US7678018B2 - Method for implementing shifts from a source gear to a target gear of an automatic shift transmission, in particular downshifts of an automatic shift transmission - Google Patents
Method for implementing shifts from a source gear to a target gear of an automatic shift transmission, in particular downshifts of an automatic shift transmission Download PDFInfo
- Publication number
- US7678018B2 US7678018B2 US11/805,322 US80532207A US7678018B2 US 7678018 B2 US7678018 B2 US 7678018B2 US 80532207 A US80532207 A US 80532207A US 7678018 B2 US7678018 B2 US 7678018B2
- Authority
- US
- United States
- Prior art keywords
- accelerator pedal
- downshift
- pedal position
- gear
- region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 238000000034 method Methods 0.000 title claims abstract description 36
- 230000005540 biological transmission Effects 0.000 title claims abstract description 29
- XDDAORKBJWWYJS-UHFFFAOYSA-N glyphosate Chemical compound OC(=O)CNCP(O)(O)=O XDDAORKBJWWYJS-UHFFFAOYSA-N 0.000 claims description 9
- 239000000446 fuel Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/02—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
- F16H61/0202—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
- F16H61/0204—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
- F16H61/0213—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal characterised by the method for generating shift signals
Definitions
- the invention relates to a method for implementing the shifts from a source gear into a target gear of an automatic shift transmission, in particular the downshifts of an automatic shift transmission, wherein for each possible sequential gear change a respective upshift threshold and downshift threshold, which is defined in dependence of the accelerator pedal position, is stored, namely the limit value that is valid for the respective upshift or downshift is stored as a vehicle speed value in a control device, and wherein the vehicle speed, which changes while the vehicle is driving, and the changing accelerator pedal position are measured.
- FIG. 1 A conventional driving strategy for selecting a gear for a downshift in a conventional automatic shift transmission is illustrated in FIG. 1 .
- the automatic shift transmission which is to perform a gear shift in this case, preferably has six gears, that is six gear stages. If a source gear, for example the sixth gear “gear 6 ” is engaged in the automatic shift transmission, then the new target gear of the automatic shift transmission is selected in dependence of the measured current vehicle speed and in dependence of the current accelerator pedal position. Corresponding downshift thresholds (characteristic curves) in dependence of the vehicle speed and, respectively, the accelerator pedal position are stored in the control device for this purpose, as is illustrated in FIG. 1 .
- the corresponding “downshift thresholds” for shifting gears are schematically shown in FIG. 1 , such as for example from sixth gear into fifth gear, namely from 6 ⁇ 5 , from fifth gear into fourth gear 5 ⁇ 4 , from fourth gear into third gear 4 ⁇ 3 , and from third gear into second gear 3 ⁇ 2 .
- the downshift threshold for shifting from second gear into first gear is not shown.
- the individual specific vehicle speed values (limit values) for the specific accelerator pedal positions are stored in a control device.
- corresponding downshift threshold values which are called “limit values” in the following, are stored in the control device in dependence of a given accelerator pedal position and, respectively, in dependence of a given vehicle speed.
- the downshift threshold values i.e. the corresponding limit values, that exist for a specific shift, for example from fourth gear into third gear 4 ⁇ 3 , then form a given downshift threshold (downshift characteristic curve) along the accelerator pedal deflection (pedal travel) from 0% to 100%.
- the individual downshift thresholds there are intermediate regions, into which the respective current measured vehicle speed falls or may fall.
- the conventional downshift characteristic map shown in FIG. 1 and, respectively, the downshift thresholds shown here increase slightly in a first region of the accelerator pedal position or accelerator pedal deflection, but tend to increase more rapidly in an adjacent second region.
- the vehicle were to move at 126 km/h, which is indicated by the corresponding solid line V F , and the accelerator pedal position were less than 78%, then the sixth gear would be engaged in the automatic shift transmission. If the accelerator pedal position is increased to about 78%, then the downshift threshold 6 ⁇ 5 would be reached at a speed of 126 km/h and the automatic shift transmission would then shift down into fifth gear.
- next downshift threshold 5 ⁇ 4 would be reached at an accelerator pedal position of about 92% and the third downshift threshold 4 ⁇ 3 would be reached at a so called “kick-down,” i.e. at an accelerator pedal position >100% which is shown here as “110%.”
- the accelerator pedal hysteresis FH which is schematically shown in FIG. 1 , is in this case about 14%. If one tried to increase the accelerator pedal hysteresis FH, then the accelerator pedal hysteresis FH for the next downshift at a lower speed would probably have to be reduced too drastically, such that the driver would have to be very sensitive in terms of the controllability of the accelerator pedal position, in order to bring about a specific downshift.
- Conventional downshift characteristic maps therefore allow only highly limited degrees of freedom for downshifts that are to be induced by the driver and can therefore not yet be implemented in an optimal manner. For fuel consumption reasons and comfort reasons, later downshifts, i.e.
- a method for implementing shifts from a source gear to a target gear of an automatic shift transmission which includes the following steps:
- At least two downshift thresholds to be substantially horizontally extending in a first region of a possible accelerator pedal position and at least partly step-shaped in a second region of the possible accelerator pedal position;
- a method for implementing the shifts from a source gear into a target gear of an automatic shift transmission in particular the downshifts of an automatic shift transmission, wherein for each possible sequential gear change respectively an upshift threshold and downshift threshold defined in dependence of the accelerator pedal position, namely the limit value that is valid for the respective upshift or downshift is stored as a vehicle speed value in a control device and wherein the vehicle speed, which changes while the vehicle is driving, and the changing accelerator pedal position are measured, and wherein at least two of the downshift thresholds are configured to extend substantially horizontally in a first region (I) of the possible accelerator pedal position and are configured to be at least partly step-shaped in a second region (II) of the possible accelerator pedal position.
- Another mode of the method of the invention includes configuring the downshift thresholds such that they extend parallel with respect to one another in the first region of the accelerator pedal position.
- a further mode of the method of the invention includes configuring the downshift thresholds such that they have step-shaped sections in the second region of the accelerator pedal position.
- Another mode of the method of the invention includes configuring the step-shaped sections of adjacent ones of the downshift thresholds such that an accelerator pedal hysteresis provided between the step-shaped sections is substantially constant.
- Yet another mode of the method of the invention includes configuring the step-shaped sections of adjacent ones of the downshift thresholds such that an accelerator pedal hysteresis provided between the step-shaped sections is substantially 20% of a possible total accelerator pedal deflection.
- Another mode of the method of the invention includes configuring the at least two downshift thresholds such that the first region of the accelerator pedal position covers substantially 0% to 60% of an accelerator pedal deflection and the second region of the accelerator pedal position covers substantially 60% to 100% of the accelerator pedal deflection.
- Another mode of the method of the invention includes configuring an engine such that the engine reaches substantially its full total power at 80% accelerator pedal position/accelerator pedal deflection.
- Another mode of the method of the invention includes implementing a kick-down shift at an accelerator pedal position/accelerator pedal deflection of greater than 100%.
- a further mode of the method of the invention includes ensuring a good reproducibility of a gear selection by a driver by forming the step-shaped sections of the downshift thresholds.
- Another mode of the method of the invention includes implementing a downshift from a source gear to a target gear in an automatic shift transmission.
- FIG. 1 is a graph illustrating a downshift characteristic map according to the prior art.
- FIG. 2 is a graph illustrating an exemplary embodiment of a downshift characteristic map according to the invention.
- FIG. 1 illustrates a graph illustrating a conventional method as has been described above.
- FIG. 2 illustrates an exemplary mode of the method for implementing the downshifts in an automatic shift transmission in accordance with the invention.
- the accelerator pedal position is shown in % on the X-axis and the vehicle speed V (km/h) is shown on the Y-axis.
- the corresponding downshift thresholds downshift characteristic curves for the sixth to the second gear stage, i.e. for the sixth to the second gear.
- the downshift characteristic curve 6 / 5 the downshift characteristic curve 5 / 4 , the downshift characteristic curve 4 / 3 , and the downshift characteristic curve 3 / 2 are shown.
- the upshift thresholds or upshift characteristic curves which are also stored in the control device, are not shown.
- the method according to the invention can be implemented in an automatic shift transmission of any kind for which it is suited.
- the stored values for e.g. the downshift 6 ⁇ 5 which are preferably stored over an accelerator pedal position from 0% to 100%, result in the downshift threshold 6 / 5 that is shown in FIG. 2 . This applies in a like manner for the other downshift thresholds that are shown here.
- a corresponding control device is preferably provided for carrying out the method. Via sensors and corresponding control lines, current, changing driving parameters of the motor vehicle are respectively supplied to the control device in an ongoing manner.
- the control device preferably includes a microprocessor and a memory unit, wherein the upshift thresholds and the downshift thresholds, i.e. the respective limit values are stored in the memory unit in dependence of the accelerator pedal position, in particular, corresponding limit values/vehicle speed values are stored for each accelerator pedal position for given gear stage changes, as is evident from FIG. 2 and from the explanation above.
- FIG. 2 now illustrates the method for implementing the shifting from a source gear into a target gear in an automatic shift transmission, namely for downshifts in an automatic shift transmission.
- a downshift threshold 6 / 5 , 5 / 4 and so forth wherein the downshift threshold is defined in dependence of the accelerator pedal position, namely the limit values that are valid for the respective downshift are stored as a vehicle speed value in dependence of the respective accelerator pedal position.
- the vehicle speed V which changes while the motor vehicle is driving, and the changing accelerator pedal position are preferably measured continuously.
- the corresponding above-mentioned limit values plotted along the deflection of the accelerator pedal form the respective downshift threshold for a given downshift.
- At least two of the downshift thresholds are configured to extend substantially horizontally in a first region I of the possible accelerator pedal position, and are configured to be at least partly step-shaped in a second region II of the possible accelerator pedal position.
- the region for the accelerator pedal position or the accelerator pedal deflection from 0% to 100% is thus plotted along the X-axis and is divided substantially in two regions namely the first region I and the second region II.
- the downshift thresholds 6 / 5 , 5 / 4 , 4 / 3 , and 3 / 2 are in this case provided parallel with respect to one another in the first region I of the accelerator pedal position, i.e. they extend in this case parallel and horizontal with respect to one another.
- the corresponding above-mentioned downshift thresholds in the second region II of the accelerator pedal position have step-shaped sections. In other words, by using the step-shaped sections S, respective accelerator pedal supporting points are realized at the beginning (front end) of the step.
- a “kick-down switch” for achieving the maximum power is also provided or can be used (at the accelerator pedal position 100%).
- the step-shaped sections S of adjacent downshift thresholds are configured such that the accelerator pedal hysteresis FH, which is provided between these sections S, is substantially constant and is preferably 20% of the possible total accelerator pedal deflection.
- the accelerator pedal hysteresis FH is in a corresponding manner schematically shown in several places in FIG. 2 .
- the first region I of the accelerator pedal position is essentially between 0% to 60% of the possible accelerator pedal deflection and the second region II of the accelerator pedal position involves essentially the range from 60% to 100% of the accelerator pedal deflection, as is schematically indicated below the X-axis.
- the engine preferably has its full total power at 80% of the accelerator pedal position/accelerator pedal deflection.
- a “kick-down shift” can be performed for an accelerator pedal position/accelerator pedal deflection of greater than 100%.
- a first downshift from sixth gear into fifth gear can be implemented at an accelerator pedal position of 80%. Up to that point, one has already run once through the entire engine power. The subsequent downshift from fifth gear into fourth gear occurs not until 100% accelerator pedal position, as can be seen in FIG. 2 .
- the accelerator pedal hysteresis FH of 20%, which is provided therebetween, is thus “relatively large” and is therefore well distinguishable from the previous shift point, i.e. from the accelerator pedal position of 80%.
- An accelerator pedal position of 100% has preferably the additional advantage of the stop that is provided by the “kick-down switch,” wherein the “kick-down switch” is not yet actuated at that point. The last shift that is possible at this speed is then performed via this “kick-down switch” at an accelerator pedal deflection of greater than 100%.
- the gear selection is extremely well controllable by the driver and, in addition, a generous accelerator pedal hysteresis FH is implemented. In other words even drivers who are not very sensitive can easily select corresponding downshifts via the accelerator pedal position.
- FIG. 2 also shows that, for example, at a vehicle speed of 50 km/h a downshift from the fifth gear stage into the fourth gear stage occurs not until the 80% accelerator pedal position, i.e. the full engine power is utilized in the so-called higher gear, namely the fifth gear.
- step-shaped sections S and the course of the downshift thresholds that is otherwise arranged in parallel, therefore allow a good utilization of the full engine power while avoiding many unnecessary downshifts and at the same time providing a good controllability of the corresponding specific respective downshifts via the accelerator pedal position, in particular for drivers who are less sensitive.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Control Of Transmission Device (AREA)
Abstract
Description
Claims (12)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE102006024884 | 2006-05-24 | ||
| DE102006024884.8 | 2006-05-24 | ||
| DE102006024884A DE102006024884A1 (en) | 2006-05-24 | 2006-05-24 | Method for realizing the circuits from a source gear to a target gear of an automatic gearbox, in particular the downshifts of an automatic gearbox |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20070287592A1 US20070287592A1 (en) | 2007-12-13 |
| US7678018B2 true US7678018B2 (en) | 2010-03-16 |
Family
ID=38474223
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/805,322 Active 2028-06-20 US7678018B2 (en) | 2006-05-24 | 2007-05-23 | Method for implementing shifts from a source gear to a target gear of an automatic shift transmission, in particular downshifts of an automatic shift transmission |
Country Status (4)
| Country | Link |
|---|---|
| US (1) | US7678018B2 (en) |
| EP (1) | EP1860350B1 (en) |
| AT (1) | ATE550581T1 (en) |
| DE (1) | DE102006024884A1 (en) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB2517438B (en) * | 2013-08-19 | 2016-02-24 | Jaguar Land Rover Ltd | Method and apparatus for downshifting an automatic vehicle transmission |
| DE102019201711A1 (en) * | 2019-02-11 | 2020-08-13 | Volkswagen Aktiengesellschaft | Method for controlling a drive train of a vehicle, in particular a motor vehicle |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5267492A (en) | 1990-10-02 | 1993-12-07 | Honda Giken Kogyo Kabushiki Kaisha | Device for controlling an automatic automotive transmission |
| US6009768A (en) * | 1998-01-13 | 2000-01-04 | Toyota Jidosha Kabushiki Kaisha | Skip downshift control apparatus for automatic transmission |
| US6090008A (en) * | 1998-03-31 | 2000-07-18 | Toyota Jidosha Kabushiki Kaisha | Coast downshift control apparatus for a vehicular automatic transmission |
| US6220987B1 (en) * | 1999-05-26 | 2001-04-24 | Ford Global Technologies, Inc. | Automatic transmission ratio change schedules based on desired powertrain output |
| DE10151909A1 (en) | 2001-10-20 | 2003-04-30 | Zahnradfabrik Friedrichshafen | Procedure for triggering an upshift on kick-down |
| DE10308797A1 (en) | 2002-11-19 | 2004-06-03 | Volkswagen Ag | Method for controlling an automatic transmission |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH01164850A (en) * | 1987-12-17 | 1989-06-28 | Daikin Mfg Co Ltd | Speed change control device for automatic transmission for automobile |
| US5272631A (en) * | 1989-12-06 | 1993-12-21 | Toyota Jidosha Kabushiki Kaisha | Shift control system and method for vehicular automatic transmissions |
| JP2959937B2 (en) * | 1993-08-31 | 1999-10-06 | 本田技研工業株式会社 | Control device for automatic transmission for vehicles |
-
2006
- 2006-05-24 DE DE102006024884A patent/DE102006024884A1/en not_active Withdrawn
-
2007
- 2007-04-28 EP EP07008728A patent/EP1860350B1/en active Active
- 2007-04-28 AT AT07008728T patent/ATE550581T1/en active
- 2007-05-23 US US11/805,322 patent/US7678018B2/en active Active
Patent Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5267492A (en) | 1990-10-02 | 1993-12-07 | Honda Giken Kogyo Kabushiki Kaisha | Device for controlling an automatic automotive transmission |
| DE4132828B4 (en) | 1990-10-02 | 2006-02-23 | Honda Giken Kogyo K.K. | Device for controlling an automatic vehicle transmission system |
| US6009768A (en) * | 1998-01-13 | 2000-01-04 | Toyota Jidosha Kabushiki Kaisha | Skip downshift control apparatus for automatic transmission |
| US6090008A (en) * | 1998-03-31 | 2000-07-18 | Toyota Jidosha Kabushiki Kaisha | Coast downshift control apparatus for a vehicular automatic transmission |
| US6220987B1 (en) * | 1999-05-26 | 2001-04-24 | Ford Global Technologies, Inc. | Automatic transmission ratio change schedules based on desired powertrain output |
| DE10151909A1 (en) | 2001-10-20 | 2003-04-30 | Zahnradfabrik Friedrichshafen | Procedure for triggering an upshift on kick-down |
| US7052436B2 (en) | 2001-10-20 | 2006-05-30 | Zf Friedrichshafen Ag | Method for triggering an upshift during kick-down conditions |
| DE10308797A1 (en) | 2002-11-19 | 2004-06-03 | Volkswagen Ag | Method for controlling an automatic transmission |
Non-Patent Citations (1)
| Title |
|---|
| Search Report issued by the German Patent Office, dated Jan. 22, 2008. |
Also Published As
| Publication number | Publication date |
|---|---|
| EP1860350A2 (en) | 2007-11-28 |
| ATE550581T1 (en) | 2012-04-15 |
| US20070287592A1 (en) | 2007-12-13 |
| EP1860350A3 (en) | 2010-08-18 |
| DE102006024884A1 (en) | 2007-11-29 |
| EP1860350B1 (en) | 2012-03-21 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7429233B2 (en) | Method for shifting from a source gear to a target gear in a twin clutch transmission | |
| KR100741583B1 (en) | Transmission control device of hybrid vehicle | |
| RU2434766C2 (en) | Method of controlling automated step gearbox shifting | |
| US4742733A (en) | Control system for automatic change speed transmission | |
| JP5308232B2 (en) | Kickdown control device | |
| US7761211B2 (en) | Method for a shift control of a drivetrain of a motor vehicle | |
| US7917267B2 (en) | Method to determine an optimized shift point, in particular upshift point, for a manual transmission | |
| US8649949B2 (en) | Vehicle shift control apparatus | |
| JP2007263262A (en) | Shift control device for automatic transmission | |
| US8738253B2 (en) | Automatic transmission control apparatus, control method, program for realizing that method, and recording medium on which that program is recorded | |
| JP4862742B2 (en) | Internal combustion engine control device and internal combustion engine control system | |
| US20120310497A1 (en) | Gear-shift control apparatus for automatic transmission | |
| US7678018B2 (en) | Method for implementing shifts from a source gear to a target gear of an automatic shift transmission, in particular downshifts of an automatic shift transmission | |
| JP5041008B2 (en) | Control device for automatic transmission, control method, program for realizing the method, and recording medium recording the program | |
| JP2017207122A (en) | Shift instructing device of vehicle | |
| US6530292B1 (en) | Method for determining a shifting step for a discretely shifting transmission of a motor vehicle | |
| JP4330952B2 (en) | Shift control device for automatic transmission | |
| JP2012002319A (en) | Control device of automatic transmission for vehicle | |
| CN113062977A (en) | Clutch control method and device during engine load change and vehicle | |
| KR20150080056A (en) | Shift method using shift map of automatic transmission | |
| US10260628B2 (en) | Method of controlling pulley ratio of continuously variable transmission vehicle | |
| JP5932372B2 (en) | Control device for automatic transmission for vehicle | |
| JP5103829B2 (en) | Shift control device for automatic transmission | |
| JP2008180251A (en) | Shift control device for automatic transmission | |
| KR100250293B1 (en) | How to control shifting when driving on hills of a vehicle with automatic transmission |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: VOLKSWAGEN AG, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SCHAEFER, STEPHAN;REEL/FRAME:023868/0192 Effective date: 20070604 Owner name: VOLKSWAGEN AG,GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SCHAEFER, STEPHAN;REEL/FRAME:023868/0192 Effective date: 20070604 |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| FPAY | Fee payment |
Year of fee payment: 4 |
|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552) Year of fee payment: 8 |
|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |