaceutical compositions thereof can be administered orally. Prodrugs of 3-aminopropylsulfinic acid and analogs thereof of Formula (I) and/or pharmaceutical compositions thereof can also be administered by any other convenient route, for example, by infusion or bolus injection, by absorption through epithelial or mucocutaneous linings (e.g., oral mucosa, rectal, and intestinal mucosa, etc.). Administration can be systemic or local. Various delivery systems are known, (e.g., encapsulation in liposomes, microparticles, microcapsules, capsules, etc.) that can be used to administer a compound and/or pharmaceutical composition. Methods of administration include, but are not limited to, intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, intranasal, epidural, oral, sublingual, intranasal, intracerebral, intravaginal, transdermal, rectally, inhalation, or topically, particularly to the ears, nose, eyes, or skin.
In certain embodiments, it may be desirable to introduce a prodrug of 3-aminopropylsulfinic acid or analog thereof of Formula (I) and/or pharmaceutical compositions thereof into the central nervous system by any suitable route, including intraventricular, intrathecal, and epidural injection. An intraventricular catheter may facilitate intraventricular injection, and can be, for example, attached to a reservoir, such as an Ommaya reservoir.
In certain embodiments, prodrugs of 3-aminopropylsulfinic acid and analogs thereof of Formula (I) and/or pharmaceutical compositions thereof can be delivered via sustained release systems, such as oral sustained release systems. In certain embodiments, a pump may be used (Langer, supra; Sefton, 1987 CRC Crit Ref Biomed Eng. 14:201; Saudek et al., 1989 N. Engl. J Med. 321:574).
Prodrugs of 3-aminopropylsulfinic acid or analogs thereof of Formula (I) can be administered to treat or prevent diseases or disorders such as spasticity, gastroesophageal reflux disease, emesis, cough, alcohol addiction or abuse, nicotine addiction or abuse, or other drug addiction or abuse.
The amount of a compound of Formula (I) that will be effective in the treatment of a particular disease or disorder disclosed herein will depend on the nature of the disease or disorder, and can be determined by standard clinical techniques known in the art. In addition, in vitro or in vivo assays may optionally be employed to help identify optimal dosage ranges. The amount of a compound administered will, of course, depend on, among other factors, the subject being treated, the weight of the subject, the severity of the disease or disorder, the manner of administration, and the judgment of the prescribing physician.
In certain embodiments, dosage forms can be adapted to be administered to a patient no more than twice per day, and in certain embodiments, only once per day. Dosing may be provided alone or in combination with other drugs and may continue as long as required for effective treatment of the disease state or disorder.
Suitable dosage ranges for oral administration can depend on the potency of the parent 3-aminopropylsulfinic acid or analog thereof. For certain 3-aminopropylsulfinic acid analogs, doses are generally between about 0.15 mg to about 20 mg per kilogram body weight. Certain 3-aminopropylsulfinic acid analogs may be more potent and lower doses may be appropriate for both the parent drug and any prodrug (measured on an equivalent molar basis). Dosage ranges may be readily determined by methods known to the skilled artisan.
In certain embodiments, prodrugs of 3-aminopropylsulfinic acid or analogs thereof of Formula (I) or pharmaceutically acceptable salts thereof, or pharmaceutically acceptable solvates of any of the foregoing can be used in combination therapy with at least one other therapeutic agent. Prodrugs of 3-aminopropylsulfinic acid or analogs thereof of Formula (I) and the at least one other therapeutic agent(s) can act additively or, in certain embodiments, synergistically. In certain embodiments, prodrugs of 3-aminopropylsulfinic acid or analogs thereof of Formula (I) can be administered concurrently with the administration of another therapeutic agent. In certain embodiments, prodrugs of 3-aminopropylsulfinic acid or analogs thereof of Formula (I) or pharmaceutically acceptable salts thereof, or solvates of any of the foregoing can be administered prior or subsequent to administration of another therapeutic agent. The at least one other therapeutic agent can be effective for treating the same or different disease, disorder, or condition.
Methods of the present disclosure include administration of one or more compounds or pharmaceutical compositions of the present disclosure and one or more other therapeutic agents provided that the combined administration does not inhibit the therapeutic efficacy of the one or more compounds of the present disclosure and/or does not produce adverse combination effects.
In certain embodiments, compositions of the present disclosure can be administered concurrently with the administration of another therapeutic agent, which can be part of the same pharmaceutical composition as, or in a different composition from, that containing the compounds of the present disclosure. In certain embodiments, compounds of the present disclosure can be administered prior or subsequent to administration of another therapeutic agent. In certain embodiments of combination therapy, the combination therapy comprises alternating between administering a composition of the present disclosure and a composition comprising another therapeutic agent, e.g., to minimize adverse side effects associated with a particular drug. When a compound of the present disclosure is administered concurrently with another therapeutic agent that potentially can produce adverse side effects including, but not limited to, toxicity, the therapeutic agent can advantageously be administered at a dose that falls below the threshold at which the adverse side effect is elicited.
In certain embodiments, a pharmaceutical composition can further comprise substances to enhance, modulate and/or control release, bioavailability, therapeutic efficacy, therapeutic potency, stability, and the like. For example, to enhance therapeutic efficacy a compound of the present disclosure, the compound can be co-administered with one or more active agents to increase the absorption or diffusion of the compound from the gastrointestinal tract, or to inhibit degradation of the drug in the systemic circulation. In certain embodiments, at least one compound of the present disclosure can be co-administered with active agents having a pharmacological effect that enhance the therapeutic efficacy of the drug.
In certain embodiments, compounds or pharmaceutical compositions of the present disclosure include, or can be administered to a patient together with, another compound for treating or preventing spasticity, drugs for treating or preventing gastroesophageal reflux disease, drugs for treating or preventing narcotic addiction or abuse, drugs for treating or preventing alcohol addiction or abuse, drugs for treating or preventing nicotine addiction or abuse, or drugs for treating or preventing emesis or cough.
Examples of drugs for treating or preventing movement disorders such as spasticity include levodopa, mild sedatives such as benzodiazepines including alprazolam, chlordiazepoxide, clonazepam, clorazepate, diazepam, lorazepam, and oxazepam; muscle relaxants such as baclofen, anticholinergic drugs such as trihexyphenidyl and diphenhydramine; antipsychotics such as chlorpromazine, fluphenazine, haloperidol, loxapine, mesoridazine, molindone, perphenazine, pimozide, thioridazine, thiothixene, trifluoperazine, aripiprazole, clozapine, olanzapine, quetiapine, risperidone, and ziprasidone; and antidepressants such as amitriptyline.
Examples of drugs for treating or preventing gastrointestinal disorders such as gastroesophageal reflux disease include H2 inhibitors such as cimetidine, famotidine, nizatidine, and ranitidine; proton pump inhibitors such as omeprazole, lansoprazole, pantoprazole, rabeprazole, and esomeprazole; and prokinetics such as cisparide, bethanechol, and metoclopramide.
Examples of drugs for treating or preventing emesis (nausea and vomiting) include benzamines such as metoclopramide; phenothiazines such as prochlorperazine, perphenazine, chlorpromazine, promethazine, and thiethylperazine; butyrophenones such as droperidol and haloperidol; dopamine 2 antagonists such as metoclorpamide; 5-HT3 antagonists such as ondansetron, granisetron, dolasetron, palonosetron; NK-1 receptor antagonists such as aprepitant, corticosteroids such as dexamethazone; antihistamines such as diphenhydramine and hydroxyzine; cannabinoids such as dronabinol; and benzodiazepines such as lorazepam, midazolam, alprazolam, and olanzapine
Examples of drugs for treating or preventing alcohol addiction or abuse include disulfiram, naltrexone, acamprosate, clonidine, methadone, 1-alpha-acetylmethadol, buprenorphine, bupropion, and baclofen.
Examples of drugs for treating or preventing narcotic addiction or abuse include buprenorphine, tramadol, methadone, and naltrexone.
Examples of drugs for treating or preventing nicotine addiction or abuse include bupropion, clonidine, and nicotine.
Examples of drugs for treating or preventing cough include codeine, dextromethorphan, guaifenesin, hydrocodone, hydromorphone, benzonatate, diphenhydramine, pseudoephedrine, acetaminophen, and carbinoxamine.
The following examples describe in detail preparation of compounds and compositions of the present disclosure and protocols for using compounds and compositions of the present disclosure. It will be apparent to those of ordinary skill in the art that many modifications, both to materials and methods, may be practiced without departing from the scope of the disclosure.
In the examples below, the following abbreviations have the following meanings. If an abbreviation is not defined, it has its generally accepted meaning.
g = | gram | ||
h = | hour | ||
HPLC = | high pressure liquid chromatography | ||
L = | liter | ||
LC/MS = | liquid chromatography/mass spectroscopy | ||
M = | molar | ||
mg = | milligram | ||
min = | minute | ||
mL = | milliliter | ||
mm = | millimeter | ||
mmol = | millimoles | ||
mol = | moles | ||
THF = | tetrahydrofuran | ||
μg = | microgram | ||
μL = | microliter | ||
μM = | micromolar | ||
v/v = | volume to total volume | ||
w/v = | weight to total volume | ||
w/w = | weight to total weight | ||
In the examples below, Examples 2-8, 10-12, 14-20, and 23-84 are prophetic.
A 21% (w/w) aqueous solution of sodium methylthiolate (580.7 g, 1.74 mol) was added to a solution of 1-chloroethyl chloroformate (250 g, 1.74 mol) and tetrabutylammonium hydrogensulfate (5.9 g, 17 mmol) in CH2Cl2 (450 mL) over 2 h. The reaction mixture was stirred for an additional hour, then worked-up by separating the aqueous phase and extracting the organic phase with brine (2×250 mL). The organic phase was dried over anhydrous sodium sulfate and concentrated in vacuo. The residue was purified by vacuum distillation to afford the title compound (3) as a colorless liquid (277.3 g, 97% yield). 1H NMR (CDCl3, 400 MHz): δ 1.82 (d, J=5.6 Hz, 3H), 2.38 (s, 3H), 6.57 (q, J=5.2 Hz, 1H).
Compound (3) (308 g, 2 mol) was dissolved in isobutyric acid (264 g, 3 mol). This mixture was slowly added to a pre-mixed solution of isobutyric acid (264 g, 3 mol) and diisopropylethylamine (387 g, 3 mol), and the reaction mixture heated to 55° C. for 16 h, diluted with ether (10 L), washed with water (4×5 L), saturated bicarbonate solution (2×5 L), and brine (5 L), then dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo to give the title compound (2) as a colorless liquid (400 g, 97% yield). The product was optionally further purified by vacuum distillation (135° C./20 Torr). 1H NMR (CDCl3, 400 MHz): δ 1.17 (d, J=6.8 Hz, 6H), 1.49 (d, J=5.6 Hz, 3H), 2.33 (s, 3H), 2.54 (m, 1H), 6.91 (q, J=5.2 Hz, 1H).
Following the procedures of Example 1 and replacing isobutyric acid with n-butyric acid in Step B affords the title compound (4) as an oil.
Following the procedures of Example 1 and replacing isobutyric acid with pivalic acid in Step B affords the title compound (5) as an oil.
Following the procedures of Example 1 and replacing isobutyric acid with cyclohexanecarboxylic acid in Step B affords the title compound (6) as an oil.
Following the procedures of Example 1 and replacing 1-chloroethyl chloroformate with chloromethyl chloroformate in Step A affords the title compound (7) as an oil.
Following the procedures of Example 2 and replacing 1-chloroethyl chloroformate with chloromethyl chloroformate in Step A affords the title compound (8) as an oil.
Following the procedures of Example 3 and replacing 1-chloroethyl chloroformate with chloromethyl chloroformate in Step A affords the title compound (9) as an oil.
Following the procedures of Example 4 and replacing 1-chloroethyl chloroformate with chloromethyl chloroformate in Step A affords the title compound (10) as an oil.
A solution of 1-chloro-2-methylpropyl chloroformate (1026 g, 6.0 mol) and tetrabutylammonium hydrogensulfate (20 g, 60 mmol) in dichloromethane (1500 mL) in a jacketed 10 L reactor equipped with a mechanical stirrer, temperature probe, and addition funnel was cooled to 10° C. To the reaction mixture was gradually added a 15% aqueous solution of sodium methylthiolate (3 L, 6.4 mol) over 4 h. The reaction was moderately exothermic and the internal temperature was maintained between 10° C. and 20° C. during the addition. The aqueous phase was separated and the organic phase was washed with brine (2×2 L) and water (2 L). The organic layer was dried over anhydrous Na2SO4, filtered, and concentrated under reduced pressure to afford the title compound (12) (1050 g, 5.76 mol, 96% yield) as a colorless liquid. 1H NMR (CDCl3, 400 MHz): δ 1.1 (dd, 6H), 2.2 (m, 1H), 2.4 (s, 3H), 6.35 (d, 1H).
To a 20 L round bottom flask was added isobutyric acid (1300 mL, 14 mol), and an aqueous solution of 25% tetramethylammonium hydroxide (5 L, 14 mol). The water was removed under reduced pressure and azeotroped with toluene (2×2 L) to leave the product (13) as an amber liquid, which was used without further purification.
To a 3 L three neck round bottom flask equipped with a mechanical stirrer and teflon-coated thermocouple was added compound (13) (1672 g, 9 mol), isobutyric acid (264 g, 1.5 mol), and compound (12) (1050 g, 5.76 mol). The reaction mixture was heated to 80° C. for 12 h and the progress of the reaction monitored by 1H NMR. The reaction mixture was cooled to 20° C., diluted with EtOAc (1 L) and sequentially washed with water (2×1 L), saturated NaHCO3 (1×2 L), and water (1 L). The organic phase was separated and concentrated under reduced pressure to afford the title compound (11) (905 g, 3.9 mol, 65% yield) as a colorless liquid. 1H NMR (CDCl3, 400 MHz): δ 1.0 (d, 6H), 1.2 (dd, 6H), 2.05 (m, 1H), 2.35 (s, 3H), 2.6 (m, 1H), 6.7 (d, 1H).
Following the procedures of Example 9 and replacing isobutyric acid with n-butyric acid affords the title compound (14) as an oil.
Following the procedures of Example 9 and replacing isobutyric acid with pivalic acid affords the title compound (15) as an oil.
Following the procedures of Example 9 and replacing isobutyric acid with cyclohexanecarboxylic acid affords the title compound (16) as an oil.
To a solution of compound (2) (1 g, 4.8 mmol) in CH2Cl2 (10 mL) was added N-hydroxysuccinimide (1.1 g, 9.5 mmol) and the reaction mixture cooled to 0° C. A solution of 32% (v/v) peracetic acid in acetic acid (3.4 mL, 1.1 g, 14.4 mmol) was added dropwise over a period of 10 min, then the solution allowed to stir at room temperature for 3 h. The reaction mixture was diluted with ether (50 mL) and sequentially washed with water (2×10 mL), saturated sodium bicarbonate solution (10 mL), and brine (10 mL), then dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo to give the title compound (17) as a colorless oil (1 g, 77% yield). After trituration with hexane (20 mL) the product solidified to a white solid. m.p: 50-54° C. 1H NMR (CDCl3, 400 MHz): δ 1.17 (d, J=6.8 Hz, 6H), 1.56 (d, J=5.6 Hz, 3H), 2.55 (m, 1H), 2.82 (s, 4H), 6.80 (q, J=5.2 Hz, 1H). MS (ESI) m/z 296.4 (M+Na)+.
Following the procedures of Example 13 and replacing compound (2) with compound (4) affords the title compound (18).
Following the procedures of Example 13 and replacing compound (2) with compound (5) affords the title compound (19).
Following the procedures of Example 13 and replacing compound (2) with compound (6) affords the title compound (20).
Following the procedures of Example 13 and replacing compound (2) with compound (7) affords the title compound (21).
Following the procedures of Example 13 and replacing compound (2) with compound (8) affords the title compound (22).
Following the procedures of Example 13 and replacing compound (2) with compound (9) affords the title compound (23).
Following the procedures of Example 13 and replacing compound (2) with compound (10) affords the title compound (24).
A suspension of 2,3-dibenzoyl-D-tartaric acid (100 g, 279 mmol) in acetic anhydride (300 mL) was stirred at 85° C. for 2 h then the reaction mixture allowed to cool to room temperature. The crystalline product was collected by filtration, washed with a mixture of ether and hexane (1:1), and dried under vacuum to afford the title compound (26) (80 g, 84% yield). 1H NMR (CDCl3, 400 MHz): δ 5.99 (s, 2H), 7.50 (m, 4H), 7.66 (m, 2H), 8.07 (m, 4H).
To a suspension of compound (26) (60 g, 176 mmol) in a mixture of acetonitrile and water (8:1, 400 mL) at 0° C. was added a 50% aqueous solution of hydroxylamine (13.0 mL, 211 mmol). The resulting suspension was stirred overnight at room temperature to obtain a clear solution. The bulk of the acetonitrile was removed by rotary evaporation and the residue was portioned between ethyl acetate and water. The organic phase was washed sequentially with water and brine, dried over anhydrous Na2SO4, and concentrated in vacuo to afford the intermediate, 2,3-dibenzoyloxy D-tartaric acid mono-hydroxamate. This compound was suspended in toluene, heated under reflux for 2 h, then cooled to room temperature to form a crystalline solid. The product was collected by filtration, washed with a mixture of ether and hexane (1:1), and dried under vacuum to afford the title compound (27) (58 g, 93% yield). 1H NMR (CDCl3, 400 MHz): δ 6.06 (s, 2H), 7.50 (t, 4H), 7.65 (dt, 2H), 8.06 (m, 4H). MS (ESI) m/z 354.00 (M−H)−.
To a stirred solution of compound (27) (35 g, 98.6 mmol) and thiocarbonate (11) (34.6 g, 148 mmol) in dichloromethane at 0° C. was dropwise added a 32% solution of peracetic acid (300 mmol) in acetic acid over 2 h. The reaction temperature was kept below 35° C. during the addition of peracetic acid. After the addition was complete, the reaction mixture was stirred overnight at room temperature. The resulting white precipitate was filtered and washed sequentially with water and a mixture of ether and hexane (1:2), then dried under vacuum to afford the crude title compound. This product was crystallized once from a mixture of ethyl acetate and hexane (1:1) to afford the title compound (25) (13.7 g, 25% yield). The diastereomeric purity of the product was determined to be 98.4% d.e. by HPLC using a chiral column. 1H NMR (CDCl3, 400 MHz): δ 1.06 (d, 6H), 1.22 (d, 3H), 1.22 (d, 3H), 2.20 (m, 1H), 2.64 (hept., 1H), 6.01 (br. s, 2H), 6.64 (d, 1H), 7.47 (m, 4H), 7.63 (m, 2H), 8.07 (m, 4H).
To a 3-necked 5 L round bottom flask fitted with a mechanical stirrer and aTeflon coated thermocouple was added (−)-2,3-dibenzoyl-L-tartaric acid (1000 g, 2.79 mol) followed by acetic anhydride (2 L). The suspension was stirred and heated to 85° C. for 2 h during which time the starting material gradually dissolved. A short time thereafter, the product began to crystallize in the reaction mixture and the suspension was then cooled to 25° C. The product was collected by filtration, washed with 10% acetone in hexane (2×1 L), and dried in a vacuum oven at 50° C. overnight to afford the title compound (29) as a white solid. 1H NMR (CDCl3, 400 MHz): δ 6.0 (s, 2H), 7.45 (app. t, 4H), 7.65 (app. t, 2H), 8.05 (d, 4H).
To a 3-neck 5 L round bottom flask fitted with a mechanical stirrer and a Teflon coated temperature probe was added compound (29) (2.79 mol) followed by acetonitrile (2 L). The suspension was cooled in an ice bath to 4° C., followed by the addition of 50% aqueous hydroxylamine (180 mL, 2.93 mol) over 1 h. The starting material gradually dissolved during the addition and the reaction mixture was warmed to 20° C. and stirred for 1 h. The reaction mixture was concentrated in vacuo, diluted with EtOAc (1 L) and washed with 1 N HCl (2×1 L). The organic phase was separated and concentrated in vacuo to afford a viscous red syrup. The syrup was then heated for two hours in toluene (2.5 L) at 100° C. with azeotropic removal of water. The syrup gradually dissolved and then the product crystallized. After cooling to room temperature the solid was collected by filtration, washed with 10% acetone in hexane (2×1 L), and dried in a vacuum oven to afford the title compound (30) (862 g, 2.43 mol, 87% yield) as a white solid. 1H NMR (CDCl3, 400 MHz): δ 5.85 (s, 2H), 7.45 (app. t, 4H), 7.65 (app t, 2H), 8.05 (m, 4H).
A 3 L three necked round bottom flask fitted with a mechanical stirrer, Teflon coated temperature probe and an addition funnel was charged with compound (11) (234 g, 1 mol), compound (30) (330 g, 0.95 mol), and 1,2-dichloroethane (2200 mL). The reaction mixture was cooled under a nitrogen atmosphere in an ice water bath to 15° C. To the stirred reaction mixture was added a 39% solution of peracetic acid in dilute acetic acid (500 mL, 2.94 mol) over 2 h, maintaining the temperature between 15° C. and 22° C. This temperature was maintained for an additional 12 h during which time a white precipitate was formed. The reaction mixture was further cooled to 3-4° C., the product collected by filtration, and washed with hexane (2×1 L). The product was dried in vacuo, yielding the title compound (28) (128 g, 0.24 mol, 25% yield). The diastereomeric purity of the product was determined to be >99% d.e. by HPLC using a chiral column. 1H NMR (CDCl3, 400 MHz): δ 1.0 (d, 6H), 1.2 (dd, 6H), 2.1 (m, 1H), 2.65 (m, 1H), 6.0 (br. s, 2H), 6.6 (d, 1H), 7.45 (app. t, 4H), 7.65 (app. t, 2H), 8.05 (d, 4H).
To a solution of 3-aminopropylsulfinic acid (10 mmol) and sodium bicarbonate (20 mmol) in water (40 mL) is added a solution of compound (17) (10 mmol) in acetonitrile (20 mL) over 1 min. The reaction is stirred at ambient temperature for 16 h. The reaction mixture is diluted with diethyl ether (100 mL) and washed with 0.1 M aqueous potassium bisulfate (3×100 mL). The organic phase is separated, dried over anhydrous magnesium sulfate, filtered, and concentrated in vacuo to afford the title compound (31) as a white solid.
Following the procedure of Example 23 and replacing compound (17) with compound (18) affords the title compound (32) as a white solid.
Following the procedure of Example 23 and replacing compound (17) with compound (19) affords the title compound (33) as a white solid.
Following the procedure of Example 23 and replacing compound (17) with compound (20) affords the title compound (34) as a white solid.
Following the procedure of Example 23 and replacing compound (17) with compound (21) affords the title compound (35) as a white solid.
Following the procedure of Example 23 and replacing compound (17) with compound (22) affords the title compound (36) as a white solid.
Following the procedure of Example 23 and replacing compound (17) with compound (23) affords the title compound (37) as a white solid.
Following the procedure of Example 23 and replacing compound (17) with compound (24) affords the title compound (38) as a white solid.
To a 3 L three necked round bottom flask fitted with a mechanical stirrer, temperature probe, and nitrogen inlet is added compound (25) (100 mmol), 3-aminopropylsulfinic acid (100 mmol), THF (1 L), and water (100 mL). The suspension is stirred under a nitrogen atmosphere at 18-20° C. for 4 h during which time the reaction mixture becomes homogeneous. The THF is removed in vacuo and the reaction mixture is diluted with methyl tert-butyl ether (250 mL) and washed with 1N HCl (1×500 mL) and water (2×200 mL). The organic phase is separated and concentrated in vacuo to leave a white solid. The solid is purified by flash chromatography to afford the title compound (39) as a white solid.
Following the procedure of Example 31 and replacing compound (25) with compound (28) affords the title compound (40) as a white solid.
Following the procedure of Example 23 and replacing 3-aminopropylsulfinic acid with 3-amino-(2R)-hydroxypropylsulfinic acid affords the title compound (41) as a white solid.
Following the procedure of Example 24 and replacing 3-aminopropylsulfinic acid with 3-amino-(2R)-hydroxypropylsulfinic acid affords the title compound (42) as a white solid.
Following the procedure of Example 25 and replacing 3-aminopropylsulfinic acid with 3-amino-(2R)-hydroxypropylsulfinic acid affords the title compound (43) as a white solid.
Following the procedure of Example 26 and replacing 3-aminopropylsulfinic acid with 3-amino-(2R)-hydroxypropylsulfinic acid affords the title compound (44) as a white solid.
Following the procedure of Example 27 and replacing 3-aminopropylsulfinic acid with 3-amino-(2R)-hydroxypropylsulfinic acid affords the title compound (45) as a white solid.
Following the procedure of Example 28 and replacing 3-aminopropylsulfinic acid with 3-amino-(2R)-hydroxypropylsulfinic acid affords the title compound (46) as a white solid.
Following the procedure of Example 29 and replacing 3-aminopropylsulfinic acid with 3-amino-(2R)-hydroxypropylsulfinic acid affords the title compound (47) as a white solid.
Following the procedure of Example 30 and replacing 3-aminopropylsulfinic acid with 3-amino-(2R)-hydroxypropylsulfinic acid affords the title compound (48) as a white solid.
Following the procedure of Example 31 and replacing 3-aminopropylsulfinic acid with 3-amino-(2R)-hydroxypropylsulfinic acid affords the title compound (49) as a white solid.
Following the procedure of Example 32 and replacing 3-aminopropylsulfinic acid with 3-amino-(2R)-hydroxypropylsulfinic acid affords the title compound (50) as a white solid.
Following the procedure of Example 23 and replacing 3-aminopropylsulfinic acid with 3-amino-(2S)-hydroxypropylsulfinic acid affords the title compound (51) as a white solid.
Following the procedure of Example 24 and replacing 3-aminopropylsulfinic acid with 3-amino-(2S)-hydroxypropylsulfinic acid affords the title compound (52) as a white solid.
Following the procedure of Example 25 and replacing 3-aminopropylsulfinic acid with 3-amino-(2S)-hydroxypropylsulfinic acid affords the title compound (53) as a white solid.
Following the procedure of Example 26 and replacing 3-aminopropylsulfinic acid with 3-amino-(2S)-hydroxypropylsulfinic acid affords the title compound (54) as a white solid.
Following the procedure of Example 27 and replacing 3-aminopropylsulfinic acid with 3-amino-(2S)-hydroxypropylsulfinic acid affords the title compound (55) as a white solid.
Following the procedure of Example 28 and replacing 3-aminopropylsulfinic acid with 3-amino-(2S)-hydroxypropylsulfinic acid affords the title compound (56) as a white solid.
Following the procedure of Example 29 and replacing 3-aminopropylsulfinic acid with 3-amino-(2S)-hydroxypropylsulfinic acid affords the title compound (57) as a white solid.
Following the procedure of Example 30 and replacing 3-aminopropylsulfinic acid with 3-amino-(2S)-hydroxypropylsulfinic acid affords the title compound (58) as a white solid.
Following the procedure of Example 31 and replacing 3-aminopropylsulfinic acid with 3-amino-(2S)-hydroxypropylsulfinic acid affords the title compound (59) as a white solid.
Following the procedure of Example 32 and replacing 3-aminopropylsulfinic acid with 3-amino-(2S)-hydroxypropylsulfinic acid affords the title compound (60) as a white solid.
Following the procedure of Example 23 and replacing 3-aminopropylsulfinic acid with 3-amino-(2R)-fluoropropylsulfinic acid affords the title compound (61) as a white solid.
Following the procedure of Example 24 and replacing 3-aminopropylsulfinic acid with 3-amino-(2R)-fluoropropylsulfinic acid affords the title compound (62) as a white solid.
Following the procedure of Example 25 and replacing 3-aminopropylsulfinic acid with 3-amino-(2R)-fluoropropylsulfinic acid affords the title compound (63) as a white solid.
Following the procedure of Example 26 and replacing 3-aminopropylsulfinic acid with 3-amino-(2R)-fluoropropylsulfinic acid affords the title compound (64) as a white solid.
Following the procedure of Example 27 and replacing 3-aminopropylsulfinic acid with 3-amino-(2R)-fluoropropylsulfinic acid affords the title compound (65) as a white solid.
Following the procedure of Example 28 and replacing 3-aminopropylsulfinic acid with 3-amino-(2R)-fluoropropylsulfinic acid affords the title compound (66) as a white solid.
Following the procedure of Example 29 and replacing 3-aminopropylsulfinic acid with 3-amino-(2R)-fluoropropylsulfinic acid affords the title compound (67) as a white solid.
Following the procedure of Example 30 and replacing 3-aminopropylsulfinic acid with 3-amino-(2R)-fluoropropylsulfinic acid affords the title compound (68) as a white solid.
Following the procedure of Example 31 and replacing 3-aminopropylsulfinic acid with 3-amino-(2R)-fluoropropylsulfinic acid affords the title compound (69) as a white solid.
Following the procedure of Example 32 and replacing 3-aminopropylsulfinic acid with 3-amino-(2R)-fluoropropylsulfinic acid affords the title compound (70) as a white solid.
Following the procedure of Example 23 and replacing 3-aminopropylsulfinic acid with 3-amino-(2S)-fluoropropylsulfinic acid affords the title compound (71) as a white solid.
Following the procedure of Example 24 and replacing 3-aminopropylsulfinic acid with 3-amino-(2S)-fluoropropylsulfinic acid affords the title compound (72) as a white solid.
Following the procedure of Example 25 and replacing 3-aminopropylsulfinic acid with 3-amino-(2S)-fluoropropylsulfinic acid affords the title compound (73) as a white solid.
Following the procedure of Example 26 and replacing 3-aminopropylsulfinic acid with 3-amino-(2S)-fluoropropylsulfinic acid affords the title compound (74) as a white solid.
Following the procedure of Example 27 and replacing 3-aminopropylsulfinic acid with 3-amino-(2S)-fluoropropylsulfinic acid affords the title compound (75) as a white solid.
Following the procedure of Example 28 and replacing 3-aminopropylsulfinic acid with 3-amino-(2S)-fluoropropylsulfinic acid affords the title compound (76) as a white solid.
Following the procedure of Example 29 and replacing 3-aminopropylsulfinic acid with 3-amino-(2S)-fluoropropylsulfinic acid affords the title compound (77) as a white solid.
Following the procedure of Example 30 and replacing 3-aminopropylsulfinic acid with 3-amino-(2S)-fluoropropylsulfinic acid affords the title compound (78) as a white solid.
Following the procedure of Example 31 and replacing 3-aminopropylsulfinic acid with 3-amino-(2S)-fluoropropylsulfinic acid affords the title compound (79) as a white solid.
Following the procedure of Example 32 and replacing 3-aminopropylsulfinic acid with 3-amino-(2S)-fluoropropylsulfinic acid affords the title compound (80) as a white solid.
Following the procedure of Example 23 and replacing 3-aminopropylsulfinic acid with 3-amino-2-oxopropylsulfinic acid affords the title compound (81) as a white solid.
Following the procedure of Example 24 and replacing 3-aminopropylsulfinic acid with 3-amino-2-oxopropylsulfinic acid affords the title compound (82) as a white solid.
Following the procedure of Example 25 and replacing 3-aminopropylsulfinic acid with 3-amino-2-oxopropylsulfinic acid affords the title compound (83) as a white solid.
Following the procedure of Example 26 and replacing 3-aminopropylsulfinic acid with 3-amino-2-oxopropylsulfinic acid affords the title compound (84) as a white solid.
Following the procedure of Example 27 and replacing 3-aminopropylsulfinic acid with 3-amino-2-oxopropylsulfinic acid affords the title compound (85) as a white solid.
Following the procedure of Example 28 and replacing 3-aminopropylsulfinic acid with 3-amino-2-oxopropylsulfinic acid affords the title compound (86) as a white solid.
Following the procedure of Example 29 and replacing 3-aminopropylsulfinic acid with 3-amino-2-oxopropylsulfinic acid affords the title compound (87) as a white solid.
Following the procedure of Example 30 and replacing 3-aminopropylsulfinic acid with 3-amino-2-oxopropylsulfinic acid affords the title compound (88) as a white solid.
Following the procedure of Example 31 and replacing 3-aminopropylsulfinic acid with 3-amino-2-oxopropylsulfinic acid affords the title compound (89) as a white solid.
Following the procedure of Example 32 and replacing 3-aminopropylsulfinic acid with 3-amino-2-oxopropylsulfinic acid affords the title compound (90) as a white solid.
For orally administered prodrugs, it is generally desirable that the prodrug remains intact (i.e., uncleaved) while in the gastrointestinal tract and be cleaved (i.e., to release the parent drug) while in the systemic circulation. A useful level of stability can at least in part be determined by the mechanism and kinetics of absorption of the prodrug by the gastrointestinal tract. A useful level of lability can at least in part be determined by the pharmacokinetics of the prodrug and parent drug in the systemic circulation. In general, prodrugs that are more stable in a Caco-2 S9 and/or pancreatin assay and are more labile in a rat plasma, human plasma, rat liver S9, and/or human liver S9 preparation can be useful as an orally administered prodrug. The results of tests, such as those described in this example, for determining the enzymatic cleavage of prodrugs in vitro can be used to select prodrugs for in vivo testing.
The stabilities of prodrugs are evaluated in one or more in vitro systems using a variety of preparations following methods known in the art. Tissues and preparations are obtained from commercial sources (e.g., Pel-Freez Biologicals, Rogers, A R, or GenTest Corporation, Woburn, Mass.). Experimental conditions useful for the in vitro studies are described in Table 1. Each preparation is incubated with test compound at 37° C. for one hour. Aliquots (50 μL) are removed at 0, 30, and 60 min and quenched with 0.1% trifluoroacetic acid in acetonitrile. Samples are then centrifuged and analyzed by LC/MS/MS. Stability of prodrugs towards specific enzymes (e.g., peptidases, etc.) are also assessed in vitro by incubation with the purified enzyme:
Pancreatin Stability: Stability studies are conducted by incubating prodrug (5 μM) with 1% (w/v) pancreatin (Sigma, P-1625, from porcine pancreas) in 0.025 M Tris buffer containing 0.5 M NaCl (pH 7.5) at 37° C. for 60 min. The reaction is stopped by addition of 2 volumes of methanol. After centrifugation at 14,000 rpm for 10 min, the supernatant is removed and analyzed by LC/MS/MS.
Caco-2 Homogenate S9 Stability: Caco-2 cells are grown for 21 days prior to harvesting. Culture medium are removed and cell monolayers are rinsed and scraped off into ice-cold 10 mM sodium phosphate/0.15 M potassium chloride, pH 7.4. Cells are lysed by sonication at 4° C. using a probe sonicator. Lysed cells are then transferred into 1.5 mL centrifuge vials and centrifuged at 9000 g for 20 min at 4° C. The resulting supernatant (Caco-2 cell homogenate S9 fraction) is aliquoted into 0.5 mL vials and stored at −80° C. until used.
For stability studies, prodrug (5 μM) is incubated in Caco-2 homogenate S9 fraction (0.5 mg protein per mL) for 60 min at 37° C. Concentrations of intact prodrug and released parent drug are determined at zero time and 60 minutes using LC/MS/MS.
TABLE 1 |
Standard Conditions for Prodrug In Vitro Metabolism Studies |
Substrate | ||||
Preparation | Concentration | Cofactors | ||
Rat Plasma | 2.0 μM | None | ||
Human Plasma | 2.0 μM | None | ||
Rat Liver S9 | 2.0 μM | NADPH* | ||
(0.5 mg/mL) | ||||
Human Liver S9 | 2.0 μM | NADPH* | ||
(0.5 mg/mL) | ||||
Human Intestine S9 | 2.0 μM | NADPH* | ||
(0.5 mg/mL) | ||||
Caco-2 Homogenate | 5.0 μM | None | ||
Pancreatin | 5.0 μM | None | ||
*NADPH generating system, e.g., 1.3 mM NADP+, 3.3 mM glucose-6-phosphate, 0.4 U/mL glucose-6-phosphate dehydrogenase, 3.3 mM magnesium chloride and 0.95 mg/mL potassium phosphate, pH 7.4. |
Rats are obtained commercially and are pre-cannulated in the both the ascending colon and the jugular vein. Animals are conscious at the time of the experiment. All animals are fasted overnight and until 4 hours post-dosing of a prodrug of 3-aminopropylsulfinic acid or analog thereof. A 3-aminopropylsulfinic acid or analog thereof or the corresponding prodrug is administered as a solution (in water) directly into the colon via the cannula at a dose equivalent to about 75 mg or other appropriate dose of 3-aminopropylsulfinic acid or analog thereof per kg body weight. Blood samples (0.3 mL) are obtained from the jugular cannula at intervals over 8 hours and are quenched immediately by addition of sodium metabisulfite to prevent oxidation of 3-aminopropylsulfinic acid or analog thereof. Blood is then further quenched with methanol/perchloric acid to prevent hydrolysis of the prodrug. Blood samples are analyzed as described in Steps B and C.
300 μL of methanol is added to 1.5 mL tubes. Rat blood (100 μL) is collected at different times into the tubes and vortexed to mix. 90 μL of rat blood is quenched with 300 μL methanol. 10 μL of a standard stock solution containing 3-aminopropylsulfinic acid or analog thereof (0.04, 0.2, 1, 5, 25, and 100 μg/mL) and 20 μL of p-chlorophenylalanine is added to 90 μL of rat blood to make up a final calibration standard (0.004, 0.02, 0.1, 0.5, 2.5, and 10 μg/mL). Samples are vortexed and centrifuged at 3400 rpm for 20 min. The supernatant is analyzed by LC/MS/MS.
An API 4000 LC/MS/MS spectrometer equipped with Agilent 100 binary pumps and a CTC HTS-PAL autosampler are used in the analysis. A ThermoHypersil-Keystone Betasil C18 100×4.6 mm, 5 μM column is used during the analysis. The mobile phase is 0.1% formic acid in water (A) and 0.1% formic acid in acetonitrile (B). The flow rate is 1.2 mL/min. The gradient condition is: 1% B for 0.5 min, then to 95% B for 1.8 min, and maintained at 95% B for 1.7 min. Then the mobile phase is returned to 1% B for 2.5 min. A TurboIonSpray source is used on the API 4000. The analysis is done in negative ion mode for 3-aminopropylsulfinic acid and positive ion mode for analogs of 3-aminopropylsulfinic acid and the MRM transition for each analyte is optimized using standard solution. 20 μL of the samples are injected. Non-compartmental analysis is performed using WinNonlin software (v.3.1 Professional Version, Pharsight Corporation, Mountain View, Calif.) on individual animal profiles. Summary statistics on major parameter estimates is performed for Cmax (peak observed concentration following dosing), Tmax (time to maximum concentration is the time at which the peak concentration was observed), AUC(0-t) (area under the plasma concentration-time curve from time zero to last collection time, estimated using the log-linear trapezoidal method), AUC(0-∞), (area under the plasma concentration time curve from time zero to infinity, estimated using the log-linear trapezoidal method to the last collection time with extrapolation to infinity), and t1/2,z (terminal half-life).
Prodrugs that provide a bioavailability of the corresponding parent drug that is greater than the bioavailability provided by an equimolar dose of the parent drug administered to a patient by the same route (e.g., oral administration) can be useful as therapeutic agents.
Finally, it should be noted that there are alternative ways of implementing the embodiments disclosed herein. Accordingly, the present embodiments are to be considered as illustrative and not restrictive, and the claims are not to be limited to the details given herein, but may be modified within the scope and equivalents thereof.
Claims (17)
1. A compound of Formula (I):
stereoisomers thereof, pharmaceutically acceptable salts of any of the foregoing, and pharmaceutically acceptable solvates of any of the foregoing, wherein:
R1 is selected from acyl, substituted acyl, alkyl, substituted alkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, cycloalkyl, substituted cycloalkyl, cycloheteroalkyl, substituted cycloheteroalkyl, heteroalkyl, substituted heteroalkyl, heteroaryl, substituted heteroaryl, heteroarylalkyl, and substituted heteroarylalkyl;
R2 and R3 are independently selected from hydrogen, alkyl, substituted alkyl, alkoxycarbonyl, substituted alkoxycarbonyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heteroarylalkyl, and substituted heteroarylalkyl, or R2 and R3 together with the carbon atom to which they are bonded form a cycloalkyl, substituted cycloalkyl, cycloheteroalkyl, or substituted cycloheteroalkyl ring;
R4 is selected from hydrogen, C1-6 acyl, substituted C1-6 acyl, C1-6 alkyl, substituted C1-6 alkyl, aryl, substituted aryl, C3-6 cycloalkyl, substituted C3-6 cycloalkyl, heteroaryl, substituted heteroaryl, C7-9 phenylalkyl, and substituted C7-9 phenylalkyl;
R5 is selected from hydrogen, hydroxy, mercapto, fluoro, chloro, bromo, oxo, and 4-chlorophenyl; and
R6 and R7 are independently selected from hydrogen, C1-6 alkyl, substituted C1-6 alkyl, C1-6 alkoxy, substituted C1-6 alkoxy, aryl, substituted aryl, C3-6 cycloalkyl, substituted C3-6 cycloalkyl, heteroaryl, substituted heteroaryl, C7-9 phenylalkyl, and substituted C7-9 phenylalkyl.
2. The compound of claim 1 , wherein R5 is selected from hydrogen, hydroxy, fluoro, oxo, and 4-chlorophenyl, and each of R4, R6, and R7 are hydrogen.
3. The compound of claim 1 , wherein R1 is selected from C1-6 alkyl, substituted C1-6 alkyl, C3-6 cycloalkyl, phenyl, substituted phenyl, C7-9 phenylalkyl, and pyridyl.
4. The compound of claim 1 , wherein R1 is selected from methyl, ethyl, n-propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, sec-pentyl, neopentyl, 1,1-dimethoxyethyl, 1,1-diethoxyethyl, phenyl, 4-methoxyphenyl, benzyl, phenethyl, styryl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, 2-pyridyl, 3-pyridyl, and 4-pyridyl.
5. The compound of claim 1 , wherein R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, sec-pentyl, neopentyl, 1,1-diethoxyethyl, phenyl, cyclohexyl, and 3-pyridyl.
6. The compound of claim 1 , wherein R2 and R3 are independently selected from hydrogen, C1-4 alkyl, substituted C1-4 alkyl, C1-4 alkoxycarbonyl, C3-6 cycloalkyl, C3-6 cycloalkoxycarbonyl, phenyl, substituted phenyl, C7-9 phenylalkyl, and pyridyl.
7. The compound of claim 1 , wherein R2 is selected from hydrogen, methyl, ethyl, n-propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, cyclopentyl, cyclohexyl, methoxycarbonyl, ethoxycarbonyl, isopropoxycarbonyl, cyclohexyloxycarbonyl, phenyl, benzyl, phenethyl, 2-pyridyl, 3-pyridyl, and 4-pyridyl, and R3 is hydrogen.
8. The compound of claim 1 wherein R2 is selected from hydrogen, methyl, ethyl, n-propyl, isopropyl, butyl, isobutyl, sec-butyl, phenyl, and cyclohexyl, and R3 is hydrogen.
9. The compound of claim 1 , wherein R2 is selected from methyl, methoxycarbonyl, ethoxycarbonyl, isopropoxycarbonyl, and cyclohexyloxycarbonyl, and R3 is methyl.
10. The compound of claim 2 , wherein R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, sec-pentyl, neopentyl, 1,1-diethoxyethyl, phenyl, cyclohexyl, 2-pyridyl, 3-pyridyl, and 4-pyridyl, R2 is selected from hydrogen, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, phenyl, and cyclohexyl, and R3 is hydrogen.
11. The compound of claim 2 , wherein R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl, R2 is selected from hydrogen, methyl, n-propyl, and isopropyl, and R3 is hydrogen.
12. The compound of claim 2 , wherein R1 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, phenyl, cyclohexyl, and 3-pyridyl, R2 is isopropyl, and R3 is hydrogen.
13. The compound of claim 2 , wherein R1 is isopropyl, R2 is isopropyl, and R3 is hydrogen.
14. A pharmaceutical composition comprising a therapeutically effective amount of at least one compound of claim 1 and at least one pharmaceutically acceptable vehicle.
15. The pharmaceutical composition of claim 14 , wherein the pharmaceutical composition is a sustained release oral dosage formulation.
16. The compound of claim 1 , wherein the compound of Formula (I) is a prodrug of a 3-aminopropylsulfinic acid analog selected from:
3-aminopropylsulfinic acid;
(3-amino-2-(4-chlorophenyl)propyl)sulfinic acid;
(3-amino-2-hydroxypropyl)sulfinic acid;
(2S)-(3-amino-2-hydroxypropyl)sulfinic acid;
(2R)-(3-amino-2-hydroxypropyl)sulfinic acid;
(3-amino-2-fluoropropyl)sulfinic acid;
(2S)-(3-amino-2-fluoropropyl) sulfinic acid;
(2R)-(3-amino-2-fluoropropyl)sulfinic acid;
(3-amino-2-oxopropyl)sulfinic acid;
and pharmaceutically acceptable salts thereof, and pharmaceutically acceptable solvates of any of the foregoing.
17. The pharmaceutical composition of claim 14 , wherein the compound of Formula (I) is a prodrug of a 3-aminopropylsulfinic acid analog selected from:
3-aminopropylsulfinic acid;
(3-amino-2-(4-chlorophenyl)propyl)sulfinic acid;
(3-amino-2-hydroxypropyl)sulfinic acid;
(2S)-(3-amino-2-hydroxypropyl)sulfinic acid;
(2R)-(3-amino-2-hydroxypropyl)sulfinic acid;
(3-amino-2-fluoropropyl)sulfinic acid;
(2S)-(3-amino-2-fluoropropyl)sulfinic acid;
(2R)-(3-amino-2-fluoropropyl)sulfinic acid;
(3-amino-2-oxopropyl)sulfinic acid;
and pharmaceutically acceptable salts thereof, and pharmaceutically acceptable solvates of any of the foregoing.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/265,204 US7566738B2 (en) | 2004-11-03 | 2005-11-03 | Acyloxyalkyl carbamate prodrugs of sulfinic acids, methods of synthesis, and use |
US12/118,218 US20080242723A1 (en) | 2004-11-03 | 2008-05-09 | Acyloxyalkyl carbamate prodrugs of sulfinic acids, methods of synthesis, and use |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US62505004P | 2004-11-03 | 2004-11-03 | |
US11/265,204 US7566738B2 (en) | 2004-11-03 | 2005-11-03 | Acyloxyalkyl carbamate prodrugs of sulfinic acids, methods of synthesis, and use |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/118,218 Division US20080242723A1 (en) | 2004-11-03 | 2008-05-09 | Acyloxyalkyl carbamate prodrugs of sulfinic acids, methods of synthesis, and use |
Publications (2)
Publication Number | Publication Date |
---|---|
US20060111439A1 US20060111439A1 (en) | 2006-05-25 |
US7566738B2 true US7566738B2 (en) | 2009-07-28 |
Family
ID=36128554
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/265,204 Expired - Fee Related US7566738B2 (en) | 2004-11-03 | 2005-11-03 | Acyloxyalkyl carbamate prodrugs of sulfinic acids, methods of synthesis, and use |
US12/118,218 Abandoned US20080242723A1 (en) | 2004-11-03 | 2008-05-09 | Acyloxyalkyl carbamate prodrugs of sulfinic acids, methods of synthesis, and use |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/118,218 Abandoned US20080242723A1 (en) | 2004-11-03 | 2008-05-09 | Acyloxyalkyl carbamate prodrugs of sulfinic acids, methods of synthesis, and use |
Country Status (2)
Country | Link |
---|---|
US (2) | US7566738B2 (en) |
WO (1) | WO2006050471A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3981745A1 (en) | 2020-10-09 | 2022-04-13 | Culligan International Company | Water softener salt monitoring system |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BRPI0413756A (en) * | 2003-08-20 | 2006-10-31 | Xenoport Inc | compound, methods for treating or preventing spasticity or a symptom of spasticity, gastro-oesophageal reflux disease, drug addiction, alcohol addiction or abuse, or nicotine abuse or addiction, and cough or emesis in a patient, and, pharmaceutical composition |
US7227028B2 (en) | 2003-12-30 | 2007-06-05 | Xenoport, Inc. | Synthesis of acyloxyalkyl carbamate prodrugs and intermediates thereof |
WO2006050471A2 (en) * | 2004-11-03 | 2006-05-11 | Xenoport, Inc. | Acyloxyalkyl carbamate prodrugs of sulfinic acids, methods of synthesis, and use |
WO2006050472A2 (en) * | 2004-11-03 | 2006-05-11 | Xenoport, Inc. | Acyloxyalkyl carbamate prodrugs of 3-aminopropylphosphonous and -phosphinic acids |
US7585996B2 (en) * | 2006-09-15 | 2009-09-08 | Xenoport, Inc. | Acyloxyalkyl carbamate prodrugs, methods of synthesis and use |
LT3851447T (en) | 2006-10-12 | 2023-12-27 | Bellus Health Inc. | Methods, compounds, compositions and vehicles for delivering 3-amino-1-propanesulfonic acid |
WO2018174838A1 (en) * | 2017-03-18 | 2018-09-27 | Nguyen Mark Quang | Cysteamine prodrugs, related analogs, pharmaceutical compositions thereof, and methods of use |
Citations (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2996431A (en) | 1953-12-16 | 1961-08-15 | Barry Richard Henry | Friable tablet and process for manufacturing same |
US3139383A (en) | 1961-06-26 | 1964-06-30 | Norton Co | Encapsulated time release pellets and method for encapsulating the same |
US3402240A (en) | 1957-06-25 | 1968-09-17 | Pfizer & Co C | Medicinal tablet and process of making same |
US3803112A (en) * | 1971-06-05 | 1974-04-09 | Cassella Farbwerke Mainkur Ag | Process for the production of polymers |
US3811444A (en) | 1972-12-27 | 1974-05-21 | Alza Corp | Bioerodible ocular device |
US3845770A (en) | 1972-06-05 | 1974-11-05 | Alza Corp | Osmatic dispensing device for releasing beneficial agent |
US3916899A (en) | 1973-04-25 | 1975-11-04 | Alza Corp | Osmotic dispensing device with maximum and minimum sizes for the passageway |
US3962414A (en) | 1972-04-27 | 1976-06-08 | Alza Corporation | Structured bioerodible drug delivery device |
US3992518A (en) | 1974-10-24 | 1976-11-16 | G. D. Searle & Co. | Method for making a microsealed delivery device |
US4063064A (en) | 1976-02-23 | 1977-12-13 | Coherent Radiation | Apparatus for tracking moving workpiece by a laser beam |
US4066747A (en) | 1976-04-08 | 1978-01-03 | Alza Corporation | Polymeric orthoesters housing beneficial drug for controlled release therefrom |
US4070347A (en) | 1976-08-16 | 1978-01-24 | Alza Corporation | Poly(orthoester) co- and homopolymers and poly(orthocarbonate) co- and homopolymers having carbonyloxy functionality |
US4079038A (en) | 1976-03-05 | 1978-03-14 | Alza Corporation | Poly(carbonates) |
US4083949A (en) | 1973-07-17 | 1978-04-11 | Byk Gulden Lomberg Chemische Fabrik Gmbh | New oral form of medicament and a method for producing it |
US4088864A (en) | 1974-11-18 | 1978-05-09 | Alza Corporation | Process for forming outlet passageways in pills using a laser |
US4093709A (en) | 1975-01-28 | 1978-06-06 | Alza Corporation | Drug delivery devices manufactured from poly(orthoesters) and poly(orthocarbonates) |
US4126684A (en) | 1976-02-11 | 1978-11-21 | Ciba-Geigy Corporation | 4-amino-3-p-halophenylbutyric acids and their derivatives used in the control of narcotic abuse |
US4200098A (en) | 1978-10-23 | 1980-04-29 | Alza Corporation | Osmotic system with distribution zone for dispensing beneficial agent |
US4285987A (en) | 1978-10-23 | 1981-08-25 | Alza Corporation | Process for manufacturing device with dispersion zone |
US4421736A (en) | 1982-05-20 | 1983-12-20 | Merrel Dow Pharmaceuticals Inc. | Sustained release diethylpropion compositions |
US4434153A (en) | 1982-03-22 | 1984-02-28 | Alza Corporation | Drug delivery system comprising a reservoir containing a plurality of tiny pills |
US4721613A (en) | 1982-12-13 | 1988-01-26 | Alza Corporation | Delivery system comprising means for shielding a multiplicity of reservoirs in selected environment of use |
US4752470A (en) | 1986-11-24 | 1988-06-21 | Mehta Atul M | Controlled release indomethacin |
US4816263A (en) | 1987-10-02 | 1989-03-28 | Alza Corporation | Dosage form for treating cardiovascular diseases comprising isradipine |
US4820523A (en) | 1986-04-15 | 1989-04-11 | Warner-Lambert Company | Pharmaceutical composition |
US4853229A (en) | 1987-10-26 | 1989-08-01 | Alza Corporation | Method for adminstering tiny pills |
US4996058A (en) | 1987-09-18 | 1991-02-26 | Ciba-Geigy Corporation | Covered retard forms |
US5006560A (en) | 1989-12-20 | 1991-04-09 | Schering Corporation | Use of GABA-B selective agonists as anti-tussive agents |
US5091184A (en) | 1988-12-30 | 1992-02-25 | Ciba-Geigy Corporation | Coated adhesive tablets |
US5229135A (en) | 1991-11-22 | 1993-07-20 | Prographarm Laboratories | Sustained release diltiazem formulation |
US5281747A (en) | 1989-05-13 | 1994-01-25 | Ciba-Geigy Corporation | Substituted aminoalkylphosphinic acids |
US5567840A (en) | 1989-05-13 | 1996-10-22 | Ciba-Geigy Corporation | Substituted aminoalkylphosphinic acids |
US5698155A (en) | 1991-05-31 | 1997-12-16 | Gs Technologies, Inc. | Method for the manufacture of pharmaceutical cellulose capsules |
US5719185A (en) | 1993-04-23 | 1998-02-17 | Glaxo Group Limited | Use for GABA agonists for treating emesis |
US6117908A (en) | 1996-09-18 | 2000-09-12 | Astra Aktiebolag | Use of GABAB receptor agonists as reflux inhibitors |
US6171615B1 (en) | 1998-07-06 | 2001-01-09 | Gattefoss{acute over (e)} | Sustained release theophylline formulations, excipient systems and methods of production |
WO2001008675A1 (en) | 1999-07-30 | 2001-02-08 | L. Molteni & C. Dei Fratelli Alitti Societa' Di Esercizio S.P.A. | Use of agonists of gabab receptors and pharmaceutically acceptable derivates thereof, in the therapy of maintaining nicotine abstinence-dependent patients |
WO2001026638A2 (en) | 1999-10-08 | 2001-04-19 | Neuroscienze S.C. A R.L. | The use of baclofen in the treatment of alcoholism |
WO2001042252A1 (en) | 1999-12-09 | 2001-06-14 | Astrazeneca Ab | New aminopropylphosphinic acids |
WO2001054481A2 (en) | 2000-01-28 | 2001-08-02 | Rohm And Haas Company | Enhanced propertied pharmaceuticals |
US6375987B1 (en) | 1996-10-01 | 2002-04-23 | Gattefossé, S.A. | Process for the manufacture of pharmaceutical composition with modified release of active principle comprising the matrix |
US6379700B2 (en) | 1998-06-16 | 2002-04-30 | Gattefosse S.A. | Process for manufacturing tablets for the sustained release of active principle(s) |
WO2002096404A1 (en) | 2001-05-29 | 2002-12-05 | Depomed Development Ltd | Method of treating gastroesophageal reflux disease and nocturnal acid breakthrough |
WO2002100823A1 (en) | 2001-06-08 | 2002-12-19 | Astrazeneca Ab | New compounds useful in reflux disease |
WO2002100347A2 (en) | 2001-06-11 | 2002-12-19 | Xenoport, Inc. | Prodrugs of gaba analogs, compositions and uses thereof |
WO2002100870A1 (en) | 2001-06-08 | 2002-12-19 | Astrazeneca Ab | New napsylate salts ii |
WO2002100871A1 (en) | 2001-06-08 | 2002-12-19 | Astrazeneca Ab | New compounds useful in reflux disease |
WO2002100869A1 (en) | 2001-06-08 | 2002-12-19 | Astrazeneca Ab | New napsylate salts i |
WO2003011255A1 (en) | 2001-07-04 | 2003-02-13 | Sun Pharmaceutical Industries Limited | Gastric retention controlled drug delivery system |
US20030162754A1 (en) | 2001-12-17 | 2003-08-28 | Tufts University | Use of GABA and GABAB agonists |
US6627223B2 (en) | 2000-02-11 | 2003-09-30 | Eurand Pharmaceuticals Ltd. | Timed pulsatile drug delivery systems |
WO2004000856A1 (en) | 2002-06-20 | 2003-12-31 | Astrazeneca Ab | Combination of a reflux inhibitor and an imidazopyridine for the treatment of gerd |
WO2004000855A1 (en) | 2002-06-20 | 2003-12-31 | Astrazeneca Ab | Combination of an acid secretion inhibiting agent and a reflux inhibitor for the treatment of gerd |
WO2005010011A2 (en) | 2003-07-15 | 2005-02-03 | Xenoport, Inc. | Methods of synthesis of acyloxyalkyl compounds |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8425872D0 (en) * | 1984-10-12 | 1984-11-21 | Ciba Geigy Ag | Chemical compounds |
US5300679A (en) * | 1987-12-04 | 1994-04-05 | Ciba-Geigy Corporation | Substituted propane-phosphinic acid compounds |
US5190933A (en) * | 1987-12-04 | 1993-03-02 | Ciba-Geigy Corporation | Substituted propane-phosphinic acid compounds |
GB8728483D0 (en) * | 1987-12-04 | 1988-01-13 | Ciba Geigy Ag | Chemical compounds |
IL114631A (en) * | 1990-06-22 | 1998-12-06 | Novartis Ag | Anti-epileptic compositions containing gabab- antagonistic compounds |
EP0543780A3 (en) * | 1991-11-21 | 1993-09-01 | Ciba-Geigy Ag | Novel aminoalkanephosphinic acids and their salts |
AU662404B2 (en) * | 1992-05-08 | 1995-08-31 | Novartis Ag | Novel N-aralkyl- and N-heteroaralkyl-aminoalkanephosphinic acids |
JP2004532200A (en) * | 2001-03-15 | 2004-10-21 | サエジス ファーマシューティカルズ, インコーポレイテッド | Methods for restoring cognitive function after systemic stress |
WO2006050472A2 (en) * | 2004-11-03 | 2006-05-11 | Xenoport, Inc. | Acyloxyalkyl carbamate prodrugs of 3-aminopropylphosphonous and -phosphinic acids |
WO2006050471A2 (en) * | 2004-11-03 | 2006-05-11 | Xenoport, Inc. | Acyloxyalkyl carbamate prodrugs of sulfinic acids, methods of synthesis, and use |
US7585996B2 (en) * | 2006-09-15 | 2009-09-08 | Xenoport, Inc. | Acyloxyalkyl carbamate prodrugs, methods of synthesis and use |
-
2005
- 2005-11-03 WO PCT/US2005/039871 patent/WO2006050471A2/en active Application Filing
- 2005-11-03 US US11/265,204 patent/US7566738B2/en not_active Expired - Fee Related
-
2008
- 2008-05-09 US US12/118,218 patent/US20080242723A1/en not_active Abandoned
Patent Citations (57)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2996431A (en) | 1953-12-16 | 1961-08-15 | Barry Richard Henry | Friable tablet and process for manufacturing same |
US3402240A (en) | 1957-06-25 | 1968-09-17 | Pfizer & Co C | Medicinal tablet and process of making same |
US3139383A (en) | 1961-06-26 | 1964-06-30 | Norton Co | Encapsulated time release pellets and method for encapsulating the same |
US3803112A (en) * | 1971-06-05 | 1974-04-09 | Cassella Farbwerke Mainkur Ag | Process for the production of polymers |
US3962414A (en) | 1972-04-27 | 1976-06-08 | Alza Corporation | Structured bioerodible drug delivery device |
US3845770A (en) | 1972-06-05 | 1974-11-05 | Alza Corp | Osmatic dispensing device for releasing beneficial agent |
US3811444A (en) | 1972-12-27 | 1974-05-21 | Alza Corp | Bioerodible ocular device |
US3916899A (en) | 1973-04-25 | 1975-11-04 | Alza Corp | Osmotic dispensing device with maximum and minimum sizes for the passageway |
US4083949A (en) | 1973-07-17 | 1978-04-11 | Byk Gulden Lomberg Chemische Fabrik Gmbh | New oral form of medicament and a method for producing it |
US3992518A (en) | 1974-10-24 | 1976-11-16 | G. D. Searle & Co. | Method for making a microsealed delivery device |
US4088864A (en) | 1974-11-18 | 1978-05-09 | Alza Corporation | Process for forming outlet passageways in pills using a laser |
US4093709A (en) | 1975-01-28 | 1978-06-06 | Alza Corporation | Drug delivery devices manufactured from poly(orthoesters) and poly(orthocarbonates) |
US4126684A (en) | 1976-02-11 | 1978-11-21 | Ciba-Geigy Corporation | 4-amino-3-p-halophenylbutyric acids and their derivatives used in the control of narcotic abuse |
US4063064A (en) | 1976-02-23 | 1977-12-13 | Coherent Radiation | Apparatus for tracking moving workpiece by a laser beam |
US4079038A (en) | 1976-03-05 | 1978-03-14 | Alza Corporation | Poly(carbonates) |
US4066747A (en) | 1976-04-08 | 1978-01-03 | Alza Corporation | Polymeric orthoesters housing beneficial drug for controlled release therefrom |
US4070347A (en) | 1976-08-16 | 1978-01-24 | Alza Corporation | Poly(orthoester) co- and homopolymers and poly(orthocarbonate) co- and homopolymers having carbonyloxy functionality |
US4200098A (en) | 1978-10-23 | 1980-04-29 | Alza Corporation | Osmotic system with distribution zone for dispensing beneficial agent |
US4285987A (en) | 1978-10-23 | 1981-08-25 | Alza Corporation | Process for manufacturing device with dispersion zone |
US4434153A (en) | 1982-03-22 | 1984-02-28 | Alza Corporation | Drug delivery system comprising a reservoir containing a plurality of tiny pills |
US4421736A (en) | 1982-05-20 | 1983-12-20 | Merrel Dow Pharmaceuticals Inc. | Sustained release diethylpropion compositions |
US4721613A (en) | 1982-12-13 | 1988-01-26 | Alza Corporation | Delivery system comprising means for shielding a multiplicity of reservoirs in selected environment of use |
US4820523A (en) | 1986-04-15 | 1989-04-11 | Warner-Lambert Company | Pharmaceutical composition |
US4752470A (en) | 1986-11-24 | 1988-06-21 | Mehta Atul M | Controlled release indomethacin |
US4996058A (en) | 1987-09-18 | 1991-02-26 | Ciba-Geigy Corporation | Covered retard forms |
US4816263A (en) | 1987-10-02 | 1989-03-28 | Alza Corporation | Dosage form for treating cardiovascular diseases comprising isradipine |
US4853229A (en) | 1987-10-26 | 1989-08-01 | Alza Corporation | Method for adminstering tiny pills |
US5091184A (en) | 1988-12-30 | 1992-02-25 | Ciba-Geigy Corporation | Coated adhesive tablets |
US5461040A (en) | 1989-05-13 | 1995-10-24 | Ciba-Geigy Corporation | Substituted aminoalkylphosphinic acids |
US5567840A (en) | 1989-05-13 | 1996-10-22 | Ciba-Geigy Corporation | Substituted aminoalkylphosphinic acids |
US5281747A (en) | 1989-05-13 | 1994-01-25 | Ciba-Geigy Corporation | Substituted aminoalkylphosphinic acids |
US5006560A (en) | 1989-12-20 | 1991-04-09 | Schering Corporation | Use of GABA-B selective agonists as anti-tussive agents |
US5698155A (en) | 1991-05-31 | 1997-12-16 | Gs Technologies, Inc. | Method for the manufacture of pharmaceutical cellulose capsules |
US5229135A (en) | 1991-11-22 | 1993-07-20 | Prographarm Laboratories | Sustained release diltiazem formulation |
US5719185A (en) | 1993-04-23 | 1998-02-17 | Glaxo Group Limited | Use for GABA agonists for treating emesis |
US6117908A (en) | 1996-09-18 | 2000-09-12 | Astra Aktiebolag | Use of GABAB receptor agonists as reflux inhibitors |
US6664069B1 (en) | 1996-09-18 | 2003-12-16 | Astrazeneca Ab | Use of GABAB receptor agonists in the screening of compounds which are reflux inhibitors |
US6375987B1 (en) | 1996-10-01 | 2002-04-23 | Gattefossé, S.A. | Process for the manufacture of pharmaceutical composition with modified release of active principle comprising the matrix |
US6379700B2 (en) | 1998-06-16 | 2002-04-30 | Gattefosse S.A. | Process for manufacturing tablets for the sustained release of active principle(s) |
US6171615B1 (en) | 1998-07-06 | 2001-01-09 | Gattefoss{acute over (e)} | Sustained release theophylline formulations, excipient systems and methods of production |
WO2001008675A1 (en) | 1999-07-30 | 2001-02-08 | L. Molteni & C. Dei Fratelli Alitti Societa' Di Esercizio S.P.A. | Use of agonists of gabab receptors and pharmaceutically acceptable derivates thereof, in the therapy of maintaining nicotine abstinence-dependent patients |
WO2001026638A2 (en) | 1999-10-08 | 2001-04-19 | Neuroscienze S.C. A R.L. | The use of baclofen in the treatment of alcoholism |
WO2001042252A1 (en) | 1999-12-09 | 2001-06-14 | Astrazeneca Ab | New aminopropylphosphinic acids |
WO2001054481A2 (en) | 2000-01-28 | 2001-08-02 | Rohm And Haas Company | Enhanced propertied pharmaceuticals |
US6627223B2 (en) | 2000-02-11 | 2003-09-30 | Eurand Pharmaceuticals Ltd. | Timed pulsatile drug delivery systems |
WO2002096404A1 (en) | 2001-05-29 | 2002-12-05 | Depomed Development Ltd | Method of treating gastroesophageal reflux disease and nocturnal acid breakthrough |
WO2002100823A1 (en) | 2001-06-08 | 2002-12-19 | Astrazeneca Ab | New compounds useful in reflux disease |
WO2002100871A1 (en) | 2001-06-08 | 2002-12-19 | Astrazeneca Ab | New compounds useful in reflux disease |
WO2002100869A1 (en) | 2001-06-08 | 2002-12-19 | Astrazeneca Ab | New napsylate salts i |
WO2002100870A1 (en) | 2001-06-08 | 2002-12-19 | Astrazeneca Ab | New napsylate salts ii |
US20040152775A1 (en) | 2001-06-08 | 2004-08-05 | Fitzpatrick Kevin | Compounds useful in reflux disease |
WO2002100347A2 (en) | 2001-06-11 | 2002-12-19 | Xenoport, Inc. | Prodrugs of gaba analogs, compositions and uses thereof |
WO2003011255A1 (en) | 2001-07-04 | 2003-02-13 | Sun Pharmaceutical Industries Limited | Gastric retention controlled drug delivery system |
US20030162754A1 (en) | 2001-12-17 | 2003-08-28 | Tufts University | Use of GABA and GABAB agonists |
WO2004000856A1 (en) | 2002-06-20 | 2003-12-31 | Astrazeneca Ab | Combination of a reflux inhibitor and an imidazopyridine for the treatment of gerd |
WO2004000855A1 (en) | 2002-06-20 | 2003-12-31 | Astrazeneca Ab | Combination of an acid secretion inhibiting agent and a reflux inhibitor for the treatment of gerd |
WO2005010011A2 (en) | 2003-07-15 | 2005-02-03 | Xenoport, Inc. | Methods of synthesis of acyloxyalkyl compounds |
Non-Patent Citations (51)
Title |
---|
"Remington's Pharmaceutical Sciences," Lippincott Williams & Wilkins, 21st Edition, 2005 (Table of Contents). |
Alderman, Int. J. Pharm. Tech. & Prod. Mfr., 1984, 5(3), 1-9. |
Bamba et al., Int. J. Pharm., 1979, 2, 307-315. |
Bowery, "Commercial and Pipeline Perspectives: Upper GI Disorders," DataMonitor Report, Sep. 2004, p. 147. |
Bowery, Trends Pharmacol. Sci., 1989, 10, 401-407. |
Cange et al., Aliment. Pharmacol. Ther., 2002, 16, 869-873. |
Carruthers et al., Bioorg. Med. Chem. Lett., 1995, 5, 237-240. |
Carruthers et al., Bioorg. Med. Chem. Lett., 1998, 8, 3059-3064. |
Cercós-Fortea et al., Biopharm. Drug. Disp., 1995, 16, 563-577. |
Ciccaglione et al., Gut, 2003, 52, 464-470. |
Coleman et al., Polymers, 1990, 31, 1187-1203. |
Deguchi et al., Pharm. Res., 1995, 12, 1838-1844. |
During et al., Ann. Neurol., 1989, 25, 351-356. |
Fincher, J. Pharm. Sci., 1968, 57, 1825-1835. |
Froestl et al., J. Med. Chem., 1995, 38, 3297-3312. |
Goodson, in "Medical Applications of Controlled Release," vol. 2, pp. 115-138, 1984. |
Green et al., "Protective Groups in Organic Chemistry," Wiley, 2nd ed. 1991 (Table of Contents). |
Harrison et al., "Compendium of Synthetic Organic Methods," vols. 1-8, John Wiley and Sons, 1971-1996 (Table of Contents). |
Howard et al., J. Neurosurg., 1989, 71, 105-112. |
Koek et al., Gut, 2003, 1397-1402. |
Langer and Wise (eds.), "Medical Applications of Controlled Release," vol. I and II CRC Press., Boca Raton, Florida, 1974 (Table of Contents). |
Langer et al., J Macromol. Sci. Rev. Macromol Chem. Phys., 1983, 23, 61-126. |
Langer, Science, 1990, 249, 1527-1533. |
Langer, Sefton, CRC Crit Ref Biomed. Eng., 1987, 14, 201-240. |
Larock "Comprehensive Organic Transformations," VCH Publishers, 1989. |
Leong et al., Adv. Drug Delivery Rev., 1987, 1, 199-233. |
Levy et al., Science, 1985, 228, 190-192. |
Li et al., "Synthesis of (alkoxycarbonyloxy)methyl, (acyloxy)methyl and (oxodioxolenyl)methyl carbamates as bioreversible prodrug moieties for amines," Bioorganic & Medicinal Chemistry Letters, 7:2909-2912 (1997). |
Lidums et al., Gastroenterology, 2000, 118, 7-13. |
Lu, Int. J. Pharm., 1994, 112, 117-124. |
Merino et al., Biopharm. Drug. Disp., 1989, 10, 279-297. |
Misgeld et al., Prog. Neurobiol., 1995, 46, 423-462. |
Mittal et al., Gastroenterology, 1995, 109, 601-610. |
Moll-Navarro et al., J. Pharm. Sci., 1996, 85, 1248-1254. |
Office Action mailed Apr. 9, 2008, in U.S. Appl. No. 11/265,203 filed Nov. 3, 2005. |
Paquette (ed.), "Encyclopedia of Reagents for Organic Synthesis," John Wiley & Sons, 1995 (Table of Contents). |
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, dated Jun. 6, 2006, for Application No. PCT/US2005/039872. |
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, dated May 17, 2006, for Application No. PCT/US2005/039871. |
Roerdink et al., Drug Carrier Systems, 1989, 9, 57-109. |
Roff et al., Handbook of Common Polymers, CRC Press, 1971 (Table of Contents). |
Rosoff, Controlled Release of Drugs, Chap. 2, pp. 53-95, 1989. |
Saudek et al., N. Engl. J Med., 1989, 321, 574-579. |
Shue et al., Bioorg. Med. Chem. Lett., 1996, 6, 1709-1714. |
Smolen and Ball (eds.), "Controlled Drug Bioavailability: Drug Product Design and Performance," Wiley, New York, 1984 (Table of Contents). |
Tonini et al., Drugs, 2004, 64, 347-361. |
U.S. Appl. No. 11/265,203, filed Nov. 3, 2005, Gallop. |
van Bree et al., Pharm. Res., 1988, 5, 369-371. |
van Herwaarden et al., Aliment. Pharmacol. Ther., 2002, 16, 1655-1662. |
Vela et al., Aliment. Pharmacol. Ther., 2003, 17, 243-251. |
Verma et al., Drug Dev. Ind. Pharm., 2000, 26, 695-708. |
Wikipedia, Spasticity, encyclopedia on line version. * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3981745A1 (en) | 2020-10-09 | 2022-04-13 | Culligan International Company | Water softener salt monitoring system |
Also Published As
Publication number | Publication date |
---|---|
US20080242723A1 (en) | 2008-10-02 |
WO2006050471A3 (en) | 2006-07-13 |
US20060111439A1 (en) | 2006-05-25 |
WO2006050471A2 (en) | 2006-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10385014B2 (en) | Acyloxyalkyl carbamate prodrugs, methods of synthesis and use | |
US7935686B2 (en) | Acyloxyalkyl carbamate prodrugs, methods of synthesis, and use | |
US8372881B2 (en) | Acyloxyalkyl carbamate prodrugs of tranexamic acid, methods of synthesis and use | |
US20080242723A1 (en) | Acyloxyalkyl carbamate prodrugs of sulfinic acids, methods of synthesis, and use | |
US20040254246A1 (en) | Treating or preventing hot flashes using prodrugs of GABA analogs | |
JP2013006842A (en) | Acyloxyalkyl carbamate prodrug, method of synthesis and use thereof | |
EP2354120A1 (en) | Synthesis of acyloxyalkyl carbamate prodrugs and intermediates thereof | |
HK1090912B (en) | Acyloxyalkyl carbamate prodrugs, methods of synthesis and use | |
NZ582209A (en) | Acyloxyalkyl carbamate prodrugs, methods of synthesis and use | |
BRPI0413756B1 (en) | COMPOSITION, METHODS FOR TRAINING OR AVOIDING SPASICITY OR SYMPTOM OF SPASICITY, GASTRO-ESOPHAGEAL REFLUX DISEASE, DRUG ADDICTION, VICIOUS OR ABUSE OF ALCOHOL, OR VICIOUS IN ORBILITY OF NICOTINE, AND TOSSE OR EMEMUMS COMPOSITION |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: XENOPORT, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GALLOP, MARK A.;REEL/FRAME:017219/0537 Effective date: 20060117 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20130728 |