[go: up one dir, main page]

US7677135B2 - Electromechanical power transfer system with multiple dynamoelectric machines - Google Patents

Electromechanical power transfer system with multiple dynamoelectric machines Download PDF

Info

Publication number
US7677135B2
US7677135B2 US11/879,549 US87954907A US7677135B2 US 7677135 B2 US7677135 B2 US 7677135B2 US 87954907 A US87954907 A US 87954907A US 7677135 B2 US7677135 B2 US 7677135B2
Authority
US
United States
Prior art keywords
transmission gear
machine
system controller
clutch
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US11/879,549
Other versions
US20090023549A1 (en
Inventor
Richard A Himmelmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamilton Sundstrand Corp
Original Assignee
Hamilton Sundstrand Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamilton Sundstrand Corp filed Critical Hamilton Sundstrand Corp
Priority to US11/879,549 priority Critical patent/US7677135B2/en
Assigned to HAMILTON SUNDSTAND CORPORATION reassignment HAMILTON SUNDSTAND CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HIMMELMANN, RICHARD A.
Publication of US20090023549A1 publication Critical patent/US20090023549A1/en
Application granted granted Critical
Publication of US7677135B2 publication Critical patent/US7677135B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4833Step up or reduction gearing driving generator, e.g. to operate generator in most efficient speed range
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/0043Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising four forward speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H3/087Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears
    • F16H3/089Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears all of the meshing gears being supported by a pair of parallel shafts, one being the input shaft and the other the output shaft, there being no countershaft involved
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/906Motor or generator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/907Electricity storage, e.g. battery, capacitor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/909Gearing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/912Drive line clutch
    • Y10S903/914Actuated, e.g. engaged or disengaged by electrical, hydraulic or mechanical means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/915Specific drive or transmission adapted for hev
    • Y10S903/917Specific drive or transmission adapted for hev with transmission for changing gear ratio
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/19Gearing
    • Y10T74/19014Plural prime movers selectively coupled to common output
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/19Gearing
    • Y10T74/19219Interchangeably locked
    • Y10T74/19233Plurality of counter shafts

Definitions

  • the invention relates to a controllable electromechanical source of motive power for a vehicle and more particularly to an electromechanical power transfer system for controlling motion of a vehicle that employs multiple dynamoelectric machines for superior performance and fault tolerance.
  • a vehicle may use one or more dynamoelectric machines as a source of motive power.
  • Such dynamoelectric machines may serve as a prime mover powered by an off-board electric power source, such as by way of a catenary wire or “third rail”, or with an on-board electric power source, such as an electric battery.
  • they may serve as part of a power train for some other type of prime mover, such as an internal combustion engine, wherein the engine may drive one dynamoelectric machine as an electric generator and one or more additional dynamoelectric machines serve as electric motors powered by the generator that drive one or more wheels for the vehicle.
  • a dynamoelectric machine may also serve both motor and generator functions, wherein such a machine may accelerate and de-accelerate the vehicle.
  • the dynamoelectric machine When a vehicle has a prime mover of the dynamoelectric machine type wherein power transfer from the prime mover must be sufficient to control the movement of the entire vehicle, the dynamoelectric machine must have sufficient torque and power to control the vehicle under worst-case conditions. In some cases the size and weight of such a machine exceeds design requirements for the vehicle. Furthermore, a fault that occurs in such a machine results in total failure of the vehicle.
  • the invention generally comprises an electromechanical power transfer system for a vehicle, comprising: an electrical power source; a system controller; at least two dynamoelectric machines; an electrically engageable clutch for each machine; an input shaft coupled to the jack shaft; an output shaft coupled to a load presented by the vehicle; and at least two electrically engageable transmission gear sets for coupling the input shaft to the output shaft; wherein the system controller selectively engages each machine clutch and each transmission gear set.
  • FIG. 1 is a high-level schematic diagram of an electromechanical power transfer system according to a possible embodiment of the invention in a quiescent state.
  • FIG. 2 is a high-level schematic diagram of the electromechanical power transfer system in FIG. 1 with clutches for its dynamoelectric machines engaged.
  • FIG. 3 is a high-level schematic diagram of the electromechanical power transfer system in FIG. 2 with a first transmission gear set engaged.
  • FIG. 4 is a high-level schematic diagram of the electromechanical power transfer system in FIG. 2 with a second transmission gear set engaged.
  • FIG. 5 is a high-level schematic diagram of the electromechanical power transfer system in FIG. 2 with a third transmission gear set engaged.
  • FIG. 6 is a high-level schematic diagram of the electromechanical power transfer system in FIG. 2 with a fourth transmission gear set engaged.
  • FIG. 1 is a high-level schematic diagram of an electromechanical power transfer system 2 for a vehicle (not shown) according to a possible embodiment of the invention in a quiescent state.
  • Multiple dynamoelectric machines 4 each couple to an input disc of an electrically engageable clutch 6 by way of a machine drive shaft 8 .
  • Each clutch 6 may comprise any type of construction, such as a tooth, sprag, dog, cone or disc type.
  • the engagement of each clutch 6 is preferably by way of an associated clutch solenoid 10 .
  • a mechanical actuator may engage each clutch 6 .
  • An output disc of each clutch 6 couples to a clutch drive gear 12 by way of a clutch drive shaft 14 .
  • FIG. 1 shows two of the machines 4 with associated clutches 6
  • the power transfer system 2 may have any number of such machines 4 with associated clutches 6 , but at least two as shown.
  • a common jack shaft 16 couples to each clutch drive gear 12 by way of a jack shaft input gear 18 .
  • the jack shaft input gear 18 may have a different diameter than that of each clutch drive gear 12 to provide a desired primary gear speed ratio.
  • the jack shaft 16 couples to an input shaft 20 by way of a jack shaft output gear 22 and an input shaft input gear 24 .
  • the input shaft input gear 24 may have a different diameter than that of the jack shaft output gear 22 to provide a desired secondary gear speed ratio.
  • each clutch drive gear 12 may couple directly to the input shaft input gear 24 to eliminate the jack shaft 16 if such coupling provides a satisfactory gear speed ratio.
  • the input shaft 20 couples to an output shaft 26 with an axis of rotation generally parallel to that of the input shaft 20 by way of multiple transmission gear sets 28 .
  • the output shaft 26 could alternatively have an axis of rotation with an offset relative to that of the input shaft 20 if each of the transmission gear sets 28 comprises bevel gears.
  • FIG. 1 shows four of the transmission gear sets 28 a , 28 b , 28 c and 28 d , the power transfer system 2 may have any number of such transmission gear sets 28 , but at least two.
  • Each transmission gear set 28 has an input gear 30 for coupling to the input shaft 20 and an output gear 32 for coupling to the output shaft 26 .
  • Each transmission gear set 28 also has an engageable coupling 34 , such as a gear engagement spline or clutch.
  • Each coupling 34 is preferably electrically engageable, although it may alternatively be mechanically engageable. Each coupling 34 may engage either its respective input gear 30 to the input shaft 20 or its respective output gear 32 to the output shaft 26 .
  • the engagement of each coupling 34 is preferably by way of an associated coupling solenoid 36 . It is generally preferable, but not necessary, for each transmission gear set 28 to associate its coupling 34 with the slowest revolving one of its respective input gear 30 and output gear 32 to minimise coupling wear.
  • a transmission brake assembly 38 may couple to the output shaft 26 of the power transfer system 2 to facilitate a secure stationary position for parking or servicing the host vehicle.
  • the output shaft 26 may couple to a final drive assembly 40 .
  • the final drive assembly 40 couples the output shaft 26 to a final drive shaft 42 through internal gearing that provides a desired final drive shaft speed reduction ratio.
  • the final drive shaft 42 couples to a load 44 .
  • the load 44 typically comprises multiple traction devices for the host vehicle, such as tracks or tyres with associated drive wheels.
  • An electrical power source 46 such as an electric battery system, supplies electrical power for the host vehicle.
  • a system controller 48 receives electrical power from the power supply 46 by way of a power supply bus 50 to energise itself and distribute electrical power to each machine 4 by way of a its own dynamoelectric machine supply bus 52 .
  • the system controller 48 may selectively engage each of the clutches 6 by energising its associated clutch solenoid 10 with a respective clutch engagement signal.
  • the system controller 48 does so by energising each clutch solenoid 10 with a respective clutch engagement signal transmitted to it by way of an associated clutch signal bus 54 .
  • the system controller 48 may also selectively engage each of the coupling solenoids 36 with a respective transmission gear set engagement signal.
  • the system controller 48 does so by energising each coupling solenoid 36 with a respective transmission gear set engagement signal transmitted to it by way of an associated coupling signal bus 56 .
  • the system controller 48 may sense electrical faults in each machine 4 or its associated machine supply bus 52 by way of its own associated dynamoelectric machine circuit fault detector 58 .
  • Each fault detector 58 may detect electrical faults in its associated machine 4 or machine supply bus 52 , such as electrical short circuit or open circuit conditions. Upon detecting such an electrical fault, each fault detector 58 may send a corresponding error signal to the system controller 48 by way of an associated error signal bus 60 , either automatically or upon interrogation by the system controller 48 .
  • the system controller 48 may sense the speed of the host vehicle, such as with a speed detector 62 coupled to the output shaft 26 as shown in FIG. 1 , or alternatively coupled to some other point in the power transfer system 2 downstream of the output shaft 26 , such as the final drive shaft 42 .
  • the speed detector 62 may send a speed signal to the system controller 48 by way of a speed signal bus 64 , either automatically or upon interrogation by the system controller 48 .
  • the system controller 48 may sense the applied torque of the power transfer system 2 to the load 44 , such as with a torque detector 66 coupled to the final drive shaft 42 as shown in FIG. 1 , or alternatively coupled to the output shaft 26 or some other point in the power transfer system 2 downstream of the output shaft 26 .
  • the torque detector 66 may send a torque signal to the system controller 48 by way of a torque signal bus 68 , either automatically or upon interrogation by the system controller 48 .
  • the system controller 48 typically disengages each clutch 6 with an appropriate clutch signal disengagement level for each clutch solenoid 10 and disengages each coupling 34 with an appropriate coupling signal disengagement level for each coupling solenoid 36 .
  • the disengagement level for each respective signal is typically zero.
  • the system controller 48 determines if any machine 4 or its associated machine bus 52 has a fault condition. It does this by sampling the level of each error signal that it receives from each associated fault detector 58 . It then engages each clutch 6 for each machine 4 for which it receives an error signal level that indicates no fault from its associate fault detector 58 . It does so with an appropriate clutch signal engagement level that typically has enough electrical potential and current to activate the associated clutch solenoid 10 .
  • FIG. 2 shows the power transfer system 2 with the clutches 6 so engaged.
  • the system controller 48 then engages one of the transmission gear sets 28 , typically the one with the highest gear reduction ratio, such as the transmission gear set 28 a in FIG. 3 . It does so with an appropriate coupling signal engagement level for its associated coupling solenoid 36 that typically has enough electrical potential and current to engage its associated coupling 34 .
  • the system controller 48 After the system controller 48 engages the appropriate clutches 6 and coupling 36 , it transmits power to each machine 4 by way of its associated machine supply bus 52 for which its associated fault detector 58 transmits an error signal level indicating no electrical fault.
  • the power transfer system 2 may sense both speed of the host vehicle with the speed signal generated by the speed detector 62 and the torque applied to the load 44 with the torque signal generated by the torque detector 66 .
  • the system controller 48 may terminate transmitted power to one or more of the machines 4 so that a minimum number of the machines 4 capable of supplying the sensed torque at the sensed speed drive the load 44 .
  • the system controller 48 determines that the sensed speed and torque require additional machines 4 , it may transmit power to an additional number of the machines 4 .
  • the system controller 48 engages a different one of the transmission gear sets 28 at a first predetermined speed, typically the one with the second highest gear reduction ratio, such as the transmission gear set 28 b in FIG. 4 . It does so by first terminating the transmission of power to each powered machine 4 to reduce its torque to zero, then disengaging the transmission gear set 28 a by changing the coupling signal engagement level for its associated coupling solenoid 36 to a level that releases its associated coupling 34 .
  • the system controller 48 then engages transmission set 28 b once the speed of the motors 4 fall enough to allow its associated coupling 34 to synchronise by changing the coupling signal engagement level for the its associated coupling solenoid 36 to a level that typically has enough electrical potential and current to engage its associated coupling 34 .
  • the system controller 48 then re-establishes power to each previously powered machine 4 .
  • the system controller 48 engages a different one of the transmission gear sets 28 at a second predetermined speed, typically the one with the third highest gear reduction ratio, such as the transmission gear set 28 c in FIG. 5 . It does so by first disengaging the transmission gear set 28 b by changing the coupling signal engagement level for its associated coupling solenoid 36 to a level that releases its associated coupling 34 and then engaging transmission set 28 c by changing the coupling signal engagement level for the its associated coupling solenoid 36 to a level that typically has enough electrical potential and current to engage its associated coupling 34 .
  • the system controller 48 engages a different one of the transmission gear sets 28 at a fourth predetermined speed, typically the one with the fourth highest gear reduction ratio, such as the transmission gear set 28 d in FIG. 6 . It does so by first disengaging the transmission gear set 28 c by changing the coupling signal engagement level for its associated coupling solenoid 36 to a level that releases its associated coupling 34 and then engaging transmission set 28 d by changing the coupling signal engagement level for the its associated coupling solenoid 36 to a level that typically has enough electrical potential and current to engage its associated coupling 34 .
  • the system controller 48 may similarly down-shift from any one of the engaged transmission gear sets 28 to any other one of the transmission gear sets 28 . Furthermore, the system controller 48 may optionally switch the machines 4 from a motor mode to a generator mode to initiate regenerative braking of the host vehicle, in which case the machines 4 supply electrical power to the electrical power source 46 .
  • the system controller 48 may similarly up-shift or down-shift from any one of the engaged transmission gear sets 28 to any other one of the transmission gear sets 28 in response to predetermined levels of the torque signal from the torque sensor 66 . Furthermore, the system controller may optionally change the number of machines 4 to which it transmits power to better match the sensed torque with any engaged transmission gear set 28 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)

Abstract

An electromechanical power transfer system for a vehicle, comprises: an electrical power source; a system controller; at least two dynamoelectric machines; an electrically engageable clutch for each machine; an input shaft coupled to the jack shaft; an output shaft coupled to a load presented by the vehicle; and at least two electrically engageable transmission gear sets for coupling the input shaft to the output shaft; wherein the system controller selectively engages each machine clutch and each transmission gear set.

Description

FIELD OF THE INVENTION
The invention relates to a controllable electromechanical source of motive power for a vehicle and more particularly to an electromechanical power transfer system for controlling motion of a vehicle that employs multiple dynamoelectric machines for superior performance and fault tolerance.
BACKGROUND OF THE INVENTION
A vehicle may use one or more dynamoelectric machines as a source of motive power. Such dynamoelectric machines may serve as a prime mover powered by an off-board electric power source, such as by way of a catenary wire or “third rail”, or with an on-board electric power source, such as an electric battery. Alternatively, they may serve as part of a power train for some other type of prime mover, such as an internal combustion engine, wherein the engine may drive one dynamoelectric machine as an electric generator and one or more additional dynamoelectric machines serve as electric motors powered by the generator that drive one or more wheels for the vehicle. A dynamoelectric machine may also serve both motor and generator functions, wherein such a machine may accelerate and de-accelerate the vehicle.
When a vehicle has a prime mover of the dynamoelectric machine type wherein power transfer from the prime mover must be sufficient to control the movement of the entire vehicle, the dynamoelectric machine must have sufficient torque and power to control the vehicle under worst-case conditions. In some cases the size and weight of such a machine exceeds design requirements for the vehicle. Furthermore, a fault that occurs in such a machine results in total failure of the vehicle.
SUMMARY OF THE INVENTION
The invention generally comprises an electromechanical power transfer system for a vehicle, comprising: an electrical power source; a system controller; at least two dynamoelectric machines; an electrically engageable clutch for each machine; an input shaft coupled to the jack shaft; an output shaft coupled to a load presented by the vehicle; and at least two electrically engageable transmission gear sets for coupling the input shaft to the output shaft; wherein the system controller selectively engages each machine clutch and each transmission gear set.
DESCRIPTION OF THE DRAWINGS
FIG. 1 is a high-level schematic diagram of an electromechanical power transfer system according to a possible embodiment of the invention in a quiescent state.
FIG. 2 is a high-level schematic diagram of the electromechanical power transfer system in FIG. 1 with clutches for its dynamoelectric machines engaged.
FIG. 3 is a high-level schematic diagram of the electromechanical power transfer system in FIG. 2 with a first transmission gear set engaged.
FIG. 4 is a high-level schematic diagram of the electromechanical power transfer system in FIG. 2 with a second transmission gear set engaged.
FIG. 5 is a high-level schematic diagram of the electromechanical power transfer system in FIG. 2 with a third transmission gear set engaged.
FIG. 6 is a high-level schematic diagram of the electromechanical power transfer system in FIG. 2 with a fourth transmission gear set engaged.
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a high-level schematic diagram of an electromechanical power transfer system 2 for a vehicle (not shown) according to a possible embodiment of the invention in a quiescent state. Multiple dynamoelectric machines 4 each couple to an input disc of an electrically engageable clutch 6 by way of a machine drive shaft 8. Each clutch 6 may comprise any type of construction, such as a tooth, sprag, dog, cone or disc type. The engagement of each clutch 6 is preferably by way of an associated clutch solenoid 10. Alternatively, a mechanical actuator may engage each clutch 6. An output disc of each clutch 6 couples to a clutch drive gear 12 by way of a clutch drive shaft 14. Although FIG. 1 shows two of the machines 4 with associated clutches 6, the power transfer system 2 may have any number of such machines 4 with associated clutches 6, but at least two as shown.
A common jack shaft 16 couples to each clutch drive gear 12 by way of a jack shaft input gear 18. The jack shaft input gear 18 may have a different diameter than that of each clutch drive gear 12 to provide a desired primary gear speed ratio. The jack shaft 16 couples to an input shaft 20 by way of a jack shaft output gear 22 and an input shaft input gear 24. The input shaft input gear 24 may have a different diameter than that of the jack shaft output gear 22 to provide a desired secondary gear speed ratio. Alternatively, each clutch drive gear 12 may couple directly to the input shaft input gear 24 to eliminate the jack shaft 16 if such coupling provides a satisfactory gear speed ratio.
The input shaft 20 couples to an output shaft 26 with an axis of rotation generally parallel to that of the input shaft 20 by way of multiple transmission gear sets 28. However, the output shaft 26 could alternatively have an axis of rotation with an offset relative to that of the input shaft 20 if each of the transmission gear sets 28 comprises bevel gears. Although FIG. 1 shows four of the transmission gear sets 28 a, 28 b, 28 c and 28 d, the power transfer system 2 may have any number of such transmission gear sets 28, but at least two. Each transmission gear set 28 has an input gear 30 for coupling to the input shaft 20 and an output gear 32 for coupling to the output shaft 26. Each transmission gear set 28 also has an engageable coupling 34, such as a gear engagement spline or clutch. Each coupling 34 is preferably electrically engageable, although it may alternatively be mechanically engageable. Each coupling 34 may engage either its respective input gear 30 to the input shaft 20 or its respective output gear 32 to the output shaft 26. The engagement of each coupling 34 is preferably by way of an associated coupling solenoid 36. It is generally preferable, but not necessary, for each transmission gear set 28 to associate its coupling 34 with the slowest revolving one of its respective input gear 30 and output gear 32 to minimise coupling wear.
Optionally a transmission brake assembly 38 may couple to the output shaft 26 of the power transfer system 2 to facilitate a secure stationary position for parking or servicing the host vehicle. The output shaft 26 may couple to a final drive assembly 40. The final drive assembly 40 couples the output shaft 26 to a final drive shaft 42 through internal gearing that provides a desired final drive shaft speed reduction ratio. The final drive shaft 42 couples to a load 44. The load 44 typically comprises multiple traction devices for the host vehicle, such as tracks or tyres with associated drive wheels.
An electrical power source 46, such as an electric battery system, supplies electrical power for the host vehicle. A system controller 48 receives electrical power from the power supply 46 by way of a power supply bus 50 to energise itself and distribute electrical power to each machine 4 by way of a its own dynamoelectric machine supply bus 52. The system controller 48 may selectively engage each of the clutches 6 by energising its associated clutch solenoid 10 with a respective clutch engagement signal. The system controller 48 does so by energising each clutch solenoid 10 with a respective clutch engagement signal transmitted to it by way of an associated clutch signal bus 54. The system controller 48 may also selectively engage each of the coupling solenoids 36 with a respective transmission gear set engagement signal. The system controller 48 does so by energising each coupling solenoid 36 with a respective transmission gear set engagement signal transmitted to it by way of an associated coupling signal bus 56.
The system controller 48 may sense electrical faults in each machine 4 or its associated machine supply bus 52 by way of its own associated dynamoelectric machine circuit fault detector 58. Each fault detector 58 may detect electrical faults in its associated machine 4 or machine supply bus 52, such as electrical short circuit or open circuit conditions. Upon detecting such an electrical fault, each fault detector 58 may send a corresponding error signal to the system controller 48 by way of an associated error signal bus 60, either automatically or upon interrogation by the system controller 48.
The system controller 48 may sense the speed of the host vehicle, such as with a speed detector 62 coupled to the output shaft 26 as shown in FIG. 1, or alternatively coupled to some other point in the power transfer system 2 downstream of the output shaft 26, such as the final drive shaft 42. The speed detector 62 may send a speed signal to the system controller 48 by way of a speed signal bus 64, either automatically or upon interrogation by the system controller 48.
The system controller 48 may sense the applied torque of the power transfer system 2 to the load 44, such as with a torque detector 66 coupled to the final drive shaft 42 as shown in FIG. 1, or alternatively coupled to the output shaft 26 or some other point in the power transfer system 2 downstream of the output shaft 26. The torque detector 66 may send a torque signal to the system controller 48 by way of a torque signal bus 68, either automatically or upon interrogation by the system controller 48.
With the host vehicle at rest and the power transfer system 2 in a quiescent state as shown in FIG. 1, the system controller 48 typically disengages each clutch 6 with an appropriate clutch signal disengagement level for each clutch solenoid 10 and disengages each coupling 34 with an appropriate coupling signal disengagement level for each coupling solenoid 36. In each case, the disengagement level for each respective signal is typically zero. When initiating a start operation, the system controller 48 determines if any machine 4 or its associated machine bus 52 has a fault condition. It does this by sampling the level of each error signal that it receives from each associated fault detector 58. It then engages each clutch 6 for each machine 4 for which it receives an error signal level that indicates no fault from its associate fault detector 58. It does so with an appropriate clutch signal engagement level that typically has enough electrical potential and current to activate the associated clutch solenoid 10. FIG. 2 shows the power transfer system 2 with the clutches 6 so engaged.
The system controller 48 then engages one of the transmission gear sets 28, typically the one with the highest gear reduction ratio, such as the transmission gear set 28 a in FIG. 3. It does so with an appropriate coupling signal engagement level for its associated coupling solenoid 36 that typically has enough electrical potential and current to engage its associated coupling 34.
After the system controller 48 engages the appropriate clutches 6 and coupling 36, it transmits power to each machine 4 by way of its associated machine supply bus 52 for which its associated fault detector 58 transmits an error signal level indicating no electrical fault. As the power transfer system 2 transfers power from each powered machine 4 to the load 44, it may sense both speed of the host vehicle with the speed signal generated by the speed detector 62 and the torque applied to the load 44 with the torque signal generated by the torque detector 66. Depending upon the sensed speed and applied torque, the system controller 48 may terminate transmitted power to one or more of the machines 4 so that a minimum number of the machines 4 capable of supplying the sensed torque at the sensed speed drive the load 44. Likewise, if the system controller 48 then determines that the sensed speed and torque require additional machines 4, it may transmit power to an additional number of the machines 4.
As the speed of the host vehicle increases, the system controller 48 engages a different one of the transmission gear sets 28 at a first predetermined speed, typically the one with the second highest gear reduction ratio, such as the transmission gear set 28 b in FIG. 4. It does so by first terminating the transmission of power to each powered machine 4 to reduce its torque to zero, then disengaging the transmission gear set 28 a by changing the coupling signal engagement level for its associated coupling solenoid 36 to a level that releases its associated coupling 34. The system controller 48 then engages transmission set 28 b once the speed of the motors 4 fall enough to allow its associated coupling 34 to synchronise by changing the coupling signal engagement level for the its associated coupling solenoid 36 to a level that typically has enough electrical potential and current to engage its associated coupling 34. The system controller 48 then re-establishes power to each previously powered machine 4.
As the speed of the host vehicle increases still further, the system controller 48 engages a different one of the transmission gear sets 28 at a second predetermined speed, typically the one with the third highest gear reduction ratio, such as the transmission gear set 28 c in FIG. 5. It does so by first disengaging the transmission gear set 28 b by changing the coupling signal engagement level for its associated coupling solenoid 36 to a level that releases its associated coupling 34 and then engaging transmission set 28 c by changing the coupling signal engagement level for the its associated coupling solenoid 36 to a level that typically has enough electrical potential and current to engage its associated coupling 34.
As the speed of the host vehicle increases even more, the system controller 48 engages a different one of the transmission gear sets 28 at a fourth predetermined speed, typically the one with the fourth highest gear reduction ratio, such as the transmission gear set 28 d in FIG. 6. It does so by first disengaging the transmission gear set 28 c by changing the coupling signal engagement level for its associated coupling solenoid 36 to a level that releases its associated coupling 34 and then engaging transmission set 28 d by changing the coupling signal engagement level for the its associated coupling solenoid 36 to a level that typically has enough electrical potential and current to engage its associated coupling 34.
As the speed of the host vehicle decreases, the system controller 48 may similarly down-shift from any one of the engaged transmission gear sets 28 to any other one of the transmission gear sets 28. Furthermore, the system controller 48 may optionally switch the machines 4 from a motor mode to a generator mode to initiate regenerative braking of the host vehicle, in which case the machines 4 supply electrical power to the electrical power source 46.
As the torque applied by the power transfer system 2 to the load 44 changes, the system controller 48 may similarly up-shift or down-shift from any one of the engaged transmission gear sets 28 to any other one of the transmission gear sets 28 in response to predetermined levels of the torque signal from the torque sensor 66. Furthermore, the system controller may optionally change the number of machines 4 to which it transmits power to better match the sensed torque with any engaged transmission gear set 28.
The described embodiments of the invention are only some illustrative implementations of the invention wherein changes and substitutions of the various parts and arrangement thereof are within the scope of the invention as set forth in the attached claims.

Claims (6)

1. An electromechanical power transfer system for a vehicle, comprising:
an electrical power source;
a system controller;
at least two dynamoelectric machines;
a solenoid-operated clutch for each machine;
a jack shaft coupled to the clutch for each machine;
an input shaft coupled to the jack shaft;
an output shaft with an axis of rotation generally parallel to that of the input shaft coupled to a load presented by the vehicle; and
at least two transmission gear sets, each with solenoid-operated couplings, for coupling the input shaft to the output shaft;
wherein the system controller selectively engages each machine clutch by energising its associated solenoid, selectively couples each transmission gear set by energising its associated solenoid and selectively transmits power from the power source to each engaged machine.
2. The power transfer system of claim 1, further comprising a fault detector for each machine circuit, wherein the system controller is responsive to an error signal generated by each fault detector and it terminates clutch engagement for any associated machine for which an error signal indicates a machine circuit fault.
3. The power transfer system of claim 1, further comprising a speed detector for detecting the speed of the vehicle, wherein the system controller is responsive to a speed signal generated by the speed detector and it engages a different one of the electrically engageable transmission gear sets with an associated transmission gear set engagement signal upon reaching a predetermined speed.
4. The power transfer system of claim 1, further comprising a torque detector for detecting the torque applied by the power transfer system to a load presented by the vehicle, wherein the system controller is responsive to a torque signal generated by the torque detector and it engages a different one of the electrically engageable transmission gear sets with an associated transmission gear set engagement signal upon reaching a predetermined torque.
5. The power transfer system of claim 4, wherein the system controller changes the number of machines to which it transmits power to better match the sensed torque with any engaged transmission gear set.
6. An electromechanical power transfer system for a vehicle, comprising:
an electrical power source;
a system controller;
at least two dynamoelectric machines;
a solenoid-operated clutch for each machine;
a jack shaft coupled to the clutch for each machine;
an input shaft coupled to the jack shaft;
an output shaft with an axis of rotation generally parallel to that of the input shaft coupled to a load presented by the vehicle;
a fault detector for each machine circuit;
a speed detector for detecting the speed of the vehicle;
a torque detector for detecting the torque applied by the power transfer system to the load presented by the vehicle; and
at least two transmission gear sets, each with solenoid-operated couplings, for coupling the input shaft to the output shaft;
wherein the system controller selectively engages each machine clutch by energising its associated solenoid, selectively couples each transmission gear set by energising its associated solenoid and selectively transmits power from the power source to each engaged machine, responds to an error signal generated by each fault detector and it terminates clutch engagement for any associated machine for which an error signal indicates a machine circuit fault, responds to a speed signal generated by the speed detector and it engages a different one of the electrically engageable transmission gear sets with an associated transmission gear set engagement signal upon reaching a predetermined speed and responds to a torque signal generated by the torque detector and it engages a different one of the electrically engageable transmission gear sets with an associated transmission gear set engagement signal upon reaching a predetermined torque.
US11/879,549 2007-07-18 2007-07-18 Electromechanical power transfer system with multiple dynamoelectric machines Active 2028-08-13 US7677135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/879,549 US7677135B2 (en) 2007-07-18 2007-07-18 Electromechanical power transfer system with multiple dynamoelectric machines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/879,549 US7677135B2 (en) 2007-07-18 2007-07-18 Electromechanical power transfer system with multiple dynamoelectric machines

Publications (2)

Publication Number Publication Date
US20090023549A1 US20090023549A1 (en) 2009-01-22
US7677135B2 true US7677135B2 (en) 2010-03-16

Family

ID=40265317

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/879,549 Active 2028-08-13 US7677135B2 (en) 2007-07-18 2007-07-18 Electromechanical power transfer system with multiple dynamoelectric machines

Country Status (1)

Country Link
US (1) US7677135B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090241728A1 (en) * 2008-03-31 2009-10-01 Fitzgerald Brian M Electric dual input clutch transmission
US8446041B2 (en) 2010-07-12 2013-05-21 Hamilton Sundstrand Corporation No break power transfer with solid state power controls
US20150073672A1 (en) * 2012-05-09 2015-03-12 Toyota Jidosha Kabushiki Kaisha Vehicle control apparatus
US9651126B2 (en) 2010-09-30 2017-05-16 Hamilton Sundstrand Corporation Cone brake load limiter method and apparatus
US20240418242A1 (en) * 2023-06-16 2024-12-19 Dana Belgium N.V. Systems and method for an electric powertrain

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2508616B (en) * 2012-12-05 2021-02-10 Rift Holdings Ltd Electric Machine
FR3107746B1 (en) * 2020-02-28 2022-05-27 Valeo Embrayages hybrid vehicle drive subassembly
CN112590562A (en) * 2020-12-22 2021-04-02 三一海洋重工有限公司 Dual-motor control system and method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3173526A (en) * 1963-01-14 1965-03-16 Fawick Corp Drive arrangement and clutch assembly therein
US3757912A (en) * 1972-06-07 1973-09-11 Philadelphia Gear Corp Load equalizing clutch controls
US4868406A (en) * 1988-07-05 1989-09-19 Sundstrand Corporation Electrically compensated constant speed drive with prime mover start capability
JPH10309003A (en) * 1997-05-01 1998-11-17 Hino Motors Ltd Hybrid automobile
US6427549B1 (en) * 2001-01-10 2002-08-06 New Venture Gear, Inc. Dual countershaft twin clutch automated transmission
US20060112781A1 (en) * 2004-11-30 2006-06-01 Brian Kuras Multi-motor/multi-range torque transmitting power system
US7140461B2 (en) * 2003-11-26 2006-11-28 Oshkosh Truck Corporation Power splitting vehicle drive system
US7150698B2 (en) * 2001-06-19 2006-12-19 Hitachi, Ltd. Power transmission apparatus for automobile
US7270030B1 (en) * 2005-04-01 2007-09-18 Belloso Gregorio M Transmission with multiple input ports for multiple-engine vehicles

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3173526A (en) * 1963-01-14 1965-03-16 Fawick Corp Drive arrangement and clutch assembly therein
US3757912A (en) * 1972-06-07 1973-09-11 Philadelphia Gear Corp Load equalizing clutch controls
US4868406A (en) * 1988-07-05 1989-09-19 Sundstrand Corporation Electrically compensated constant speed drive with prime mover start capability
JPH10309003A (en) * 1997-05-01 1998-11-17 Hino Motors Ltd Hybrid automobile
US6427549B1 (en) * 2001-01-10 2002-08-06 New Venture Gear, Inc. Dual countershaft twin clutch automated transmission
US7150698B2 (en) * 2001-06-19 2006-12-19 Hitachi, Ltd. Power transmission apparatus for automobile
US7140461B2 (en) * 2003-11-26 2006-11-28 Oshkosh Truck Corporation Power splitting vehicle drive system
US20060112781A1 (en) * 2004-11-30 2006-06-01 Brian Kuras Multi-motor/multi-range torque transmitting power system
US7270030B1 (en) * 2005-04-01 2007-09-18 Belloso Gregorio M Transmission with multiple input ports for multiple-engine vehicles

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090241728A1 (en) * 2008-03-31 2009-10-01 Fitzgerald Brian M Electric dual input clutch transmission
US8151662B2 (en) * 2008-03-31 2012-04-10 Magna Powertrain Usa, Inc. Electric dual input clutch transmission
US8446041B2 (en) 2010-07-12 2013-05-21 Hamilton Sundstrand Corporation No break power transfer with solid state power controls
US9651126B2 (en) 2010-09-30 2017-05-16 Hamilton Sundstrand Corporation Cone brake load limiter method and apparatus
US20150073672A1 (en) * 2012-05-09 2015-03-12 Toyota Jidosha Kabushiki Kaisha Vehicle control apparatus
US9242650B2 (en) * 2012-05-09 2016-01-26 Toyota Jidosha Kabushiki Kaisha Vehicle control apparatus
US20240418242A1 (en) * 2023-06-16 2024-12-19 Dana Belgium N.V. Systems and method for an electric powertrain

Also Published As

Publication number Publication date
US20090023549A1 (en) 2009-01-22

Similar Documents

Publication Publication Date Title
US7677135B2 (en) Electromechanical power transfer system with multiple dynamoelectric machines
US8170760B2 (en) Vehicle driving apparatus
US8771143B2 (en) Hybrid power drive system
US9541167B2 (en) Gearbox for a hybrid powertrain and method to control the gearbox
CN101837733B (en) Method for interrupting the force flux in the drive train of a vehicle in the event of a crash
US9033839B2 (en) Direct drive transmission decoupler
US7681675B2 (en) Hybrid drive powertrains with reduced parasitic losses
CN103935355B (en) For the method that motor vehicles are maintained on inclined-plane
JP5805784B2 (en) Drive device for vehicle auxiliary device
CN105307887B (en) Method for hybrid drive train gearbox and the control gearbox
US20120247269A1 (en) Drive device for electric vehicle
KR101828975B1 (en) Method for controlling a hybrid driveline in order to achieve gear change without interruption of torque
US20070142993A1 (en) System for reducing powertrain reaction torque
CN112739566A (en) Electric vehicle propulsion system
US8220606B2 (en) Dual clutch transmission and method for controlling it
SE538736C2 (en) A method of controlling a hybrid drive line to optimize the driving torque of an internal combustion engine arranged at the hybrid drive line
CN102159417A (en) Method and device for operating hybrid drive for vehicle
KR20170058415A (en) Method to control a hybrid powertrain, vehicle comprising such a hybrid powertrain, computer program for controlling such a hybrid powertrain, and a computer program product comprising program code
CN102844210A (en) Hybrid drive system
WO2018083960A1 (en) Vehicle driving device
CN105459789A (en) Power transmission system for vehicle and vehicle with the same
JP2015083452A (en) Method of controlling hybrid vehicle during gear change
KR20200086301A (en) Method and system for controlling clutchless automatic transmission for hybrid-propelled vehicles
CN105711602A (en) Wheel drive
JP6228369B2 (en) Differential system

Legal Events

Date Code Title Description
AS Assignment

Owner name: HAMILTON SUNDSTAND CORPORATION, CONNECTICUT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HIMMELMANN, RICHARD A.;REEL/FRAME:019644/0293

Effective date: 20070717

Owner name: HAMILTON SUNDSTAND CORPORATION,CONNECTICUT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HIMMELMANN, RICHARD A.;REEL/FRAME:019644/0293

Effective date: 20070717

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552)

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12