US7782465B2 - High intensity fabry-perot sensor - Google Patents
High intensity fabry-perot sensor Download PDFInfo
- Publication number
- US7782465B2 US7782465B2 US12/365,700 US36570009A US7782465B2 US 7782465 B2 US7782465 B2 US 7782465B2 US 36570009 A US36570009 A US 36570009A US 7782465 B2 US7782465 B2 US 7782465B2
- Authority
- US
- United States
- Prior art keywords
- lens
- sensor assembly
- diaphragm
- reflective surface
- optical fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/32—Optical coupling means having lens focusing means positioned between opposed fibre ends
- G02B6/322—Optical coupling means having lens focusing means positioned between opposed fibre ends and having centering means being part of the lens for the self-positioning of the lightguide at the focal point, e.g. holes, wells, indents, nibs
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Measuring instruments characterised by the use of optical techniques
- G01B9/02—Interferometers
- G01B9/02055—Reduction or prevention of errors; Testing; Calibration
- G01B9/02062—Active error reduction, i.e. varying with time
- G01B9/02067—Active error reduction, i.e. varying with time by electronic control systems, i.e. using feedback acting on optics or light
- G01B9/02068—Auto-alignment of optical elements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/268—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light using optical fibres
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/353—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
- G01D5/35306—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
- G01D5/35309—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
- G01D5/35312—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Fabry Perot
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B2290/00—Aspects of interferometers not specifically covered by any group under G01B9/02
- G01B2290/25—Fabry-Perot in interferometer, e.g. etalon, cavity
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/32—Optical coupling means having lens focusing means positioned between opposed fibre ends
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/34—Optical coupling means utilising prism or grating
Definitions
- the present invention relates to sensors for measuring the absolute length of a gap in a Fabry-Perot interferometer, and more particularly to a Fabry-Perot sensor that provides a more intense signal.
- Fabry-Perot interferometers to measure the absolute length of a gap.
- Use of a ball lens to collimate light shining on a Fabry-Perot interferometer is needed for sensors measuring gaps exceeding about 30 um in order to maintain a uniform optical path length for all light rays and to assure a high percentage of the light reflected by the interferometer is captured by the fiber.
- the reflected light from the diaphragm does not re-enter the fiber because the reflected light spot that is re-imaged by the ball lens is not centered on the end of the input fiber.
- the results from the Fabry-Perot interferometer-based sensor are compromised.
- a Fabry-Perot interferometer-based sensor with a ball lens and alignment scheme that reflects high intensity light signals would provide benefits such as improved power budget, improved signal to noise ratio, and would be welcomed by the industry.
- a sensor assembly comprises a body having a socket, a ball rotatably positioned in the socket of the body, an optical fiber, at least a portion of the optical fiber positioned in the ball, a ball lens attached to the optical fiber, the ball lens capable of transmitting a beam of light, a diaphragm having a reflective surface, the diaphragm spaced from the ball lens such that the beam of light transmitted by the ball lens is capable of reflecting from the surface of the diaphragm back to the ball lens, and wherein rotation of the ball aligns the beam of light transmitted from the ball lens substantially perpendicular with the reflective surface of the mesa diaphragm.
- FIG. 1A is a concept drawing of a Fabry-Perot interferometer based sensor assembly with a ball lens and Fabry-Perot gap, wherein the window is a wedge with nonparallel surfaces.
- FIG. 1B is a concept drawing of a Fabry-Perot interferometer based sensor assembly with a ball lens, a Fabry-Perot gap, and a wedge-shaped spacer that is used with a window having parallel surfaces.
- FIG. 2 is a concept drawing of sensor assembly with ball lens and Fabry-Perot gap, wherein the two surfaces of the window are plane parallel (where one surface is a first reflector in a Fabry-Perot interferometer) and the transducer body is machined at the desired angle to maximize the reflected light signal.
- FIG. 5 shows a cross section of a second reflector in the Fabry-Perot interferometer with a mesa diaphragm configuration.
- FIG. 6 shows a cross section of a second reflector in the Fabry-Perot interferometer with a plug diaphragm configuration.
- FIG. 7 shows a cross section of a second reflector in the Fabry-Perot interferometer with a bellows diaphragm configuration.
- FIG. 8 shows a cross section of a second reflector in the Fabry-Perot interferometer with a spherical depression.
- FIG. 9 shows a flexible transducer incorporating an embodiment of a Fabry-Perot interferometer based sensor.
- FIG. 10 shows a cross-section drawing of ball and socket alignment device of an optical fiber with fused ball lens.
- FIG. 1A An embodiment of a Fabry-Perot interferometer based sensor 10 is shown in FIG. 1A .
- a wedge shaped window assembly 15 is used rather than a plane-parallel window as an alignment device.
- the wedge shaped window assembly 15 comprises one surface 52 that serves as the first partially reflector in a Fabry-Perot interferometer where the window assembly 15 is located between the lens 30 and a second reflector 49 in the Fabry-Perot interferometer, which allows for proper operation of the invention with long gaps. Rotation of the wedge-shaped window assembly 15 causes a change in the angle of refraction into and out of the window assembly 15 until the window assembly 15 is in the precise rotational location where the column or beam of light transmitted from the lens 30 , is perpendicular to the first reflective surface 52 on the window assembly 15 .
- the window surfaces 51 , 52 can be maintained parallel to each other and parallel to the second reflector surface 49 in the Fabry-Perot sensor. Plane-parallel windows are easier to manufacture.
- the alignment device comprises a wedge-shaped spacer 61 located between the lens and the reflective surface as shown in FIG. 1B . Accordingly, to provide the angle tuning, the wedge-shaped spacer 61 is inserted until the column or beam of light transmitted from the lens 30 , is perpendicular to the reflective surface on the diaphragm. Spacers 61 with different wedge angles can be matched to different transducer bodies to collect for variation in manufacturing tolerances of the transducer bodies and to optimize light transmission.
- the alignment device comprises a surface 213 of the transducer body 211 that mates with the window assembly 215 that is machined at the desired angle after the ball lens 230 and optical fiber 225 assembly are bonded.
- the window assembly 215 does not need to be rotated to bring the window 215 into precise alignment with the transducer 211 .
- the method for pointing the light beam to achieve perpendicularity with the diaphragm is to use a metal ball-and-socket assembly shown in FIG. 10 .
- the Fabry-Perot interferometer based sensor 1000 comprises a ferrule 1020 , an optical fiber 1025 , a lens 1030 , a Fabry-Perot sensor 1040 , and an alignment device.
- the alignment device comprises a body 1060 having a socket 1065 , and a ball 1070 .
- the Fabry-Perot sensor 1040 comprises a window assembly 1015 and a diaphragm 1042 .
- the window assembly 1015 comprises one surface 1052 that serves as the first reflector in a Fabry-Perot interferometer where the window 1015 is between the lens 1030 and a second reflector 1049 in the Fabry-Perot interferometer. This allows for proper operation of the embodiment with long gaps.
- the window assembly 1015 also includes another surface 1051 parallel to the surface 1052 .
- the ball 1070 can be a metal ball, but is not limited to such. It can be of any material.
- the ball 1070 is rotatably attached in the socket 1065 .
- Held inside the metal ball 1070 is the ferrule 1020 that holds the optical fiber 1025 and lens 1030 .
- the metal ball 1070 can be rotated in its mating socket 1065 through two degrees of freedom about the center-of-rotation 1072 , as shown by the arrow. In this manner the light beam angle transmitted from the lens 1030 is fine-tuned to be perpendicular to the diaphragm 1042 surface 1049 .
- a 2 mm diameter ball lens that is configured according to the drawing in FIG. 3 has the design parameters presented in Table 1.
- the tilt angle is an input parameter to the ray trace.
- the same tilt angle is applied to each window surface C and D and the reflector E.
- FIG. 4 shows what happens if the fiber de-center remains 0.05 mm and the tilt angle is set to 0.
- the reflected rays miss the end of the fiber. Compare FIG. 4 with FIG. 3 , where the reflected rays re-enter the fiber.
- the object and image size in FIG. 3 is roughly 0.065 mm (total spot size, not rms).
- the size of the image (reflected spot) is roughly 0.115 mm and is not centered about the object (fiber end).
- FIGS. 1 and 2 a configuration to collimate light shining on the diaphragm of a fiber optic Fabry-Perot pressure sensor is shown in FIGS. 1 and 2 .
- a light delivery fiber and a ball lens are not attached to one another.
- the non-attached case results in two unwanted reflective surfaces (the fiber end and the ball lens input surface) that could interfere with the desired signal from the Fabry-Perot sensor.
- the ball lens 1030 is attached to the optical fiber 1025 . More specifically, the ball lens 1030 is fused and centered on the end of the optical fiber 1025 minimizing the de-centering problem and eliminating two unwanted reflective surfaces.
- a ball lens is fused to the silica optical fiber by heating the end of the fiber to the melting point.
- the ball lens 1030 can be bonded to the optical fiber 1025 using an adhesive.
- the typical diameter of the ball lens formed in this manner is 340/Lm.
- An additional way to improve the performance of the Fabry-Perot interferometer based sensor is to machine a feature (such as a circular groove) into the diaphragm that causes the surface of the diaphragm to translate without bending as the diaphragm deflects.
- This feature could be configured as a mesa 500 (which is the circular groove cut into the diaphragm substantially surrounding the flat mesa reflective surface of the diaphragm), a plug 600 , or a bellows 700 as depicted in FIGS. 5 , 6 , and 7 , respectively.
- the mesa diaphragm 500 includes a circular groove 510 cut therein.
- the circular groove 510 surrounds the reflective surface 549 of the diaphragm 500 .
- Another way to improve the performance of the Fabry-Perot interferometer based sensor 10 is to attach a glass plate and/or dielectric coating 49 to the surface of the diaphragm 42 that allows the reflectance of the diaphragm 42 to be optimized and to remain uniform with time and temperature.
- the performance of the Fabry-Perot interferometer based sensor could be improved by machining a concave spherical depression 810 as depicted in FIG. 8 in the center of the diaphragm 800 to provide modal control of the Fabry-Perot gap.
- the depth of the spherical depression must be less than the minimum gap that is to be measured with the Fabry-Perot sensor.
- the features of the second reflector in the Fabry-Perot interferometer based sensor combine to enable a transducer head 900 to be fabricated that is very short and very small in diameter.
- the small size allows the transducer head 900 to be placed on then end of a flexible probe 910 for use in locations where space and access are very limited, forming a flexible transducer.
- Combustor baskets in Siemens Westinghouse turbines contain J-tubes used to examine the combustor basket with a boroscope.
- a flexible transducer may be installed in this location but there are physical limitations to the size of the transducer head and the pigtail assembly that contains the leads. It is straightforward to design and build a fiber optic transducer that fits within the size envelope defined by the gas turbine combustor basket J-tube. One design is shown in FIG. 9 . The size constraints include the diameter and length of the transducer and the flexibility of the pigtail assembly that must be pressure sealed.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Optical Couplings Of Light Guides (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
TABLE 1 |
Parameter definitions for design in FIG. 3. For |
a lens with 2 mm FS ball w 0.7 mm thick window |
THICK- | APERTURE | |||
SRF | RADIUS | NESS | RADIUS | GLASS |
OBJ | — | 0.530000 | 0.025000 | AIR |
AST | 1.000000 | 2.000000 | 0.119528 AS | FK3 (fused silica) |
2 | −1.000000 | 0.100000 | 0.418365 S | AIR |
3 | — | 0.700000 | 0.420979 S | BK7 (glass) |
4 | — | 1.000000 | 0.433099 S | AIR |
5 | — | −1.000000 | 0.459240 S | REFL_HATCH * |
6 | — | −0.700000 | 0.48538 1 S | BK7 |
7 | — | −0.100000 | 0.497501 5 | AIR |
8 | −1.000000 | −2.000000 | 0.500115 5 | FK3 |
9 | 1.000000 | −0.530000 | 0.221589 S | AIR |
IMS | — | 0.060116S | ||
0 | DT | 1 | DCX | — | DCY | 0.050000 | DCZ | — |
TLA | — | TLB | — | TLC | — | |||
3 | DT | 1 | DCX | — | DCY | — | DCZ | — |
TLA | −0.500000 | TLB | — | TLC | — | |||
5 | DT | 1 | DCX | — | DCY | — | DCZ | — |
TLA | −0.500000 | TLB | — | TLC | — | |||
7 | DT | 1 | DCX | — | DCY | — | DCZ | — |
TLA | −0.500000 | TLB | — | TLC | — | |||
* TILT/DECENTER DATA |
Claims (20)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/365,700 US7782465B2 (en) | 2005-03-16 | 2009-02-04 | High intensity fabry-perot sensor |
US12/862,635 US8432552B2 (en) | 2005-03-16 | 2010-08-24 | High intensity Fabry-Perot sensor |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US66220205P | 2005-03-16 | 2005-03-16 | |
US77428906P | 2006-02-17 | 2006-02-17 | |
US11/377,050 US20060274323A1 (en) | 2005-03-16 | 2006-03-16 | High intensity fabry-perot sensor |
US12/365,700 US7782465B2 (en) | 2005-03-16 | 2009-02-04 | High intensity fabry-perot sensor |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/377,050 Continuation US20060274323A1 (en) | 2005-03-16 | 2006-03-16 | High intensity fabry-perot sensor |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/862,635 Continuation-In-Part US8432552B2 (en) | 2005-03-16 | 2010-08-24 | High intensity Fabry-Perot sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
US20090207417A1 US20090207417A1 (en) | 2009-08-20 |
US7782465B2 true US7782465B2 (en) | 2010-08-24 |
Family
ID=37024370
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/377,050 Granted US20060274323A1 (en) | 2005-03-16 | 2006-03-16 | High intensity fabry-perot sensor |
US12/365,700 Active US7782465B2 (en) | 2005-03-16 | 2009-02-04 | High intensity fabry-perot sensor |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/377,050 Granted US20060274323A1 (en) | 2005-03-16 | 2006-03-16 | High intensity fabry-perot sensor |
Country Status (3)
Country | Link |
---|---|
US (2) | US20060274323A1 (en) |
EP (1) | EP1869737B1 (en) |
WO (1) | WO2006101923A2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100321703A1 (en) * | 2007-12-14 | 2010-12-23 | The Science And Technology Facilities Council | Optical sensor |
US20110170112A1 (en) * | 2005-03-16 | 2011-07-14 | Halliburton Energy Services, Inc. | High intensity fabry-perot sensor |
US20110211199A1 (en) * | 2010-02-09 | 2011-09-01 | Attocube Systems Ag | Device and method for acquiring position with a confocal fabry-perot interferometer |
US9998089B2 (en) | 2012-12-14 | 2018-06-12 | General Electric Company | Resonator device |
US10025001B2 (en) | 2013-12-20 | 2018-07-17 | Halliburton Energy Services, Inc. | Optical sensors in downhole logging tools |
US10145668B2 (en) | 2016-01-29 | 2018-12-04 | Yizheng CHEN | Fabry-Perot(F-P) sensor with sliding block having inclined reflective surface |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7492463B2 (en) | 2004-04-15 | 2009-02-17 | Davidson Instruments Inc. | Method and apparatus for continuous readout of Fabry-Perot fiber optic sensor |
US7835598B2 (en) | 2004-12-21 | 2010-11-16 | Halliburton Energy Services, Inc. | Multi-channel array processor |
EP1674833A3 (en) | 2004-12-21 | 2007-05-30 | Davidson Instruments, Inc. | Fiber optic sensor system |
US20060274323A1 (en) | 2005-03-16 | 2006-12-07 | Gibler William N | High intensity fabry-perot sensor |
WO2007033069A2 (en) | 2005-09-13 | 2007-03-22 | Davidson Instruments Inc. | Tracking algorithm for linear array signal processor for fabry-perot cross-correlation pattern and method of using same |
US7684051B2 (en) | 2006-04-18 | 2010-03-23 | Halliburton Energy Services, Inc. | Fiber optic seismic sensor based on MEMS cantilever |
US7743661B2 (en) | 2006-04-26 | 2010-06-29 | Halliburton Energy Services, Inc. | Fiber optic MEMS seismic sensor with mass supported by hinged beams |
US8115937B2 (en) | 2006-08-16 | 2012-02-14 | Davidson Instruments | Methods and apparatus for measuring multiple Fabry-Perot gaps |
CA2676246C (en) * | 2007-01-24 | 2013-03-19 | Halliburton Energy Services, Inc. | Transducer for measuring environmental parameters |
JP5434719B2 (en) * | 2010-03-19 | 2014-03-05 | セイコーエプソン株式会社 | Optical filters and analytical instruments |
US8655117B2 (en) | 2011-03-11 | 2014-02-18 | University of Maribor | Optical fiber sensors having long active lengths, systems, and methods |
JP6089674B2 (en) * | 2012-12-19 | 2017-03-08 | セイコーエプソン株式会社 | Wavelength variable interference filter, method for manufacturing wavelength variable interference filter, optical filter device, optical module, and electronic apparatus |
JP2016065937A (en) * | 2014-09-24 | 2016-04-28 | パイオニア株式会社 | Variable wavelength optical filter and manufacturing method therefor |
EP3482155B1 (en) * | 2016-07-05 | 2023-09-06 | The General Hospital Corporation | Common-path optical waveguide probe and method of manufacturing |
CN106643918A (en) * | 2017-03-15 | 2017-05-10 | 中国科学院武汉岩土力学研究所 | Integrated test device for stress and displacement of rock mass based on fiber bragg grating and system |
JP6754464B2 (en) * | 2019-04-23 | 2020-09-09 | パイオニア株式会社 | Tunable optical filter |
CN116839639A (en) * | 2022-03-24 | 2023-10-03 | 华为技术有限公司 | Optical fiber sensor and detection device |
US20250198868A1 (en) * | 2023-12-15 | 2025-06-19 | Simmonds Precision Products, Inc. | Collimating etalons for pressure and temperature sensing |
Citations (262)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1432149A (en) | 1922-01-06 | 1922-10-17 | William E Bellingham | Automobile windshield accessory |
GB1168971A (en) | 1966-07-08 | 1969-10-29 | Melvin Seymour Cook | Improvements in or relating to Optical Measurement of Length |
US3923400A (en) | 1974-01-03 | 1975-12-02 | Itek Corp | Real-time wavefront correction system |
US4210029A (en) | 1979-05-04 | 1980-07-01 | Lad Research Industries, Inc. | Differential fiber optic differential pressure sensor |
US4329058A (en) | 1979-01-22 | 1982-05-11 | Rockwell International Corporation | Method and apparatus for a Fabry-Perot multiple beam fringe sensor |
US4393714A (en) | 1981-03-07 | 1983-07-19 | Kernforschungszentrum Karlsruhe Gmbh | Differential pressure sensor |
US4418981A (en) | 1982-01-19 | 1983-12-06 | Gould Inc. | Quadrature fiber-optic interferometer matrix |
US4428239A (en) | 1980-10-27 | 1984-01-31 | Rosemount Engineering Company Limited | Differential pressure measuring apparatus |
US4572669A (en) | 1979-01-22 | 1986-02-25 | Rockwell International Corporation | Method and apparatus for a Fabry-Perot multiple beam fringe sensor |
US4576479A (en) | 1982-05-17 | 1986-03-18 | Downs Michael J | Apparatus and method for investigation of a surface |
DE3127333C2 (en) | 1981-07-10 | 1986-03-20 | Siemens Ag, 1000 Berlin Und 8000 Muenchen | Modulation device for optical signal transmission |
US4583228A (en) | 1983-11-21 | 1986-04-15 | At&T Bell Laboratories | Frequency stabilization of lasers |
US4596466A (en) | 1980-11-24 | 1986-06-24 | Reinhard Ulrich | Method for the measurement of lengths and displacements |
US4606638A (en) | 1983-11-03 | 1986-08-19 | Zygo Corporation | Distance measuring interferometer and method of use |
US4628211A (en) | 1983-03-30 | 1986-12-09 | International Business Machines Corporation | Circuit arrangement for crosstalk compensation in electro-optical scanners |
DE3411096C2 (en) | 1983-06-30 | 1987-01-29 | Siemens AG, 1000 Berlin und 8000 München | Multi-channel measurement acquisition, transmission and processing system |
US4640616A (en) | 1984-12-06 | 1987-02-03 | The Cambridge Instrument Company Plc | Automatic refractometer |
US4648083A (en) | 1985-01-03 | 1987-03-03 | The United States Of America As Represented By The Secretary Of The Navy | All-optical towed and conformal arrays |
US4647203A (en) | 1984-03-10 | 1987-03-03 | International Standard Electric Corporation | Fiber optic sensor |
US4668889A (en) | 1986-06-06 | 1987-05-26 | Adams Donald L | Static overpressure protection system for differential pressure transducer |
US4678909A (en) | 1984-03-31 | 1987-07-07 | Kent Scientific And Industrial Projects Limited | Optical pressure sensing apparatus |
US4682500A (en) | 1985-04-11 | 1987-07-28 | Sharp Kabushiki Kaisha | Pressure sensitive element |
US4729654A (en) | 1986-02-28 | 1988-03-08 | Nippon Seiko Kabushiki Kaisha | Laser interferometer |
US4755668A (en) | 1986-10-03 | 1988-07-05 | Optical Technologies, Inc. | Fiber optic interferometric thermometer with serially positioned fiber optic sensors |
US4777358A (en) | 1987-03-30 | 1988-10-11 | Geo-Centers, Inc. | Optical differential strain gauge |
US4787741A (en) | 1986-10-09 | 1988-11-29 | Mcdonnell Douglas Corporation | Fiber optic sensor |
US4806016A (en) | 1987-05-15 | 1989-02-21 | Rosemount Inc. | Optical displacement sensor |
US4844616A (en) | 1988-05-31 | 1989-07-04 | International Business Machines Corporation | Interferometric dimensional measurement and defect detection method |
US4873989A (en) | 1984-03-08 | 1989-10-17 | Optical Technologies, Inc. | Fluid flow sensing apparatus for in vivo and industrial applications employing novel optical fiber pressure sensors |
US4907035A (en) | 1984-03-30 | 1990-03-06 | The Perkin-Elmer Corporation | Universal edged-based wafer alignment apparatus |
US4914666A (en) | 1989-05-04 | 1990-04-03 | At&T Bell Laboratories | Random-access digitally -tuned optical frequency synthesizer |
US4968144A (en) | 1989-03-09 | 1990-11-06 | Wayne State University | Single beam AC interferometer |
US4972077A (en) | 1988-08-08 | 1990-11-20 | Schlumberger Industries Limited | Wavelength multiplexed optical transducer with a swept wavelength optical source |
US4995697A (en) | 1989-09-07 | 1991-02-26 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Fiber optic sensing system |
US5034603A (en) | 1989-11-06 | 1991-07-23 | Wilson Keith E | Integrated optics wavelength stabilization unit |
EP0452993A2 (en) | 1987-10-28 | 1991-10-23 | Borg-Warner Automotive, Inc. | Power transmission chain |
US5089696A (en) | 1989-06-06 | 1992-02-18 | Thomson-Csf | Network of sensors connected to a remote supply, monitoring and processing station |
US5094534A (en) | 1989-12-27 | 1992-03-10 | Dylor Corporation | Coherence selective fiber optic interferometric sensor system |
US5119024A (en) | 1990-03-09 | 1992-06-02 | Landis & Gyr Betriebs Ag | Optical device for sensing magnetic inductions |
US5128798A (en) | 1991-02-07 | 1992-07-07 | International Business Machines Corporation | Addressable wedge etalon filter |
US5128537A (en) | 1990-06-08 | 1992-07-07 | Landis & Gyr Betriebs Ag | Device for optically measuring a pressure differential |
US5148604A (en) | 1990-05-22 | 1992-09-22 | Robert Bosch Gmbh | Micromechanical tilt sensor |
US5177805A (en) | 1991-04-01 | 1993-01-05 | American Research Corp. Of Va. | Optical sensors utilizing multiple reflection |
US5187546A (en) | 1990-10-23 | 1993-02-16 | Rosemount Limited | Displacement measurement apparatus with dual wedge interferometers |
US5202939A (en) | 1992-07-21 | 1993-04-13 | Institut National D'optique | Fabry-perot optical sensing device for measuring a physical parameter |
US5218426A (en) | 1991-07-01 | 1993-06-08 | The United States Of America As Represented By The Secretary Of Commerce | Highly accurate in-situ determination of the refractivity of an ambient atmosphere |
US5218418A (en) | 1991-10-30 | 1993-06-08 | Layton Michael R | Differential fiber optic sensor and method |
US5225888A (en) | 1990-12-26 | 1993-07-06 | International Business Machines Corporation | Plasma constituent analysis by interferometric techniques |
US5239400A (en) | 1991-07-10 | 1993-08-24 | The Arizona Board Of Regents | Technique for accurate carrier frequency generation in of DM system |
US5247597A (en) | 1992-03-25 | 1993-09-21 | International Business Machines Corporation | Optical fiber alignment |
US5276501A (en) | 1992-11-06 | 1994-01-04 | Martin Marietta Corporation | Fabry-Perot readout technique using wavelength tuning |
US5283625A (en) | 1991-08-19 | 1994-02-01 | Litton Systems, Inc. | Interferometer phase modulation controller apparatus using ratios of two pairs of harmonic signals |
US5319981A (en) | 1991-04-05 | 1994-06-14 | Gulton-Statham Transducers, Inc. | Differential pressure device |
US5351317A (en) | 1992-08-14 | 1994-09-27 | Telefonaktiebolaget L M Ericsson | Interferometric tunable optical filter |
US5361130A (en) | 1992-11-04 | 1994-11-01 | The United States Of America As Represented By The Secretary Of The Navy | Fiber grating-based sensing system with interferometric wavelength-shift detection |
US5386729A (en) | 1993-09-22 | 1995-02-07 | The Babcock & Wilcox Company | Temperature compensated microbend fiber optic differential pressure transducer |
US5400140A (en) | 1991-07-30 | 1995-03-21 | Fisher-Rosemount Limited | Method of decoding a spectrally modulated light signal |
EP0397388B1 (en) | 1989-05-04 | 1995-03-22 | THERMA-WAVE, INC. (a Delaware corporation) | Method and apparatus for measuring thickness of thin films |
US5401958A (en) | 1993-09-08 | 1995-03-28 | General Electric Company | Optical temperature compensation of spectral modulation sensors by spectrographic interrogation having a dispersive element |
US5401956A (en) | 1993-09-29 | 1995-03-28 | United Technologies Corporation | Diagnostic system for fiber grating sensors |
US5420688A (en) | 1992-12-14 | 1995-05-30 | Farah; John | Interferometric fiber optic displacement sensor |
US5444724A (en) | 1993-08-26 | 1995-08-22 | Anritsu Corporation | Tunable wavelength light source incorporated optical filter using interferometer into external cavity |
US5451772A (en) | 1994-01-13 | 1995-09-19 | Mechanical Technology Incorporated | Distributed fiber optic sensor |
US5471428A (en) | 1992-11-30 | 1995-11-28 | Sgs-Thomson Microelectronics S.R.L | High performance single port RAM generator architecture |
US5477323A (en) | 1992-11-06 | 1995-12-19 | Martin Marietta Corporation | Fiber optic strain sensor and read-out system |
US5497233A (en) | 1994-07-27 | 1996-03-05 | Litton Systems, Inc. | Optical waveguide vibration sensor and method |
EP0400939B1 (en) | 1989-05-30 | 1996-03-27 | Solartron Group Limited | Semiconductor sensor with vibrating element |
US5509023A (en) | 1994-03-10 | 1996-04-16 | At&T Corp. | Laser control arrangement for tuning a laser |
US5526114A (en) | 1994-07-20 | 1996-06-11 | Eselun; Steven A. | Time multiplexed fringe counter |
US5550373A (en) | 1994-12-30 | 1996-08-27 | Honeywell Inc. | Fabry-Perot micro filter-detector |
US5557406A (en) | 1995-02-28 | 1996-09-17 | The Texas A&M University System | Signal conditioning unit for fiber optic sensors |
US5559358A (en) | 1993-05-25 | 1996-09-24 | Honeywell Inc. | Opto-electro-mechanical device or filter, process for making, and sensors made therefrom |
EP0597345B1 (en) | 1992-11-12 | 1996-10-16 | Flohe GmbH & Co | Conductor section for increasing the inductance of a cooled peak current cable |
US5631736A (en) | 1993-05-03 | 1997-05-20 | Dr. Johannes Heidenhain Gmbh | Absolute interferometer measuring process and apparatus having a measuring interferometer, control interferometer and tunable laser |
US5641956A (en) | 1996-02-02 | 1997-06-24 | F&S, Inc. | Optical waveguide sensor arrangement having guided modes-non guided modes grating coupler |
US5647030A (en) | 1993-01-11 | 1997-07-08 | University Of Washington | Fiber optic sensor and methods and apparatus relating thereto |
US5646762A (en) | 1995-11-07 | 1997-07-08 | Lucent Technologies Inc. | Optical communication system using tandem Fabry-Perot etalon for wavelength selection |
US5657405A (en) | 1995-04-17 | 1997-08-12 | Research Institute Of Advanced Material Gas-Generator | Optical fiber sensor for measuring pressure or displacement |
EP0549166B1 (en) | 1991-12-23 | 1997-10-15 | Therma-Wave Inc. | Method and apparatus for evaluating the thickness of thin films |
US5682237A (en) | 1995-05-26 | 1997-10-28 | McDonnell Douglas | Fiber strain sensor and system including one intrinsic and one extrinsic fabry-perot interferometer |
EP0571107B1 (en) | 1992-05-19 | 1998-01-07 | Vaisala Technologies Inc., Oy | Optical force transducer based on a Fabry-Perot resonator, with a sweeping Fabry-Perot resonator as an element of the transducing part |
US5760391A (en) | 1996-07-17 | 1998-06-02 | Mechanical Technology, Inc. | Passive optical wavelength analyzer with a passive nonuniform optical grating |
US5784507A (en) | 1991-04-05 | 1998-07-21 | Holm-Kennedy; James W. | Integrated optical wavelength discrimination devices and methods for fabricating same |
US5796007A (en) | 1996-09-23 | 1998-08-18 | Data Instruments, Inc. | Differential pressure transducer |
US5818586A (en) | 1994-10-31 | 1998-10-06 | Valtion Teknillinen Tutkimuskeskus | Miniaturized fabry-perot spectrometer for optical analysis |
US5835214A (en) | 1991-02-22 | 1998-11-10 | Applied Spectral Imaging Ltd. | Method and apparatus for spectral analysis of images |
US5847828A (en) | 1989-09-08 | 1998-12-08 | Btg International Limited | Michelson interferometer using matched wedge-shaped beam splitter and compensator |
US5852498A (en) | 1997-04-04 | 1998-12-22 | Kairos Scientific Inc. | Optical instrument having a variable optical filter |
US5872628A (en) | 1996-09-27 | 1999-02-16 | The Regents Of The University Of California | Noise pair velocity and range echo location system |
US5889590A (en) | 1997-03-28 | 1999-03-30 | General Electric Company | Optical cavity sensor |
US5910840A (en) | 1996-07-12 | 1999-06-08 | Deutsche Forschungsanstalt Fur Luft-Und Raumfahrt E.V. | Apparatus and method for interferometric measurements |
US5923030A (en) | 1997-11-10 | 1999-07-13 | The United States Of America As Represented By The Secretary Of The Navy | System and method for recovering a signal of interest from a phase modulated signal using quadrature sampling |
US5926591A (en) | 1996-05-10 | 1999-07-20 | Commissariat A L'energie Atomique | Optomechanical acceleration sensor |
US5929990A (en) | 1997-03-19 | 1999-07-27 | Litton Systems, Inc. | Fabry-perot pressure sensing system with ratioed quadrature pulse detection |
US5949801A (en) | 1998-07-22 | 1999-09-07 | Coretek, Inc. | Tunable laser and method for operating the same |
US5986749A (en) | 1997-09-19 | 1999-11-16 | Cidra Corporation | Fiber optic sensing system |
US5999261A (en) | 1998-02-10 | 1999-12-07 | Seagate Technology, Inc. | Split phase high performance, high frequency, high dynamic range interferometer |
US5999262A (en) | 1996-04-19 | 1999-12-07 | Carl Zeiss Jena Gmbh | Process and apparatus for detecting structural changes of specimens |
US6016702A (en) | 1997-09-08 | 2000-01-25 | Cidra Corporation | High sensitivity fiber optic pressure sensor for use in harsh environments |
US6020963A (en) | 1996-06-04 | 2000-02-01 | Northeastern University | Optical quadrature Interferometer |
US6057911A (en) | 1997-11-17 | 2000-05-02 | Northrop Grumman Corporation | Fiber optic fabry-perot sensor for measuring absolute strain |
US6064630A (en) | 1997-06-06 | 2000-05-16 | Litton Systems, Inc. | Sensor with an optical interferometric pick-off |
US6069686A (en) | 1997-07-31 | 2000-05-30 | Virginia Tech Intellectual Properties, Inc. | Self-calibrating optical fiber pressure, strain and temperature sensors |
US6075613A (en) | 1999-02-26 | 2000-06-13 | General Scanning, Inc. | Optical scanner calibration device |
US6078706A (en) | 1998-09-22 | 2000-06-20 | The United States Of America As Represented By The Secretary Of The Navy | Quasi-static fiber pressure sensor |
US6088144A (en) | 1996-09-13 | 2000-07-11 | Lucent Technologies Inc. | Detection of frequency-modulated tones in electromagnetic signals |
US6115521A (en) | 1998-05-07 | 2000-09-05 | Trw Inc. | Fiber/waveguide-mirror-lens alignment device |
US6118534A (en) | 1998-07-30 | 2000-09-12 | B. F. Goodrich Company | Sensor and method for measuring changes in environmental conditions |
US6122415A (en) | 1998-09-30 | 2000-09-19 | Blake; James N. | In-line electro-optic voltage sensor |
US6137621A (en) | 1998-09-02 | 2000-10-24 | Cidra Corp | Acoustic logging system using fiber optics |
US6151114A (en) | 1998-03-31 | 2000-11-21 | The Boeing Company | Coherent laser warning system |
US6157025A (en) | 1997-10-20 | 2000-12-05 | Nippon Telegraph And Telephone Corporation | Disk shaped tunable optical filter |
US6178001B1 (en) | 1999-09-08 | 2001-01-23 | Nortel Networks Limited | Method and apparatus for optical frequency modulation characterization of laser sources |
US6201289B1 (en) | 1999-08-12 | 2001-03-13 | United Microelectronics Corp. | Method of manufacturing an inductor |
US6212306B1 (en) | 1999-10-07 | 2001-04-03 | David J. F. Cooper | Method and device for time domain demultiplexing of serial fiber Bragg grating sensor arrays |
US6233262B1 (en) | 1997-08-11 | 2001-05-15 | Eci Telecom Ltd. | Device and method for monitoring and controlling laser wavelength |
US6272926B1 (en) | 1998-04-18 | 2001-08-14 | Robert Bosch Gmbh | Micromechanical component |
US20010013934A1 (en) | 1997-11-15 | 2001-08-16 | Malcolm Paul Varnham | Seismic sensor with interferometric sensing apparatus |
US6281976B1 (en) | 1997-04-09 | 2001-08-28 | The Texas A&M University System | Fiber optic fiber Fabry-Perot interferometer diaphragm sensor and method of measurement |
US6282215B1 (en) | 1998-10-16 | 2001-08-28 | New Focus, Inc. | Continuously-tunable external cavity laser |
US6289143B1 (en) | 1996-07-12 | 2001-09-11 | Mcdermott Technology, Inc. | Fiber optic acoustic emission sensor |
US6304686B1 (en) | 2000-02-09 | 2001-10-16 | Schlumberger Technology Corporation | Methods and apparatus for measuring differential pressure with fiber optic sensor systems |
US6328647B1 (en) | 2000-04-06 | 2001-12-11 | Jon E. Traudt | Pressure differential detecting system, and method of use |
US6330255B1 (en) | 2000-08-01 | 2001-12-11 | Micro Photonix Integration Corporation | Integrated optic device for optical wavelength selection |
US6331892B1 (en) | 1998-10-16 | 2001-12-18 | New Focus, Inc. | Interferometer for monitoring wavelength in an optical beam |
US20020015155A1 (en) | 1993-09-21 | 2002-02-07 | Ralf-Dieter Pechstedt | Interferometer integrated on silicon-on-insulator chip |
US20020041722A1 (en) | 2000-08-01 | 2002-04-11 | Johnson Gregg A. | Optical sensing device containing fiber bragg gratings |
US6396605B1 (en) | 1999-01-26 | 2002-05-28 | Trw Inc. | Apparatus and method for tuning an optical interferometer |
US6422084B1 (en) | 1998-12-04 | 2002-07-23 | Weatherford/Lamb, Inc. | Bragg grating pressure sensor |
US6425290B2 (en) | 2000-02-11 | 2002-07-30 | Rosemount Inc. | Oil-less differential pressure sensor |
US20020109081A1 (en) | 2000-12-20 | 2002-08-15 | Tarvin Jeffrey A. | Measuring system with comb filter interferometer and multiplexer |
US6439055B1 (en) | 1999-11-15 | 2002-08-27 | Weatherford/Lamb, Inc. | Pressure sensor assembly structure to insulate a pressure sensing device from harsh environments |
US6469817B1 (en) | 1999-06-18 | 2002-10-22 | Trw Inc. | Apparatus and method employing two optical signals for stabilizing an optical interferometer |
US20020167730A1 (en) | 2001-05-02 | 2002-11-14 | Anthony Needham | Wavelength selectable optical filter |
US6486984B1 (en) | 1999-06-07 | 2002-11-26 | Agilent Technologies, Inc. | Wavelength monitor using hybrid approach |
US6490038B1 (en) | 1996-01-02 | 2002-12-03 | Lj Laboratories Llc | Apparatus and method for measuring optical characteristics of an object |
US6492636B1 (en) | 1997-08-19 | 2002-12-10 | The University Of Maryland | Large scale high speed multiplexed optical fiber sensor network |
US6492800B1 (en) | 1995-12-08 | 2002-12-10 | Bechtel Bwxt Idaho, Llc | Electro-optic voltage sensor with beam splitting |
US20020186377A1 (en) | 2001-04-11 | 2002-12-12 | Modern Optical Technologies Llc. | Method and apparatus for measuring pressure |
US6496265B1 (en) | 2000-02-16 | 2002-12-17 | Airak, Inc. | Fiber optic sensors and methods therefor |
US6501551B1 (en) | 1991-04-29 | 2002-12-31 | Massachusetts Institute Of Technology | Fiber optic imaging endoscope interferometer with at least one faraday rotator |
US20030020926A1 (en) | 2001-05-15 | 2003-01-30 | Nicolae Miron | Tunable band pass optical filter unit with a tunable band pass interferometer |
US20030025912A1 (en) | 1999-10-04 | 2003-02-06 | Rongqing Hui | Method and apparatus for high resolution monitoring of optical signals |
US6522797B1 (en) | 1998-09-01 | 2003-02-18 | Input/Output, Inc. | Seismic optical acoustic recursive sensor system |
US20030043697A1 (en) | 1998-04-03 | 2003-03-06 | Vakoc Benjamin J. | Apparatus and method for processing optical signals from two delay coils to increase the dynamic range of a sagnac-based fiber optic sensor array |
US6538748B1 (en) | 2000-04-14 | 2003-03-25 | Agilent Technologies, Inc | Tunable Fabry-Perot filters and lasers utilizing feedback to reduce frequency noise |
US6539136B1 (en) | 1998-06-16 | 2003-03-25 | Nauchny Tsentr Volokonnoi Optiki Pri Institute Obschei Fiziki Rossiiskoi Adademii Nauk | Fiber-optic pressure sensor, variants and method for producing a resilient membrane |
US6545760B1 (en) | 1999-03-25 | 2003-04-08 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Apparatus and method for measuring strain in optical fibers using rayleigh scatter |
US6552799B1 (en) | 2000-02-17 | 2003-04-22 | Japan Science And Technology Corporation | Two-arm sagnac interferometer with two beam splitters |
US20030081875A1 (en) | 2001-10-26 | 2003-05-01 | Vladimir Kochergin | System and method for measuring physical, chemical and biological stimuli using vertical cavity surface emitting lasers with integrated tuner |
US6563968B2 (en) | 2000-03-16 | 2003-05-13 | Cidra Corporation | Tunable optical structure featuring feedback control |
US6583882B2 (en) | 2000-03-17 | 2003-06-24 | Honeywell International Inc. | Apparatus and method using digitally controlled integration for signal detection with improved noise characteristics |
US6581465B1 (en) | 2001-03-14 | 2003-06-24 | The United States Of America As Represented By The Secretary Of The Navy | Micro-electro-mechanical systems ultra-sensitive accelerometer |
US20030128917A1 (en) | 2001-07-20 | 2003-07-10 | Turpin Terry M. | Method and apparatus for optical signal processing using an optical tapped delay line |
US6594022B1 (en) | 1999-08-23 | 2003-07-15 | Coretek, Inc. | Wavelength reference device |
US20030132375A1 (en) | 2002-01-17 | 2003-07-17 | Blazo Stephen Frank | Tunable laser calibration system |
US6597458B2 (en) | 2001-02-02 | 2003-07-22 | Texas Christian University | Method and system for stabilizing and demodulating an interferometer at quadrature |
US20030141440A1 (en) | 2002-01-28 | 2003-07-31 | Ices Co., Ltd. | Multi-type fiber bragg grating sensor system |
US6603560B1 (en) | 2000-03-15 | 2003-08-05 | The Regents Of The University Of Michigan | High sensitivity fiber optic interferometric MEMS |
US6608685B2 (en) | 2000-05-15 | 2003-08-19 | Ilx Lightwave Corporation | Tunable Fabry-Perot interferometer, and associated methods |
US20030159518A1 (en) | 2002-02-22 | 2003-08-28 | Takeo Sawatari | Ultra-miniature optical pressure sensing system |
US6621258B2 (en) | 2000-01-17 | 2003-09-16 | Bechtel Bwxt Idaho, Llc | Electro-optic high voltage sensor |
US20030184867A1 (en) | 2001-02-21 | 2003-10-02 | Bryan Clark | Method and system for performing swept-wavelength measurements within an optical system |
US6633593B2 (en) | 2001-01-02 | 2003-10-14 | Spectrasensors, Inc. | Tunable semiconductor laser having cavity with wavelength selective mirror and Mach-Zehnder interferometer |
US6636321B2 (en) | 2000-05-05 | 2003-10-21 | Abb Research Ltd | Fiber-optic current sensor |
US6643025B2 (en) | 2001-03-29 | 2003-11-04 | Georgia Tech Research Corporation | Microinterferometer for distance measurements |
US6647160B1 (en) | 2002-06-17 | 2003-11-11 | National Chiao Tung University | Fiber bragg grating sensor system |
US6650420B2 (en) | 2002-02-27 | 2003-11-18 | The United States Of America As Represented By The Secretary Of The Navy | Nanoscale vibrometric measurement apparatus and method |
US6668111B2 (en) | 2001-06-28 | 2003-12-23 | The Charles Stark Draper Laboratory | Optical microcavity resonator sensor |
US6668105B2 (en) | 2000-07-27 | 2003-12-23 | Systems Planning & Analysis, Inc. | Fiber optic strain sensor |
US6668656B2 (en) | 1998-12-04 | 2003-12-30 | Weatherford/Lamb, Inc. | Optical sensor having differing diameters |
US20040008742A1 (en) | 2002-03-15 | 2004-01-15 | Chou Stephen Y. | Mode-locked laser using a mode-locking wavelength selective reflector |
US6680472B1 (en) | 1999-09-15 | 2004-01-20 | Optoplan As | Device for measuring of optical wavelengths |
US20040013356A1 (en) | 2002-07-22 | 2004-01-22 | Jen-Chih Wang | Tunable filter applied in optical networks |
US20040013040A1 (en) | 2002-07-18 | 2004-01-22 | Maas Steven J. | Fiber-optic seismic array telemetry, system, and method |
US6687011B1 (en) | 1999-04-23 | 2004-02-03 | Korea Advanced Institute Science And Technology | Transmission-type extrinsic fabry-perot interferometric optical fiber sensor |
US6687036B2 (en) | 2000-11-03 | 2004-02-03 | Nuonics, Inc. | Multiplexed optical scanner technology |
US6690873B2 (en) | 1999-01-27 | 2004-02-10 | Teem Photonics | Method and apparatus for waveguide optics and devices |
US6714700B2 (en) | 2000-04-16 | 2004-03-30 | Avanex Corporation | Micro electromechanical system and method for transmissively switching optical signals |
US6714566B1 (en) | 1999-03-01 | 2004-03-30 | The Regents Of The University Of California | Tunable laser source with an integrated wavelength monitor and method of operating same |
US6717965B2 (en) | 2001-07-06 | 2004-04-06 | Intel Corporation | Graded thin film wedge interference filter and method of use for laser tuning |
US6735224B2 (en) | 2001-03-01 | 2004-05-11 | Applied Optoelectronics, Inc. | Planar lightwave circuit for conditioning tunable laser output |
US6741357B2 (en) | 2001-08-14 | 2004-05-25 | Seagate Technology Llc | Quadrature phase shift interferometer with unwrapping of phase |
US6747743B2 (en) | 2000-11-10 | 2004-06-08 | Halliburton Energy Services, Inc. | Multi-parameter interferometric fiber optic sensor |
US20040113104A1 (en) | 2002-12-12 | 2004-06-17 | Maida John L | Remotely deployed optical fiber circulator |
US6765194B2 (en) | 2000-03-23 | 2004-07-20 | Daimlerchrysler Ag | Arrangement including a plurality of optical fiber bragg grating sensors and method for determining measured values in such arrangement |
US20040141184A1 (en) | 2003-01-20 | 2004-07-22 | Fuji Photo Optical Co., Ltd. | Interferometer apparatus for both low and high coherence measurement and method thereof |
US6771905B1 (en) | 1999-06-07 | 2004-08-03 | Corvis Corporation | Optical transmission systems including optical switching devices, control apparatuses, and methods |
US20040151438A1 (en) | 2002-12-20 | 2004-08-05 | Ferguson Stephen K. | Temperature compensated ferrule holder for a fiber Fabry-Perot filter |
US20040151216A1 (en) | 2003-01-27 | 2004-08-05 | Tsai John C. | Tunable wavelength locker, tunable wavelength spectrum monitor, and relative wavelength measurement system |
US6776049B2 (en) | 2001-12-07 | 2004-08-17 | Alliant Techsystems Inc. | System and method for measuring stress at an interface |
US6785004B2 (en) | 2000-11-29 | 2004-08-31 | Weatherford/Lamb, Inc. | Method and apparatus for interrogating fiber optic sensors |
US6791694B2 (en) | 2001-01-16 | 2004-09-14 | Santur Corporation | Tunable optical device using a scanning MEMS mirror |
US6798940B2 (en) | 2000-12-22 | 2004-09-28 | Electronics And Telecommunications Research Institute | Optical tunable filters and optical communication device incorporated therein optical tunable filters |
US20040196874A1 (en) | 2002-01-24 | 2004-10-07 | Np Photonics, Inc | Erbium-doped phosphate-glass tunable single-mode fiber laser using a tunable fabry-perot filter |
US6806961B2 (en) | 2001-11-05 | 2004-10-19 | Zygo Corporation | Interferometric cyclic error compensation |
US6822979B2 (en) | 2001-07-06 | 2004-11-23 | Intel Corporation | External cavity laser with continuous tuning of grid generator |
US6825934B2 (en) | 2002-03-14 | 2004-11-30 | Agilent Technologies, Inc. | Vibration noise mitigation in an interferometric system |
US6829259B2 (en) | 2001-07-06 | 2004-12-07 | Intel Corporation | Tunable laser control system with optical path length modulation |
US6829073B1 (en) | 2003-10-20 | 2004-12-07 | Corning Incorporated | Optical reading system and method for spectral multiplexing of resonant waveguide gratings |
US6839131B2 (en) | 2001-09-22 | 2005-01-04 | Samsung Electronics Co., Ltd. | Method and apparatus for monitoring optical signal performance in wavelength division multiplexing system |
US6838660B2 (en) | 2000-06-02 | 2005-01-04 | Airak, Inc. | Fiber optic sensor system and method for measuring the pressure of media |
US6842254B2 (en) | 2002-10-16 | 2005-01-11 | Fiso Technologies Inc. | System and method for measuring an optical path difference in a sensing interferometer |
US20050046862A1 (en) | 2003-08-25 | 2005-03-03 | Ivan Melnyk | Fiber optic sensing device for measuring a physical parameter |
US20050073690A1 (en) | 2003-10-03 | 2005-04-07 | Abbink Russell E. | Optical spectroscopy incorporating a vertical cavity surface emitting laser (VCSEL) |
US6879421B2 (en) | 2003-03-28 | 2005-04-12 | Beyond 3, Inc. | Method and system for performing swept-wavelength measurements within an optical system incorporating a reference resonator |
US6882428B2 (en) | 2001-08-28 | 2005-04-19 | Agilent Technologies, Inc. | Optical analyzer and method for reducing relative intensity noise in interferometric optical measurements using a continuously tunable laser |
US6886365B2 (en) | 2002-11-04 | 2005-05-03 | Harris Corporation | Fiber optic Fabry-Perot interferometer and associated methods |
US6886404B2 (en) | 2003-02-05 | 2005-05-03 | Fibersonde Corporation | Fiber optic accelerometer |
US6894787B2 (en) | 2001-12-21 | 2005-05-17 | Honeywell International Inc. | Optical pressure sensor |
US20050105098A1 (en) | 2001-11-29 | 2005-05-19 | Sinvent As | Optical displacement sensor |
US6898339B2 (en) | 2002-12-16 | 2005-05-24 | Schlumberger Technology Corporation | Multiple mode pre-loadable fiber optic pressure and temperature sensor |
US6901088B2 (en) | 2001-07-06 | 2005-05-31 | Intel Corporation | External cavity laser apparatus with orthogonal tuning of laser wavelength and cavity optical pathlength |
US6900896B2 (en) | 2001-08-22 | 2005-05-31 | Agilent Technologies, Inc. | Method and system for measuring optical characteristics of a sub-component within a composite optical system |
US6901176B2 (en) | 2002-10-15 | 2005-05-31 | University Of Maryland | Fiber tip based sensor system for acoustic measurements |
US6909548B2 (en) | 2001-06-13 | 2005-06-21 | Jds Uniphase Inc. | Optical filter using a linear variable filter with elliptical beam geometry |
US6915048B2 (en) | 2001-06-18 | 2005-07-05 | Cidra Corporation | Fabry-perot filter/resonator |
US6917736B1 (en) | 2002-05-09 | 2005-07-12 | Purdue Research Foundation | Method of increasing number of allowable channels in dense wavelength division multiplexing |
US6925213B2 (en) | 2001-03-09 | 2005-08-02 | University Of Cincinnati | Micromachined fiber optic sensors |
US6940588B2 (en) | 1997-02-14 | 2005-09-06 | Jds Uniphase Inc. | Measuring response characteristics of an optical component |
US6947218B2 (en) | 2002-08-30 | 2005-09-20 | Research Electro-Optics, Inc. | Fabry-perot etalon with independently selectable resonance frequency and free spectral range |
US20050213870A1 (en) | 2001-06-18 | 2005-09-29 | Weatherford/Lamb, Inc. | Fabry-perot sensing element based on a large-diameter optical waveguide |
US20050218299A1 (en) | 2004-03-31 | 2005-10-06 | Alf Olsen | Amplification with feedback capacitance for photodetector signals |
US6955085B2 (en) | 2003-06-02 | 2005-10-18 | Weatherford/Lamb, Inc. | Optical accelerometer or displacement device using a flexure system |
US20050231730A1 (en) | 2004-04-15 | 2005-10-20 | Jeffers Larry A | Interferometric signal conditioner for measurement of the absolute length of gaps in a fiber optic fabry-perot interferometer |
US20050231729A1 (en) | 2004-04-15 | 2005-10-20 | Lopushansky Richard L | Method and apparatus for continuous readout of Fabry-Perot fiber optic sensor |
US20050237538A1 (en) | 2004-04-23 | 2005-10-27 | Claude Belleville | Optical mems cavity having a wide scanning range for measuring a sensing interferometer |
US20050242096A1 (en) | 2004-04-29 | 2005-11-03 | Jaghab John J | Safety cup lip |
US6963404B2 (en) | 2002-10-16 | 2005-11-08 | Delta Electronics, Inc. | Fabry-Perot device compensating for an error of full width at half maximum and method of making the same |
US6985235B2 (en) | 2001-08-30 | 2006-01-10 | Micron Optics, Inc. | Cascaded fiber fabry-perot filters |
US6989906B2 (en) | 2002-06-19 | 2006-01-24 | Sandercock John R | Stable Fabry-Perot interferometer |
US20060034569A1 (en) | 2004-08-11 | 2006-02-16 | General Electric Company | Novel folded Mach-Zehnder interferometers and optical sensor arrays |
US7002697B2 (en) | 2001-08-02 | 2006-02-21 | Aegis Semiconductor, Inc. | Tunable optical instruments |
US7009691B2 (en) | 2002-05-29 | 2006-03-07 | Agilent Technologies, Inc. | System and method for removing the relative phase uncertainty in device characterizations performed with a polarimeter |
US7016047B2 (en) | 2002-09-26 | 2006-03-21 | Prime Photonics, Inc. | Active Q-point stabilization for linear interferometric sensors |
US7019837B2 (en) | 2003-08-27 | 2006-03-28 | Weatherford/Lamb, Inc | Method and apparatus for reducing crosstalk interference in an inline Fabry-Perot sensor array |
US7043102B2 (en) | 2000-09-20 | 2006-05-09 | Kyowa Electronic Instruments Co., Ltd. | Optical fiber interferosensor, signal-processing system for optical fiber interferosensor and recording medium |
US7046349B2 (en) | 2002-12-16 | 2006-05-16 | Aston Photonic Technologies Limited | Optical interrogation system and sensor system |
US7047816B2 (en) | 2003-03-21 | 2006-05-23 | Weatherford/Lamb, Inc. | Optical differential pressure transducer utilizing a bellows and flexure system |
US7065108B2 (en) | 2002-12-24 | 2006-06-20 | Electronics And Telecommunications Research Institute | Method of wavelength tuning in a semiconductor tunable laser |
US20060139652A1 (en) | 2004-12-21 | 2006-06-29 | Berthold John W | Fiber optic sensor system |
US20060146337A1 (en) | 2003-02-03 | 2006-07-06 | Hartog Arthur H | Interferometric method and apparatus for measuring physical parameters |
US20060241889A1 (en) | 2004-12-21 | 2006-10-26 | Lopushansky Richard L | Multi-channel array processor |
US7134346B2 (en) | 2004-04-15 | 2006-11-14 | Davidson Instruments Inc. | Differential pressure transducer with Fabry-Perot fiber optic displacement sensor |
US7139081B2 (en) | 2002-09-09 | 2006-11-21 | Zygo Corporation | Interferometry method for ellipsometry, reflectometry, and scatterometry measurements, including characterization of thin film structures |
US20060274323A1 (en) | 2005-03-16 | 2006-12-07 | Gibler William N | High intensity fabry-perot sensor |
US20070006663A1 (en) | 2003-09-04 | 2007-01-11 | Zerwekh Paul S | Optical sensor with co-located pressure and temperature sensors |
US7173713B2 (en) | 2004-03-04 | 2007-02-06 | Virginia Tech Intellectual Properties, Inc. | Optical fiber sensors for harsh environments |
US20070064241A1 (en) | 2005-09-13 | 2007-03-22 | Needham David B | Tracking algorithm for linear array signal processor for fabry-perot cross-correlation pattern and method of using same |
US7230959B2 (en) | 2002-02-22 | 2007-06-12 | Intel Corporation | Tunable laser with magnetically coupled filter |
US20070227252A1 (en) | 2006-03-31 | 2007-10-04 | Leitko Travis W | Differential pressure transducer configurations including displacement sensor |
US20070252998A1 (en) | 2006-03-22 | 2007-11-01 | Berthold John W | Apparatus for continuous readout of fabry-perot fiber optic sensor |
US7305158B2 (en) | 2004-04-15 | 2007-12-04 | Davidson Instruments Inc. | Interferometric signal conditioner for measurement of absolute static displacements and dynamic displacements of a Fabry-Perot interferometer |
US20080043245A1 (en) | 2006-08-16 | 2008-02-21 | Needham David B | Methods and apparatus for measuring multiple fabry-perot gaps |
US7355726B2 (en) | 2004-04-15 | 2008-04-08 | Davidson Instruments Inc. | Linear variable reflector sensor and signal processor |
US20080174781A1 (en) | 2006-04-18 | 2008-07-24 | Berthold John W | Fiber optic seismic sensor based on MEMS cantilever |
US7405829B2 (en) | 2005-06-17 | 2008-07-29 | Jds Uniphase Corporation | Apparatus and method for characterizing pulsed optical signals |
US20080186506A1 (en) | 2007-01-24 | 2008-08-07 | Davidson Instruments, Inc. | Transducer for measuring environmental parameters |
US7423762B2 (en) | 2003-10-03 | 2008-09-09 | Sabeus, Inc. | Rugged fabry-perot pressure sensor |
US20080297808A1 (en) | 2005-12-06 | 2008-12-04 | Nabeel Agha Riza | Optical Sensor For Extreme Environments |
US20090056447A1 (en) | 2006-04-26 | 2009-03-05 | Berthold John W | Fiber optic MEMS seismic sensor with mass supported by hinged beams |
US7511823B2 (en) | 2004-12-21 | 2009-03-31 | Halliburton Energy Services, Inc. | Fiber optic sensor |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1293457B (en) * | 1962-10-02 | 1969-04-24 | Gen Precision Inc | Interferometer for measuring changes in angle |
FR2641861B1 (en) | 1989-01-18 | 1993-04-30 | Photonetics | OPTO-ELECTRONIC MEASURING DEVICE |
US5920670A (en) | 1996-06-07 | 1999-07-06 | 3M Innovative Properties Company | Multiple alignment connector ferrule |
US6430337B1 (en) | 1998-09-03 | 2002-08-06 | Agere Systems Optoelectronics Guardian Corp. | Optical alignment system |
US7047054B2 (en) | 1999-03-12 | 2006-05-16 | Cas Medical Systems, Inc. | Laser diode optical transducer assembly for non-invasive spectrophotometric blood oxygenation monitoring |
DE19923246A1 (en) * | 1999-05-20 | 2000-12-07 | Tyco Electronics Logistics Ag | Ferrule for an optical fiber and method for attaching the ferrule to the optical fiber |
JP4460031B2 (en) * | 2000-03-28 | 2010-05-12 | 古河電気工業株式会社 | Arrayed waveguide grating |
US20050036742A1 (en) * | 2003-08-29 | 2005-02-17 | Dean David L. | Molded fiber optic ferrule with integrally formed geometry features |
-
2006
- 2006-03-16 US US11/377,050 patent/US20060274323A1/en active Granted
- 2006-03-16 WO PCT/US2006/009400 patent/WO2006101923A2/en active Application Filing
- 2006-03-16 EP EP06738462.8A patent/EP1869737B1/en active Active
-
2009
- 2009-02-04 US US12/365,700 patent/US7782465B2/en active Active
Patent Citations (276)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1432149A (en) | 1922-01-06 | 1922-10-17 | William E Bellingham | Automobile windshield accessory |
GB1168971A (en) | 1966-07-08 | 1969-10-29 | Melvin Seymour Cook | Improvements in or relating to Optical Measurement of Length |
US3923400A (en) | 1974-01-03 | 1975-12-02 | Itek Corp | Real-time wavefront correction system |
US4329058A (en) | 1979-01-22 | 1982-05-11 | Rockwell International Corporation | Method and apparatus for a Fabry-Perot multiple beam fringe sensor |
US4572669A (en) | 1979-01-22 | 1986-02-25 | Rockwell International Corporation | Method and apparatus for a Fabry-Perot multiple beam fringe sensor |
US4210029A (en) | 1979-05-04 | 1980-07-01 | Lad Research Industries, Inc. | Differential fiber optic differential pressure sensor |
US4428239A (en) | 1980-10-27 | 1984-01-31 | Rosemount Engineering Company Limited | Differential pressure measuring apparatus |
US4596466A (en) | 1980-11-24 | 1986-06-24 | Reinhard Ulrich | Method for the measurement of lengths and displacements |
US4393714A (en) | 1981-03-07 | 1983-07-19 | Kernforschungszentrum Karlsruhe Gmbh | Differential pressure sensor |
DE3127333C2 (en) | 1981-07-10 | 1986-03-20 | Siemens Ag, 1000 Berlin Und 8000 Muenchen | Modulation device for optical signal transmission |
US4418981A (en) | 1982-01-19 | 1983-12-06 | Gould Inc. | Quadrature fiber-optic interferometer matrix |
US4576479A (en) | 1982-05-17 | 1986-03-18 | Downs Michael J | Apparatus and method for investigation of a surface |
US4628211A (en) | 1983-03-30 | 1986-12-09 | International Business Machines Corporation | Circuit arrangement for crosstalk compensation in electro-optical scanners |
DE3411096C2 (en) | 1983-06-30 | 1987-01-29 | Siemens AG, 1000 Berlin und 8000 München | Multi-channel measurement acquisition, transmission and processing system |
US4606638A (en) | 1983-11-03 | 1986-08-19 | Zygo Corporation | Distance measuring interferometer and method of use |
US4583228A (en) | 1983-11-21 | 1986-04-15 | At&T Bell Laboratories | Frequency stabilization of lasers |
US4873989A (en) | 1984-03-08 | 1989-10-17 | Optical Technologies, Inc. | Fluid flow sensing apparatus for in vivo and industrial applications employing novel optical fiber pressure sensors |
US4647203A (en) | 1984-03-10 | 1987-03-03 | International Standard Electric Corporation | Fiber optic sensor |
US4907035A (en) | 1984-03-30 | 1990-03-06 | The Perkin-Elmer Corporation | Universal edged-based wafer alignment apparatus |
US4678909A (en) | 1984-03-31 | 1987-07-07 | Kent Scientific And Industrial Projects Limited | Optical pressure sensing apparatus |
US4640616A (en) | 1984-12-06 | 1987-02-03 | The Cambridge Instrument Company Plc | Automatic refractometer |
US4648083A (en) | 1985-01-03 | 1987-03-03 | The United States Of America As Represented By The Secretary Of The Navy | All-optical towed and conformal arrays |
US4682500A (en) | 1985-04-11 | 1987-07-28 | Sharp Kabushiki Kaisha | Pressure sensitive element |
US4729654A (en) | 1986-02-28 | 1988-03-08 | Nippon Seiko Kabushiki Kaisha | Laser interferometer |
US4668889A (en) | 1986-06-06 | 1987-05-26 | Adams Donald L | Static overpressure protection system for differential pressure transducer |
US4755668A (en) | 1986-10-03 | 1988-07-05 | Optical Technologies, Inc. | Fiber optic interferometric thermometer with serially positioned fiber optic sensors |
US4787741A (en) | 1986-10-09 | 1988-11-29 | Mcdonnell Douglas Corporation | Fiber optic sensor |
US4777358A (en) | 1987-03-30 | 1988-10-11 | Geo-Centers, Inc. | Optical differential strain gauge |
US4806016A (en) | 1987-05-15 | 1989-02-21 | Rosemount Inc. | Optical displacement sensor |
EP0452993A2 (en) | 1987-10-28 | 1991-10-23 | Borg-Warner Automotive, Inc. | Power transmission chain |
US4844616A (en) | 1988-05-31 | 1989-07-04 | International Business Machines Corporation | Interferometric dimensional measurement and defect detection method |
US4972077A (en) | 1988-08-08 | 1990-11-20 | Schlumberger Industries Limited | Wavelength multiplexed optical transducer with a swept wavelength optical source |
US4968144A (en) | 1989-03-09 | 1990-11-06 | Wayne State University | Single beam AC interferometer |
US4914666A (en) | 1989-05-04 | 1990-04-03 | At&T Bell Laboratories | Random-access digitally -tuned optical frequency synthesizer |
EP0397388B1 (en) | 1989-05-04 | 1995-03-22 | THERMA-WAVE, INC. (a Delaware corporation) | Method and apparatus for measuring thickness of thin films |
EP0400939B1 (en) | 1989-05-30 | 1996-03-27 | Solartron Group Limited | Semiconductor sensor with vibrating element |
US5089696A (en) | 1989-06-06 | 1992-02-18 | Thomson-Csf | Network of sensors connected to a remote supply, monitoring and processing station |
US4995697A (en) | 1989-09-07 | 1991-02-26 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Fiber optic sensing system |
US5847828A (en) | 1989-09-08 | 1998-12-08 | Btg International Limited | Michelson interferometer using matched wedge-shaped beam splitter and compensator |
US5034603A (en) | 1989-11-06 | 1991-07-23 | Wilson Keith E | Integrated optics wavelength stabilization unit |
US5094534A (en) | 1989-12-27 | 1992-03-10 | Dylor Corporation | Coherence selective fiber optic interferometric sensor system |
US5119024A (en) | 1990-03-09 | 1992-06-02 | Landis & Gyr Betriebs Ag | Optical device for sensing magnetic inductions |
US5148604A (en) | 1990-05-22 | 1992-09-22 | Robert Bosch Gmbh | Micromechanical tilt sensor |
US5128537A (en) | 1990-06-08 | 1992-07-07 | Landis & Gyr Betriebs Ag | Device for optically measuring a pressure differential |
US5187546A (en) | 1990-10-23 | 1993-02-16 | Rosemount Limited | Displacement measurement apparatus with dual wedge interferometers |
US5225888A (en) | 1990-12-26 | 1993-07-06 | International Business Machines Corporation | Plasma constituent analysis by interferometric techniques |
US5128798A (en) | 1991-02-07 | 1992-07-07 | International Business Machines Corporation | Addressable wedge etalon filter |
US5835214A (en) | 1991-02-22 | 1998-11-10 | Applied Spectral Imaging Ltd. | Method and apparatus for spectral analysis of images |
US5177805A (en) | 1991-04-01 | 1993-01-05 | American Research Corp. Of Va. | Optical sensors utilizing multiple reflection |
US5319981A (en) | 1991-04-05 | 1994-06-14 | Gulton-Statham Transducers, Inc. | Differential pressure device |
US5784507A (en) | 1991-04-05 | 1998-07-21 | Holm-Kennedy; James W. | Integrated optical wavelength discrimination devices and methods for fabricating same |
US6501551B1 (en) | 1991-04-29 | 2002-12-31 | Massachusetts Institute Of Technology | Fiber optic imaging endoscope interferometer with at least one faraday rotator |
US5218426A (en) | 1991-07-01 | 1993-06-08 | The United States Of America As Represented By The Secretary Of Commerce | Highly accurate in-situ determination of the refractivity of an ambient atmosphere |
US5239400A (en) | 1991-07-10 | 1993-08-24 | The Arizona Board Of Regents | Technique for accurate carrier frequency generation in of DM system |
US5400140A (en) | 1991-07-30 | 1995-03-21 | Fisher-Rosemount Limited | Method of decoding a spectrally modulated light signal |
US5283625A (en) | 1991-08-19 | 1994-02-01 | Litton Systems, Inc. | Interferometer phase modulation controller apparatus using ratios of two pairs of harmonic signals |
US5218418A (en) | 1991-10-30 | 1993-06-08 | Layton Michael R | Differential fiber optic sensor and method |
EP0549166B1 (en) | 1991-12-23 | 1997-10-15 | Therma-Wave Inc. | Method and apparatus for evaluating the thickness of thin films |
US5247597A (en) | 1992-03-25 | 1993-09-21 | International Business Machines Corporation | Optical fiber alignment |
EP0571107B1 (en) | 1992-05-19 | 1998-01-07 | Vaisala Technologies Inc., Oy | Optical force transducer based on a Fabry-Perot resonator, with a sweeping Fabry-Perot resonator as an element of the transducing part |
US5392117A (en) | 1992-07-21 | 1995-02-21 | Institut National D'optique | Fabry-Perot optical sensing device for measuring a physical parameter |
US5202939A (en) | 1992-07-21 | 1993-04-13 | Institut National D'optique | Fabry-perot optical sensing device for measuring a physical parameter |
US5351317A (en) | 1992-08-14 | 1994-09-27 | Telefonaktiebolaget L M Ericsson | Interferometric tunable optical filter |
US5361130A (en) | 1992-11-04 | 1994-11-01 | The United States Of America As Represented By The Secretary Of The Navy | Fiber grating-based sensing system with interferometric wavelength-shift detection |
US5477323A (en) | 1992-11-06 | 1995-12-19 | Martin Marietta Corporation | Fiber optic strain sensor and read-out system |
US5276501A (en) | 1992-11-06 | 1994-01-04 | Martin Marietta Corporation | Fabry-Perot readout technique using wavelength tuning |
EP0597345B1 (en) | 1992-11-12 | 1996-10-16 | Flohe GmbH & Co | Conductor section for increasing the inductance of a cooled peak current cable |
US5471428A (en) | 1992-11-30 | 1995-11-28 | Sgs-Thomson Microelectronics S.R.L | High performance single port RAM generator architecture |
US5420688A (en) | 1992-12-14 | 1995-05-30 | Farah; John | Interferometric fiber optic displacement sensor |
US5891747A (en) | 1992-12-14 | 1999-04-06 | Farah; John | Interferometric fiber optic displacement sensor |
US5835645A (en) | 1993-01-11 | 1998-11-10 | University Of Washington | Fiber optic sensor and methods and apparatus relating thereto |
US5647030A (en) | 1993-01-11 | 1997-07-08 | University Of Washington | Fiber optic sensor and methods and apparatus relating thereto |
US5631736A (en) | 1993-05-03 | 1997-05-20 | Dr. Johannes Heidenhain Gmbh | Absolute interferometer measuring process and apparatus having a measuring interferometer, control interferometer and tunable laser |
US5559358A (en) | 1993-05-25 | 1996-09-24 | Honeywell Inc. | Opto-electro-mechanical device or filter, process for making, and sensors made therefrom |
US5444724A (en) | 1993-08-26 | 1995-08-22 | Anritsu Corporation | Tunable wavelength light source incorporated optical filter using interferometer into external cavity |
US5401958A (en) | 1993-09-08 | 1995-03-28 | General Electric Company | Optical temperature compensation of spectral modulation sensors by spectrographic interrogation having a dispersive element |
US20020015155A1 (en) | 1993-09-21 | 2002-02-07 | Ralf-Dieter Pechstedt | Interferometer integrated on silicon-on-insulator chip |
US5386729A (en) | 1993-09-22 | 1995-02-07 | The Babcock & Wilcox Company | Temperature compensated microbend fiber optic differential pressure transducer |
US5401956A (en) | 1993-09-29 | 1995-03-28 | United Technologies Corporation | Diagnostic system for fiber grating sensors |
US5451772A (en) | 1994-01-13 | 1995-09-19 | Mechanical Technology Incorporated | Distributed fiber optic sensor |
US5509023A (en) | 1994-03-10 | 1996-04-16 | At&T Corp. | Laser control arrangement for tuning a laser |
US5526114A (en) | 1994-07-20 | 1996-06-11 | Eselun; Steven A. | Time multiplexed fringe counter |
US5497233A (en) | 1994-07-27 | 1996-03-05 | Litton Systems, Inc. | Optical waveguide vibration sensor and method |
US5818586A (en) | 1994-10-31 | 1998-10-06 | Valtion Teknillinen Tutkimuskeskus | Miniaturized fabry-perot spectrometer for optical analysis |
US5550373A (en) | 1994-12-30 | 1996-08-27 | Honeywell Inc. | Fabry-Perot micro filter-detector |
US5557406A (en) | 1995-02-28 | 1996-09-17 | The Texas A&M University System | Signal conditioning unit for fiber optic sensors |
US5657405A (en) | 1995-04-17 | 1997-08-12 | Research Institute Of Advanced Material Gas-Generator | Optical fiber sensor for measuring pressure or displacement |
US5682237A (en) | 1995-05-26 | 1997-10-28 | McDonnell Douglas | Fiber strain sensor and system including one intrinsic and one extrinsic fabry-perot interferometer |
US5646762A (en) | 1995-11-07 | 1997-07-08 | Lucent Technologies Inc. | Optical communication system using tandem Fabry-Perot etalon for wavelength selection |
US6492800B1 (en) | 1995-12-08 | 2002-12-10 | Bechtel Bwxt Idaho, Llc | Electro-optic voltage sensor with beam splitting |
US6490038B1 (en) | 1996-01-02 | 2002-12-03 | Lj Laboratories Llc | Apparatus and method for measuring optical characteristics of an object |
US5641956A (en) | 1996-02-02 | 1997-06-24 | F&S, Inc. | Optical waveguide sensor arrangement having guided modes-non guided modes grating coupler |
US5999262A (en) | 1996-04-19 | 1999-12-07 | Carl Zeiss Jena Gmbh | Process and apparatus for detecting structural changes of specimens |
US5926591A (en) | 1996-05-10 | 1999-07-20 | Commissariat A L'energie Atomique | Optomechanical acceleration sensor |
US6020963A (en) | 1996-06-04 | 2000-02-01 | Northeastern University | Optical quadrature Interferometer |
US5910840A (en) | 1996-07-12 | 1999-06-08 | Deutsche Forschungsanstalt Fur Luft-Und Raumfahrt E.V. | Apparatus and method for interferometric measurements |
US6289143B1 (en) | 1996-07-12 | 2001-09-11 | Mcdermott Technology, Inc. | Fiber optic acoustic emission sensor |
US5760391A (en) | 1996-07-17 | 1998-06-02 | Mechanical Technology, Inc. | Passive optical wavelength analyzer with a passive nonuniform optical grating |
US6088144A (en) | 1996-09-13 | 2000-07-11 | Lucent Technologies Inc. | Detection of frequency-modulated tones in electromagnetic signals |
US5796007A (en) | 1996-09-23 | 1998-08-18 | Data Instruments, Inc. | Differential pressure transducer |
US5872628A (en) | 1996-09-27 | 1999-02-16 | The Regents Of The University Of California | Noise pair velocity and range echo location system |
US6940588B2 (en) | 1997-02-14 | 2005-09-06 | Jds Uniphase Inc. | Measuring response characteristics of an optical component |
US5929990A (en) | 1997-03-19 | 1999-07-27 | Litton Systems, Inc. | Fabry-perot pressure sensing system with ratioed quadrature pulse detection |
US5889590A (en) | 1997-03-28 | 1999-03-30 | General Electric Company | Optical cavity sensor |
US5852498A (en) | 1997-04-04 | 1998-12-22 | Kairos Scientific Inc. | Optical instrument having a variable optical filter |
US6281976B1 (en) | 1997-04-09 | 2001-08-28 | The Texas A&M University System | Fiber optic fiber Fabry-Perot interferometer diaphragm sensor and method of measurement |
US6064630A (en) | 1997-06-06 | 2000-05-16 | Litton Systems, Inc. | Sensor with an optical interferometric pick-off |
US6069686A (en) | 1997-07-31 | 2000-05-30 | Virginia Tech Intellectual Properties, Inc. | Self-calibrating optical fiber pressure, strain and temperature sensors |
US6233262B1 (en) | 1997-08-11 | 2001-05-15 | Eci Telecom Ltd. | Device and method for monitoring and controlling laser wavelength |
US6492636B1 (en) | 1997-08-19 | 2002-12-10 | The University Of Maryland | Large scale high speed multiplexed optical fiber sensor network |
US6016702A (en) | 1997-09-08 | 2000-01-25 | Cidra Corporation | High sensitivity fiber optic pressure sensor for use in harsh environments |
US5986749A (en) | 1997-09-19 | 1999-11-16 | Cidra Corporation | Fiber optic sensing system |
US6157025A (en) | 1997-10-20 | 2000-12-05 | Nippon Telegraph And Telephone Corporation | Disk shaped tunable optical filter |
US5923030A (en) | 1997-11-10 | 1999-07-13 | The United States Of America As Represented By The Secretary Of The Navy | System and method for recovering a signal of interest from a phase modulated signal using quadrature sampling |
US20010013934A1 (en) | 1997-11-15 | 2001-08-16 | Malcolm Paul Varnham | Seismic sensor with interferometric sensing apparatus |
US6057911A (en) | 1997-11-17 | 2000-05-02 | Northrop Grumman Corporation | Fiber optic fabry-perot sensor for measuring absolute strain |
US6173091B1 (en) | 1997-11-17 | 2001-01-09 | Northrop Grumman Corporation | Fiber optic Fabry-Perot sensor for measuring absolute strain |
US5999261A (en) | 1998-02-10 | 1999-12-07 | Seagate Technology, Inc. | Split phase high performance, high frequency, high dynamic range interferometer |
US6151114A (en) | 1998-03-31 | 2000-11-21 | The Boeing Company | Coherent laser warning system |
US20030043697A1 (en) | 1998-04-03 | 2003-03-06 | Vakoc Benjamin J. | Apparatus and method for processing optical signals from two delay coils to increase the dynamic range of a sagnac-based fiber optic sensor array |
US6272926B1 (en) | 1998-04-18 | 2001-08-14 | Robert Bosch Gmbh | Micromechanical component |
US6115521A (en) | 1998-05-07 | 2000-09-05 | Trw Inc. | Fiber/waveguide-mirror-lens alignment device |
US6539136B1 (en) | 1998-06-16 | 2003-03-25 | Nauchny Tsentr Volokonnoi Optiki Pri Institute Obschei Fiziki Rossiiskoi Adademii Nauk | Fiber-optic pressure sensor, variants and method for producing a resilient membrane |
US5949801A (en) | 1998-07-22 | 1999-09-07 | Coretek, Inc. | Tunable laser and method for operating the same |
US6118534A (en) | 1998-07-30 | 2000-09-12 | B. F. Goodrich Company | Sensor and method for measuring changes in environmental conditions |
US6522797B1 (en) | 1998-09-01 | 2003-02-18 | Input/Output, Inc. | Seismic optical acoustic recursive sensor system |
US6137621A (en) | 1998-09-02 | 2000-10-24 | Cidra Corp | Acoustic logging system using fiber optics |
US6078706A (en) | 1998-09-22 | 2000-06-20 | The United States Of America As Represented By The Secretary Of The Navy | Quasi-static fiber pressure sensor |
US6122415A (en) | 1998-09-30 | 2000-09-19 | Blake; James N. | In-line electro-optic voltage sensor |
US6331892B1 (en) | 1998-10-16 | 2001-12-18 | New Focus, Inc. | Interferometer for monitoring wavelength in an optical beam |
US6282215B1 (en) | 1998-10-16 | 2001-08-28 | New Focus, Inc. | Continuously-tunable external cavity laser |
US6820489B2 (en) | 1998-12-04 | 2004-11-23 | Weatherford/Lamb, Inc. | Optical differential pressure sensor |
US6422084B1 (en) | 1998-12-04 | 2002-07-23 | Weatherford/Lamb, Inc. | Bragg grating pressure sensor |
US6668656B2 (en) | 1998-12-04 | 2003-12-30 | Weatherford/Lamb, Inc. | Optical sensor having differing diameters |
US6396605B1 (en) | 1999-01-26 | 2002-05-28 | Trw Inc. | Apparatus and method for tuning an optical interferometer |
US6690873B2 (en) | 1999-01-27 | 2004-02-10 | Teem Photonics | Method and apparatus for waveguide optics and devices |
US6075613A (en) | 1999-02-26 | 2000-06-13 | General Scanning, Inc. | Optical scanner calibration device |
US6714566B1 (en) | 1999-03-01 | 2004-03-30 | The Regents Of The University Of California | Tunable laser source with an integrated wavelength monitor and method of operating same |
US6545760B1 (en) | 1999-03-25 | 2003-04-08 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Apparatus and method for measuring strain in optical fibers using rayleigh scatter |
US6687011B1 (en) | 1999-04-23 | 2004-02-03 | Korea Advanced Institute Science And Technology | Transmission-type extrinsic fabry-perot interferometric optical fiber sensor |
US6486984B1 (en) | 1999-06-07 | 2002-11-26 | Agilent Technologies, Inc. | Wavelength monitor using hybrid approach |
US6771905B1 (en) | 1999-06-07 | 2004-08-03 | Corvis Corporation | Optical transmission systems including optical switching devices, control apparatuses, and methods |
US6469817B1 (en) | 1999-06-18 | 2002-10-22 | Trw Inc. | Apparatus and method employing two optical signals for stabilizing an optical interferometer |
US6201289B1 (en) | 1999-08-12 | 2001-03-13 | United Microelectronics Corp. | Method of manufacturing an inductor |
US6594022B1 (en) | 1999-08-23 | 2003-07-15 | Coretek, Inc. | Wavelength reference device |
US6178001B1 (en) | 1999-09-08 | 2001-01-23 | Nortel Networks Limited | Method and apparatus for optical frequency modulation characterization of laser sources |
US6680472B1 (en) | 1999-09-15 | 2004-01-20 | Optoplan As | Device for measuring of optical wavelengths |
US20030025912A1 (en) | 1999-10-04 | 2003-02-06 | Rongqing Hui | Method and apparatus for high resolution monitoring of optical signals |
US6212306B1 (en) | 1999-10-07 | 2001-04-03 | David J. F. Cooper | Method and device for time domain demultiplexing of serial fiber Bragg grating sensor arrays |
US6439055B1 (en) | 1999-11-15 | 2002-08-27 | Weatherford/Lamb, Inc. | Pressure sensor assembly structure to insulate a pressure sensing device from harsh environments |
US6621258B2 (en) | 2000-01-17 | 2003-09-16 | Bechtel Bwxt Idaho, Llc | Electro-optic high voltage sensor |
US6304686B1 (en) | 2000-02-09 | 2001-10-16 | Schlumberger Technology Corporation | Methods and apparatus for measuring differential pressure with fiber optic sensor systems |
US6425290B2 (en) | 2000-02-11 | 2002-07-30 | Rosemount Inc. | Oil-less differential pressure sensor |
US6612174B2 (en) | 2000-02-11 | 2003-09-02 | Rosemount Inc. | Optical pressure sensor |
US6496265B1 (en) | 2000-02-16 | 2002-12-17 | Airak, Inc. | Fiber optic sensors and methods therefor |
US6552799B1 (en) | 2000-02-17 | 2003-04-22 | Japan Science And Technology Corporation | Two-arm sagnac interferometer with two beam splitters |
US6603560B1 (en) | 2000-03-15 | 2003-08-05 | The Regents Of The University Of Michigan | High sensitivity fiber optic interferometric MEMS |
US6563968B2 (en) | 2000-03-16 | 2003-05-13 | Cidra Corporation | Tunable optical structure featuring feedback control |
US6583882B2 (en) | 2000-03-17 | 2003-06-24 | Honeywell International Inc. | Apparatus and method using digitally controlled integration for signal detection with improved noise characteristics |
US6765194B2 (en) | 2000-03-23 | 2004-07-20 | Daimlerchrysler Ag | Arrangement including a plurality of optical fiber bragg grating sensors and method for determining measured values in such arrangement |
US6328647B1 (en) | 2000-04-06 | 2001-12-11 | Jon E. Traudt | Pressure differential detecting system, and method of use |
US6538748B1 (en) | 2000-04-14 | 2003-03-25 | Agilent Technologies, Inc | Tunable Fabry-Perot filters and lasers utilizing feedback to reduce frequency noise |
US6714700B2 (en) | 2000-04-16 | 2004-03-30 | Avanex Corporation | Micro electromechanical system and method for transmissively switching optical signals |
US6636321B2 (en) | 2000-05-05 | 2003-10-21 | Abb Research Ltd | Fiber-optic current sensor |
US6608685B2 (en) | 2000-05-15 | 2003-08-19 | Ilx Lightwave Corporation | Tunable Fabry-Perot interferometer, and associated methods |
US6838660B2 (en) | 2000-06-02 | 2005-01-04 | Airak, Inc. | Fiber optic sensor system and method for measuring the pressure of media |
US6668105B2 (en) | 2000-07-27 | 2003-12-23 | Systems Planning & Analysis, Inc. | Fiber optic strain sensor |
US6330255B1 (en) | 2000-08-01 | 2001-12-11 | Micro Photonix Integration Corporation | Integrated optic device for optical wavelength selection |
US20020041722A1 (en) | 2000-08-01 | 2002-04-11 | Johnson Gregg A. | Optical sensing device containing fiber bragg gratings |
US7043102B2 (en) | 2000-09-20 | 2006-05-09 | Kyowa Electronic Instruments Co., Ltd. | Optical fiber interferosensor, signal-processing system for optical fiber interferosensor and recording medium |
US6687036B2 (en) | 2000-11-03 | 2004-02-03 | Nuonics, Inc. | Multiplexed optical scanner technology |
US6747743B2 (en) | 2000-11-10 | 2004-06-08 | Halliburton Energy Services, Inc. | Multi-parameter interferometric fiber optic sensor |
US6785004B2 (en) | 2000-11-29 | 2004-08-31 | Weatherford/Lamb, Inc. | Method and apparatus for interrogating fiber optic sensors |
US20020109081A1 (en) | 2000-12-20 | 2002-08-15 | Tarvin Jeffrey A. | Measuring system with comb filter interferometer and multiplexer |
US6798940B2 (en) | 2000-12-22 | 2004-09-28 | Electronics And Telecommunications Research Institute | Optical tunable filters and optical communication device incorporated therein optical tunable filters |
US6633593B2 (en) | 2001-01-02 | 2003-10-14 | Spectrasensors, Inc. | Tunable semiconductor laser having cavity with wavelength selective mirror and Mach-Zehnder interferometer |
US6791694B2 (en) | 2001-01-16 | 2004-09-14 | Santur Corporation | Tunable optical device using a scanning MEMS mirror |
US6597458B2 (en) | 2001-02-02 | 2003-07-22 | Texas Christian University | Method and system for stabilizing and demodulating an interferometer at quadrature |
US20030184867A1 (en) | 2001-02-21 | 2003-10-02 | Bryan Clark | Method and system for performing swept-wavelength measurements within an optical system |
US6735224B2 (en) | 2001-03-01 | 2004-05-11 | Applied Optoelectronics, Inc. | Planar lightwave circuit for conditioning tunable laser output |
US6925213B2 (en) | 2001-03-09 | 2005-08-02 | University Of Cincinnati | Micromachined fiber optic sensors |
US6581465B1 (en) | 2001-03-14 | 2003-06-24 | The United States Of America As Represented By The Secretary Of The Navy | Micro-electro-mechanical systems ultra-sensitive accelerometer |
US6643025B2 (en) | 2001-03-29 | 2003-11-04 | Georgia Tech Research Corporation | Microinterferometer for distance measurements |
US20020186377A1 (en) | 2001-04-11 | 2002-12-12 | Modern Optical Technologies Llc. | Method and apparatus for measuring pressure |
US20020167730A1 (en) | 2001-05-02 | 2002-11-14 | Anthony Needham | Wavelength selectable optical filter |
US20030020926A1 (en) | 2001-05-15 | 2003-01-30 | Nicolae Miron | Tunable band pass optical filter unit with a tunable band pass interferometer |
US6909548B2 (en) | 2001-06-13 | 2005-06-21 | Jds Uniphase Inc. | Optical filter using a linear variable filter with elliptical beam geometry |
US20050213870A1 (en) | 2001-06-18 | 2005-09-29 | Weatherford/Lamb, Inc. | Fabry-perot sensing element based on a large-diameter optical waveguide |
US6915048B2 (en) | 2001-06-18 | 2005-07-05 | Cidra Corporation | Fabry-perot filter/resonator |
US6668111B2 (en) | 2001-06-28 | 2003-12-23 | The Charles Stark Draper Laboratory | Optical microcavity resonator sensor |
US6901088B2 (en) | 2001-07-06 | 2005-05-31 | Intel Corporation | External cavity laser apparatus with orthogonal tuning of laser wavelength and cavity optical pathlength |
US6904070B2 (en) | 2001-07-06 | 2005-06-07 | Intel Corporation | Tunable laser and laser current source |
US6717965B2 (en) | 2001-07-06 | 2004-04-06 | Intel Corporation | Graded thin film wedge interference filter and method of use for laser tuning |
US6829259B2 (en) | 2001-07-06 | 2004-12-07 | Intel Corporation | Tunable laser control system with optical path length modulation |
US6822979B2 (en) | 2001-07-06 | 2004-11-23 | Intel Corporation | External cavity laser with continuous tuning of grid generator |
US20030128917A1 (en) | 2001-07-20 | 2003-07-10 | Turpin Terry M. | Method and apparatus for optical signal processing using an optical tapped delay line |
US7002697B2 (en) | 2001-08-02 | 2006-02-21 | Aegis Semiconductor, Inc. | Tunable optical instruments |
US6741357B2 (en) | 2001-08-14 | 2004-05-25 | Seagate Technology Llc | Quadrature phase shift interferometer with unwrapping of phase |
US6900896B2 (en) | 2001-08-22 | 2005-05-31 | Agilent Technologies, Inc. | Method and system for measuring optical characteristics of a sub-component within a composite optical system |
US6882428B2 (en) | 2001-08-28 | 2005-04-19 | Agilent Technologies, Inc. | Optical analyzer and method for reducing relative intensity noise in interferometric optical measurements using a continuously tunable laser |
US6985235B2 (en) | 2001-08-30 | 2006-01-10 | Micron Optics, Inc. | Cascaded fiber fabry-perot filters |
US6839131B2 (en) | 2001-09-22 | 2005-01-04 | Samsung Electronics Co., Ltd. | Method and apparatus for monitoring optical signal performance in wavelength division multiplexing system |
US20030081875A1 (en) | 2001-10-26 | 2003-05-01 | Vladimir Kochergin | System and method for measuring physical, chemical and biological stimuli using vertical cavity surface emitting lasers with integrated tuner |
US20040202399A1 (en) | 2001-10-26 | 2004-10-14 | Lake Shore Cryotronics, Inc. | System and method for measuring physical, chemical and biological stimuli using vertical cavity surface emitting lasers with integrated tuner |
US6806961B2 (en) | 2001-11-05 | 2004-10-19 | Zygo Corporation | Interferometric cyclic error compensation |
US20050105098A1 (en) | 2001-11-29 | 2005-05-19 | Sinvent As | Optical displacement sensor |
US6776049B2 (en) | 2001-12-07 | 2004-08-17 | Alliant Techsystems Inc. | System and method for measuring stress at an interface |
US6894787B2 (en) | 2001-12-21 | 2005-05-17 | Honeywell International Inc. | Optical pressure sensor |
US20030132375A1 (en) | 2002-01-17 | 2003-07-17 | Blazo Stephen Frank | Tunable laser calibration system |
US20040196874A1 (en) | 2002-01-24 | 2004-10-07 | Np Photonics, Inc | Erbium-doped phosphate-glass tunable single-mode fiber laser using a tunable fabry-perot filter |
US20030141440A1 (en) | 2002-01-28 | 2003-07-31 | Ices Co., Ltd. | Multi-type fiber bragg grating sensor system |
US20030159518A1 (en) | 2002-02-22 | 2003-08-28 | Takeo Sawatari | Ultra-miniature optical pressure sensing system |
US7230959B2 (en) | 2002-02-22 | 2007-06-12 | Intel Corporation | Tunable laser with magnetically coupled filter |
US6650420B2 (en) | 2002-02-27 | 2003-11-18 | The United States Of America As Represented By The Secretary Of The Navy | Nanoscale vibrometric measurement apparatus and method |
US6825934B2 (en) | 2002-03-14 | 2004-11-30 | Agilent Technologies, Inc. | Vibration noise mitigation in an interferometric system |
US20040008742A1 (en) | 2002-03-15 | 2004-01-15 | Chou Stephen Y. | Mode-locked laser using a mode-locking wavelength selective reflector |
US6917736B1 (en) | 2002-05-09 | 2005-07-12 | Purdue Research Foundation | Method of increasing number of allowable channels in dense wavelength division multiplexing |
US7009691B2 (en) | 2002-05-29 | 2006-03-07 | Agilent Technologies, Inc. | System and method for removing the relative phase uncertainty in device characterizations performed with a polarimeter |
US6647160B1 (en) | 2002-06-17 | 2003-11-11 | National Chiao Tung University | Fiber bragg grating sensor system |
US6989906B2 (en) | 2002-06-19 | 2006-01-24 | Sandercock John R | Stable Fabry-Perot interferometer |
US20040013040A1 (en) | 2002-07-18 | 2004-01-22 | Maas Steven J. | Fiber-optic seismic array telemetry, system, and method |
US20040013356A1 (en) | 2002-07-22 | 2004-01-22 | Jen-Chih Wang | Tunable filter applied in optical networks |
US6947218B2 (en) | 2002-08-30 | 2005-09-20 | Research Electro-Optics, Inc. | Fabry-perot etalon with independently selectable resonance frequency and free spectral range |
US7139081B2 (en) | 2002-09-09 | 2006-11-21 | Zygo Corporation | Interferometry method for ellipsometry, reflectometry, and scatterometry measurements, including characterization of thin film structures |
US7016047B2 (en) | 2002-09-26 | 2006-03-21 | Prime Photonics, Inc. | Active Q-point stabilization for linear interferometric sensors |
US6901176B2 (en) | 2002-10-15 | 2005-05-31 | University Of Maryland | Fiber tip based sensor system for acoustic measurements |
US6963404B2 (en) | 2002-10-16 | 2005-11-08 | Delta Electronics, Inc. | Fabry-Perot device compensating for an error of full width at half maximum and method of making the same |
US6842254B2 (en) | 2002-10-16 | 2005-01-11 | Fiso Technologies Inc. | System and method for measuring an optical path difference in a sensing interferometer |
US6886365B2 (en) | 2002-11-04 | 2005-05-03 | Harris Corporation | Fiber optic Fabry-Perot interferometer and associated methods |
US20040113104A1 (en) | 2002-12-12 | 2004-06-17 | Maida John L | Remotely deployed optical fiber circulator |
US6898339B2 (en) | 2002-12-16 | 2005-05-24 | Schlumberger Technology Corporation | Multiple mode pre-loadable fiber optic pressure and temperature sensor |
US7046349B2 (en) | 2002-12-16 | 2006-05-16 | Aston Photonic Technologies Limited | Optical interrogation system and sensor system |
US20040151438A1 (en) | 2002-12-20 | 2004-08-05 | Ferguson Stephen K. | Temperature compensated ferrule holder for a fiber Fabry-Perot filter |
US7065108B2 (en) | 2002-12-24 | 2006-06-20 | Electronics And Telecommunications Research Institute | Method of wavelength tuning in a semiconductor tunable laser |
US20040141184A1 (en) | 2003-01-20 | 2004-07-22 | Fuji Photo Optical Co., Ltd. | Interferometer apparatus for both low and high coherence measurement and method thereof |
US7139295B2 (en) | 2003-01-27 | 2006-11-21 | Fibera, Inc. | Tunable wavelength locker, tunable wavelength spectrum monitor, and relative wavelength measurement system |
US20040151216A1 (en) | 2003-01-27 | 2004-08-05 | Tsai John C. | Tunable wavelength locker, tunable wavelength spectrum monitor, and relative wavelength measurement system |
US20060146337A1 (en) | 2003-02-03 | 2006-07-06 | Hartog Arthur H | Interferometric method and apparatus for measuring physical parameters |
US6886404B2 (en) | 2003-02-05 | 2005-05-03 | Fibersonde Corporation | Fiber optic accelerometer |
US7047816B2 (en) | 2003-03-21 | 2006-05-23 | Weatherford/Lamb, Inc. | Optical differential pressure transducer utilizing a bellows and flexure system |
US6879421B2 (en) | 2003-03-28 | 2005-04-12 | Beyond 3, Inc. | Method and system for performing swept-wavelength measurements within an optical system incorporating a reference resonator |
US6955085B2 (en) | 2003-06-02 | 2005-10-18 | Weatherford/Lamb, Inc. | Optical accelerometer or displacement device using a flexure system |
US20050046862A1 (en) | 2003-08-25 | 2005-03-03 | Ivan Melnyk | Fiber optic sensing device for measuring a physical parameter |
US7019837B2 (en) | 2003-08-27 | 2006-03-28 | Weatherford/Lamb, Inc | Method and apparatus for reducing crosstalk interference in an inline Fabry-Perot sensor array |
US20060152733A1 (en) | 2003-08-27 | 2006-07-13 | Weatherford/Lamb, Inc. | Method and apparatus for reducing crosstalk interference in an inline fabry-perot sensor array |
US20070006663A1 (en) | 2003-09-04 | 2007-01-11 | Zerwekh Paul S | Optical sensor with co-located pressure and temperature sensors |
US20050073690A1 (en) | 2003-10-03 | 2005-04-07 | Abbink Russell E. | Optical spectroscopy incorporating a vertical cavity surface emitting laser (VCSEL) |
US7423762B2 (en) | 2003-10-03 | 2008-09-09 | Sabeus, Inc. | Rugged fabry-perot pressure sensor |
US6829073B1 (en) | 2003-10-20 | 2004-12-07 | Corning Incorporated | Optical reading system and method for spectral multiplexing of resonant waveguide gratings |
US7173713B2 (en) | 2004-03-04 | 2007-02-06 | Virginia Tech Intellectual Properties, Inc. | Optical fiber sensors for harsh environments |
US20050218299A1 (en) | 2004-03-31 | 2005-10-06 | Alf Olsen | Amplification with feedback capacitance for photodetector signals |
US7305158B2 (en) | 2004-04-15 | 2007-12-04 | Davidson Instruments Inc. | Interferometric signal conditioner for measurement of absolute static displacements and dynamic displacements of a Fabry-Perot interferometer |
US7134346B2 (en) | 2004-04-15 | 2006-11-14 | Davidson Instruments Inc. | Differential pressure transducer with Fabry-Perot fiber optic displacement sensor |
US7492463B2 (en) | 2004-04-15 | 2009-02-17 | Davidson Instruments Inc. | Method and apparatus for continuous readout of Fabry-Perot fiber optic sensor |
US20050231730A1 (en) | 2004-04-15 | 2005-10-20 | Jeffers Larry A | Interferometric signal conditioner for measurement of the absolute length of gaps in a fiber optic fabry-perot interferometer |
US7355684B2 (en) | 2004-04-15 | 2008-04-08 | Davidson Instruments, Inc. | Interferometric signal conditioner for measurement of the absolute length of gaps in a fiber optic Fabry-Perot interferometer |
EP1586854A3 (en) | 2004-04-15 | 2006-02-08 | Davidson Instruments | Interferometric signal conditioner for measurement of the absolute length of gaps in a fiber optic Fabry-Pérot interferometer |
US7355726B2 (en) | 2004-04-15 | 2008-04-08 | Davidson Instruments Inc. | Linear variable reflector sensor and signal processor |
US20050231729A1 (en) | 2004-04-15 | 2005-10-20 | Lopushansky Richard L | Method and apparatus for continuous readout of Fabry-Perot fiber optic sensor |
US20050237538A1 (en) | 2004-04-23 | 2005-10-27 | Claude Belleville | Optical mems cavity having a wide scanning range for measuring a sensing interferometer |
US20050242096A1 (en) | 2004-04-29 | 2005-11-03 | Jaghab John J | Safety cup lip |
US20060034569A1 (en) | 2004-08-11 | 2006-02-16 | General Electric Company | Novel folded Mach-Zehnder interferometers and optical sensor arrays |
US7511823B2 (en) | 2004-12-21 | 2009-03-31 | Halliburton Energy Services, Inc. | Fiber optic sensor |
US20060241889A1 (en) | 2004-12-21 | 2006-10-26 | Lopushansky Richard L | Multi-channel array processor |
US20060139652A1 (en) | 2004-12-21 | 2006-06-29 | Berthold John W | Fiber optic sensor system |
US20060274323A1 (en) | 2005-03-16 | 2006-12-07 | Gibler William N | High intensity fabry-perot sensor |
US7405829B2 (en) | 2005-06-17 | 2008-07-29 | Jds Uniphase Corporation | Apparatus and method for characterizing pulsed optical signals |
US20070064241A1 (en) | 2005-09-13 | 2007-03-22 | Needham David B | Tracking algorithm for linear array signal processor for fabry-perot cross-correlation pattern and method of using same |
US20080297808A1 (en) | 2005-12-06 | 2008-12-04 | Nabeel Agha Riza | Optical Sensor For Extreme Environments |
US20070252998A1 (en) | 2006-03-22 | 2007-11-01 | Berthold John W | Apparatus for continuous readout of fabry-perot fiber optic sensor |
US20070227252A1 (en) | 2006-03-31 | 2007-10-04 | Leitko Travis W | Differential pressure transducer configurations including displacement sensor |
US7434472B2 (en) | 2006-03-31 | 2008-10-14 | Leitko Travis W | Differential pressure transducer configurations including displacement sensor |
US20080174781A1 (en) | 2006-04-18 | 2008-07-24 | Berthold John W | Fiber optic seismic sensor based on MEMS cantilever |
US20090056447A1 (en) | 2006-04-26 | 2009-03-05 | Berthold John W | Fiber optic MEMS seismic sensor with mass supported by hinged beams |
US20080043245A1 (en) | 2006-08-16 | 2008-02-21 | Needham David B | Methods and apparatus for measuring multiple fabry-perot gaps |
US20080186506A1 (en) | 2007-01-24 | 2008-08-07 | Davidson Instruments, Inc. | Transducer for measuring environmental parameters |
Non-Patent Citations (21)
Title |
---|
"Single Mode Fiber Optics", 1983, Jeunhomme, p. 100. |
Alan D Kersey.; Fiber Grating Sensors; Journal of Lightwave Technology, vol. 15, No. 8, Copyright 1997 IEEE. |
Chi Chiu Chan, et al.; Performance Analysis of a Time-Division-Multiplexed Fiber Bragg Grating Sensor Array by Use of a Tunable Laser Source, IEEE Journal of Selected Topics in Quantum Electronics, vol. 6, No. 5; Copyright 2000 IEEE. |
Electronics Letters, vol. 22, No. 21, Oct. 9, 1986, Stevenage, GB, pp. 1097-1099, M. V. Andres et al., "Optical activation of a silicon vibrating sensor". |
Electronics Letters, vol. 22, No. 21; Oct. 9, 1986; Stevenage, GB; pp. 1097-1099; M. V. Andres et al., "Optical activation of a silicon vibrating sensor". |
Fiber Optic Sensors, UDD, 1991, p. 147. |
IEE Proceedings D. Control Theory & Applications, vol. 135, No. 5, Sep. 1988, Stevenage, GB, pp. 364-368, M. J. Tudor et al., "Silicon resonator sensors: interrogation techniques and characteristics". |
IEEE Micro Electro Mechanical Systems Conference, Feb. 7, 1993, Ft. Lauderdale, FL; pp. 230-235; K. Aratani et al., "Process and design considerations for surface icromachined beams for a tuneable interferometer array in silicon". |
IEEE Sensors Journal, vol. 3, No. 6, pp. 812-817, Dec. 2003, Tseng et al. "Polymer MEMS-Based Fabry-Perot Shear Stress Sensor". |
J.M. Senior; Multiplexing Techniques for Noninterferometric Optical Point-Sensor Networks: A Review, Fiber and Integrated Optics, 17:3-20; Copyright 1998 Taylor & Francis. |
J.R. Clowes, et al.; Effects of High Temperature and Pressure on Silica Optical Fiber Sensors; IEEE Photonics Technology Letters, vol. 10, No. 3; Copyright 1998 IEEE. |
Journal of Vacuum Science and Technology: Part A, vol. 8, No. 4, Jul. 1990, New York US; pp. 3606-3613; D. W. Burns et al., "Thin films for micromechanical sensors". |
Optical Engineering, vol. 31, No. 8, Aug. 1992, Bellingham US, pp. 1638-1642; D. Angelidis et al., "Optical micromachined pressure sensor for aerospace application". |
Optical Fiber Sensor Technology, Grattan and Meggitt, 2000, pp. 312-313. |
Proc. SPIE, vol. 3762, 1999, R. L. Johnson, et al. "Miniature Instrument for the Measurement of Gap Thickness Using Polychromatic Interferometry". |
Proc. SPIE, vol. 3762, pp. 245-253; 1999, R. L. Johnson, et al. "Miniature Instrument for the Measurement of Gap Thickness Using Polychromatic Interferometry". |
Proc. SPIE, vol. 5589, 2004, MacDougall, Trevor W. and Sanders, Paul E. "Large Diameter Waveguide Bragg Grating Components and Their Application in Downhill Oil & Gas". |
Proc. SPIE, vol. 5589, 2004, MacDougall, Trevor W. and Sanders, Paul E., "Large Diameter Waveguide Bragg Grating Components and Their Application in Downhill Oil & Gas". |
Sensors and Actuators, A., vol. A21-A23, No. 1-3, Feb. 1990, Lausanne, CH, pp. 387-390, R. M. Pitcher et al., "Optothermal drive of silicon resonators: the influence of surface coatings". |
Sensors and Actuators, vol. 20, No. 1-2, Nov. 15, 1989, Lausanne, CH, pp. 143-151; M. W. Putty et al., "Process integration for active polysilican resonant microstructures". |
Wavelength Multiplexing of Micromechanical System Pressure and Temperature Sensors Using Fiber Bragg Gratings and Arrayed Waveguide Gratings, Li et al., Optical Engineering Feb. 2003, p. 431-438. |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110170112A1 (en) * | 2005-03-16 | 2011-07-14 | Halliburton Energy Services, Inc. | High intensity fabry-perot sensor |
US8432552B2 (en) * | 2005-03-16 | 2013-04-30 | Halliburton Energy Services, Inc. | High intensity Fabry-Perot sensor |
US20100321703A1 (en) * | 2007-12-14 | 2010-12-23 | The Science And Technology Facilities Council | Optical sensor |
US8705045B2 (en) * | 2007-12-14 | 2014-04-22 | Oxsensis Ltd. | Optical sensor |
US9404771B2 (en) | 2007-12-14 | 2016-08-02 | Oxsensis Ltd. | Optical sensor |
US20170131122A1 (en) * | 2007-12-14 | 2017-05-11 | Oxsensis Limited | Optical sensor |
US9995604B2 (en) * | 2007-12-14 | 2018-06-12 | Oxsensis Limited | Optical sensor |
US20110211199A1 (en) * | 2010-02-09 | 2011-09-01 | Attocube Systems Ag | Device and method for acquiring position with a confocal fabry-perot interferometer |
US8773666B2 (en) * | 2010-02-09 | 2014-07-08 | Attocube Systems Ag | Device and method for acquiring position with a confocal Fabry-Perot interferometer |
US9998089B2 (en) | 2012-12-14 | 2018-06-12 | General Electric Company | Resonator device |
US10025001B2 (en) | 2013-12-20 | 2018-07-17 | Halliburton Energy Services, Inc. | Optical sensors in downhole logging tools |
US10145668B2 (en) | 2016-01-29 | 2018-12-04 | Yizheng CHEN | Fabry-Perot(F-P) sensor with sliding block having inclined reflective surface |
Also Published As
Publication number | Publication date |
---|---|
EP1869737A4 (en) | 2011-06-29 |
US20060274323A1 (en) | 2006-12-07 |
EP1869737B1 (en) | 2021-05-12 |
WO2006101923A3 (en) | 2008-01-17 |
EP1869737A2 (en) | 2007-12-26 |
WO2006101923A2 (en) | 2006-09-28 |
US20090207417A1 (en) | 2009-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7782465B2 (en) | High intensity fabry-perot sensor | |
US8432552B2 (en) | High intensity Fabry-Perot sensor | |
JP5628044B2 (en) | Optical sensor | |
US7791712B2 (en) | Chromatic confocal sensor fiber interface | |
US4932742A (en) | Fiber optic wavelength division multiplexing module | |
US10162114B2 (en) | Reflective optical coherence tomography probe | |
US5812251A (en) | Electro-optic strain gages and transducer | |
US9797922B2 (en) | Scanning probe microscope head design | |
US20070268805A1 (en) | Apparatus and Method for Adjusting an Optical Rotating Data Transmission Device | |
KR20080066825A (en) | Temperature resistant IR-measuring probe | |
US20160025771A1 (en) | Scanning probe microscope head design | |
US6643428B2 (en) | Optical fiber collimator and method for fabricating the same | |
US20060209396A1 (en) | Monitoring device | |
US20230393005A1 (en) | Extrinsic fabry-perot absolute pressure sensor | |
US7423758B1 (en) | Gloss sensor for a paper machine | |
JP2013221807A (en) | Optical fiber strain sensor, and optical fiber temperature sensor | |
US7073915B2 (en) | Mirror fixing method and optical apparatus | |
US20210132371A1 (en) | Method and system for using characterization light to detect fiber position in a fiber scanning projector | |
CN113753844A (en) | Optical-mechanical transducer device and corresponding method | |
US12352953B2 (en) | Multimode coupling for fiber waveguide | |
JP2020159909A (en) | Gas concentration detector and gas concentration measuring device | |
KR102611019B1 (en) | Temperature monitoring system with OTDR applied | |
JP7623613B2 (en) | Optical module, alignment system, and optical measurement method | |
CN118150308A (en) | Side pressure type tension measuring device | |
CN117157512A (en) | Monitoring system based on optical MEMS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552) Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |