US7595340B2 - Serotonin and norepinephrine reuptake inhibitor and uses thereof - Google Patents
Serotonin and norepinephrine reuptake inhibitor and uses thereof Download PDFInfo
- Publication number
- US7595340B2 US7595340B2 US11/486,336 US48633606A US7595340B2 US 7595340 B2 US7595340 B2 US 7595340B2 US 48633606 A US48633606 A US 48633606A US 7595340 B2 US7595340 B2 US 7595340B2
- Authority
- US
- United States
- Prior art keywords
- disorder
- syndrome
- compound
- anxiety
- pharmaceutical composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
- 229940121991 Serotonin and norepinephrine reuptake inhibitor Drugs 0.000 title description 2
- 150000001875 compounds Chemical class 0.000 claims abstract description 66
- 239000000203 mixture Substances 0.000 claims abstract description 45
- ZPUCINDJVBIVPJ-LJISPDSOSA-N cocaine Chemical compound O([C@H]1C[C@@H]2CC[C@@H](N2C)[C@H]1C(=O)OC)C(=O)C1=CC=CC=C1 ZPUCINDJVBIVPJ-LJISPDSOSA-N 0.000 claims abstract description 6
- 208000019901 Anxiety disease Diseases 0.000 claims abstract description 5
- 230000036506 anxiety Effects 0.000 claims abstract description 5
- 208000001640 Fibromyalgia Diseases 0.000 claims abstract description 4
- 208000002193 Pain Diseases 0.000 claims abstract description 4
- 208000007848 Alcoholism Diseases 0.000 claims abstract description 3
- 208000000103 Anorexia Nervosa Diseases 0.000 claims abstract description 3
- 208000006096 Attention Deficit Disorder with Hyperactivity Diseases 0.000 claims abstract description 3
- 208000036864 Attention deficit/hyperactivity disease Diseases 0.000 claims abstract description 3
- 206010003805 Autism Diseases 0.000 claims abstract description 3
- 208000020706 Autistic disease Diseases 0.000 claims abstract description 3
- 206010006550 Bulimia nervosa Diseases 0.000 claims abstract description 3
- 206010008874 Chronic Fatigue Syndrome Diseases 0.000 claims abstract description 3
- 208000022497 Cocaine-Related disease Diseases 0.000 claims abstract description 3
- 208000011688 Generalised anxiety disease Diseases 0.000 claims abstract description 3
- 201000004311 Gilles de la Tourette syndrome Diseases 0.000 claims abstract description 3
- 208000001089 Multiple system atrophy Diseases 0.000 claims abstract description 3
- 208000008589 Obesity Diseases 0.000 claims abstract description 3
- 208000021384 Obsessive-Compulsive disease Diseases 0.000 claims abstract description 3
- 208000018737 Parkinson disease Diseases 0.000 claims abstract description 3
- 208000027030 Premenstrual dysphoric disease Diseases 0.000 claims abstract description 3
- 208000003782 Raynaud disease Diseases 0.000 claims abstract description 3
- 208000012322 Raynaud phenomenon Diseases 0.000 claims abstract description 3
- 201000001880 Sexual dysfunction Diseases 0.000 claims abstract description 3
- 208000009106 Shy-Drager Syndrome Diseases 0.000 claims abstract description 3
- 206010041250 Social phobia Diseases 0.000 claims abstract description 3
- 208000000323 Tourette Syndrome Diseases 0.000 claims abstract description 3
- 208000016620 Tourette disease Diseases 0.000 claims abstract description 3
- 208000015802 attention deficit-hyperactivity disease Diseases 0.000 claims abstract description 3
- 208000030963 borderline personality disease Diseases 0.000 claims abstract description 3
- 229960003920 cocaine Drugs 0.000 claims abstract description 3
- 201000006145 cocaine dependence Diseases 0.000 claims abstract description 3
- 206010013663 drug dependence Diseases 0.000 claims abstract description 3
- 206010015037 epilepsy Diseases 0.000 claims abstract description 3
- 238000011010 flushing procedure Methods 0.000 claims abstract description 3
- 208000029364 generalized anxiety disease Diseases 0.000 claims abstract description 3
- 208000035231 inattentive type attention deficit hyperactivity disease Diseases 0.000 claims abstract description 3
- 208000029766 myalgic encephalomeyelitis/chronic fatigue syndrome Diseases 0.000 claims abstract description 3
- 235000020824 obesity Nutrition 0.000 claims abstract description 3
- 208000019906 panic disease Diseases 0.000 claims abstract description 3
- 208000028173 post-traumatic stress disease Diseases 0.000 claims abstract description 3
- 201000000980 schizophrenia Diseases 0.000 claims abstract description 3
- 231100000872 sexual dysfunction Toxicity 0.000 claims abstract description 3
- 230000001457 vasomotor Effects 0.000 claims abstract description 3
- 238000000034 method Methods 0.000 claims description 27
- 238000009472 formulation Methods 0.000 claims description 16
- 150000003839 salts Chemical class 0.000 claims description 13
- 239000008194 pharmaceutical composition Substances 0.000 claims description 11
- 239000002775 capsule Substances 0.000 claims description 9
- 239000000651 prodrug Substances 0.000 claims description 9
- 229940002612 prodrug Drugs 0.000 claims description 9
- 239000003937 drug carrier Substances 0.000 claims description 7
- 208000002551 irritable bowel syndrome Diseases 0.000 claims description 7
- 206010046543 Urinary incontinence Diseases 0.000 claims description 4
- 206010036596 premature ejaculation Diseases 0.000 claims description 4
- 238000013268 sustained release Methods 0.000 claims description 4
- 239000012730 sustained-release form Substances 0.000 claims description 4
- 150000002148 esters Chemical class 0.000 claims description 3
- 208000024714 major depressive disease Diseases 0.000 claims description 3
- 239000012729 immediate-release (IR) formulation Substances 0.000 claims description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims 2
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 claims 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims 1
- 150000004675 formic acid derivatives Chemical class 0.000 claims 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 claims 1
- QZAYGJVTTNCVMB-UHFFFAOYSA-N serotonin Chemical compound C1=C(O)C=C2C(CCN)=CNC2=C1 QZAYGJVTTNCVMB-UHFFFAOYSA-N 0.000 abstract description 10
- 229940076279 serotonin Drugs 0.000 abstract description 5
- 230000009977 dual effect Effects 0.000 abstract description 3
- 208000004296 neuralgia Diseases 0.000 abstract description 2
- 208000021722 neuropathic pain Diseases 0.000 abstract description 2
- 239000002767 noradrenalin uptake inhibitor Substances 0.000 abstract description 2
- 229940127221 norepinephrine reuptake inhibitor Drugs 0.000 abstract description 2
- 239000003772 serotonin uptake inhibitor Substances 0.000 abstract description 2
- 208000008811 Agoraphobia Diseases 0.000 abstract 1
- 206010012601 diabetes mellitus Diseases 0.000 abstract 1
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 25
- 239000000243 solution Substances 0.000 description 22
- 230000000694 effects Effects 0.000 description 21
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 18
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 18
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 16
- 239000007787 solid Substances 0.000 description 15
- 239000001856 Ethyl cellulose Substances 0.000 description 12
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 12
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- -1 acetic Chemical class 0.000 description 12
- 229920001249 ethyl cellulose Polymers 0.000 description 12
- 235000019325 ethyl cellulose Nutrition 0.000 description 12
- 125000000217 alkyl group Chemical group 0.000 description 11
- 230000035699 permeability Effects 0.000 description 11
- 239000000047 product Substances 0.000 description 11
- SFLSHLFXELFNJZ-QMMMGPOBSA-N (-)-norepinephrine Chemical compound NC[C@H](O)C1=CC=C(O)C(O)=C1 SFLSHLFXELFNJZ-QMMMGPOBSA-N 0.000 description 10
- 125000000623 heterocyclic group Chemical group 0.000 description 10
- 229960002748 norepinephrine Drugs 0.000 description 10
- SFLSHLFXELFNJZ-UHFFFAOYSA-N norepinephrine Natural products NCC(O)C1=CC=C(O)C(O)=C1 SFLSHLFXELFNJZ-UHFFFAOYSA-N 0.000 description 10
- 239000003826 tablet Substances 0.000 description 10
- 235000019439 ethyl acetate Nutrition 0.000 description 9
- 238000012986 modification Methods 0.000 description 9
- 230000004048 modification Effects 0.000 description 9
- NTYJJOPFIAHURM-UHFFFAOYSA-N Histamine Chemical compound NCCC1=CN=CN1 NTYJJOPFIAHURM-UHFFFAOYSA-N 0.000 description 8
- 125000003118 aryl group Chemical group 0.000 description 8
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 8
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 8
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 8
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 8
- 239000012280 lithium aluminium hydride Substances 0.000 description 8
- AQHHHDLHHXJYJD-UHFFFAOYSA-N propranolol Chemical compound C1=CC=C2C(OCC(O)CNC(C)C)=CC=CC2=C1 AQHHHDLHHXJYJD-UHFFFAOYSA-N 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- QTYJTOVPUAQNPL-UHFFFAOYSA-N 4-[2-(dimethylamino)-1-(4-hydroxyphenyl)ethyl]oxan-4-ol Chemical compound C1COCCC1(O)C(CN(C)C)C1=CC=C(O)C=C1 QTYJTOVPUAQNPL-UHFFFAOYSA-N 0.000 description 7
- 238000003556 assay Methods 0.000 description 7
- 239000011230 binding agent Substances 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 239000006185 dispersion Substances 0.000 description 7
- 239000010410 layer Substances 0.000 description 7
- 238000000159 protein binding assay Methods 0.000 description 7
- PNVNVHUZROJLTJ-UHFFFAOYSA-N venlafaxine Chemical compound C1=CC(OC)=CC=C1C(CN(C)C)C1(O)CCCCC1 PNVNVHUZROJLTJ-UHFFFAOYSA-N 0.000 description 7
- 229960004688 venlafaxine Drugs 0.000 description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 6
- 125000004432 carbon atom Chemical group C* 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 239000002552 dosage form Substances 0.000 description 6
- 229910052736 halogen Inorganic materials 0.000 description 6
- 150000002367 halogens Chemical class 0.000 description 6
- 230000005764 inhibitory process Effects 0.000 description 6
- ZCSHNCUQKCANBX-UHFFFAOYSA-N lithium diisopropylamide Chemical compound [Li+].CC(C)[N-]C(C)C ZCSHNCUQKCANBX-UHFFFAOYSA-N 0.000 description 6
- 239000008108 microcrystalline cellulose Substances 0.000 description 6
- 229940016286 microcrystalline cellulose Drugs 0.000 description 6
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 6
- 239000000546 pharmaceutical excipient Substances 0.000 description 6
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 6
- 125000000547 substituted alkyl group Chemical group 0.000 description 6
- 239000002253 acid Substances 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 239000003814 drug Substances 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 238000005469 granulation Methods 0.000 description 5
- 230000003179 granulation Effects 0.000 description 5
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 5
- 230000002194 synthesizing effect Effects 0.000 description 5
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 206010020772 Hypertension Diseases 0.000 description 4
- 206010021639 Incontinence Diseases 0.000 description 4
- CVQUWLDCFXOXEN-UHFFFAOYSA-N Pyran-4-one Chemical compound O=C1C=COC=C1 CVQUWLDCFXOXEN-UHFFFAOYSA-N 0.000 description 4
- 125000003545 alkoxy group Chemical group 0.000 description 4
- 125000004448 alkyl carbonyl group Chemical group 0.000 description 4
- 125000005157 alkyl carboxy group Chemical group 0.000 description 4
- 150000001408 amides Chemical class 0.000 description 4
- 125000004104 aryloxy group Chemical group 0.000 description 4
- 239000002585 base Substances 0.000 description 4
- MHDVGSVTJDSBDK-UHFFFAOYSA-N dibenzyl ether Chemical compound C=1C=CC=CC=1COCC1=CC=CC=C1 MHDVGSVTJDSBDK-UHFFFAOYSA-N 0.000 description 4
- 239000003085 diluting agent Substances 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 229960001340 histamine Drugs 0.000 description 4
- IUBSYMUCCVWXPE-UHFFFAOYSA-N metoprolol Chemical compound COCCC1=CC=C(OCC(O)CNC(C)C)C=C1 IUBSYMUCCVWXPE-UHFFFAOYSA-N 0.000 description 4
- 229960002237 metoprolol Drugs 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 229960003712 propranolol Drugs 0.000 description 4
- 229940124834 selective serotonin reuptake inhibitor Drugs 0.000 description 4
- 239000012896 selective serotonin reuptake inhibitor Substances 0.000 description 4
- 125000001424 substituent group Chemical group 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 239000000454 talc Substances 0.000 description 4
- 229910052623 talc Inorganic materials 0.000 description 4
- 208000000044 Amnesia Diseases 0.000 description 3
- 206010010774 Constipation Diseases 0.000 description 3
- JCXJVPUVTGWSNB-UHFFFAOYSA-N Nitrogen dioxide Chemical compound O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- 239000004372 Polyvinyl alcohol Substances 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 125000003342 alkenyl group Chemical group 0.000 description 3
- 125000003282 alkyl amino group Chemical group 0.000 description 3
- 125000000304 alkynyl group Chemical group 0.000 description 3
- 125000005110 aryl thio group Chemical group 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000011247 coating layer Substances 0.000 description 3
- 125000000753 cycloalkyl group Chemical group 0.000 description 3
- 230000002526 effect on cardiovascular system Effects 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 125000004433 nitrogen atom Chemical group N* 0.000 description 3
- 230000000966 norepinephrine reuptake Effects 0.000 description 3
- 239000003002 pH adjusting agent Substances 0.000 description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 description 3
- 229910000027 potassium carbonate Inorganic materials 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 3
- 102000005962 receptors Human genes 0.000 description 3
- 108020003175 receptors Proteins 0.000 description 3
- 125000005415 substituted alkoxy group Chemical group 0.000 description 3
- 125000003107 substituted aryl group Chemical group 0.000 description 3
- 238000001665 trituration Methods 0.000 description 3
- 230000004584 weight gain Effects 0.000 description 3
- 208000024827 Alzheimer disease Diseases 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical class [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- 208000031091 Amnestic disease Diseases 0.000 description 2
- 208000020401 Depressive disease Diseases 0.000 description 2
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 2
- 229920003138 Eudragit® L 30 D-55 Polymers 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 2
- 239000007832 Na2SO4 Substances 0.000 description 2
- 102000019208 Serotonin Plasma Membrane Transport Proteins Human genes 0.000 description 2
- 108010012996 Serotonin Plasma Membrane Transport Proteins Proteins 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- DOOTYTYQINUNNV-UHFFFAOYSA-N Triethyl citrate Chemical compound CCOC(=O)CC(O)(C(=O)OCC)CC(=O)OCC DOOTYTYQINUNNV-UHFFFAOYSA-N 0.000 description 2
- 0 [2*]C1CCC(O)(C(CN(C)C)C2=CC=C(O)C=C2)C[Y]1 Chemical compound [2*]C1CCC(O)(C(CN(C)C)C2=CC=C(O)C=C2)C[Y]1 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 239000002671 adjuvant Substances 0.000 description 2
- 230000001800 adrenalinergic effect Effects 0.000 description 2
- 230000006986 amnesia Effects 0.000 description 2
- 230000000181 anti-adherent effect Effects 0.000 description 2
- 230000003466 anti-cipated effect Effects 0.000 description 2
- 239000003911 antiadherent Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- AGEZXYOZHKGVCM-UHFFFAOYSA-N benzyl bromide Chemical compound BrCC1=CC=CC=C1 AGEZXYOZHKGVCM-UHFFFAOYSA-N 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- 239000007894 caplet Substances 0.000 description 2
- 150000001721 carbon Chemical group 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 235000010980 cellulose Nutrition 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000000994 depressogenic effect Effects 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000002702 enteric coating Substances 0.000 description 2
- 238000009505 enteric coating Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 239000012458 free base Substances 0.000 description 2
- 230000002496 gastric effect Effects 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 229920001477 hydrophilic polymer Polymers 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 125000002950 monocyclic group Chemical group 0.000 description 2
- 230000003551 muscarinic effect Effects 0.000 description 2
- FBNGPYZLDKDFFH-UHFFFAOYSA-N n,n-dimethyl-2-(4-phenylmethoxyphenyl)acetamide Chemical compound C1=CC(CC(=O)N(C)C)=CC=C1OCC1=CC=CC=C1 FBNGPYZLDKDFFH-UHFFFAOYSA-N 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 229920000193 polymethacrylate Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000012279 sodium borohydride Substances 0.000 description 2
- 229910000033 sodium borohydride Inorganic materials 0.000 description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 125000004434 sulfur atom Chemical group 0.000 description 2
- 238000010189 synthetic method Methods 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 239000001069 triethyl citrate Substances 0.000 description 2
- VMYFZRTXGLUXMZ-UHFFFAOYSA-N triethyl citrate Natural products CCOC(=O)C(O)(C(=O)OCC)C(=O)OCC VMYFZRTXGLUXMZ-UHFFFAOYSA-N 0.000 description 2
- 235000013769 triethyl citrate Nutrition 0.000 description 2
- ZEUITGRIYCTCEM-KRWDZBQOSA-N (S)-duloxetine Chemical compound C1([C@@H](OC=2C3=CC=CC=C3C=CC=2)CCNC)=CC=CS1 ZEUITGRIYCTCEM-KRWDZBQOSA-N 0.000 description 1
- VPGLFNOKHAIGEC-UHFFFAOYSA-N 1-phenylpiperidin-4-one Chemical compound C1CC(=O)CCN1C1=CC=CC=C1 VPGLFNOKHAIGEC-UHFFFAOYSA-N 0.000 description 1
- BLUITXBEAKYQKE-UHFFFAOYSA-N 2-(4-hydroxyphenyl)-n,n-dimethylacetamide Chemical compound CN(C)C(=O)CC1=CC=C(O)C=C1 BLUITXBEAKYQKE-UHFFFAOYSA-N 0.000 description 1
- 125000004637 2-oxopiperidinyl group Chemical group O=C1N(CCCC1)* 0.000 description 1
- 201000000736 Amenorrhea Diseases 0.000 description 1
- 206010001928 Amenorrhoea Diseases 0.000 description 1
- 208000008035 Back Pain Diseases 0.000 description 1
- 208000020925 Bipolar disease Diseases 0.000 description 1
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 1
- DMGFDKKTXSKWOI-UHFFFAOYSA-N C1CCOC1.CCO.CN(C)C(=O)C(C1=CC=C(OCC2=CC=CC=C2)C=C1)C1(O)CCOCC1.CN(C)C(=O)CC1=CC=C(O)C=C1.CN(C)C(=O)CC1=CC=C(OCC2=CC=CC=C2)C=C1.CN(C)CC(C1=CC=C(O)C=C1)C1(O)CCOCC1.CN(C)CC(C1=CC=C(OCC2=CC=CC=C2)C=C1)C1(O)CCOCC1.O=C1CCOCC1.[AlH3].[LiH] Chemical compound C1CCOC1.CCO.CN(C)C(=O)C(C1=CC=C(OCC2=CC=CC=C2)C=C1)C1(O)CCOCC1.CN(C)C(=O)CC1=CC=C(O)C=C1.CN(C)C(=O)CC1=CC=C(OCC2=CC=CC=C2)C=C1.CN(C)CC(C1=CC=C(O)C=C1)C1(O)CCOCC1.CN(C)CC(C1=CC=C(OCC2=CC=CC=C2)C=C1)C1(O)CCOCC1.O=C1CCOCC1.[AlH3].[LiH] DMGFDKKTXSKWOI-UHFFFAOYSA-N 0.000 description 1
- CXWJEQOQDGRWAA-UHFFFAOYSA-N CN(C)C(=O)C(C1=CC=C(OCC2=CC=CC=C2)C=C1)C1(O)CCOCC1.CN(C)C(=O)CC1=CC=C(OCC2=CC=CC=C2)C=C1 Chemical compound CN(C)C(=O)C(C1=CC=C(OCC2=CC=CC=C2)C=C1)C1(O)CCOCC1.CN(C)C(=O)CC1=CC=C(OCC2=CC=CC=C2)C=C1 CXWJEQOQDGRWAA-UHFFFAOYSA-N 0.000 description 1
- PDHJBIHPIDXOCG-UHFFFAOYSA-N CN(C)C(=O)C(C1=CC=C(OCC2=CC=CC=C2)C=C1)C1(O)CCOCC1.CN(C)CC(C1=CC=C(OCC2=CC=CC=C2)C=C1)C1(O)CCOCC1 Chemical compound CN(C)C(=O)C(C1=CC=C(OCC2=CC=CC=C2)C=C1)C1(O)CCOCC1.CN(C)CC(C1=CC=C(OCC2=CC=CC=C2)C=C1)C1(O)CCOCC1 PDHJBIHPIDXOCG-UHFFFAOYSA-N 0.000 description 1
- APQAOTDGOJMPSC-UHFFFAOYSA-N CN(C)CC(C1=CC=C(O)C=C1)C1(O)CCOCC1.CN(C)CC(C1=CC=C(OCC2=CC=CC=C2)C=C1)C1(O)CCOCC1 Chemical compound CN(C)CC(C1=CC=C(O)C=C1)C1(O)CCOCC1.CN(C)CC(C1=CC=C(OCC2=CC=CC=C2)C=C1)C1(O)CCOCC1 APQAOTDGOJMPSC-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 208000028698 Cognitive impairment Diseases 0.000 description 1
- 206010010904 Convulsion Diseases 0.000 description 1
- 208000032131 Diabetic Neuropathies Diseases 0.000 description 1
- 102000006441 Dopamine Plasma Membrane Transport Proteins Human genes 0.000 description 1
- 108010044266 Dopamine Plasma Membrane Transport Proteins Proteins 0.000 description 1
- 229920003136 Eudragit® L polymer Polymers 0.000 description 1
- 229920003134 Eudragit® polymer Polymers 0.000 description 1
- 208000034347 Faecal incontinence Diseases 0.000 description 1
- 208000001953 Hypotension Diseases 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910010084 LiAlH4 Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 208000026139 Memory disease Diseases 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 208000019695 Migraine disease Diseases 0.000 description 1
- 102000004108 Neurotransmitter Receptors Human genes 0.000 description 1
- 108090000590 Neurotransmitter Receptors Proteins 0.000 description 1
- 241000208125 Nicotiana Species 0.000 description 1
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 1
- 102000008092 Norepinephrine Plasma Membrane Transport Proteins Human genes 0.000 description 1
- 108010049586 Norepinephrine Plasma Membrane Transport Proteins Proteins 0.000 description 1
- 102000016979 Other receptors Human genes 0.000 description 1
- 208000004983 Phantom Limb Diseases 0.000 description 1
- 206010056238 Phantom pain Diseases 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 206010036618 Premenstrual syndrome Diseases 0.000 description 1
- 206010039966 Senile dementia Diseases 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- 206010041349 Somnolence Diseases 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 206010066218 Stress Urinary Incontinence Diseases 0.000 description 1
- 229940123445 Tricyclic antidepressant Drugs 0.000 description 1
- 208000000921 Urge Urinary Incontinence Diseases 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 229920013820 alkyl cellulose Polymers 0.000 description 1
- 230000000172 allergic effect Effects 0.000 description 1
- 231100000540 amenorrhea Toxicity 0.000 description 1
- 125000004103 aminoalkyl group Chemical group 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 125000005428 anthryl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C3C(*)=C([H])C([H])=C([H])C3=C([H])C2=C1[H] 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 206010003119 arrhythmia Diseases 0.000 description 1
- 230000006793 arrhythmia Effects 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 208000010668 atopic eczema Diseases 0.000 description 1
- 125000002785 azepinyl group Chemical group 0.000 description 1
- 125000000499 benzofuranyl group Chemical group O1C(=CC2=C1C=CC=C2)* 0.000 description 1
- 125000004196 benzothienyl group Chemical group S1C(=CC2=C1C=CC=C2)* 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 230000036471 bradycardia Effects 0.000 description 1
- 208000006218 bradycardia Diseases 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 150000004657 carbamic acid derivatives Chemical class 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000000423 cell based assay Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 208000015114 central nervous system disease Diseases 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 208000010877 cognitive disease Diseases 0.000 description 1
- 230000037410 cognitive enhancement Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 239000007891 compressed tablet Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229960000913 crospovidone Drugs 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- WZHCOOQXZCIUNC-UHFFFAOYSA-N cyclandelate Chemical compound C1C(C)(C)CC(C)CC1OC(=O)C(O)C1=CC=CC=C1 WZHCOOQXZCIUNC-UHFFFAOYSA-N 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000035487 diastolic blood pressure Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 208000002173 dizziness Diseases 0.000 description 1
- 238000009509 drug development Methods 0.000 description 1
- 206010013781 dry mouth Diseases 0.000 description 1
- 229960002866 duloxetine Drugs 0.000 description 1
- 208000024732 dysthymic disease Diseases 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 238000002825 functional assay Methods 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- 229940083124 ganglion-blocking antiadrenergic secondary and tertiary amines Drugs 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 239000003979 granulating agent Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 229920013821 hydroxy alkyl cellulose Polymers 0.000 description 1
- 208000013403 hyperactivity Diseases 0.000 description 1
- 230000036543 hypotension Effects 0.000 description 1
- 230000002267 hypothalamic effect Effects 0.000 description 1
- MTNDZQHUAFNZQY-UHFFFAOYSA-N imidazoline Chemical compound C1CN=CN1 MTNDZQHUAFNZQY-UHFFFAOYSA-N 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 125000001041 indolyl group Chemical group 0.000 description 1
- 238000013383 initial experiment Methods 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 125000002183 isoquinolinyl group Chemical group C1(=NC=CC2=CC=CC=C12)* 0.000 description 1
- 125000000842 isoxazolyl group Chemical group 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- LVKCSZQWLOVUGB-UHFFFAOYSA-M magnesium;propane;bromide Chemical compound [Mg+2].[Br-].C[CH-]C LVKCSZQWLOVUGB-UHFFFAOYSA-M 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000006984 memory degeneration Effects 0.000 description 1
- 208000023060 memory loss Diseases 0.000 description 1
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 1
- 229920003145 methacrylic acid copolymer Polymers 0.000 description 1
- 206010027599 migraine Diseases 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 125000002757 morpholinyl group Chemical group 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 230000000926 neurological effect Effects 0.000 description 1
- 201000001119 neuropathy Diseases 0.000 description 1
- 230000007823 neuropathy Effects 0.000 description 1
- 239000002858 neurotransmitter agent Substances 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 208000024449 overflow incontinence Diseases 0.000 description 1
- 125000002971 oxazolyl group Chemical group 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 208000033808 peripheral neuropathy Diseases 0.000 description 1
- 125000005561 phenanthryl group Chemical group 0.000 description 1
- 125000004193 piperazinyl group Chemical group 0.000 description 1
- 125000003386 piperidinyl group Chemical group 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920000523 polyvinylpolypyrrolidone Polymers 0.000 description 1
- 235000013809 polyvinylpolypyrrolidone Nutrition 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 230000007943 positive regulation of appetite Effects 0.000 description 1
- 230000001242 postsynaptic effect Effects 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229940069328 povidone Drugs 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 125000006239 protecting group Chemical group 0.000 description 1
- 125000003373 pyrazinyl group Chemical group 0.000 description 1
- 125000002098 pyridazinyl group Chemical group 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- 125000000714 pyrimidinyl group Chemical group 0.000 description 1
- 125000000719 pyrrolidinyl group Chemical group 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 125000002943 quinolinyl group Chemical group N1=C(C=CC2=CC=CC=C12)* 0.000 description 1
- 238000001525 receptor binding assay Methods 0.000 description 1
- 230000011514 reflex Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000000697 serotonin reuptake Effects 0.000 description 1
- 230000013275 serotonin uptake Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 230000000391 smoking effect Effects 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 125000005017 substituted alkenyl group Chemical group 0.000 description 1
- 150000003890 succinate salts Chemical class 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 125000001712 tetrahydronaphthyl group Chemical group C1(CCCC2=CC=CC=C12)* 0.000 description 1
- 125000006089 thiamorpholinyl sulfoxide group Chemical group 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- 125000004568 thiomorpholinyl group Chemical group 0.000 description 1
- 238000003569 transporter assay Methods 0.000 description 1
- 208000002271 trichotillomania Diseases 0.000 description 1
- 239000003029 tricyclic antidepressant agent Substances 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
- 206010046494 urge incontinence Diseases 0.000 description 1
- 230000002485 urinary effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 235000019786 weight gain Nutrition 0.000 description 1
- 230000005186 women's health Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D309/00—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings
- C07D309/02—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
- C07D309/08—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D309/10—Oxygen atoms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
Definitions
- SNRI serotonin and norepinephrine reuptake inhibitors
- SSRI selective serotonin reuptake inhibitors
- the side-effect profile of SSRI's and SNRI's are less severe as compared to older, tricyclic antidepressants compounds, there are still some undesirable side effects related to the selectivity or other neuronal receptor binding (muscarinic, histamine and alpha-adrenergic, etc.) of these SSRI's and SNRI's. Binding to these receptors can lead to side effects such as, dry mouth, drowsiness, appetite stimulation and some cardiovascular risks.
- NE activity of SNRI's has also been implicated in a number of side effects and therefore limits their application.
- IBS irritable bowel syndrome
- Another potential side effect of SNRI's is that at higher dosages there is a modest increase in diastolic blood pressure and this side effect is associated with higher NE activity.
- potential overdose situations have been associated with excess adrenergic stimulation, seizures, arrhythmias, bradycardia, hypertension, hypotension and death.
- compositions for treating conditions associated with serotonin and norepinephrine imbalances by allowing serotonin and or norepinephrine re-uptake inhibition for efficacy with lower post synaptic receptor binding for reduced side-effects [(H. Hall, et al., Acta pharmacol et. toxicol. 1984, 54, 379-384)].
- the present invention provides a compound with dual serotonin and norepinephrine reuptake inhibitor activity with low levels of undesirable side-effects.
- the invention provides a compound of the structure:
- the invention provides a pharmaceutical composition
- a pharmaceutical composition comprising a compound of the invention and pharmaceutically acceptable carrier.
- the invention provides a method of using the compound of the invention for treating irritable bowel syndrome, premature ejaculation and urinary incontinence in a subject in need thereof.
- the invention provides a pharmaceutical composition
- a pharmaceutical composition comprising a compound of the invention and pharmaceutically acceptable carrier.
- FIG. 1 provides an X-ray powder diffraction of 4-[2-dimethylamino-1-(4-phenyl)-ethyl-tetrahydro-pyran-4-ol.
- FIG. 2 provides a chart of the hygroscopicity profile of 4-[2-dimethylamino-1-(4-phenyl)-ethyl-tetrahydro-pyran-4-ol.
- FIG. 3 provides a chart of the DSC of 4-[2-dimethylamino-1-(4-phenyl)-ethyl-tetrahydro-pyran-4-ol.
- FIG. 4 provides a chart of the pH - solubility profile of 4-[2-dimethylamino-1-(4-phenyl)-ethyl-tetrahydro-pyran-4-ol.
- the present invention provides a compound which has the structure:
- compounds and formulations described herein reduce the undesirable side-effects of SNRI's, including constipation, hypertension, and the histamine-related side-effects.
- the compounds described herein are also predicted to have low norepinephrine reuptake inhibition activity (NE), as compared to existing SNRI's. This attribute is very attractive for SNRI indications, e.g., depression, for patients that have cardiovascular risks related to hypertension.
- the compounds will have activity on serotonin and norepinephrine neurotransmitters in the brain making it desirable for anti-depression therapy and other related neurological indications.
- a compound of the above structure may contain one or more asymmetric carbon atoms and some of the compounds may contain one or more asymmetric (chiral) centers and may thus give rise to optical isomers and diastereomers.
- the invention includes such optical isomers and disastereomers; as well as the racemic and resolved, enantiomerically pure stereoisomers; as well as other mixtures of the R and S stereoisomers, and pharmaceutically acceptable salts, hydrates, and prodrugs thereof.
- alkyl is used herein to refer to both straight- and branched-chain saturated aliphatic hydrocarbon groups, generally of 1, 2, 3, 4, 5, 6, 7 or 8 carbon atoms in length, unless otherwise specified.
- lower alkyl is used to refer to alkyl chains of 1, 2, 3, or 4 carbons in length.
- substituted alkyl refers to alkyl as just described having from one to three substituents selected from the group including halogen, CN, OH, NO 2 , amino, aryl, heterocyclic, substituted aryl, substituted heterocyclic, alkoxy, aryloxy, substituted alkyloxy, alkylcarbonyl, alkylcarboxy, alkylamino, arylthio. These substituents may be attached to any carbon of alkyl group provided that the attachment constitutes a stable chemical moiety.
- halogen refers to Cl, Br, F, or I.
- aryl is used herein to refer to a carbocyclic aromatic system, which may be a single ring, or multiple aromatic rings fused or linked together as such that at least one part of the fused or linked rings forms the conjugated aromatic system.
- the aryl groups include, but are not limited to, phenyl, naphthyl, biphenyl, anthryl, tetrahydronaphthyl, and phenanthryl.
- substituted aryl refers to aryl as just defined having one, two, three or four substituents from the group including halogen, CN, OH, NO 2 , amino, alkyl, cycloalkyl, alkenyl, alkynyl, alkoxy, aryloxy, substituted alkyloxy, alkylcarbonyl, alkylcarboxy, alkylamino, and arylthio.
- Alkenyl and alkynyl groups may have for example 2 to 7 carbon atoms.
- Cycloalkyl groups may have 3 to 8 carbon atoms.
- heterocyclic is used herein to describe a stable 4-, 5-, 6- or 7-membered monocyclic or a stable multicyclic heterocyclic ring which is saturated, partially unsaturated, or unsaturated, and which consists of carbon atoms and from one to four heteroatoms selected from the group including N, O, and S atoms. At least one carbon atom may be C ⁇ O. The N and S atoms may be oxidized.
- the heterocyclic ring also includes any multicyclic ring in which any of above defined heterocyclic rings is fused to an aryl ring.
- a multicyclic ring may be 2 or 3 monocyclic rings of 4- to 7-membered rings as described above.
- heterocyclic ring may be attached at any heteroatom or carbon atom provided the resultant structure is chemically stable.
- heterocyclic groups include, for example, tetrahydrofuran, piperidinyl, piperazinyl, 2-oxopiperidinyl, azepinyl, pyrrolidinyl, imidazolyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, oxazolyl, isoxazolyl, morpholinyl, indolyl, quinolinyl, thienyl, furyl, benzofuranyl, benzothienyl, thiamorpholinyl, thiamorpholinyl sulfoxide, and isoquinolinyl.
- substituted heterocyclic is used herein to describe the heterocyclic just defined having one to four substituents selected from the group which includes halogen, CN, OH, NO 2 , amino, alkyl, substituted alkyl, cycloalkyl, alkenyl, substituted alkenyl, alkynyl, alkoxy, aryloxy, substituted alkyloxy, alkylcarbonyl, alkylcarboxy, alkylamino, or arylthio.
- alkoxy is used herein to refer to the OR group, where R is alkyl or substituted alkyl.
- aryloxy is used herein to refer to the OR group, where R is aryl or substituted aryl.
- alkylcarbonyl is used herein to refer to the RCO group, where R is alkyl or substituted alkyl.
- alkylcarboxy is used herein to refer to the COOR group, where R is alkyl or substituted alkyl.
- aminoalkyl refers to both secondary and tertiary amines wherein the alkyl or substituted alkyl groups, containing one to eight carbon atoms, which may be either same or different and the point of attachment is on the nitrogen atom.
- the compounds of the present invention can be used in the form of salts derived from pharmaceutically or physiologically acceptable acids or bases.
- These salts include, but are not limited to, the following salts with organic and inorganic acids such as acetic, lactic, citric, tartaric, succinic, fumaric, maleic, malonic, mandelic, mallic, hydrochloric, hydrobromic, phosphoric, nitric, sulfuric, methanesulfonic, toluenesulfonic and similarly known acceptable acids, and mixtures thereof.
- Other salts include salts with alkali metals or alkaline earth metals, such as sodium (e.g., sodium hydroxide), potassium (e.g., potassium hydroxide), calcium or magnesium.
- salts as well as other compounds of the invention may be in the form of esters, carbamates and other conventional “pro-drug” forms, which, when administered in such form, convert to the active moiety in vivo.
- the prodrugs are esters. See, e.g., B. Testa and J. Caldwell, “Prodrugs Revisited: The “Ad Hoc” Approach as a Complement to Ligand Design”, Medicinal Research Reviews, 16(3):233-241, ed., John Wiley & Sons (1996).
- the compounds of the present invention can be prepared using the methods described herein, together with synthetic methods known in the synthetic organic arts or variations of these methods by one of skill in the art.
- the compounds of the present invention can be prepared using the methods described below, together with synthetic methods known in the synthetic organic arts or variations of these methods. [See, generally, Comprehensive Organic Synthesis , “Selectivity, Strategy & Efficiency in Modern Organic Chemistry”, ed., I. Fleming, Pergamon Press, New York (1991); Comprehensive Organic Chemistry , “The Synthesis and Reactions of Organic Compounds”, ed. J. F. Stoddard, Pergamon Press, New York (1979)]. The following scheme provides one method for the synthesis of a compound of the invention.
- a method of preparing a compound of structure A can be used:
- X is C, N, or O; and Y is a C or absent; when X is C; R 2 is selected from H, halogen, CF 3 , phenyl, SCH 3 , NHCH 3 , OC 1 -C 6 alkyl, and substituted OC 1 -C 6 alkyl; and when X is N, R 2 is selected from H, phenyl or CF 3 .
- This method involves the step of reacting a 2-(4-hydroxy-phenol)-dimethylacetamide with a benzyl halide to afford a 2-(4-benzyloxy-phenyl)-dimethylacetamide.
- the 2-(4-hydroxy-phenol)-dialkylacetamide may be in a solution comprising dimethylformamide. Further, the solution can be treated with potassium carbonate prior to reaction with the benzyl halide.
- X is C, N, or O; and Y is a C or absent; when X is C; R 2 is selected from H, halogen, CF 3 , SCH 3 , NHCH 3 , OH, OC 1 -C 6 alkyl, phenyl, and substituted OC 1 -C 6 alkyl; when X is N, R 2 is H, phenyl or CF 3 ; in a solution (e.g., containing THF) with a suitable base.
- suitable bases include, e.g., lithium diisopropylamide and isopropyl magnesium bromide.
- this compound is selected from the group consisting of pyran-4-one and phenyl-piperidine-4-one.
- the resulting product is reduced (e.g., using LiAlH 4 ) to provide the corresponding dimethylamine and the benzyl ether is hydrogenated to remove the benzyl group and afford a compound of structure A.
- the process is highly selective for the cis-compounds, leading to a high yield and good crystallinity.
- LAH reaction plays a significant role in this specificity.
- the method of synthesizing the compounds described herein provides a compound having a configuration is greater than 50% cis diastereomer. In another embodiment, the method of synthesizing the compounds of the invention provides a compound having the configuration which is greater than 95% cis diastereomer. In another embodiment, it may be desirable to substitute sodium borohydride for the LAH.
- benzyl bromide protecting group is particularly well suited for use in the method of synthesizing the compounds of the invention because of its ease of removal during the final step. However, other protecting groups may be substituted.
- the mixture is stirred at room temperature followed by heating at 60° C. for 1 hour.
- the mixture is concentrated to remove DMF, diluted with EtOAc and washed with water. Dry MgSO 4 is added, the mixture filtered and concentrated to low volume. Hexane is added to precipitate the ketal intermediate product. Solids are collected via filtration and dried.
- a solution of the ketone in THF was added to a solution of lithium aluminum hydride (LAH) in THF at ⁇ 78° C.
- LAH lithium aluminum hydride
- the mixture is warmed to room temperature and stirred for at least 3 hours.
- the reaction is quenched with MeOH followed by NaOH and stirred.
- the solid are removed by filtration, followed by a wash (e.g., with THF), and concentrated to give a solid.
- the resulting solid is recrystallized from EtOAc/hexanes to provide the corresponding benzyl ether.
- the method of synthesizing the compounds of the invention provides a compound having a configuration is greater than 50% cis diastereomer. In another embodiment, the method of synthesizing the compounds of the invention provides a compound having the configuration which is greater than 95% cis diastereomer. In another embodiment, it may be desirable to substitute sodium borohydride for the LAH.
- Salts may be formed by contacting stoichiometric amounts of the acid with the free base.
- the acid may be used in excess, usually no more than 1.5 equivalents.
- the base or the acid are in solution, or both are in solution.
- the crystalline salt may be prepared by directly crystallizing from a solvent. Improved yield may be obtained by evaporation of some or all of the solvent or by crystallization at elevated temperatures followed by controlled cooling, preferably in stages. Careful control of precipitation temperature and seeding may be used to improve the reproducibility of the production process and the particle size distribution and form of the product.
- compounds of the invention provide a different ratio of serotonin reuptake inhibition to norepinephrine reuptake inhibition than the currently available SNRI's.
- This attribute is very attractive for indications like Irritable Bowel Syndrome (IBS) where the higher NE activity of SNRI's limits the application because of constipation side effects.
- IBS Irritable Bowel Syndrome
- This lower NE activity is also attractive for patients that have cardiovascular risks related to the side effect of hypertension. It also has an application in dealing with urinary incontinence.
- compositions can be used to treat or prevent central nervous system disorders including, but not limited to, depression (including but not limited to, major depressive disorder, bipolar disorder and dysthymia), anxiety, fibromyalgia, anxiety, panic disorder, agorophobia, post traumatic stress disorder, premenstrual dysphoric disorder (also known as premenstrual syndrome), attention deficit disorder (with and without hyperactivity), obsessive compulsive disorder (including trichotillomania), social anxiety disorder, generalized anxiety disorder, autism, schizophrenia, obesity, anorexia nervosa, bulimia nervosa, Gilles de la Tourette Syndrome, vasomotor flushing, cocaine and alcohol addiction, sexual dysfunction, (including premature ejaculation), borderline personality disorder, chronic fatigue syndrome, incontinence (including fecal incontinence, overflow incontinence, passive incontinence, reflex incontinence, stress urinary incontinence, urge incontinence, urinary exertional incontinence and urinary incon
- Compounds and compositions can also be used for preventing relapse or recurrence of depression; to treat cognitive impairment; for the inducement of cognitive enhancement in patient suffering from senile dementia, Alzheimer's disease, memory loss, amnesia and amnesia syndrome; and in regimens for cessation of smoking or other tobacco uses. Additionally, compounds and compositions can be used for treating hypothalamic amenorrhea in depressed and non-depressed human females.
- An effective amount of the composition is an amount sufficient to prevent, inhibit, or alleviate one or more symptoms of the aforementioned conditions.
- the dosage amount useful to treat, prevent, inhibit or alleviate each of the aforementioned conditions will vary with the severity of the condition to be treated and the route of administration.
- the dose, and dose frequency will also vary according to age, body weight, response and past medical history of the individual human patient.
- the recommended daily dose range for the conditions described herein lie within the range of 10 mg to about 1,000 mg per day, or within the range of about 15 mg to about 350 mg/day or from about 15 mg to about 140 mg/day. In other embodiments of the invention, the dosage will range from about 30 mg to about 90 mg/day. Dosage is described in terms of the free base and is adjusted accordingly for the succinate salt. In managing the patient, the therapy is generally initiated at a lower dose and increased if necessary. Dosages for non-human patients can be adjusted accordingly by one skilled in the art.
- a compound may also be provided in combination with other active agents including, e.g., venlafaxine.
- the dosage of venlafaxine is about 75 mg to about 350 mg/day or about 75 mg to about 225 mg/day. In another embodiment, the dosage of venlafaxine is about 75 mg to about 150 mg/day.
- Venlafaxine or another active agent delivered in a regimen with the composition of the invention may be formulated together with the composition of the invention, or delivered separately.
- Any suitable route of administration can be employed for providing the patient with an effective amount of a compound of the invention.
- oral, mucosal e.g., nasal, sublingual, buccal, rectal or vaginal
- parental e.g. intravenous or intramuscular
- transdermal e.g., transdermal and subcutaneous routes
- Preferred routes of administration include oral, transdermal and mucosal.
- a compound of the invention can be combined with a pharmaceutical carrier or excipient (e.g., pharmaceutically acceptable carriers and excipients) according to conventional pharmaceutical compounding technique to form a pharmaceutical composition or dosage form.
- a pharmaceutical carrier or excipient e.g., pharmaceutically acceptable carriers and excipients
- suitable pharmaceutically acceptable carriers and excipients include, but are not limited to, those described in Remington's, The Science and Practice of Pharmacy, (Gennaro, A R, ed., 19th edition, 1995, Mack Pub. Co.), which is herein incorporated by reference.
- phrases “pharmaceutically acceptable” refers to additives or compositions that are physiologically tolerable and do not typically produce an allergic or similar untoward reaction, such as gastric upset, dizziness and the like, when administered to an animal, such as a mammal (e.g., a human).
- the composition of the invention is an immediate release formulation. In another embodiment, the composition of the invention is a sustained release formulation. Illustrative formulations are described herein. However, the invention is not so limited.
- compositions of the invention will be readily apparent to one of skill in the art given the information provided herein.
- the invention provides dosing units suitable for parenteral administration, transdermal or mucosal administration.
- Oral solid pharmaceutical compositions may include, but are not limited to starches, sugars, microcrystalline cellulose, diluents, granulating agents, lubricants, binders and disintegrating agents.
- the pharmaceutical composition and dosage form may also include other active components.
- the active component(s) are prepared in the form of a tablet or tablet-in-capsule.
- a compound is mixed with suitable excipients to form a granulation.
- the granulation is formed using a roller compactor.
- the granulation is formed using a high shear granulator.
- other methods known to those of skill in the art including, e.g., a low shear granulator, a blender, etc, can be utilized to prepare suitable granulations.
- the granulation is then compressed using conventional methods to form a tablet.
- This tablet may be provided with additional layers, optionally, containing additional layers with active components, or other layers as may be desired for enteric coating, seal coating, separation between layers, or the like.
- the tablet core contains one active component and a second active component is provided in a coating layer.
- a final seal coat is applied over the tablet.
- this final seal coat is composed of hydroxypropylmethylcellulose (HPMC) and water, upon drying, is less than about 1 wt % of the total, coated tablet.
- HPMC hydroxypropylmethylcellulose
- talc is utilized as a final step prior to filling the multi-layer tablets into a suitable packaging unit.
- the tablet may be loaded into a capsule.
- the invention provides a capsule containing the active component.
- Such capsules are produced using techniques known to those of skill in the art.
- the invention provides a formulation containing a core of one or more of the compounds of the invention and one or more pharmaceutically acceptable excipients, e.g., diluents, binders, fillers, glidants, anti-adherents, a pH adjuster and/or an adjuvant.
- the core contains about 3% w/w to about 70% w/w active compound(s).
- the compound can range from about 5% w/w to about 60% w/w, from about 10% w/w to about 50% w/w, from about 20% w/w to about 40% w/w, or from about 25% w/w to about 35% w/w, about 30% w/w to about 45% w/w, or about 32% to about 44% w/w, based upon 100% weight of the uncoated dosage form.
- the core may be in a sustained release formulation or other suitable cores as are described in greater detail below may be selected. In one embodiment, a delay release coat and/or an enteric coat are provided over the core.
- the total amount of diluent, binders, fillers, glidants, anti-adherents, and adjuvants present in the core is an amount of about 30% w/w to about 97% w/w of the core, or about 25 wt % to about 80 wt % of the core.
- a binder, diluent and/or filler can each be present in an amount of about 15% w/w to about 80% w/w, or about 20% w/w to about 70% w/w, or about 25% w/w to about 45% w/w, or about 30% w/w to about 42% w/w of the uncoated dosage form.
- the total amount of a pH adjuster in the formulation can range from about 0.1% w/w to about 10% w/w of the core, or about 1% w/w to about 8% w/w, or about 3% w/w to about 7% w/w. However, these percentages can be adjusted as needed or desired by one of skill in the art.
- the binder may be selected from among known binders, including, e.g., cellulose, and povidone, among others.
- the binder is selected from among microcrystalline cellulose, crospovidone, and mixtures thereof.
- Suitable pH adjusters include, e.g., sodium carbonate, sodium bicarbonate, potassium carbonate, lithium carbonate, among others. Still other suitable components will be readily apparent to one of skill in the art.
- the compound(s) of the invention is in a sustained release formulation which contains rate-controlling components.
- rate controlling components are rate controlling polymers selected from among hydrophilic polymers and inert plasticized polymers.
- Suitable rate controlling hydrophilic polymers include, without limitation, polyvinyl alcohol (PVA), hypomellose and mixtures thereof.
- suitable insoluble or inert “plastic” polymers include, without limitation, one or more polymethacrylates (i. e., Eudragit®polymer).
- Other suitable rate-controlling polymer materials include, e.g., hydroxyalkyl celluloses, poly(ethylene) oxides, alkyl celluloses, carboxymethyl celluloses, hydrophilic cellulose derivatives, and polyethylene glycol.
- a formulation of the invention contains about 5% w/w to about 75% w/w microcrystalline cellulose (MCC), about 10% w/w to about 70% w/w MCC, about 20% w/w to about 60% w/w, about 25 wt % to about 30 wt %, or about 30% w/w to about 50% w/w, based on the weight of the uncoated dosage unit.
- MCC microcrystalline cellulose
- the core is uncoated.
- These cores can be placed into a suitable capsule shell or compressed into tablets, using techniques know to those of skill in the art.
- the results capsule shell or compressed tablets contain 10 mg to 400 mg of active compound.
- the formulation can contain one or more coatings over the core.
- the formulation consists of a pellet core and non-functional seal coating and a functional second coating.
- an initial seal coat can be applied directly to the core.
- the seal coat may be selected from among suitable polymers such as hydroxypropyl methylcellulose (HPMC), ethylcellulose, polyvinyl alcohol, and combinations thereof, optionally containing plasticizers and other desirable components.
- HPMC hydroxypropyl methylcellulose
- ethylcellulose ethylcellulose
- polyvinyl alcohol polyvinyl alcohol
- a particularly suitable seal coat contains HPMC.
- a suitable seal coat can be applied as a HPMC solution at a concentration of about 3% w/w to 25% w/w, and preferably 5% w/w to about 7.5% w/w.
- the initial seal coat can be applied on a fluid bed coater, e.g., by spraying.
- an Aeromatic StreaTM fluid bed apparatus can be fitted with a Wurster column and bottom spray nozzle system. Approximately 200 grams of the dried pellet cores are charged into the unit.
- the Opadry® Clear seal coat is applied with an inlet temperature of approximately 50° C. to 60° C., a coating solution spray rate of 5 to 10 grams/minute, atomization pressure of 1 to 2 bar. Upon drying, under suitable conditions, the initial seal coat is in the range of about 1% w/w to about 3% w/w, or about 2% w/w, of the uncoated core.
- a commercially available seal coat containing HPMC, among other inert components is utilized. One such commercially available seal coat is Opadry® Clear (Colorcon, Inc.).
- the oral dosage unit contains a further release or “delay” coating layer.
- This release coating layer may be applied over an initial seal coat or directly over a core.
- the release coat contains an ethylcellulose-based product and hypomellose.
- An example of one suitable ethylcellulose-based product is an aqueous ethylcellulose dispersion (25% solids).
- a solution of an aqueous ethylcellulose (25% solids) dispersion of about 3% w/w to about 25% w/w, and preferably about 3% to about 7%, or about 5% w/w, is applied to the core.
- hypomellose e.g., in an amount of about 5 to 15% by weight, and preferably, about 10% by weight
- the ethylcellulose may be about 85% to about 95%, by weight, or in embodiment, about 90% by weight, of the coat solution.
- the total release coat is in the range of about 2% to about 5%, or about 3% to about 4% w/w of the uncoated or initially-coated core.
- An enteric coat may be applied to the multiparticulates and may include, but is not limited to polymethacrylates, hypomellose, and ethylcellulose, or a combination thereof.
- the modified release multiparticulate formulation can contain from about 3% w/w to about 70% w/w of active compound or a combination thereof, and from about 5% w/w to about 75% w/w microcrystalline cellulose, based on the weight of an uncoated dosage form.
- the enteric coat contains a product which is a copolymer of methacrylic acid and methacrylates, such as the commercially available Eudragit® L 30 K55 (Röhm GmbH & Co. KG).
- this enteric coat is applied such that it coats the multiparticulate in an amount of about 15 to 45% w/w, or about 20% w/w to about 30% w/w, or about 25% w/w to 30% w/w of the uncoated or initially-coated multiparticulate.
- the enteric coat is composed of a Eudragit® L30D-55 copolymer (Röhm GmbH & Co. KG), talc, triethyl citrate, and water.
- the enteric coating may contain about 30% w/w of a 30 wt % dispersion of Eudragit® L 30 D55 coating; about 15% w/w talc, about 3% triethyl citrate; a pH adjuster such as sodium hydroxide and water.
- the enteric coat contains an ethylcellulose-based product, such as the commercially available Surelease® aqueous ethylcellulose dispersion (25% solids) product (Colorcon, Inc.).
- a solution of Surelease® dispersion of about 3% w/w to about 25% w/w, and preferably about 3% to about 7%, or about 5% w/w is applied to the multiparticulate.
- the enteric coat is in the range of about 2% to about 5%, or about 3% to about 4% w/w of the uncoated or initially-coated core.
- the enteric coat can be applied directly to the uncoated core, i.e., the uncoated core, or may be applied over an initial seal coat.
- the enteric coat as described above, is typically applied on a fluid bed coater.
- Surelease® aqueous ethylcellulose dispersion (25% solids) is applied in a similar fashion as the seal coat. After the ethylcellulose coat is applied, the core is dried for an additional 5 to 10 minutes.
- a final seal coat is applied over the enteric coat and, optionally, talc is utilized as a final step prior to filling the formulations into a suitable packaging unit.
- this final seal coat is composed of HPMC and water, upon drying, is less than about 1 wt % of the total, coated oral dosage unit.
- the present invention provides products containing the compounds and compositions of the invention.
- the compositions are packaged for use by the patient or his caregiver.
- the compositions can be packaged in a foil or other suitable package and is suitable for mixing into a food product (e.g., applesauce or the like) or into a drink for consumption by the patient.
- a food product e.g., applesauce or the like
- compositions are suspended in a physiologically compatible suspending liquid.
- pharmaceutical carriers and excipients can include, but are not limited to water, glycols, oils, alcohols, flavoring agents, preservatives, coloring agents, and the like.
- compositions are filled in capsules, caplets or the like for oral delivery.
- the present invention provides for the use of compositions of the invention in the preparation of medicaments, including but not limited to medicaments useful in the treatment of depression, gastrointestinal side-effects of venlafaxine in a subject undergoing treatment therewith, and irritable bowel syndrome.
- the present invention provides for the use of multiparticulate formulations of the invention in the preparation of medicaments for delivery to a pediatric or geriatric patient.
- the present invention provides for the use of multiparticulate formulations of the invention in the preparation of dosing units, including but not limited to dosing units for oral, transdermal, or mucosal administration.
- compositions and kits comprising a container, such as a foil package or other suitable container, having a formulation of the invention in unit dosage form.
- the above-identified compound may be synthesized according to the following scheme.
- the rate of drug transport through the caco-2 cells can be determined as the Apparent Permeability Coefficient according to the following formula:
- Apparent permeability rates are interpreted as follows. Apparent permeability values which are equal to or greater than those observed for metoprolol or propranolol during the same assay run are considered to give a predicted fraction absorbed estimate of ⁇ 90% (high permeability classification). Apparent permeability values less than metoprolol or propranolol are considered to be ⁇ 90% fa (moderate permeability classification). Apparent permeability values of ⁇ 10 nms ⁇ 1 are considered to be ⁇ 50% fa (low permeability classification). TER values of ⁇ 120 ohms cm 2 indicate low monolayer integrity over the assay period.
- a compound/metoprolol or propranolol ratio of ⁇ 1 indicates a high permeability compound.
- a compound/metoprolol or propranolol ratio of ⁇ 1 indicates a moderate to low permeability compound.
- receptor assay binding studies can be conducted in accordance with published and commercially available assays. These assays can be performed as described in the following publications, as modified by NovascreenTM services.
- the receptor binding assays can include, e.g., Adrenergic ⁇ -2A (human) binding assay [D. B. Bylund et al, J Pharmacol & Exp Ther, 245(2):600-607 (1988), with modifications; J A Totaro et al, Life Sciences, 44:459-467 (1989)]; dopamine transporter binding assay [Madras et al, Mol.
- the cellular/functional assays include, e.g., the norepinephrine transport (NET-T) human [A.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Selective dual serotonin and norepinephrine reuptake inhibitors are provided. These compounds have a lower side-effect profile and are useful in compositions and products for use in treatment of a variety of conditions including depression, fibromyalgia, anxiety, panic disorder, agoraphobia, post traumatic stress disorder, premenstrual dysphoric disorder, attention deficit disorder, obsessive compulsive disorder, social anxiety disorder, generalized anxiety disorder, autism, schizophrenia, obesity, anorexia nervosa, bulimia nervosa, Gilles de la Tourette Syndrome, vasomotor flushing, cocaine and alcohol addiction, sexual dysfunction, borderline personality disorder, fibromyalgia syndrome, diabetic neuropathic pain, chronic fatigue syndrome, pain, Shy Drager syndrome, Raynaud's syndrome, Parkinson's Disease, and epilepsy.
Description
This application claims the benefit under 35 USC 119(e) of U.S. Provisional Patent Application No. 60/699,883, filed Jul. 15, 2005.
The market for neuroscience and women's health drugs has been moving towards the use of dual serotonin and norepinephrine reuptake inhibitors (SNRI) for first line treatment of various indications, as evidenced by the recent development of SNRI's such as Venlafaxine and Duloxetine. This contrasts with the traditional use of selective serotonin reuptake inhibitors (SSRI). Although the side-effect profile of SSRI's and SNRI's are less severe as compared to older, tricyclic antidepressants compounds, there are still some undesirable side effects related to the selectivity or other neuronal receptor binding (muscarinic, histamine and alpha-adrenergic, etc.) of these SSRI's and SNRI's. Binding to these receptors can lead to side effects such as, dry mouth, drowsiness, appetite stimulation and some cardiovascular risks.
The higher norepinephrine (NE) activity of SNRI's has also been implicated in a number of side effects and therefore limits their application. For example, the currently available SNRI's have limited application for the treatment of irritable bowel syndrome (IBS) because of the constipation side effect associated with higher NE activity. Another potential side effect of SNRI's is that at higher dosages there is a modest increase in diastolic blood pressure and this side effect is associated with higher NE activity. Further, potential overdose situations have been associated with excess adrenergic stimulation, seizures, arrhythmias, bradycardia, hypertension, hypotension and death.
What are needed are alternative compositions for treating conditions associated with serotonin and norepinephrine imbalances, by allowing serotonin and or norepinephrine re-uptake inhibition for efficacy with lower post synaptic receptor binding for reduced side-effects [(H. Hall, et al., Acta pharmacol et. toxicol. 1984, 54, 379-384)].
The present invention provides a compound with dual serotonin and norepinephrine reuptake inhibitor activity with low levels of undesirable side-effects.
In one aspect, the invention provides a compound of the structure:
or a prodrug or a pharmaceutically acceptable salt thereof.
In another aspect, the invention provides a pharmaceutical composition comprising a compound of the invention and pharmaceutically acceptable carrier.
In still another aspect, the invention provides a method of using the compound of the invention for treating irritable bowel syndrome, premature ejaculation and urinary incontinence in a subject in need thereof.
In another aspect, the invention provides a pharmaceutical composition comprising a compound of the invention and pharmaceutically acceptable carrier.
Still other aspects and advantages of the invention will be apparent from the following detailed description.
The present invention provides a compound which has the structure:
or a prodrug or a pharmaceutically acceptable salt thereof.
Advantageously, compounds and formulations described herein reduce the undesirable side-effects of SNRI's, including constipation, hypertension, and the histamine-related side-effects. The compounds described herein are also predicted to have low norepinephrine reuptake inhibition activity (NE), as compared to existing SNRI's. This attribute is very attractive for SNRI indications, e.g., depression, for patients that have cardiovascular risks related to hypertension. The compounds will have activity on serotonin and norepinephrine neurotransmitters in the brain making it desirable for anti-depression therapy and other related neurological indications.
In one embodiment, a compound of the above structure may contain one or more asymmetric carbon atoms and some of the compounds may contain one or more asymmetric (chiral) centers and may thus give rise to optical isomers and diastereomers. Thus, in one embodiment, the invention includes such optical isomers and disastereomers; as well as the racemic and resolved, enantiomerically pure stereoisomers; as well as other mixtures of the R and S stereoisomers, and pharmaceutically acceptable salts, hydrates, and prodrugs thereof.
The term “alkyl” is used herein to refer to both straight- and branched-chain saturated aliphatic hydrocarbon groups, generally of 1, 2, 3, 4, 5, 6, 7 or 8 carbon atoms in length, unless otherwise specified. The term “lower alkyl” is used to refer to alkyl chains of 1, 2, 3, or 4 carbons in length. The terms “substituted alkyl” refers to alkyl as just described having from one to three substituents selected from the group including halogen, CN, OH, NO2, amino, aryl, heterocyclic, substituted aryl, substituted heterocyclic, alkoxy, aryloxy, substituted alkyloxy, alkylcarbonyl, alkylcarboxy, alkylamino, arylthio. These substituents may be attached to any carbon of alkyl group provided that the attachment constitutes a stable chemical moiety.
The term “halogen” refers to Cl, Br, F, or I.
The term “aryl” is used herein to refer to a carbocyclic aromatic system, which may be a single ring, or multiple aromatic rings fused or linked together as such that at least one part of the fused or linked rings forms the conjugated aromatic system. The aryl groups include, but are not limited to, phenyl, naphthyl, biphenyl, anthryl, tetrahydronaphthyl, and phenanthryl.
The term “substituted aryl” refers to aryl as just defined having one, two, three or four substituents from the group including halogen, CN, OH, NO2, amino, alkyl, cycloalkyl, alkenyl, alkynyl, alkoxy, aryloxy, substituted alkyloxy, alkylcarbonyl, alkylcarboxy, alkylamino, and arylthio.
Alkenyl and alkynyl groups may have for example 2 to 7 carbon atoms. Cycloalkyl groups may have 3 to 8 carbon atoms.
The term “heterocyclic” is used herein to describe a stable 4-, 5-, 6- or 7-membered monocyclic or a stable multicyclic heterocyclic ring which is saturated, partially unsaturated, or unsaturated, and which consists of carbon atoms and from one to four heteroatoms selected from the group including N, O, and S atoms. At least one carbon atom may be C═O. The N and S atoms may be oxidized. The heterocyclic ring also includes any multicyclic ring in which any of above defined heterocyclic rings is fused to an aryl ring. A multicyclic ring may be 2 or 3 monocyclic rings of 4- to 7-membered rings as described above. The heterocyclic ring may be attached at any heteroatom or carbon atom provided the resultant structure is chemically stable. Such heterocyclic groups include, for example, tetrahydrofuran, piperidinyl, piperazinyl, 2-oxopiperidinyl, azepinyl, pyrrolidinyl, imidazolyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, oxazolyl, isoxazolyl, morpholinyl, indolyl, quinolinyl, thienyl, furyl, benzofuranyl, benzothienyl, thiamorpholinyl, thiamorpholinyl sulfoxide, and isoquinolinyl.
The term “substituted heterocyclic” is used herein to describe the heterocyclic just defined having one to four substituents selected from the group which includes halogen, CN, OH, NO2, amino, alkyl, substituted alkyl, cycloalkyl, alkenyl, substituted alkenyl, alkynyl, alkoxy, aryloxy, substituted alkyloxy, alkylcarbonyl, alkylcarboxy, alkylamino, or arylthio.
The term “alkoxy” is used herein to refer to the OR group, where R is alkyl or substituted alkyl. The term “aryloxy” is used herein to refer to the OR group, where R is aryl or substituted aryl. The term “alkylcarbonyl” is used herein to refer to the RCO group, where R is alkyl or substituted alkyl. The term “alkylcarboxy” is used herein to refer to the COOR group, where R is alkyl or substituted alkyl. The term “aminoalkyl” refers to both secondary and tertiary amines wherein the alkyl or substituted alkyl groups, containing one to eight carbon atoms, which may be either same or different and the point of attachment is on the nitrogen atom.
The compounds of the present invention can be used in the form of salts derived from pharmaceutically or physiologically acceptable acids or bases. These salts include, but are not limited to, the following salts with organic and inorganic acids such as acetic, lactic, citric, tartaric, succinic, fumaric, maleic, malonic, mandelic, mallic, hydrochloric, hydrobromic, phosphoric, nitric, sulfuric, methanesulfonic, toluenesulfonic and similarly known acceptable acids, and mixtures thereof. Other salts include salts with alkali metals or alkaline earth metals, such as sodium (e.g., sodium hydroxide), potassium (e.g., potassium hydroxide), calcium or magnesium.
These salts, as well as other compounds of the invention may be in the form of esters, carbamates and other conventional “pro-drug” forms, which, when administered in such form, convert to the active moiety in vivo. In a currently preferred embodiment, the prodrugs are esters. See, e.g., B. Testa and J. Caldwell, “Prodrugs Revisited: The “Ad Hoc” Approach as a Complement to Ligand Design”, Medicinal Research Reviews, 16(3):233-241, ed., John Wiley & Sons (1996).
The compounds of the present invention can be prepared using the methods described herein, together with synthetic methods known in the synthetic organic arts or variations of these methods by one of skill in the art. The compounds of the present invention can be prepared using the methods described below, together with synthetic methods known in the synthetic organic arts or variations of these methods. [See, generally, Comprehensive Organic Synthesis, “Selectivity, Strategy & Efficiency in Modern Organic Chemistry”, ed., I. Fleming, Pergamon Press, New York (1991); Comprehensive Organic Chemistry, “The Synthesis and Reactions of Organic Compounds”, ed. J. F. Stoddard, Pergamon Press, New York (1979)]. The following scheme provides one method for the synthesis of a compound of the invention.
In another embodiment, a method of preparing a compound of structure A can be used:
wherein X is C, N, or O; and Y is a C or absent; when X is C; R2 is selected from H, halogen, CF3, phenyl, SCH3, NHCH3, OC1-C6 alkyl, and substituted OC1-C6alkyl; and when X is N, R2 is selected from H, phenyl or CF3.
This method involves the step of reacting a 2-(4-hydroxy-phenol)-dimethylacetamide with a benzyl halide to afford a 2-(4-benzyloxy-phenyl)-dimethylacetamide. The 2-(4-hydroxy-phenol)-dialkylacetamide may be in a solution comprising dimethylformamide. Further, the solution can be treated with potassium carbonate prior to reaction with the benzyl halide.
To prepare the compound of structure A, the 2-(4-benzyloxy-phenyl)-dimethylacetamide is reacted with a compound having the structure:
wherein X is C, N, or O; and Y is a C or absent; when X is C; R2 is selected from H, halogen, CF3, SCH3, NHCH3, OH, OC1-C6 alkyl, phenyl, and substituted OC1-C6alkyl; when X is N, R2 is H, phenyl or CF3; in a solution (e.g., containing THF) with a suitable base. Examples of suitable bases include, e.g., lithium diisopropylamide and isopropyl magnesium bromide. In one embodiment, this compound is selected from the group consisting of pyran-4-one and phenyl-piperidine-4-one. The resulting product is reduced (e.g., using LiAlH4) to provide the corresponding dimethylamine and the benzyl ether is hydrogenated to remove the benzyl group and afford a compound of structure A.
Advantageously, it has been found that the process is highly selective for the cis-compounds, leading to a high yield and good crystallinity. Without wishing to be bound by theory, it is believed that the LAH reaction plays a significant role in this specificity.
In one embodiment, the method of synthesizing the compounds described herein provides a compound having a configuration is greater than 50% cis diastereomer. In another embodiment, the method of synthesizing the compounds of the invention provides a compound having the configuration which is greater than 95% cis diastereomer. In another embodiment, it may be desirable to substitute sodium borohydride for the LAH.
In one embodiment, 4-(Dimethylcarbamoylmethyl)phenol in dimethylformamide (DMF) is treated with K2CO3 followed by benzyl bromide. The benzyl bromide protecting group is particularly well suited for use in the method of synthesizing the compounds of the invention because of its ease of removal during the final step. However, other protecting groups may be substituted.
The mixture is stirred at room temperature followed by heating at 60° C. for 1 hour. The mixture is concentrated to remove DMF, diluted with EtOAc and washed with water. Dry MgSO4 is added, the mixture filtered and concentrated to low volume. Hexane is added to precipitate the ketal intermediate product. Solids are collected via filtration and dried.
A solution of the amide a pyran-4-one in THF, a solution of LDA, and a solution of pyran-4-one in THF are mixed. The reaction is quenched with saturated NH4Cl, extracted with EtOAc and concentrated to an oil. Product is crystallized from hot EtOAc/hexanes to provide the ketone intermediate.
A solution of the ketone in THF was added to a solution of lithium aluminum hydride (LAH) in THF at −78° C. The mixture is warmed to room temperature and stirred for at least 3 hours. The reaction is quenched with MeOH followed by NaOH and stirred. The solid are removed by filtration, followed by a wash (e.g., with THF), and concentrated to give a solid. The resulting solid is recrystallized from EtOAc/hexanes to provide the corresponding benzyl ether.
This process is anticipated to be highly selective for the cis-compounds, leading to a high yield and good crystallinity. Without wishing to be bound by theory, it is believed that the LAH reaction plays a significant role in this specificity. In one embodiment, the method of synthesizing the compounds of the invention provides a compound having a configuration is greater than 50% cis diastereomer. In another embodiment, the method of synthesizing the compounds of the invention provides a compound having the configuration which is greater than 95% cis diastereomer. In another embodiment, it may be desirable to substitute sodium borohydride for the LAH.
A mixture of the benzyl ether and Pd/C in 100 mL of SDA alcohol are hydrogenated under pressure overnight. The solid is purified by filtration followed by an ethanol wash. Solid is concentrated and crystallized from EtOAc/hexane to give the final product.
Salts may be formed by contacting stoichiometric amounts of the acid with the free base. Alternatively, the acid may be used in excess, usually no more than 1.5 equivalents. In one embodiment, the base or the acid are in solution, or both are in solution.
The crystalline salt may be prepared by directly crystallizing from a solvent. Improved yield may be obtained by evaporation of some or all of the solvent or by crystallization at elevated temperatures followed by controlled cooling, preferably in stages. Careful control of precipitation temperature and seeding may be used to improve the reproducibility of the production process and the particle size distribution and form of the product.
In one embodiment, compounds of the invention provide a different ratio of serotonin reuptake inhibition to norepinephrine reuptake inhibition than the currently available SNRI's. This attribute is very attractive for indications like Irritable Bowel Syndrome (IBS) where the higher NE activity of SNRI's limits the application because of constipation side effects. This lower NE activity is also attractive for patients that have cardiovascular risks related to the side effect of hypertension. It also has an application in dealing with urinary incontinence.
The compositions can be used to treat or prevent central nervous system disorders including, but not limited to, depression (including but not limited to, major depressive disorder, bipolar disorder and dysthymia), anxiety, fibromyalgia, anxiety, panic disorder, agorophobia, post traumatic stress disorder, premenstrual dysphoric disorder (also known as premenstrual syndrome), attention deficit disorder (with and without hyperactivity), obsessive compulsive disorder (including trichotillomania), social anxiety disorder, generalized anxiety disorder, autism, schizophrenia, obesity, anorexia nervosa, bulimia nervosa, Gilles de la Tourette Syndrome, vasomotor flushing, cocaine and alcohol addiction, sexual dysfunction, (including premature ejaculation), borderline personality disorder, chronic fatigue syndrome, incontinence (including fecal incontinence, overflow incontinence, passive incontinence, reflex incontinence, stress urinary incontinence, urge incontinence, urinary exertional incontinence and urinary incontinence), pain (including but not limited to migraine, chronic back pain, phantom limb pain, central pain, neuropathic pain such as diabetic neuropathy, and postherpetic neuropathy), Shy Drager syndrome, Raynaud's syndrome, Parkinson's Disease, epilepsy, and others. Compounds and compositions can also be used for preventing relapse or recurrence of depression; to treat cognitive impairment; for the inducement of cognitive enhancement in patient suffering from senile dementia, Alzheimer's disease, memory loss, amnesia and amnesia syndrome; and in regimens for cessation of smoking or other tobacco uses. Additionally, compounds and compositions can be used for treating hypothalamic amenorrhea in depressed and non-depressed human females.
An effective amount of the composition is an amount sufficient to prevent, inhibit, or alleviate one or more symptoms of the aforementioned conditions. The dosage amount useful to treat, prevent, inhibit or alleviate each of the aforementioned conditions will vary with the severity of the condition to be treated and the route of administration. The dose, and dose frequency will also vary according to age, body weight, response and past medical history of the individual human patient. In generally the recommended daily dose range for the conditions described herein lie within the range of 10 mg to about 1,000 mg per day, or within the range of about 15 mg to about 350 mg/day or from about 15 mg to about 140 mg/day. In other embodiments of the invention, the dosage will range from about 30 mg to about 90 mg/day. Dosage is described in terms of the free base and is adjusted accordingly for the succinate salt. In managing the patient, the therapy is generally initiated at a lower dose and increased if necessary. Dosages for non-human patients can be adjusted accordingly by one skilled in the art.
A compound may also be provided in combination with other active agents including, e.g., venlafaxine. The dosage of venlafaxine is about 75 mg to about 350 mg/day or about 75 mg to about 225 mg/day. In another embodiment, the dosage of venlafaxine is about 75 mg to about 150 mg/day. Venlafaxine or another active agent delivered in a regimen with the composition of the invention may be formulated together with the composition of the invention, or delivered separately.
Any suitable route of administration can be employed for providing the patient with an effective amount of a compound of the invention. For example, oral, mucosal (e.g., nasal, sublingual, buccal, rectal or vaginal), parental (e.g. intravenous or intramuscular), transdermal, and subcutaneous routes can be employed. Preferred routes of administration include oral, transdermal and mucosal.
A compound of the invention can be combined with a pharmaceutical carrier or excipient (e.g., pharmaceutically acceptable carriers and excipients) according to conventional pharmaceutical compounding technique to form a pharmaceutical composition or dosage form. Suitable pharmaceutically acceptable carriers and excipients include, but are not limited to, those described in Remington's, The Science and Practice of Pharmacy, (Gennaro, A R, ed., 19th edition, 1995, Mack Pub. Co.), which is herein incorporated by reference. The phrase “pharmaceutically acceptable” refers to additives or compositions that are physiologically tolerable and do not typically produce an allergic or similar untoward reaction, such as gastric upset, dizziness and the like, when administered to an animal, such as a mammal (e.g., a human).
In one embodiment, the composition of the invention is an immediate release formulation. In another embodiment, the composition of the invention is a sustained release formulation. Illustrative formulations are described herein. However, the invention is not so limited.
Still other suitable compositions of the invention will be readily apparent to one of skill in the art given the information provided herein. For example, in addition to providing dosing units suitable for oral administration such as tablets, capsules and caplets, the invention provides dosing units suitable for parenteral administration, transdermal or mucosal administration.
Oral solid pharmaceutical compositions may include, but are not limited to starches, sugars, microcrystalline cellulose, diluents, granulating agents, lubricants, binders and disintegrating agents. In one embodiment, the pharmaceutical composition and dosage form may also include other active components.
In one embodiment, the active component(s) are prepared in the form of a tablet or tablet-in-capsule. For example, a compound is mixed with suitable excipients to form a granulation. In one embodiment, the granulation is formed using a roller compactor. In another embodiment, the granulation is formed using a high shear granulator. However, other methods known to those of skill in the art, including, e.g., a low shear granulator, a blender, etc, can be utilized to prepare suitable granulations. The granulation is then compressed using conventional methods to form a tablet.
This tablet may be provided with additional layers, optionally, containing additional layers with active components, or other layers as may be desired for enteric coating, seal coating, separation between layers, or the like. In one embodiment, the tablet core contains one active component and a second active component is provided in a coating layer.
Optionally, a final seal coat is applied over the tablet. Suitably, this final seal coat is composed of hydroxypropylmethylcellulose (HPMC) and water, upon drying, is less than about 1 wt % of the total, coated tablet. Optionally, talc is utilized as a final step prior to filling the multi-layer tablets into a suitable packaging unit.
Alternatively or additionally, the tablet may be loaded into a capsule.
In another aspect, the invention provides a capsule containing the active component. Such capsules are produced using techniques known to those of skill in the art.
In one embodiment, the invention provides a formulation containing a core of one or more of the compounds of the invention and one or more pharmaceutically acceptable excipients, e.g., diluents, binders, fillers, glidants, anti-adherents, a pH adjuster and/or an adjuvant. The core contains about 3% w/w to about 70% w/w active compound(s). In other embodiments, the compound can range from about 5% w/w to about 60% w/w, from about 10% w/w to about 50% w/w, from about 20% w/w to about 40% w/w, or from about 25% w/w to about 35% w/w, about 30% w/w to about 45% w/w, or about 32% to about 44% w/w, based upon 100% weight of the uncoated dosage form. The core may be in a sustained release formulation or other suitable cores as are described in greater detail below may be selected. In one embodiment, a delay release coat and/or an enteric coat are provided over the core.
Suitably, the total amount of diluent, binders, fillers, glidants, anti-adherents, and adjuvants present in the core is an amount of about 30% w/w to about 97% w/w of the core, or about 25 wt % to about 80 wt % of the core. For example, when present, a binder, diluent and/or filler can each be present in an amount of about 15% w/w to about 80% w/w, or about 20% w/w to about 70% w/w, or about 25% w/w to about 45% w/w, or about 30% w/w to about 42% w/w of the uncoated dosage form. The total amount of a pH adjuster in the formulation can range from about 0.1% w/w to about 10% w/w of the core, or about 1% w/w to about 8% w/w, or about 3% w/w to about 7% w/w. However, these percentages can be adjusted as needed or desired by one of skill in the art.
The binder may be selected from among known binders, including, e.g., cellulose, and povidone, among others. In one embodiment, the binder is selected from among microcrystalline cellulose, crospovidone, and mixtures thereof.
Suitable pH adjusters include, e.g., sodium carbonate, sodium bicarbonate, potassium carbonate, lithium carbonate, among others. Still other suitable components will be readily apparent to one of skill in the art.
In one embodiment, the compound(s) of the invention is in a sustained release formulation which contains rate-controlling components. Typically, such rate controlling components are rate controlling polymers selected from among hydrophilic polymers and inert plasticized polymers. Suitable rate controlling hydrophilic polymers include, without limitation, polyvinyl alcohol (PVA), hypomellose and mixtures thereof. Examples of suitable insoluble or inert “plastic” polymers include, without limitation, one or more polymethacrylates (i. e., Eudragit®polymer). Other suitable rate-controlling polymer materials include, e.g., hydroxyalkyl celluloses, poly(ethylene) oxides, alkyl celluloses, carboxymethyl celluloses, hydrophilic cellulose derivatives, and polyethylene glycol.
In one embodiment, a formulation of the invention contains about 5% w/w to about 75% w/w microcrystalline cellulose (MCC), about 10% w/w to about 70% w/w MCC, about 20% w/w to about 60% w/w, about 25 wt % to about 30 wt %, or about 30% w/w to about 50% w/w, based on the weight of the uncoated dosage unit.
In one embodiment, the core is uncoated. These cores can be placed into a suitable capsule shell or compressed into tablets, using techniques know to those of skill in the art. Suitably, the results capsule shell or compressed tablets contain 10 mg to 400 mg of active compound.
In other embodiments, the formulation can contain one or more coatings over the core. In still other embodiments, the formulation consists of a pellet core and non-functional seal coating and a functional second coating.
In one embodiment, an initial seal coat can be applied directly to the core. Although the components of this seal coat can be modified by one of skill in the art, the seal coat may be selected from among suitable polymers such as hydroxypropyl methylcellulose (HPMC), ethylcellulose, polyvinyl alcohol, and combinations thereof, optionally containing plasticizers and other desirable components. A particularly suitable seal coat contains HPMC. For example, a suitable seal coat can be applied as a HPMC solution at a concentration of about 3% w/w to 25% w/w, and preferably 5% w/w to about 7.5% w/w. The initial seal coat can be applied on a fluid bed coater, e.g., by spraying. In one embodiment, an Aeromatic Strea™ fluid bed apparatus can be fitted with a Wurster column and bottom spray nozzle system. Approximately 200 grams of the dried pellet cores are charged into the unit. The Opadry® Clear seal coat is applied with an inlet temperature of approximately 50° C. to 60° C., a coating solution spray rate of 5 to 10 grams/minute, atomization pressure of 1 to 2 bar. Upon drying, under suitable conditions, the initial seal coat is in the range of about 1% w/w to about 3% w/w, or about 2% w/w, of the uncoated core. In another embodiment, a commercially available seal coat containing HPMC, among other inert components, is utilized. One such commercially available seal coat is Opadry® Clear (Colorcon, Inc.).
In one embodiment, the oral dosage unit contains a further release or “delay” coating layer. This release coating layer may be applied over an initial seal coat or directly over a core. In one embodiment, the release coat contains an ethylcellulose-based product and hypomellose. An example of one suitable ethylcellulose-based product is an aqueous ethylcellulose dispersion (25% solids). One such product is commercially available as Surelease® product (Colorcon, Inc.). In one embodiment, a solution of an aqueous ethylcellulose (25% solids) dispersion of about 3% w/w to about 25% w/w, and preferably about 3% to about 7%, or about 5% w/w, is applied to the core. Optionally, hypomellose, e.g., in an amount of about 5 to 15% by weight, and preferably, about 10% by weight, is mixed with the ethylcellulose dispersion, to form the coat solution. Thus, such the ethylcellulose may be about 85% to about 95%, by weight, or in embodiment, about 90% by weight, of the coat solution. Upon drying under suitable conditions, the total release coat is in the range of about 2% to about 5%, or about 3% to about 4% w/w of the uncoated or initially-coated core.
An enteric coat (rate-controlling film) may be applied to the multiparticulates and may include, but is not limited to polymethacrylates, hypomellose, and ethylcellulose, or a combination thereof. The modified release multiparticulate formulation can contain from about 3% w/w to about 70% w/w of active compound or a combination thereof, and from about 5% w/w to about 75% w/w microcrystalline cellulose, based on the weight of an uncoated dosage form.
In one embodiment, the enteric coat contains a product which is a copolymer of methacrylic acid and methacrylates, such as the commercially available Eudragit® L 30 K55 (Röhm GmbH & Co. KG). Suitably, this enteric coat is applied such that it coats the multiparticulate in an amount of about 15 to 45% w/w, or about 20% w/w to about 30% w/w, or about 25% w/w to 30% w/w of the uncoated or initially-coated multiparticulate. In one embodiment, the enteric coat is composed of a Eudragit® L30D-55 copolymer (Röhm GmbH & Co. KG), talc, triethyl citrate, and water. More particularly, the enteric coating may contain about 30% w/w of a 30 wt % dispersion of Eudragit® L 30 D55 coating; about 15% w/w talc, about 3% triethyl citrate; a pH adjuster such as sodium hydroxide and water.
In another embodiment, the enteric coat contains an ethylcellulose-based product, such as the commercially available Surelease® aqueous ethylcellulose dispersion (25% solids) product (Colorcon, Inc.). In one embodiment, a solution of Surelease® dispersion of about 3% w/w to about 25% w/w, and preferably about 3% to about 7%, or about 5% w/w, is applied to the multiparticulate. Upon drying under suitable conditions, the enteric coat is in the range of about 2% to about 5%, or about 3% to about 4% w/w of the uncoated or initially-coated core.
The enteric coat can be applied directly to the uncoated core, i.e., the uncoated core, or may be applied over an initial seal coat. The enteric coat, as described above, is typically applied on a fluid bed coater. In one embodiment, Surelease® aqueous ethylcellulose dispersion (25% solids) is applied in a similar fashion as the seal coat. After the ethylcellulose coat is applied, the core is dried for an additional 5 to 10 minutes.
In one embodiment, a final seal coat is applied over the enteric coat and, optionally, talc is utilized as a final step prior to filling the formulations into a suitable packaging unit. Suitably, this final seal coat is composed of HPMC and water, upon drying, is less than about 1 wt % of the total, coated oral dosage unit.
Kits
In another embodiment, the present invention provides products containing the compounds and compositions of the invention.
In one embodiment, the compositions are packaged for use by the patient or his caregiver. For example, the compositions can be packaged in a foil or other suitable package and is suitable for mixing into a food product (e.g., applesauce or the like) or into a drink for consumption by the patient.
In another embodiment, the compositions are suspended in a physiologically compatible suspending liquid. For oral liquid pharmaceutical compositions, pharmaceutical carriers and excipients can include, but are not limited to water, glycols, oils, alcohols, flavoring agents, preservatives, coloring agents, and the like.
In yet another embodiment, the compositions are filled in capsules, caplets or the like for oral delivery.
In another embodiment, the present invention provides for the use of compositions of the invention in the preparation of medicaments, including but not limited to medicaments useful in the treatment of depression, gastrointestinal side-effects of venlafaxine in a subject undergoing treatment therewith, and irritable bowel syndrome.
In another embodiment, the present invention provides for the use of multiparticulate formulations of the invention in the preparation of medicaments for delivery to a pediatric or geriatric patient.
In other embodiments, the present invention provides for the use of multiparticulate formulations of the invention in the preparation of dosing units, including but not limited to dosing units for oral, transdermal, or mucosal administration.
Also encompassed by the invention are pharmaceutical packs and kits comprising a container, such as a foil package or other suitable container, having a formulation of the invention in unit dosage form.
The following examples are illustrative of the invention.
The above-identified compound may be synthesized according to the following scheme.
A solution of the amide (3 g, 11.1 mmol) in 40 mL of THF was added to a solution of 2 N LDA (9 mL, 18 mmol) at −78° C. After 1 h a solution of pyran-4-one (1.5 g, 15 mmol) in 15 mL of THF were added. After 2 h the mixture was quenched with sat. NH4Cl. The layers were separated and the aqueous layer was extracted with EtOAc. The combined organic layers were concentrated, diluted with CH2Cl2, washed with water, dried Na2SO4, filtered and concentrated to give an oil which solidified upon standing. Trituration with EtOAc/hexane gave 2.88 g, 70% yield of an off-white solid. HPLC/MS 98.6 area% with 1.4 area % SM amide.
A solution of amide (2 g, 5.4 mmol) in 25 mL of THF was added to a solution of 1M LAH (19 mL, 19 mmol) in THF at −78° C. Allow to slowly warm to RT and stir overnight. Quench with MeOH (5 mL) followed by 1N NaOH (10 mL). Stir for 20 minutes before filtering off solids and washing with THF. The combined THF parts were concentrated, diluted with CH2Cl2, washed with water, dried Na2SO4, filtered and concentrated. Trituration with EtOAc/hexanes gave 1.27 g, 66% yield of a solid. LC/MS showed 96.2 area % desired material.
The benzyl ether (1 g, 2.81 mmol) in 25 mL of 2B-3 SDA alcohol and 250 mg of 10% Pd/C (50% wet) were hydrogenated at 130 psi overnight. Filter off catalyst and concentrate to give an oil. Trituration with EtOAc/hexane gave 332.9 mg, 45% yield of a tan solid of the title compound. LC/MS 96.9 area%.
- Purity HPLC/MS shows 96.9 area % with SLI 0.7 area %
- Molecular Formula C15H23NO3
- Molecular Weight 265.35
- Appearance light brown crystalline powder
- Melting point (DSC onset) 213.67° C.
- X-ray (powder diff) Crystalline
- Hygroscopicity Non-hygroscopic (2% weight gain @ 70% RH, 6% weight gain @ 90% RH, weight gain was lost when returned to 10% RH or 0% RH),
- Solution Stability The compound was stable for at least 24 hours at room temperature in all of the aqueous solutions (pH 1.25-8.8).
- pH-Solubility Final pH 1.25 13.57 mg/ml
- Final pH 4.40 3.91 mg/ml
- Final pH 7.10 3.47 mg/ml
- Final pH 8.80 2.96 mg/ml
The rate of drug transport through the caco-2 cells can be determined as the Apparent Permeability Coefficient according to the following formula:
-
- ΔQ=Change in quantity
- ΔT=Change in time (minutes)
- Co=Initial concη in the donor chamber (mM·cm−3)
- A=Surface area of membrane (cm2)
- 60=Conversion factor to give cm·s−1
- Rv=volume of receiver compartment.
Transepithelial electrical resistance (TER) is calculated from resistance measurements according to the following formula: TER=(R[cells+filter+medium])−(R[filter+medium])×cell area.
Apparent permeability rates are interpreted as follows. Apparent permeability values which are equal to or greater than those observed for metoprolol or propranolol during the same assay run are considered to give a predicted fraction absorbed estimate of ≧90% (high permeability classification). Apparent permeability values less than metoprolol or propranolol are considered to be ≦90% fa (moderate permeability classification). Apparent permeability values of <10 nms−1 are considered to be ≦50% fa (low permeability classification). TER values of <120 ohms cm2 indicate low monolayer integrity over the assay period.
A compound/metoprolol or propranolol ratio of ≧1 indicates a high permeability compound. A compound/metoprolol or propranolol ratio of <1 indicates a moderate to low permeability compound.
In initial experiments using in-house assays, 4-[2-dimethylamino-1-(4-hydroxy-phenyl)-ethyl]-tetrahydro-pyran-4-ol has been found active in a human serotonin transporter assay.
Other receptor assay binding studies can be conducted in accordance with published and commercially available assays. These assays can be performed as described in the following publications, as modified by Novascreen™ services. The receptor binding assays can include, e.g., Adrenergic α-2A (human) binding assay [D. B. Bylund et al, J Pharmacol & Exp Ther, 245(2):600-607 (1988), with modifications; J A Totaro et al, Life Sciences, 44:459-467 (1989)]; dopamine transporter binding assay [Madras et al, Mol. Pharmacol., 36:518-524, with modifications, J J Javitch et al, Mol Pharmacol, 26:35-44 (1984)]; histamine H1 binding assay [Chang, et al., J Neurochem, 32:1658-1663 (1979), with modifications, J I Martinez-Mir, et al., Brain Res, 526:322-327 (1990); E E J Haaksma, et al, Pharmacol Ther, 47:73-104 (1990)]; imidazoline binding assay [C M Brown et al, Brit. J Pharmacol, 99(4):803-809 (1990), with modifications], muscarinic M5 (human recombinant) binding assay [N J Buckley et al, Mol Pharmacol, 35:469-476 (1989), with modifications]; norepinephrine transporter (human recombinant) binding assay [R. Raisman, et al., Eur J Pharmacol, 78:345-351 (1982), with modification, S. Z. Raisman, et al, Eur J Pharmacol, 72:423 (1981)]; serotonin transporter (human) binding assay [R J D'Amato, et al, J Pharmacol & Exp Ther, 242:364-371 (1987), with modifications; NL Brown et al, Eur J Pharmacol, 123:161-165 (1986)]. The cellular/functional assays include, e.g., the norepinephrine transport (NET-T) human [A. Galli, et al, J Exp Biol, 198:2197-2212 (1995); and the serotonin transport (Human) assay [D'Amato et al, cited above and NL Brown et al, Eur J Pharmacol, 123:161-165 (1986)]. The results are shown in % Inhibition of the receptor. Venlafaxine has been described as having a 20% inhibition of Histamine H1 at 101M (Muth et al., Drug Development Research 23:191-199 (1991)).
It is anticipated that the compounds of the invention will be selective.
The present invention is not to be limited in scope by the specific embodiments described herein. Various modifications to these embodiments will be obvious to one of skill in the art from the description. Such modifications fall within the scope of the appended claims.
Patents, patent applications, publications, procedures and the like are cited throughout the application. These documents are incorporated by reference herein.
Claims (14)
2. The compound according to claim 1 , wherein the prodrug is an ester or ether of said compound.
3. The compound according to claim 1 , wherein the prodrug is a carbamate of said compound.
4. The compound according to claim 1 , wherein the pharmaceutically acceptable salt is selected from a hydrochloride, succinate or formate salt.
5. A pharmaceutical composition comprising a compound according to claim 1 and pharmaceutically acceptable carrier.
6. The pharmaceutical composition according to claim 5 , comprising an oral dosage unit.
7. The pharmaceutical composition according to claim 6 , wherein said oral dosage unit is a capsule or tablet.
8. The pharmaceutical composition according to claim 5 , comprising an immediate release formulation.
9. The pharmaceutical composition according to claim 5 , comprising a sustained release formulation.
10. A method of treating irritable bowel syndrome and urinary incontinence comprising administering a compound according to claim 1 to a subject in need thereof.
11. A method of treating depression, fibromyalgia, anxiety, panic disorder, agorophobia, anxiety, post traumatic stress disorder, premenstrual dysphoric disorder, attention deficit disorder, obsessive compulsive disorder, social anxiety disorder, generalized anxiety disorder, autism, schizophrenia, obesity, anorexia nervosa, bulimia nervosa, Gilles de la Tourette Syndrome, vasomotor flushing, cocaine and alcohol addiction, sexual dysfunction, premature ejaculation, borderline personality disorder, chronic fatigue syndrome, pain, Shy Drager syndrome, Raynaud's syndrome, Parkinson's Disease, and epilepsy, said method comprising administering a therapeutically effective amount of a compound according to claim 1 .
12. The method according to claim 11 , wherein the compound is formulated for once a day dosing.
13. The method of claim 11 , wherein the depression is major depressive disorder (MDD).
14. The method of claim 11 , wherein the method treats premature ejaculation.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/486,336 US7595340B2 (en) | 2005-07-15 | 2006-07-13 | Serotonin and norepinephrine reuptake inhibitor and uses thereof |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US69988305P | 2005-07-15 | 2005-07-15 | |
| US11/486,336 US7595340B2 (en) | 2005-07-15 | 2006-07-13 | Serotonin and norepinephrine reuptake inhibitor and uses thereof |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20070015824A1 US20070015824A1 (en) | 2007-01-18 |
| US7595340B2 true US7595340B2 (en) | 2009-09-29 |
Family
ID=37662416
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/486,336 Expired - Fee Related US7595340B2 (en) | 2005-07-15 | 2006-07-13 | Serotonin and norepinephrine reuptake inhibitor and uses thereof |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US7595340B2 (en) |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101321741A (en) * | 2005-12-05 | 2008-12-10 | 惠氏公司 | Process for selective synthesis of enantiomers of substituted 1-(2-amino-1-phenyl-ethyl)-cyclohexanols |
| TW200806282A (en) * | 2006-05-05 | 2008-02-01 | Wyeth Corp | Solid dosage formulations |
| WO2008093142A1 (en) * | 2007-01-31 | 2008-08-07 | Generics [Uk] Limited | Process for the preparation of o-desmethyl venlafaxine |
| JP2013518060A (en) * | 2010-01-25 | 2013-05-20 | エナンタ ファーマシューティカルズ インコーポレイテッド | Hepatitis C virus inhibitor |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4535186A (en) | 1983-04-19 | 1985-08-13 | American Home Products Corporation | 2-Phenyl-2-(1-hydroxycycloalkyl or 1-hydroxycycloalk-2-enyl)ethylamine derivatives |
| WO2000032555A1 (en) | 1998-12-01 | 2000-06-08 | Sepracor Inc. | Derivatives of (+)-venlafaxine and methods of preparing and using the same |
| WO2002064543A2 (en) | 2001-02-12 | 2002-08-22 | Wyeth | Novel succinate salt of o-desmethyl-venlafaxine |
| US20050175698A1 (en) | 2004-02-06 | 2005-08-11 | Wyeth | Multiparticulate O-desmethylvenlafaxine salts and uses thereof |
| WO2006104791A1 (en) | 2005-03-31 | 2006-10-05 | Wyeth | O-desmethylvenlafaxine and bazedoxifene combination product and uses thereof |
-
2006
- 2006-07-13 US US11/486,336 patent/US7595340B2/en not_active Expired - Fee Related
Patent Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4535186A (en) | 1983-04-19 | 1985-08-13 | American Home Products Corporation | 2-Phenyl-2-(1-hydroxycycloalkyl or 1-hydroxycycloalk-2-enyl)ethylamine derivatives |
| WO2000032555A1 (en) | 1998-12-01 | 2000-06-08 | Sepracor Inc. | Derivatives of (+)-venlafaxine and methods of preparing and using the same |
| WO2002064543A2 (en) | 2001-02-12 | 2002-08-22 | Wyeth | Novel succinate salt of o-desmethyl-venlafaxine |
| US6673838B2 (en) | 2001-02-12 | 2004-01-06 | Wyeth | Succinate salt of O-desmethyl-venlafaxine |
| US20050175698A1 (en) | 2004-02-06 | 2005-08-11 | Wyeth | Multiparticulate O-desmethylvenlafaxine salts and uses thereof |
| WO2005077340A1 (en) | 2004-02-06 | 2005-08-25 | Wyeth | Multiparticulate o-desmethylvenlafaxine salts and uses thereof |
| WO2006104791A1 (en) | 2005-03-31 | 2006-10-05 | Wyeth | O-desmethylvenlafaxine and bazedoxifene combination product and uses thereof |
| US20060223791A1 (en) | 2005-03-31 | 2006-10-05 | Wyeth | O-desmethylvenlafaxine and bazedoxifene combination product and uses thereof |
Non-Patent Citations (3)
| Title |
|---|
| Hall et al, Acute Effects of Atypical Antidepressants on Various Receptors in the Rat Brain, Acta Pharmacol et Toxicol, 54, pp. 379-384, (May 1984). |
| Klamerus et al, Introduction of a Composite Parameter to the Pharmacokinetics of Venlafaxine and its Active O-Desmethyl Metabolite, J. Clin. Pharmacol 32:716-724 (Aug. 1992). |
| Testa, Prodrugs Revisted: The "Ad Hoc" approach as a Complement to Ligand Design, Medicinal Research Reviews, vol. 16, No. 3, pp. 233-241, (May 1996). |
Also Published As
| Publication number | Publication date |
|---|---|
| US20070015824A1 (en) | 2007-01-18 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| RU2178409C2 (en) | 6-dimethylaminomethyl-1-phenylcyclohexane compounds as pharmaceutically active substances and method of their synthesis (variants) | |
| US20070015828A1 (en) | Highly selective serotonin and norepinephrine dual reuptake inhibitor and use thereof | |
| US20070259041A1 (en) | Solid dosage formulations | |
| JP2013256526A (en) | (-)-venlafaxine derivative, production method and usage thereof | |
| KR20130138770A (en) | Salts of lorcaserin with optically active acids | |
| KR101528326B1 (en) | Solid forms comprising (-) O-desmethylvenlafaxine and uses thereof | |
| AU2002237654A1 (en) | Piperazine derivatives, their preparation and their use for treating central nervous system (CNS) disorders | |
| EP1339406A2 (en) | Piperazine derivatives, their preparation and their use for treating central nervous system (cns) disorders | |
| EP1096926B1 (en) | Methods and compounds for treating depression | |
| CN108290824A (en) | Sorabegron zwitterion and its application | |
| CN107530349A (en) | As A2Alkynylamino formic acid esters/trans carbamate of the xanthine substitution of B antagonists | |
| US7595340B2 (en) | Serotonin and norepinephrine reuptake inhibitor and uses thereof | |
| RU2286334C2 (en) | O-substituted derivatives of 6-methyltramadol, method for their preparing and pharmaceutical composition | |
| US7687520B2 (en) | Serotonin and norepinephrine reuptake inhibitors and uses thereof | |
| JP2010535174A (en) | N-piperidin-4-ylmethylamide derivatives and their use as monoamine neurotransmitter reuptake inhibitors | |
| US20100063160A1 (en) | Polymorphs of o-desmethyl venlafaxine succinate | |
| FI91398B (en) | A process for the preparation of therapeutically useful sulfonanilides | |
| KR101380181B1 (en) | (1S,3aR,9bS)-1-Phenyl-2,3,3a,4,5,9b-hexahydro-1H-benzo[e]indole derivatives and 3,4-diarylpyrrolidin-2-one derivatives having inhibition of monoamine reuptake | |
| US20040220224A1 (en) | Method of treating irritable bowel syndrome | |
| JP2005523936A (en) | Tamsulosin derivative | |
| EP1790337A2 (en) | Methods and compounds for treating depression and other disorders | |
| HK1057864B (en) | Piperazine derivatives, their preparation and their use for treating central nervous system (cns) disorders | |
| IE83785B1 (en) | Indole derivatives as 5-HT1 like agonists |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: WYETH, NEW JERSEY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHAH, SYED M;FAWZI, MAHDI B;EHRNSPERGER, ERIC C;AND OTHERS;REEL/FRAME:018106/0833;SIGNING DATES FROM 20060630 TO 20060714 |
|
| FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| REMI | Maintenance fee reminder mailed | ||
| LAPS | Lapse for failure to pay maintenance fees | ||
| STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
| FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20130929 |