US7790353B2 - Multidirectional photoreactive absorption method - Google Patents
Multidirectional photoreactive absorption method Download PDFInfo
- Publication number
- US7790353B2 US7790353B2 US10/297,961 US29796102A US7790353B2 US 7790353 B2 US7790353 B2 US 7790353B2 US 29796102 A US29796102 A US 29796102A US 7790353 B2 US7790353 B2 US 7790353B2
- Authority
- US
- United States
- Prior art keywords
- photoreactive composition
- photoreactive
- light
- volume element
- composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
- 238000000034 method Methods 0.000 title claims abstract description 84
- 238000010521 absorption reaction Methods 0.000 title claims abstract description 57
- 239000000203 mixture Substances 0.000 claims abstract description 208
- 230000001902 propagating effect Effects 0.000 claims abstract description 27
- 230000002708 enhancing effect Effects 0.000 claims abstract description 9
- 239000003504 photosensitizing agent Substances 0.000 claims description 69
- 150000001875 compounds Chemical class 0.000 claims description 65
- 230000003287 optical effect Effects 0.000 claims description 50
- 238000006243 chemical reaction Methods 0.000 claims description 44
- 230000000694 effects Effects 0.000 claims description 14
- 150000003254 radicals Chemical class 0.000 claims description 12
- 239000002253 acid Substances 0.000 claims description 10
- 239000007787 solid Substances 0.000 claims description 9
- 238000004132 cross linking Methods 0.000 claims description 5
- 238000010511 deprotection reaction Methods 0.000 claims description 5
- 238000006116 polymerization reaction Methods 0.000 claims description 5
- 230000008707 rearrangement Effects 0.000 claims description 5
- -1 for example Polymers 0.000 description 112
- 239000000463 material Substances 0.000 description 36
- 230000009102 absorption Effects 0.000 description 35
- 125000003118 aryl group Chemical group 0.000 description 25
- 239000000047 product Substances 0.000 description 23
- 229920000642 polymer Polymers 0.000 description 22
- 150000003839 salts Chemical class 0.000 description 22
- 125000000217 alkyl group Chemical group 0.000 description 20
- 239000000758 substrate Substances 0.000 description 18
- 125000004432 carbon atom Chemical group C* 0.000 description 17
- 239000000975 dye Substances 0.000 description 16
- 239000004593 Epoxy Substances 0.000 description 15
- 229920000647 polyepoxide Polymers 0.000 description 15
- 239000000523 sample Substances 0.000 description 15
- 241000894007 species Species 0.000 description 15
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 14
- 238000000576 coating method Methods 0.000 description 13
- 150000001450 anions Chemical class 0.000 description 12
- 239000011248 coating agent Substances 0.000 description 12
- 239000003607 modifier Substances 0.000 description 12
- 230000008569 process Effects 0.000 description 12
- 239000002904 solvent Substances 0.000 description 12
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 11
- 230000005284 excitation Effects 0.000 description 11
- 230000005281 excited state Effects 0.000 description 11
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 11
- 239000003822 epoxy resin Substances 0.000 description 10
- 239000000178 monomer Substances 0.000 description 10
- 125000005235 azinium group Chemical group 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- 125000001424 substituent group Chemical group 0.000 description 9
- 239000011230 binding agent Substances 0.000 description 8
- 150000002118 epoxides Chemical class 0.000 description 8
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 8
- 229920013730 reactive polymer Polymers 0.000 description 8
- 229920005989 resin Polymers 0.000 description 8
- 239000011347 resin Substances 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 239000000539 dimer Substances 0.000 description 7
- 125000003700 epoxy group Chemical group 0.000 description 7
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical class I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 7
- 230000003647 oxidation Effects 0.000 description 7
- 238000007254 oxidation reaction Methods 0.000 description 7
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 7
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 6
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 6
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 125000003545 alkoxy group Chemical group 0.000 description 6
- 125000004429 atom Chemical group 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000003384 imaging method Methods 0.000 description 6
- WPWHSFAFEBZWBB-UHFFFAOYSA-N 1-butyl radical Chemical compound [CH2]CCC WPWHSFAFEBZWBB-UHFFFAOYSA-N 0.000 description 5
- LETDRANQSOEVCX-UHFFFAOYSA-N 2-methyl-4,6-bis(trichloromethyl)-1,3,5-triazine Chemical compound CC1=NC(C(Cl)(Cl)Cl)=NC(C(Cl)(Cl)Cl)=N1 LETDRANQSOEVCX-UHFFFAOYSA-N 0.000 description 5
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 5
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical class C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 5
- NIXOWILDQLNWCW-UHFFFAOYSA-M acrylate group Chemical group C(C=C)(=O)[O-] NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 5
- 150000001412 amines Chemical class 0.000 description 5
- 238000013459 approach Methods 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- MGFYSGNNHQQTJW-UHFFFAOYSA-N iodonium Chemical compound [IH2+] MGFYSGNNHQQTJW-UHFFFAOYSA-N 0.000 description 5
- 229920002120 photoresistant polymer Polymers 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000013519 translation Methods 0.000 description 5
- 150000003918 triazines Chemical class 0.000 description 5
- AGIQIOSHSMJYJP-UHFFFAOYSA-N 1,2,4-Trimethoxybenzene Chemical compound COC1=CC=C(OC)C(OC)=C1 AGIQIOSHSMJYJP-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 229910016855 F9SO2 Inorganic materials 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 239000012954 diazonium Substances 0.000 description 4
- 229910052736 halogen Inorganic materials 0.000 description 4
- 150000002367 halogens Chemical class 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 238000004768 lowest unoccupied molecular orbital Methods 0.000 description 4
- 125000001624 naphthyl group Chemical group 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 125000005409 triarylsulfonium group Chemical group 0.000 description 4
- BDZBKCUKTQZUTL-UHFFFAOYSA-N triethyl phosphite Chemical compound CCOP(OCC)OCC BDZBKCUKTQZUTL-UHFFFAOYSA-N 0.000 description 4
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 4
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 3
- YONSJCAXAJEYGM-UHFFFAOYSA-N 1,4-bis(bromomethyl)-2,5-dimethoxybenzene Chemical compound COC1=CC(CBr)=C(OC)C=C1CBr YONSJCAXAJEYGM-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- 229910003327 LiNbO3 Inorganic materials 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 239000000370 acceptor Substances 0.000 description 3
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 3
- 239000002671 adjuvant Substances 0.000 description 3
- 125000001931 aliphatic group Chemical group 0.000 description 3
- 150000001408 amides Chemical class 0.000 description 3
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 3
- 125000002091 cationic group Chemical group 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 150000001989 diazonium salts Chemical class 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000004770 highest occupied molecular orbital Methods 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- LPNYRYFBWFDTMA-UHFFFAOYSA-N potassium tert-butoxide Chemical compound [K+].CC(C)(C)[O-] LPNYRYFBWFDTMA-UHFFFAOYSA-N 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 229960000834 vinyl ether Drugs 0.000 description 3
- GWEHVDNNLFDJLR-UHFFFAOYSA-N 1,3-diphenylurea Chemical compound C=1C=CC=CC=1NC(=O)NC1=CC=CC=C1 GWEHVDNNLFDJLR-UHFFFAOYSA-N 0.000 description 2
- OHBQPCCCRFSCAX-UHFFFAOYSA-N 1,4-Dimethoxybenzene Chemical compound COC1=CC=C(OC)C=C1 OHBQPCCCRFSCAX-UHFFFAOYSA-N 0.000 description 2
- 238000005160 1H NMR spectroscopy Methods 0.000 description 2
- DXUMYHZTYVPBEZ-UHFFFAOYSA-N 2,4,6-tris(trichloromethyl)-1,3,5-triazine Chemical compound ClC(Cl)(Cl)C1=NC(C(Cl)(Cl)Cl)=NC(C(Cl)(Cl)Cl)=N1 DXUMYHZTYVPBEZ-UHFFFAOYSA-N 0.000 description 2
- CZZZABOKJQXEBO-UHFFFAOYSA-N 2,4-dimethylaniline Chemical compound CC1=CC=C(N)C(C)=C1 CZZZABOKJQXEBO-UHFFFAOYSA-N 0.000 description 2
- LEJBBGNFPAFPKQ-UHFFFAOYSA-N 2-(2-prop-2-enoyloxyethoxy)ethyl prop-2-enoate Chemical compound C=CC(=O)OCCOCCOC(=O)C=C LEJBBGNFPAFPKQ-UHFFFAOYSA-N 0.000 description 2
- CDTPAAZQBPSVGS-UHFFFAOYSA-N 2-[4-(dimethylamino)phenyl]ethanol Chemical compound CN(C)C1=CC=C(CCO)C=C1 CDTPAAZQBPSVGS-UHFFFAOYSA-N 0.000 description 2
- KUDUQBURMYMBIJ-UHFFFAOYSA-N 2-prop-2-enoyloxyethyl prop-2-enoate Chemical compound C=CC(=O)OCCOC(=O)C=C KUDUQBURMYMBIJ-UHFFFAOYSA-N 0.000 description 2
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 2
- NJIRSTSECXKPCO-UHFFFAOYSA-M 3-[n-methyl-4-[2-(1,3,3-trimethylindol-1-ium-2-yl)ethenyl]anilino]propanenitrile;chloride Chemical compound [Cl-].C1=CC(N(CCC#N)C)=CC=C1\C=C\C1=[N+](C)C2=CC=CC=C2C1(C)C NJIRSTSECXKPCO-UHFFFAOYSA-M 0.000 description 2
- BGNGWHSBYQYVRX-UHFFFAOYSA-N 4-(dimethylamino)benzaldehyde Chemical compound CN(C)C1=CC=C(C=O)C=C1 BGNGWHSBYQYVRX-UHFFFAOYSA-N 0.000 description 2
- OECTYKWYRCHAKR-UHFFFAOYSA-N 4-vinylcyclohexene dioxide Chemical compound C1OC1C1CC2OC2CC1 OECTYKWYRCHAKR-UHFFFAOYSA-N 0.000 description 2
- YXALYBMHAYZKAP-UHFFFAOYSA-N 7-oxabicyclo[4.1.0]heptan-4-ylmethyl 7-oxabicyclo[4.1.0]heptane-4-carboxylate Chemical compound C1CC2OC2CC1C(=O)OCC1CC2OC2CC1 YXALYBMHAYZKAP-UHFFFAOYSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- CTKINSOISVBQLD-UHFFFAOYSA-N Glycidol Chemical compound OCC1CO1 CTKINSOISVBQLD-UHFFFAOYSA-N 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- OAZWDJGLIYNYMU-UHFFFAOYSA-N Leucocrystal Violet Chemical compound C1=CC(N(C)C)=CC=C1C(C=1C=CC(=CC=1)N(C)C)C1=CC=C(N(C)C)C=C1 OAZWDJGLIYNYMU-UHFFFAOYSA-N 0.000 description 2
- WZKXBGJNNCGHIC-UHFFFAOYSA-N Leucomalachite green Chemical compound C1=CC(N(C)C)=CC=C1C(C=1C=CC(=CC=1)N(C)C)C1=CC=CC=C1 WZKXBGJNNCGHIC-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- 239000005062 Polybutadiene Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- AWMVMTVKBNGEAK-UHFFFAOYSA-N Styrene oxide Chemical compound C1OC1C1=CC=CC=C1 AWMVMTVKBNGEAK-UHFFFAOYSA-N 0.000 description 2
- DHXVGJBLRPWPCS-UHFFFAOYSA-N Tetrahydropyran Chemical compound C1CCOCC1 DHXVGJBLRPWPCS-UHFFFAOYSA-N 0.000 description 2
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 2
- OKKRPWIIYQTPQF-UHFFFAOYSA-N Trimethylolpropane trimethacrylate Chemical compound CC(=C)C(=O)OCC(CC)(COC(=O)C(C)=C)COC(=O)C(C)=C OKKRPWIIYQTPQF-UHFFFAOYSA-N 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- 238000002679 ablation Methods 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 125000003342 alkenyl group Chemical group 0.000 description 2
- 125000003710 aryl alkyl group Chemical group 0.000 description 2
- 150000005840 aryl radicals Chemical class 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- WGQKYBSKWIADBV-UHFFFAOYSA-N benzylamine Chemical compound NCC1=CC=CC=C1 WGQKYBSKWIADBV-UHFFFAOYSA-N 0.000 description 2
- IDSLNGDJQFVDPQ-UHFFFAOYSA-N bis(7-oxabicyclo[4.1.0]heptan-4-yl) hexanedioate Chemical compound C1CC2OC2CC1OC(=O)CCCCC(=O)OC1CC2OC2CC1 IDSLNGDJQFVDPQ-UHFFFAOYSA-N 0.000 description 2
- LMMDJMWIHPEQSJ-UHFFFAOYSA-N bis[(3-methyl-7-oxabicyclo[4.1.0]heptan-4-yl)methyl] hexanedioate Chemical compound C1C2OC2CC(C)C1COC(=O)CCCCC(=O)OCC1CC2OC2CC1C LMMDJMWIHPEQSJ-UHFFFAOYSA-N 0.000 description 2
- HQABUPZFAYXKJW-UHFFFAOYSA-N butan-1-amine Chemical compound CCCCN HQABUPZFAYXKJW-UHFFFAOYSA-N 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 235000013877 carbamide Nutrition 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 230000001427 coherent effect Effects 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 230000001627 detrimental effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000012955 diaryliodonium Substances 0.000 description 2
- ZOMNIUBKTOKEHS-UHFFFAOYSA-L dimercury dichloride Chemical class Cl[Hg][Hg]Cl ZOMNIUBKTOKEHS-UHFFFAOYSA-L 0.000 description 2
- DMBHHRLKUKUOEG-UHFFFAOYSA-N diphenylamine Chemical compound C=1C=CC=CC=1NC1=CC=CC=C1 DMBHHRLKUKUOEG-UHFFFAOYSA-N 0.000 description 2
- RSJLWBUYLGJOBD-UHFFFAOYSA-M diphenyliodanium;chloride Chemical compound [Cl-].C=1C=CC=CC=1[I+]C1=CC=CC=C1 RSJLWBUYLGJOBD-UHFFFAOYSA-M 0.000 description 2
- BCQKUSCWNFMCKI-UHFFFAOYSA-M diphenyliodanium;hydrogen sulfate Chemical compound OS([O-])(=O)=O.C=1C=CC=CC=1[I+]C1=CC=CC=C1 BCQKUSCWNFMCKI-UHFFFAOYSA-M 0.000 description 2
- 125000004185 ester group Chemical group 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- FJKIXWOMBXYWOQ-UHFFFAOYSA-N ethenoxyethane Chemical compound CCOC=C FJKIXWOMBXYWOQ-UHFFFAOYSA-N 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- 229940052303 ethers for general anesthesia Drugs 0.000 description 2
- XPYGGHVSFMUHLH-UUSULHAXSA-N falecalcitriol Chemical compound C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@@H](CCCC(O)(C(F)(F)F)C(F)(F)F)C)=C\C=C1\C[C@@H](O)C[C@H](O)C1=C XPYGGHVSFMUHLH-UUSULHAXSA-N 0.000 description 2
- 125000001475 halogen functional group Chemical group 0.000 description 2
- 125000001183 hydrocarbyl group Chemical group 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 150000003949 imides Chemical class 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 2
- 238000002789 length control Methods 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 239000008204 material by function Substances 0.000 description 2
- JJYPMNFTHPTTDI-UHFFFAOYSA-N meta-toluidine Natural products CC1=CC=CC(N)=C1 JJYPMNFTHPTTDI-UHFFFAOYSA-N 0.000 description 2
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052752 metalloid Inorganic materials 0.000 description 2
- 150000002738 metalloids Chemical class 0.000 description 2
- 238000005649 metathesis reaction Methods 0.000 description 2
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- RNVCVTLRINQCPJ-UHFFFAOYSA-N ortho-methyl aniline Natural products CC1=CC=CC=C1N RNVCVTLRINQCPJ-UHFFFAOYSA-N 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- RZXMPPFPUUCRFN-UHFFFAOYSA-N p-toluidine Chemical compound CC1=CC=C(N)C=C1 RZXMPPFPUUCRFN-UHFFFAOYSA-N 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 229920002285 poly(styrene-co-acrylonitrile) Polymers 0.000 description 2
- 229920002857 polybutadiene Polymers 0.000 description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 2
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical compound CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 description 2
- 238000006862 quantum yield reaction Methods 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 229940043267 rhodamine b Drugs 0.000 description 2
- 230000001235 sensitizing effect Effects 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- FZHAPNGMFPVSLP-UHFFFAOYSA-N silanamine Chemical class [SiH3]N FZHAPNGMFPVSLP-UHFFFAOYSA-N 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 238000007725 thermal activation Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical class C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- YLDAXBKISQKAFA-UHFFFAOYSA-N (2-amino-4-diazo-3,6-diethoxycyclohexa-1,5-dien-1-yl)-phenylmethanone Chemical compound CCOC1=CC(=[N+]=[N-])C(OCC)C(N)=C1C(=O)C1=CC=CC=C1 YLDAXBKISQKAFA-UHFFFAOYSA-N 0.000 description 1
- LGPAKRMZNPYPMG-UHFFFAOYSA-N (3-hydroxy-2-prop-2-enoyloxypropyl) prop-2-enoate Chemical compound C=CC(=O)OC(CO)COC(=O)C=C LGPAKRMZNPYPMG-UHFFFAOYSA-N 0.000 description 1
- OAKFFVBGTSPYEG-UHFFFAOYSA-N (4-prop-2-enoyloxycyclohexyl) prop-2-enoate Chemical compound C=CC(=O)OC1CCC(OC(=O)C=C)CC1 OAKFFVBGTSPYEG-UHFFFAOYSA-N 0.000 description 1
- YYZRXNIZXRJETP-UHFFFAOYSA-N (4e)-4-diazo-n-phenylcyclohexa-1,5-dien-1-amine Chemical compound C1=CC(=[N+]=[N-])CC=C1NC1=CC=CC=C1 YYZRXNIZXRJETP-UHFFFAOYSA-N 0.000 description 1
- YWWSWEIXJXYQJB-AATRIKPKSA-N (e)-n,n'-diethylbut-2-ene-1,4-diamine Chemical compound CCNC\C=C\CNCC YWWSWEIXJXYQJB-AATRIKPKSA-N 0.000 description 1
- ZSPQVOFATJEJMT-UHFFFAOYSA-N 1,1,3,3-tetraethylthiourea Chemical compound CCN(CC)C(=S)N(CC)CC ZSPQVOFATJEJMT-UHFFFAOYSA-N 0.000 description 1
- YBBLOADPFWKNGS-UHFFFAOYSA-N 1,1-dimethylurea Chemical compound CN(C)C(N)=O YBBLOADPFWKNGS-UHFFFAOYSA-N 0.000 description 1
- FPZXQVCYHDMIIA-UHFFFAOYSA-N 1,1-diphenylthiourea Chemical compound C=1C=CC=CC=1N(C(=S)N)C1=CC=CC=C1 FPZXQVCYHDMIIA-UHFFFAOYSA-N 0.000 description 1
- FXCMLMVIAOZXRA-UHFFFAOYSA-N 1,2,3-tri(propan-2-yl)naphthalene Chemical compound C1=CC=C2C(C(C)C)=C(C(C)C)C(C(C)C)=CC2=C1 FXCMLMVIAOZXRA-UHFFFAOYSA-N 0.000 description 1
- JUVJUCAKSWHQEE-UHFFFAOYSA-N 1,2,4,5-tetramethoxybenzene Chemical compound COC1=CC(OC)=C(OC)C=C1OC JUVJUCAKSWHQEE-UHFFFAOYSA-N 0.000 description 1
- MYWOJODOMFBVCB-UHFFFAOYSA-N 1,2,6-trimethylphenanthrene Chemical compound CC1=CC=C2C3=CC(C)=CC=C3C=CC2=C1C MYWOJODOMFBVCB-UHFFFAOYSA-N 0.000 description 1
- DSZTYVZOIUIIGA-UHFFFAOYSA-N 1,2-Epoxyhexadecane Chemical compound CCCCCCCCCCCCCCC1CO1 DSZTYVZOIUIIGA-UHFFFAOYSA-N 0.000 description 1
- CYIGRWUIQAVBFG-UHFFFAOYSA-N 1,2-bis(2-ethenoxyethoxy)ethane Chemical compound C=COCCOCCOCCOC=C CYIGRWUIQAVBFG-UHFFFAOYSA-N 0.000 description 1
- ZOMLUNRKXJYKPD-UHFFFAOYSA-N 1,3,3-trimethyl-2-[2-(2-methylindol-3-ylidene)ethylidene]indole;hydrochloride Chemical compound [Cl-].C1=CC=C2C(C)(C)C(/C=C/C=3C4=CC=CC=C4NC=3C)=[N+](C)C2=C1 ZOMLUNRKXJYKPD-UHFFFAOYSA-N 0.000 description 1
- ZTUKGBOUHWYFGC-UHFFFAOYSA-N 1,3,3-trimethyl-2-methylideneindole Chemical class C1=CC=C2N(C)C(=C)C(C)(C)C2=C1 ZTUKGBOUHWYFGC-UHFFFAOYSA-N 0.000 description 1
- VPZPJKCEYBMGLL-UHFFFAOYSA-N 1,3-diethyl-1,3-diphenylthiourea Chemical compound C=1C=CC=CC=1N(CC)C(=S)N(CC)C1=CC=CC=C1 VPZPJKCEYBMGLL-UHFFFAOYSA-N 0.000 description 1
- QKLPIYTUUFFRLV-YTEMWHBBSA-N 1,4-bis[(e)-2-(2-methylphenyl)ethenyl]benzene Chemical compound CC1=CC=CC=C1\C=C\C(C=C1)=CC=C1\C=C\C1=CC=CC=C1C QKLPIYTUUFFRLV-YTEMWHBBSA-N 0.000 description 1
- SOLBSNQBVLAREX-UHFFFAOYSA-N 1-[4-(dimethylamino)phenyl]-2-hydroxy-2-phenylethanone Chemical compound C1=CC(N(C)C)=CC=C1C(=O)C(O)C1=CC=CC=C1 SOLBSNQBVLAREX-UHFFFAOYSA-N 0.000 description 1
- CPKHPYQIXCUKQJ-UHFFFAOYSA-N 1-di(piperidin-1-yl)phosphorylpiperidine Chemical compound C1CCCCN1P(N1CCCCC1)(=O)N1CCCCC1 CPKHPYQIXCUKQJ-UHFFFAOYSA-N 0.000 description 1
- CZAVRNDQSIORTH-UHFFFAOYSA-N 1-ethenoxy-2,2-bis(ethenoxymethyl)butane Chemical compound C=COCC(CC)(COC=C)COC=C CZAVRNDQSIORTH-UHFFFAOYSA-N 0.000 description 1
- OZCMOJQQLBXBKI-UHFFFAOYSA-N 1-ethenoxy-2-methylpropane Chemical compound CC(C)COC=C OZCMOJQQLBXBKI-UHFFFAOYSA-N 0.000 description 1
- BMVXCPBXGZKUPN-UHFFFAOYSA-N 1-hexanamine Chemical compound CCCCCCN BMVXCPBXGZKUPN-UHFFFAOYSA-N 0.000 description 1
- UIMPAOAAAYDUKQ-UHFFFAOYSA-N 1-methoxy-4-(4-methoxyphenyl)benzene Chemical group C1=CC(OC)=CC=C1C1=CC=C(OC)C=C1 UIMPAOAAAYDUKQ-UHFFFAOYSA-N 0.000 description 1
- WJFKNYWRSNBZNX-UHFFFAOYSA-N 10H-phenothiazine Chemical compound C1=CC=C2NC3=CC=CC=C3SC2=C1 WJFKNYWRSNBZNX-UHFFFAOYSA-N 0.000 description 1
- TZMSYXZUNZXBOL-UHFFFAOYSA-N 10H-phenoxazine Chemical compound C1=CC=C2NC3=CC=CC=C3OC2=C1 TZMSYXZUNZXBOL-UHFFFAOYSA-N 0.000 description 1
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- PUGOMSLRUSTQGV-UHFFFAOYSA-N 2,3-di(prop-2-enoyloxy)propyl prop-2-enoate Chemical compound C=CC(=O)OCC(OC(=O)C=C)COC(=O)C=C PUGOMSLRUSTQGV-UHFFFAOYSA-N 0.000 description 1
- VVAKEQGKZNKUSU-UHFFFAOYSA-N 2,3-dimethylaniline Chemical compound CC1=CC=CC(N)=C1C VVAKEQGKZNKUSU-UHFFFAOYSA-N 0.000 description 1
- QAMCXJOYXRSXDU-UHFFFAOYSA-N 2,4-dimethoxy-n-[2-(1,3,3-trimethylindol-1-ium-2-yl)ethenyl]aniline;chloride Chemical compound [Cl-].COC1=CC(OC)=CC=C1NC=CC1=[N+](C)C2=CC=CC=C2C1(C)C QAMCXJOYXRSXDU-UHFFFAOYSA-N 0.000 description 1
- IYBTVHANANXDRS-UHFFFAOYSA-N 2,5-bis(2-chlorophenyl)-4-(3,4-dimethoxyphenyl)-1-imidazol-1-ylimidazole Chemical compound C1=C(OC)C(OC)=CC=C1C1=C(C=2C(=CC=CC=2)Cl)N(N2C=NC=C2)C(C=2C(=CC=CC=2)Cl)=N1 IYBTVHANANXDRS-UHFFFAOYSA-N 0.000 description 1
- VOKXCKZXSBBOPC-UHFFFAOYSA-N 2-(2-chlorophenyl)-1-[2-(2-chlorophenyl)-4,5-diphenylimidazol-1-yl]-4,5-diphenylimidazole Chemical compound ClC1=CC=CC=C1C(N1N2C(=C(N=C2C=2C(=CC=CC=2)Cl)C=2C=CC=CC=2)C=2C=CC=CC=2)=NC(C=2C=CC=CC=2)=C1C1=CC=CC=C1 VOKXCKZXSBBOPC-UHFFFAOYSA-N 0.000 description 1
- FMMRUZRZZNJPRM-UHFFFAOYSA-N 2-(2-chlorophenyl)-1-imidazol-1-yl-4,5-bis(3-methoxyphenyl)imidazole Chemical compound COC1=CC=CC(C2=C(N(C(C=3C(=CC=CC=3)Cl)=N2)N2C=NC=C2)C=2C=C(OC)C=CC=2)=C1 FMMRUZRZZNJPRM-UHFFFAOYSA-N 0.000 description 1
- QEPJZNUAPYIHOI-UHFFFAOYSA-N 2-(2-methylprop-2-enoylamino)ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)NCCOC(=O)C(C)=C QEPJZNUAPYIHOI-UHFFFAOYSA-N 0.000 description 1
- FPNZBYLXNYPRLR-UHFFFAOYSA-N 2-(4-carbamimidoylphenyl)-1h-indole-6-carboximidamide;hydron;dichloride Chemical compound Cl.Cl.C1=CC(C(=N)N)=CC=C1C1=CC2=CC=C(C(N)=N)C=C2N1 FPNZBYLXNYPRLR-UHFFFAOYSA-N 0.000 description 1
- YSUQLAYJZDEMOT-UHFFFAOYSA-N 2-(butoxymethyl)oxirane Chemical compound CCCCOCC1CO1 YSUQLAYJZDEMOT-UHFFFAOYSA-N 0.000 description 1
- CUFXMPWHOWYNSO-UHFFFAOYSA-N 2-[(4-methylphenoxy)methyl]oxirane Chemical compound C1=CC(C)=CC=C1OCC1OC1 CUFXMPWHOWYNSO-UHFFFAOYSA-N 0.000 description 1
- HHRACYLRBOUBKM-UHFFFAOYSA-N 2-[(4-tert-butylphenoxy)methyl]oxirane Chemical compound C1=CC(C(C)(C)C)=CC=C1OCC1OC1 HHRACYLRBOUBKM-UHFFFAOYSA-N 0.000 description 1
- HWSSEYVMGDIFMH-UHFFFAOYSA-N 2-[2-[2-(2-methylprop-2-enoyloxy)ethoxy]ethoxy]ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCOCCOCCOC(=O)C(C)=C HWSSEYVMGDIFMH-UHFFFAOYSA-N 0.000 description 1
- SHKUUQIDMUMQQK-UHFFFAOYSA-N 2-[4-(oxiran-2-ylmethoxy)butoxymethyl]oxirane Chemical compound C1OC1COCCCCOCC1CO1 SHKUUQIDMUMQQK-UHFFFAOYSA-N 0.000 description 1
- RILZRCJGXSFXNE-UHFFFAOYSA-N 2-[4-(trifluoromethoxy)phenyl]ethanol Chemical compound OCCC1=CC=C(OC(F)(F)F)C=C1 RILZRCJGXSFXNE-UHFFFAOYSA-N 0.000 description 1
- MHOFGBJTSNWTDT-UHFFFAOYSA-M 2-[n-ethyl-4-[(6-methoxy-3-methyl-1,3-benzothiazol-3-ium-2-yl)diazenyl]anilino]ethanol;methyl sulfate Chemical compound COS([O-])(=O)=O.C1=CC(N(CCO)CC)=CC=C1N=NC1=[N+](C)C2=CC=C(OC)C=C2S1 MHOFGBJTSNWTDT-UHFFFAOYSA-M 0.000 description 1
- PGYJSURPYAAOMM-UHFFFAOYSA-N 2-ethenoxy-2-methylpropane Chemical compound CC(C)(C)OC=C PGYJSURPYAAOMM-UHFFFAOYSA-N 0.000 description 1
- UUODQIKUTGWMPT-UHFFFAOYSA-N 2-fluoro-5-(trifluoromethyl)pyridine Chemical compound FC1=CC=C(C(F)(F)F)C=N1 UUODQIKUTGWMPT-UHFFFAOYSA-N 0.000 description 1
- QBJWYMFTMJFGOL-UHFFFAOYSA-N 2-hexadecyloxirane Chemical compound CCCCCCCCCCCCCCCCC1CO1 QBJWYMFTMJFGOL-UHFFFAOYSA-N 0.000 description 1
- TURITJIWSQEMDB-UHFFFAOYSA-N 2-methyl-n-[(2-methylprop-2-enoylamino)methyl]prop-2-enamide Chemical compound CC(=C)C(=O)NCNC(=O)C(C)=C TURITJIWSQEMDB-UHFFFAOYSA-N 0.000 description 1
- 125000000094 2-phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 1
- GGRBZHPJKWFAFZ-UHFFFAOYSA-N 3,4-bis(2-methylprop-2-enoyloxy)butyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCC(OC(=O)C(C)=C)COC(=O)C(C)=C GGRBZHPJKWFAFZ-UHFFFAOYSA-N 0.000 description 1
- HTWRFCRQSLVESJ-UHFFFAOYSA-N 3-(2-methylprop-2-enoyloxy)propyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCOC(=O)C(C)=C HTWRFCRQSLVESJ-UHFFFAOYSA-N 0.000 description 1
- NEGFNJRAUMCZMY-UHFFFAOYSA-N 3-(dimethylamino)benzoic acid Chemical compound CN(C)C1=CC=CC(C(O)=O)=C1 NEGFNJRAUMCZMY-UHFFFAOYSA-N 0.000 description 1
- MECNWXGGNCJFQJ-UHFFFAOYSA-N 3-piperidin-1-ylpropane-1,2-diol Chemical compound OCC(O)CN1CCCCC1 MECNWXGGNCJFQJ-UHFFFAOYSA-N 0.000 description 1
- GFLJTEHFZZNCTR-UHFFFAOYSA-N 3-prop-2-enoyloxypropyl prop-2-enoate Chemical compound C=CC(=O)OCCCOC(=O)C=C GFLJTEHFZZNCTR-UHFFFAOYSA-N 0.000 description 1
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 1
- XIIVBURSIWWDEO-UHFFFAOYSA-N 33985-71-6 Chemical compound C1CCC2=CC(C=O)=CC3=C2N1CCC3 XIIVBURSIWWDEO-UHFFFAOYSA-N 0.000 description 1
- ZILQRIKYRNQQDE-UHFFFAOYSA-N 4-(2-piperidin-4-ylethyl)piperidine Chemical compound C1CNCCC1CCC1CCNCC1 ZILQRIKYRNQQDE-UHFFFAOYSA-N 0.000 description 1
- OXEZLYIDQPBCBB-UHFFFAOYSA-N 4-(3-piperidin-4-ylpropyl)piperidine Chemical compound C1CNCCC1CCCC1CCNCC1 OXEZLYIDQPBCBB-UHFFFAOYSA-N 0.000 description 1
- IEEQSQZXMZGQAX-UHFFFAOYSA-N 4-(4-diazo-1,3-diethoxycyclohexa-2,5-dien-1-yl)morpholine Chemical compound C1=CC(=[N+]=[N-])C(OCC)=CC1(OCC)N1CCOCC1 IEEQSQZXMZGQAX-UHFFFAOYSA-N 0.000 description 1
- JJOWIQMPCCUIGA-UHFFFAOYSA-N 4-(Trimethylsilyl)morpholine Chemical compound C[Si](C)(C)N1CCOCC1 JJOWIQMPCCUIGA-UHFFFAOYSA-N 0.000 description 1
- MNFZZNNFORDXSV-UHFFFAOYSA-N 4-(diethylamino)benzaldehyde Chemical compound CCN(CC)C1=CC=C(C=O)C=C1 MNFZZNNFORDXSV-UHFFFAOYSA-N 0.000 description 1
- YDIYEOMDOWUDTJ-UHFFFAOYSA-N 4-(dimethylamino)benzoic acid Chemical compound CN(C)C1=CC=C(C(O)=O)C=C1 YDIYEOMDOWUDTJ-UHFFFAOYSA-N 0.000 description 1
- JYMNQRQQBJIMCV-UHFFFAOYSA-N 4-(dimethylamino)benzonitrile Chemical compound CN(C)C1=CC=C(C#N)C=C1 JYMNQRQQBJIMCV-UHFFFAOYSA-N 0.000 description 1
- AXDJCCTWPBKUKL-UHFFFAOYSA-N 4-[(4-aminophenyl)-(4-imino-3-methylcyclohexa-2,5-dien-1-ylidene)methyl]aniline;hydron;chloride Chemical compound Cl.C1=CC(=N)C(C)=CC1=C(C=1C=CC(N)=CC=1)C1=CC=C(N)C=C1 AXDJCCTWPBKUKL-UHFFFAOYSA-N 0.000 description 1
- ADUMIBSPEHFSLA-UHFFFAOYSA-N 4-[bis(4-aminophenyl)methyl]aniline Chemical compound C1=CC(N)=CC=C1C(C=1C=CC(N)=CC=1)C1=CC=C(N)C=C1 ADUMIBSPEHFSLA-UHFFFAOYSA-N 0.000 description 1
- SBMCZDLOXDWNIN-UHFFFAOYSA-N 4-[bis[4-(diethylamino)phenyl]methyl]-n,n-diethylaniline Chemical compound C1=CC(N(CC)CC)=CC=C1C(C=1C=CC(=CC=1)N(CC)CC)C1=CC=C(N(CC)CC)C=C1 SBMCZDLOXDWNIN-UHFFFAOYSA-N 0.000 description 1
- WXMQHPKQCPCDQO-UHFFFAOYSA-N 4-dimorpholin-4-ylphosphorylmorpholine Chemical compound C1COCCN1P(N1CCOCC1)(=O)N1CCOCC1 WXMQHPKQCPCDQO-UHFFFAOYSA-N 0.000 description 1
- UTHHKUBZIBBOIT-UHFFFAOYSA-N 4-methyl-2-[(4-methyl-7-oxabicyclo[4.1.0]heptan-3-yl)methyl]-7-oxabicyclo[4.1.0]hept-2-ene-3-carboxylic acid Chemical compound CC1CC2OC2C(CC2CC3OC3CC2C)=C1C(O)=O UTHHKUBZIBBOIT-UHFFFAOYSA-N 0.000 description 1
- FOAQOAXQMISINY-UHFFFAOYSA-N 4-morpholin-4-ylbenzaldehyde Chemical compound C1=CC(C=O)=CC=C1N1CCOCC1 FOAQOAXQMISINY-UHFFFAOYSA-N 0.000 description 1
- KPQYDVAFRDWIBW-UHFFFAOYSA-N 5-(dimethylamino)naphthalene-1-sulfonohydrazide Chemical compound C1=CC=C2C(N(C)C)=CC=CC2=C1S(=O)(=O)NN KPQYDVAFRDWIBW-UHFFFAOYSA-N 0.000 description 1
- UXQFGCIAJSWBTO-UHFFFAOYSA-N 5-methyl-4-[(5-methyl-7-oxabicyclo[4.1.0]heptan-4-yl)methyl]-7-oxabicyclo[4.1.0]heptane-4-carboxylic acid Chemical compound C1CC2OC2C(C)C1(C(O)=O)CC1CCC2OC2C1C UXQFGCIAJSWBTO-UHFFFAOYSA-N 0.000 description 1
- XAYDWGMOPRHLEP-UHFFFAOYSA-N 6-ethenyl-7-oxabicyclo[4.1.0]heptane Chemical compound C1CCCC2OC21C=C XAYDWGMOPRHLEP-UHFFFAOYSA-N 0.000 description 1
- PTEZHEBXZIBKNA-UHFFFAOYSA-N 6-ethenyl-7-oxabicyclo[4.1.0]heptane;2-tetradecyloxirane Chemical compound C1CCCC2OC21C=C.CCCCCCCCCCCCCCC1CO1 PTEZHEBXZIBKNA-UHFFFAOYSA-N 0.000 description 1
- JTHZUSWLNCPZLX-UHFFFAOYSA-N 6-fluoro-3-methyl-2h-indazole Chemical compound FC1=CC=C2C(C)=NNC2=C1 JTHZUSWLNCPZLX-UHFFFAOYSA-N 0.000 description 1
- RBHIUNHSNSQJNG-UHFFFAOYSA-N 6-methyl-3-(2-methyloxiran-2-yl)-7-oxabicyclo[4.1.0]heptane Chemical compound C1CC2(C)OC2CC1C1(C)CO1 RBHIUNHSNSQJNG-UHFFFAOYSA-N 0.000 description 1
- NRZJOTSUPLCYDJ-UHFFFAOYSA-N 7-(ethylamino)-6-methyl-4-(trifluoromethyl)chromen-2-one Chemical compound O1C(=O)C=C(C(F)(F)F)C2=C1C=C(NCC)C(C)=C2 NRZJOTSUPLCYDJ-UHFFFAOYSA-N 0.000 description 1
- NHJIDZUQMHKGRE-UHFFFAOYSA-N 7-oxabicyclo[4.1.0]heptan-4-yl 2-(7-oxabicyclo[4.1.0]heptan-4-yl)acetate Chemical compound C1CC2OC2CC1OC(=O)CC1CC2OC2CC1 NHJIDZUQMHKGRE-UHFFFAOYSA-N 0.000 description 1
- AOYQDLJWKKUFEG-UHFFFAOYSA-N 7-oxabicyclo[4.1.0]heptan-4-ylmethyl 7-oxabicyclo[4.1.0]hept-4-ene-4-carboxylate Chemical compound C=1C2OC2CCC=1C(=O)OCC1CC2OC2CC1 AOYQDLJWKKUFEG-UHFFFAOYSA-N 0.000 description 1
- OHNVYUFGHVIYEF-UHFFFAOYSA-N 9,9-bis[4-(oxiran-2-ylmethoxy)phenyl]-2h-fluoren-1-one Chemical compound O=C1CC=CC(C2=CC=CC=C22)=C1C2(C=1C=CC(OCC2OC2)=CC=1)C(C=C1)=CC=C1OCC1CO1 OHNVYUFGHVIYEF-UHFFFAOYSA-N 0.000 description 1
- BJCTXUUKONLPPK-UHFFFAOYSA-N 9-oxofluorene-2-carboxylic acid Chemical compound C1=CC=C2C(=O)C3=CC(C(=O)O)=CC=C3C2=C1 BJCTXUUKONLPPK-UHFFFAOYSA-N 0.000 description 1
- 229910021630 Antimony pentafluoride Inorganic materials 0.000 description 1
- 229910017048 AsF6 Inorganic materials 0.000 description 1
- ADAHGVUHKDNLEB-UHFFFAOYSA-N Bis(2,3-epoxycyclopentyl)ether Chemical compound C1CC2OC2C1OC1CCC2OC21 ADAHGVUHKDNLEB-UHFFFAOYSA-N 0.000 description 1
- PXKLMJQFEQBVLD-UHFFFAOYSA-N Bisphenol F Natural products C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- CDEJRHZKXSFFJS-UHFFFAOYSA-N C1(=CC=CC=C1)N(C1(CC=C(C=C1)C=CC1=CC=CC=C1)N(C1=CC=CC=C1)C1=CC=CC=C1)C1=CC=CC=C1 Chemical compound C1(=CC=CC=C1)N(C1(CC=C(C=C1)C=CC1=CC=CC=C1)N(C1=CC=CC=C1)C1=CC=CC=C1)C1=CC=CC=C1 CDEJRHZKXSFFJS-UHFFFAOYSA-N 0.000 description 1
- UPCHQOGVQKXCNM-UHFFFAOYSA-N C=1C=CC=CC=1N([SiH](C)C)C1=CC=CC=C1 Chemical compound C=1C=CC=CC=1N([SiH](C)C)C1=CC=CC=C1 UPCHQOGVQKXCNM-UHFFFAOYSA-N 0.000 description 1
- ZUPQUIQYKMYVCD-UHFFFAOYSA-N C[SiH](C)N([SiH](C)C)c1ccccc1 Chemical compound C[SiH](C)N([SiH](C)C)c1ccccc1 ZUPQUIQYKMYVCD-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 239000004641 Diallyl-phthalate Substances 0.000 description 1
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- QXNVGIXVLWOKEQ-UHFFFAOYSA-N Disodium Chemical class [Na][Na] QXNVGIXVLWOKEQ-UHFFFAOYSA-N 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical class OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- GXBYFVGCMPJVJX-UHFFFAOYSA-N Epoxybutene Chemical compound C=CC1CO1 GXBYFVGCMPJVJX-UHFFFAOYSA-N 0.000 description 1
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical group OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- LLQPHQFNMLZJMP-UHFFFAOYSA-N Fentrazamide Chemical compound N1=NN(C=2C(=CC=CC=2)Cl)C(=O)N1C(=O)N(CC)C1CCCCC1 LLQPHQFNMLZJMP-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- KFFQABQEJATQAT-UHFFFAOYSA-N N,N'-dibutylthiourea Chemical compound CCCCNC(=S)NCCCC KFFQABQEJATQAT-UHFFFAOYSA-N 0.000 description 1
- CJKRXEBLWJVYJD-UHFFFAOYSA-N N,N'-diethylethylenediamine Chemical compound CCNCCNCC CJKRXEBLWJVYJD-UHFFFAOYSA-N 0.000 description 1
- MGJKQDOBUOMPEZ-UHFFFAOYSA-N N,N'-dimethylurea Chemical compound CNC(=O)NC MGJKQDOBUOMPEZ-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- JOOMLFKONHCLCJ-UHFFFAOYSA-N N-(trimethylsilyl)diethylamine Chemical compound CCN(CC)[Si](C)(C)C JOOMLFKONHCLCJ-UHFFFAOYSA-N 0.000 description 1
- AFBPFSWMIHJQDM-UHFFFAOYSA-N N-methyl-N-phenylamine Natural products CNC1=CC=CC=C1 AFBPFSWMIHJQDM-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 206010034972 Photosensitivity reaction Diseases 0.000 description 1
- 238000010475 Pinacol rearrangement reaction Methods 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- MNOILHPDHOHILI-UHFFFAOYSA-N Tetramethylthiourea Chemical compound CN(C)C(=S)N(C)C MNOILHPDHOHILI-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- DAKWPKUUDNSNPN-UHFFFAOYSA-N Trimethylolpropane triacrylate Chemical compound C=CC(=O)OCC(CC)(COC(=O)C=C)COC(=O)C=C DAKWPKUUDNSNPN-UHFFFAOYSA-N 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- NQCZAYQXPJEPDS-UHFFFAOYSA-N [(dimethylsilylamino)-methylsilyl]methane Chemical compound C[SiH](C)N[SiH](C)C NQCZAYQXPJEPDS-UHFFFAOYSA-N 0.000 description 1
- ORLQHILJRHBSAY-UHFFFAOYSA-N [1-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1(CO)CCCCC1 ORLQHILJRHBSAY-UHFFFAOYSA-N 0.000 description 1
- HVVWZTWDBSEWIH-UHFFFAOYSA-N [2-(hydroxymethyl)-3-prop-2-enoyloxy-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical compound C=CC(=O)OCC(CO)(COC(=O)C=C)COC(=O)C=C HVVWZTWDBSEWIH-UHFFFAOYSA-N 0.000 description 1
- OCBFFGCSTGGPSQ-UHFFFAOYSA-N [CH2]CC Chemical compound [CH2]CC OCBFFGCSTGGPSQ-UHFFFAOYSA-N 0.000 description 1
- JBAKYNJRLAJRNW-UHFFFAOYSA-N [bis(dimethyl-$l^{3}-silanyl)amino]-dimethylsilicon Chemical compound C[Si](C)N([Si](C)C)[Si](C)C JBAKYNJRLAJRNW-UHFFFAOYSA-N 0.000 description 1
- RTKWXMICRARTGS-UHFFFAOYSA-N [bis(methylsilyl)amino]silylmethane Chemical compound C[SiH2]N([SiH2]C)[SiH2]C RTKWXMICRARTGS-UHFFFAOYSA-N 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- HITZGLBEZMKWBW-UHFFFAOYSA-N ac1n8rtr Chemical group C1CC2OC2CC1CC[Si](O1)(O2)O[Si](O3)(C4CCCC4)O[Si](O4)(C5CCCC5)O[Si]1(C1CCCC1)O[Si](O1)(C5CCCC5)O[Si]2(C2CCCC2)O[Si]3(C2CCCC2)O[Si]41C1CCCC1 HITZGLBEZMKWBW-UHFFFAOYSA-N 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 125000005396 acrylic acid ester group Chemical group 0.000 description 1
- 238000001994 activation Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 125000002877 alkyl aryl group Chemical group 0.000 description 1
- 125000004414 alkyl thio group Chemical group 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 150000003927 aminopyridines Chemical class 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 150000003974 aralkylamines Chemical class 0.000 description 1
- XKRFYHLGVUSROY-UHFFFAOYSA-N argon Substances [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 125000005110 aryl thio group Chemical group 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- JUHORIMYRDESRB-UHFFFAOYSA-N benzathine Chemical compound C=1C=CC=CC=1CNCCNCC1=CC=CC=C1 JUHORIMYRDESRB-UHFFFAOYSA-N 0.000 description 1
- CIZVQWNPBGYCGK-UHFFFAOYSA-N benzenediazonium Chemical group N#[N+]C1=CC=CC=C1 CIZVQWNPBGYCGK-UHFFFAOYSA-N 0.000 description 1
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- PIPBVABVQJZSAB-UHFFFAOYSA-N bis(ethenyl) benzene-1,2-dicarboxylate Chemical compound C=COC(=O)C1=CC=CC=C1C(=O)OC=C PIPBVABVQJZSAB-UHFFFAOYSA-N 0.000 description 1
- AJCHRUXIDGEWDK-UHFFFAOYSA-N bis(ethenyl) butanedioate Chemical compound C=COC(=O)CCC(=O)OC=C AJCHRUXIDGEWDK-UHFFFAOYSA-N 0.000 description 1
- JZQAAQZDDMEFGZ-UHFFFAOYSA-N bis(ethenyl) hexanedioate Chemical compound C=COC(=O)CCCCC(=O)OC=C JZQAAQZDDMEFGZ-UHFFFAOYSA-N 0.000 description 1
- QUDWYFHPNIMBFC-UHFFFAOYSA-N bis(prop-2-enyl) benzene-1,2-dicarboxylate Chemical compound C=CCOC(=O)C1=CC=CC=C1C(=O)OCC=C QUDWYFHPNIMBFC-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- DKVNPHBNOWQYFE-UHFFFAOYSA-N carbamodithioic acid Chemical compound NC(S)=S DKVNPHBNOWQYFE-UHFFFAOYSA-N 0.000 description 1
- 125000002837 carbocyclic group Chemical group 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 229920006217 cellulose acetate butyrate Polymers 0.000 description 1
- 125000003636 chemical group Chemical group 0.000 description 1
- XENVCRGQTABGKY-ZHACJKMWSA-N chlorohydrin Chemical compound CC#CC#CC#CC#C\C=C\C(Cl)CO XENVCRGQTABGKY-ZHACJKMWSA-N 0.000 description 1
- WCZVZNOTHYJIEI-UHFFFAOYSA-N cinnoline Chemical compound N1=NC=CC2=CC=CC=C21 WCZVZNOTHYJIEI-UHFFFAOYSA-N 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000010226 confocal imaging Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000013039 cover film Substances 0.000 description 1
- 239000004643 cyanate ester Substances 0.000 description 1
- 150000001913 cyanates Chemical class 0.000 description 1
- DNWBGZGLCKETOT-UHFFFAOYSA-N cyclohexane;1,3-dioxane Chemical compound C1CCCCC1.C1COCOC1 DNWBGZGLCKETOT-UHFFFAOYSA-N 0.000 description 1
- ZWAJLVLEBYIOTI-UHFFFAOYSA-N cyclohexene oxide Chemical group C1CCCC2OC21 ZWAJLVLEBYIOTI-UHFFFAOYSA-N 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 125000005520 diaryliodonium group Chemical group 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-O diazynium Chemical group [NH+]#N IJGRMHOSHXDMSA-UHFFFAOYSA-O 0.000 description 1
- IJRJBQGVWNVZSA-UHFFFAOYSA-N dilC18(3)(1+) Chemical compound CC1(C)C2=CC=CC=C2N(CCCCCCCCCCCCCCCCCC)C1=CC=CC1=[N+](CCCCCCCCCCCCCCCCCC)C2=CC=CC=C2C1(C)C IJRJBQGVWNVZSA-UHFFFAOYSA-N 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- 229940035422 diphenylamine Drugs 0.000 description 1
- OZLBDYMWFAHSOQ-UHFFFAOYSA-N diphenyliodanium Chemical class C=1C=CC=CC=1[I+]C1=CC=CC=C1 OZLBDYMWFAHSOQ-UHFFFAOYSA-N 0.000 description 1
- LTYMSROWYAPPGB-UHFFFAOYSA-O diphenylsulfanium Chemical compound C=1C=CC=CC=1[SH+]C1=CC=CC=C1 LTYMSROWYAPPGB-UHFFFAOYSA-O 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229960001484 edetic acid Drugs 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 125000006575 electron-withdrawing group Chemical group 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 1
- IINNWAYUJNWZRM-UHFFFAOYSA-L erythrosin B Chemical compound [Na+].[Na+].[O-]C(=O)C1=CC=CC=C1C1=C2C=C(I)C(=O)C(I)=C2OC2=C(I)C([O-])=C(I)C=C21 IINNWAYUJNWZRM-UHFFFAOYSA-L 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- LSGWSXRILNPXKJ-UHFFFAOYSA-N ethyl oxirane-2-carboxylate Chemical compound CCOC(=O)C1CO1 LSGWSXRILNPXKJ-UHFFFAOYSA-N 0.000 description 1
- ZTFPVUVWTIJYHK-UHFFFAOYSA-N ethyl prop-2-enoate;methyl 2-methylprop-2-enoate;oxiran-2-ylmethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C=C.COC(=O)C(C)=C.CC(=C)C(=O)OCC1CO1 ZTFPVUVWTIJYHK-UHFFFAOYSA-N 0.000 description 1
- JVICFMRAVNKDOE-UHFFFAOYSA-M ethyl violet Chemical compound [Cl-].C1=CC(N(CC)CC)=CC=C1C(C=1C=CC(=CC=1)N(CC)CC)=C1C=CC(=[N+](CC)CC)C=C1 JVICFMRAVNKDOE-UHFFFAOYSA-M 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- KTWOOEGAPBSYNW-UHFFFAOYSA-N ferrocene Chemical compound [Fe+2].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 KTWOOEGAPBSYNW-UHFFFAOYSA-N 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 238000001917 fluorescence detection Methods 0.000 description 1
- 238000002189 fluorescence spectrum Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- SLGWESQGEUXWJQ-UHFFFAOYSA-N formaldehyde;phenol Chemical compound O=C.OC1=CC=CC=C1 SLGWESQGEUXWJQ-UHFFFAOYSA-N 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 229920001002 functional polymer Polymers 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- GNOIPBMMFNIUFM-UHFFFAOYSA-N hexamethylphosphoric triamide Chemical compound CN(C)P(=O)(N(C)C)N(C)C GNOIPBMMFNIUFM-UHFFFAOYSA-N 0.000 description 1
- LNMQRPPRQDGUDR-UHFFFAOYSA-N hexyl prop-2-enoate Chemical compound CCCCCCOC(=O)C=C LNMQRPPRQDGUDR-UHFFFAOYSA-N 0.000 description 1
- 238000001093 holography Methods 0.000 description 1
- SMWDFEZZVXVKRB-UHFFFAOYSA-O hydron;quinoline Chemical compound [NH+]1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-O 0.000 description 1
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- AWJUIBRHMBBTKR-UHFFFAOYSA-O isoquinolin-2-ium Chemical compound C1=[NH+]C=CC2=CC=CC=C21 AWJUIBRHMBBTKR-UHFFFAOYSA-O 0.000 description 1
- 239000012633 leachable Substances 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- CDOSHBSSFJOMGT-UHFFFAOYSA-N linalool Chemical compound CC(C)=CCCC(C)(O)C=C CDOSHBSSFJOMGT-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- LGRLWUINFJPLSH-UHFFFAOYSA-N methanide Chemical compound [CH3-] LGRLWUINFJPLSH-UHFFFAOYSA-N 0.000 description 1
- 125000005525 methide group Chemical group 0.000 description 1
- QKYRXLPXSJZIQM-UHFFFAOYSA-N methyl 2-amino-5-phenylthiophene-3-carboxylate Chemical compound S1C(N)=C(C(=O)OC)C=C1C1=CC=CC=C1 QKYRXLPXSJZIQM-UHFFFAOYSA-N 0.000 description 1
- KOARAHKGQSHYGJ-UHFFFAOYSA-N methyl 2-methylprop-2-enoate;oxiran-2-ylmethyl prop-2-enoate Chemical compound COC(=O)C(C)=C.C=CC(=O)OCC1CO1 KOARAHKGQSHYGJ-UHFFFAOYSA-N 0.000 description 1
- XJRBAMWJDBPFIM-UHFFFAOYSA-N methyl vinyl ether Chemical compound COC=C XJRBAMWJDBPFIM-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000004776 molecular orbital Methods 0.000 description 1
- 239000003068 molecular probe Substances 0.000 description 1
- BEPGHZIEOVULBU-UHFFFAOYSA-N n,n'-diethylpropane-1,3-diamine Chemical compound CCNCCCNCC BEPGHZIEOVULBU-UHFFFAOYSA-N 0.000 description 1
- KVKFRMCSXWQSNT-UHFFFAOYSA-N n,n'-dimethylethane-1,2-diamine Chemical compound CNCCNC KVKFRMCSXWQSNT-UHFFFAOYSA-N 0.000 description 1
- MDKQJOKKKZNQDG-UHFFFAOYSA-N n,n'-dimethylhexane-1,6-diamine Chemical compound CNCCCCCCNC MDKQJOKKKZNQDG-UHFFFAOYSA-N 0.000 description 1
- ZIUHHBKFKCYYJD-UHFFFAOYSA-N n,n'-methylenebisacrylamide Chemical compound C=CC(=O)NCNC(=O)C=C ZIUHHBKFKCYYJD-UHFFFAOYSA-N 0.000 description 1
- AJFDBNQQDYLMJN-UHFFFAOYSA-N n,n-diethylacetamide Chemical compound CCN(CC)C(C)=O AJFDBNQQDYLMJN-UHFFFAOYSA-N 0.000 description 1
- MVBJSQCJPSRKSW-UHFFFAOYSA-N n-[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]prop-2-enamide Chemical compound OCC(CO)(CO)NC(=O)C=C MVBJSQCJPSRKSW-UHFFFAOYSA-N 0.000 description 1
- YQCFXPARMSSRRK-UHFFFAOYSA-N n-[6-(prop-2-enoylamino)hexyl]prop-2-enamide Chemical compound C=CC(=O)NCCCCCCNC(=O)C=C YQCFXPARMSSRRK-UHFFFAOYSA-N 0.000 description 1
- ROZPNEGZBIUWBX-UHFFFAOYSA-N n-[bis(diethylamino)phosphoryl]-n-ethylethanamine Chemical compound CCN(CC)P(=O)(N(CC)CC)N(CC)CC ROZPNEGZBIUWBX-UHFFFAOYSA-N 0.000 description 1
- AHKKZIUZTWZKDR-UHFFFAOYSA-N n-[bis(dimethylamino)-methylsilyl]-n-methylmethanamine Chemical compound CN(C)[Si](C)(N(C)C)N(C)C AHKKZIUZTWZKDR-UHFFFAOYSA-N 0.000 description 1
- VJDVRUZAQRISHN-UHFFFAOYSA-N n-[bis(dimethylamino)-phenylsilyl]-n-methylmethanamine Chemical compound CN(C)[Si](N(C)C)(N(C)C)C1=CC=CC=C1 VJDVRUZAQRISHN-UHFFFAOYSA-N 0.000 description 1
- FTURFVPIEOKJBC-UHFFFAOYSA-N n-[dimethylamino(diphenyl)silyl]-n-methylmethanamine Chemical compound C=1C=CC=CC=1[Si](N(C)C)(N(C)C)C1=CC=CC=C1 FTURFVPIEOKJBC-UHFFFAOYSA-N 0.000 description 1
- WAQPJHNWYPETBC-UHFFFAOYSA-N n-bis(dipropylamino)phosphoryl-n-propylpropan-1-amine Chemical compound CCCN(CCC)P(=O)(N(CCC)CCC)N(CCC)CCC WAQPJHNWYPETBC-UHFFFAOYSA-N 0.000 description 1
- KNLUHXUFCCNNIB-UHFFFAOYSA-N n-dimethylsilyl-n-methylmethanamine Chemical compound CN(C)[SiH](C)C KNLUHXUFCCNNIB-UHFFFAOYSA-N 0.000 description 1
- LMTGCJANOQOGPI-UHFFFAOYSA-N n-methyl-n-phenylacetamide Chemical compound CC(=O)N(C)C1=CC=CC=C1 LMTGCJANOQOGPI-UHFFFAOYSA-N 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- YPNZYYWORCABPU-UHFFFAOYSA-N oxiran-2-ylmethyl 2-methylprop-2-enoate;styrene Chemical compound C=CC1=CC=CC=C1.CC(=C)C(=O)OCC1CO1 YPNZYYWORCABPU-UHFFFAOYSA-N 0.000 description 1
- RPQRDASANLAFCM-UHFFFAOYSA-N oxiran-2-ylmethyl prop-2-enoate Chemical compound C=CC(=O)OCC1CO1 RPQRDASANLAFCM-UHFFFAOYSA-N 0.000 description 1
- 125000000466 oxiranyl group Chemical group 0.000 description 1
- 125000001820 oxy group Chemical group [*:1]O[*:2] 0.000 description 1
- FZUGPQWGEGAKET-UHFFFAOYSA-N parbenate Chemical compound CCOC(=O)C1=CC=C(N(C)C)C=C1 FZUGPQWGEGAKET-UHFFFAOYSA-N 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- DPBLXKKOBLCELK-UHFFFAOYSA-N pentan-1-amine Chemical compound CCCCCN DPBLXKKOBLCELK-UHFFFAOYSA-N 0.000 description 1
- VGZPRMSXVNDMAN-UHFFFAOYSA-I pentapotassium;2-[4-[bis(carboxylatomethyl)amino]-3-[2-[2-[bis(carboxylatomethyl)amino]-5-methylphenoxy]ethoxy]phenyl]-1h-indole-6-carboxylate Chemical compound [K+].[K+].[K+].[K+].[K+].CC1=CC=C(N(CC([O-])=O)CC([O-])=O)C(OCCOC=2C(=CC=C(C=2)C=2NC3=CC(=CC=C3C=2)C([O-])=O)N(CC([O-])=O)CC([O-])=O)=C1 VGZPRMSXVNDMAN-UHFFFAOYSA-I 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 229950000688 phenothiazine Drugs 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 150000008039 phosphoramides Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000151 polyglycol Polymers 0.000 description 1
- 239000010695 polyglycol Substances 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- QTECDUFMBMSHKR-UHFFFAOYSA-N prop-2-enyl prop-2-enoate Chemical compound C=CCOC(=O)C=C QTECDUFMBMSHKR-UHFFFAOYSA-N 0.000 description 1
- BOQSSGDQNWEFSX-UHFFFAOYSA-N propan-2-yl 2-methylprop-2-enoate Chemical compound CC(C)OC(=O)C(C)=C BOQSSGDQNWEFSX-UHFFFAOYSA-N 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- JUJWROOIHBZHMG-UHFFFAOYSA-O pyridinium Chemical compound C1=CC=[NH+]C=C1 JUJWROOIHBZHMG-UHFFFAOYSA-O 0.000 description 1
- 230000009103 reabsorption Effects 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- 238000000518 rheometry Methods 0.000 description 1
- AZJPTIGZZTZIDR-UHFFFAOYSA-L rose bengal Chemical compound [K+].[K+].[O-]C(=O)C1=C(Cl)C(Cl)=C(Cl)C(Cl)=C1C1=C2C=C(I)C(=O)C(I)=C2OC2=C(I)C([O-])=C(I)C=C21 AZJPTIGZZTZIDR-UHFFFAOYSA-L 0.000 description 1
- 229940081623 rose bengal Drugs 0.000 description 1
- 229930187593 rose bengal Natural products 0.000 description 1
- STRXNPAVPKGJQR-UHFFFAOYSA-N rose bengal A Natural products O1C(=O)C(C(=CC=C2Cl)Cl)=C2C21C1=CC(I)=C(O)C(I)=C1OC1=C(I)C(O)=C(I)C=C21 STRXNPAVPKGJQR-UHFFFAOYSA-N 0.000 description 1
- 239000010979 ruby Substances 0.000 description 1
- 229910001750 ruby Inorganic materials 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229910052710 silicon Chemical group 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 125000005373 siloxane group Chemical group [SiH2](O*)* 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 150000003440 styrenes Chemical class 0.000 description 1
- 125000005504 styryl group Chemical group 0.000 description 1
- 125000000547 substituted alkyl group Chemical group 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 150000003455 sulfinic acids Chemical class 0.000 description 1
- 125000004964 sulfoalkyl group Chemical group 0.000 description 1
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000010345 tape casting Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- ISIJQEHRDSCQIU-UHFFFAOYSA-N tert-butyl 2,7-diazaspiro[4.5]decane-7-carboxylate Chemical compound C1N(C(=O)OC(C)(C)C)CCCC11CNCC1 ISIJQEHRDSCQIU-UHFFFAOYSA-N 0.000 description 1
- SJMYWORNLPSJQO-UHFFFAOYSA-N tert-butyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC(C)(C)C SJMYWORNLPSJQO-UHFFFAOYSA-N 0.000 description 1
- XTXNWQHMMMPKKO-UHFFFAOYSA-N tert-butyl 2-phenylethenyl carbonate Chemical compound CC(C)(C)OC(=O)OC=CC1=CC=CC=C1 XTXNWQHMMMPKKO-UHFFFAOYSA-N 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 239000012085 test solution Substances 0.000 description 1
- 150000005621 tetraalkylammonium salts Chemical class 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 150000003585 thioureas Chemical class 0.000 description 1
- 239000013008 thixotropic agent Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 125000003944 tolyl group Chemical group 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 125000003866 trichloromethyl group Chemical group ClC(Cl)(Cl)* 0.000 description 1
- IMNIMPAHZVJRPE-UHFFFAOYSA-N triethylenediamine Chemical compound C1CN2CCN1CC2 IMNIMPAHZVJRPE-UHFFFAOYSA-N 0.000 description 1
- WLADIVUISABQHN-UHFFFAOYSA-N trimethyl(piperidin-1-yl)silane Chemical compound C[Si](C)(C)N1CCCCC1 WLADIVUISABQHN-UHFFFAOYSA-N 0.000 description 1
- QXJQHYBHAIHNGG-UHFFFAOYSA-N trimethylolethane Chemical compound OCC(C)(CO)CO QXJQHYBHAIHNGG-UHFFFAOYSA-N 0.000 description 1
- ODHXBMXNKOYIBV-UHFFFAOYSA-N triphenylamine Chemical compound C1=CC=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 ODHXBMXNKOYIBV-UHFFFAOYSA-N 0.000 description 1
- BPLUKJNHPBNVQL-UHFFFAOYSA-N triphenylarsine Chemical class C1=CC=CC=C1[As](C=1C=CC=CC=1)C1=CC=CC=C1 BPLUKJNHPBNVQL-UHFFFAOYSA-N 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- HRXKRNGNAMMEHJ-UHFFFAOYSA-K trisodium citrate Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O HRXKRNGNAMMEHJ-UHFFFAOYSA-K 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000000482 two photon fluorescence microscopy Methods 0.000 description 1
- 150000003672 ureas Chemical class 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
- ABDKAPXRBAPSQN-UHFFFAOYSA-N veratrole Chemical compound COC1=CC=CC=C1OC ABDKAPXRBAPSQN-UHFFFAOYSA-N 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000012991 xanthate Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/20—Exposure; Apparatus therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/20—Exposure; Apparatus therefor
- G03F7/2051—Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source
Definitions
- This invention relates to a method of enhancing the peak power of a light source (e.g., a short pulse laser) used in a photoreactive absorption (e.g., reacting) process, the method comprising splitting the light from the light source into a plurality of parts and focusing the parts at the same volume element of a photoreactive composition from a plurality of directions.
- a light source e.g., a short pulse laser
- a photoreactive absorption e.g., reacting
- the exciting light is not attenuated by single-photon absorption within a photoreactive matrix or material, it is possible to selectively excite molecules at a greater depth within a material than would be possible via single-photon excitation by use of a beam that is focused to that depth in the material. These two phenomena also apply, for example, to excitation within tissue or other biological materials.
- the z-axis resolution in two photon microfabrication may be limited by the material but more usually is defined by the optics.
- the depth of the reacted voxel (the smallest three dimensional volume element) is defined by the numerical aperture (NA) of the focusing optics and is proportional to the square of the NA.
- NA numerical aperture
- the lateral extent of the reacted voxel is directly proportional to the NA, so the depth and width of the reacted voxel cannot be varied independently (at a fixed wavelength). Creating a shallow depth of field necessitates a small lateral dimension to the voxel, and a small voxel means longer writing times for large structures.
- the present invention provides methods for enhancing photoreactive absorption in a specified volume element of a photoreactive composition.
- the method includes: providing a photoreactive composition; providing a source of light (preferably, a pulsed laser) sufficient for simultaneous absorption of at least two photons by the photoreactive composition, the light source having a beam capable of being divided; dividing the light beam into a plurality of equal path length exposure beams; and focusing the exposure beams in a substantially non-counter propagating manner at a single volume element of the photoreactive composition simultaneously to react at least a portion of the photoreactive composition.
- a source of light preferably, a pulsed laser
- a method in another embodiment, includes: providing a photoreactive composition capable of photoreactive absorption; and exposing the photoreactive composition to laser light from a plurality of substantially non-counter propagating directions simultaneously, wherein the light overlaps in time and space at a predetermined focus spot.
- the photoreactive composition is exposed to the light source in a manner such that beams of light are directed from opposite sides of the photoreactive composition. In another embodiment, the beams come from the same side of the composition
- a photoreactive composition of the present invention includes a reactive species, which is preferably a photoreactive species, such as monomers, oligomers, reactive polymers, and mixtures thereof, although non-photoreactive species are also possible.
- a curable species include addition-polymerizable monomers and oligomers, addition-crosslinkable polymers, cationically-polymerizable monomers and oligomers, cationically-crosslinkable polymers, and mixtures thereof.
- the photoreactive composition also includes a photoreactive photosensitizer.
- the photoreactive photosensitizer has a two-photon absorption cross-section greater than about 50 ⁇ 10 ⁇ 50 cm 4 sec/photon, more preferably, greater than about 75 ⁇ 10 ⁇ 50 cm 4 sec/photon, even more preferably, greater than about 100 ⁇ 10 ⁇ 50 cm 4 sec/photon, even more preferably, greater than about 150 ⁇ 10 ⁇ 50 cm 4 sec/photon, and most preferably, greater than about 200 ⁇ 10 ⁇ 50 cm 4 sec/photon.
- the photoreactive photosensitizer has a two-photon absorption cross-section greater than about 1.5 times that of fluorescein, more preferably, greater than about 2 times that of fluorescein, even more preferably, greater than about 3 times that of fluorescein, and most preferably, greater than about 4 times that of fluorescein.
- a preferred photoreactive composition includes about 5% to about 99.79% by weight of the at least one reactive species, about 0.01% to about 10% by weight of the at least one photoreactive photosensitizer, up to about 10% by weight of the at least one electron donor compound, and about 0.1% to about 10% by weight of the at least one photoinitiator, based upon the total weight of solids.
- the present invention also provides a method for enhancing photoreactive absorption in a specified volume element of a photoreactive composition, the method including; providing a photoreactive composition; providing light sufficient for simultaneous absorption of at least two photons by the photoreactive composition; the light including at least two exposure beams; focusing the exposure beams in a substantially non-counter propagating manner at a single volume element of the photoreactive composition simultaneously to react at least a portion of the photoreactive composition.
- the light includes one or more lasers, each of which provides at least one exposure beam.
- the methods can utilize optical delay elements to control the relative delay between each pulse and the location of the focal point of each beam.
- photoreactive absorption means simultaneous absorption of two or more photons to reach a reactive, electronic excited state that is energetically inaccessible by the absorption of a single photon of the same energy
- “simultaneous” means two events that occur within the period of 10 ⁇ 14 second or less;
- “electronic excited state” means an electronic state of a molecule that is higher in energy than the molecule's electronic ground state, that is accessible via absorption of light, and that has a lifetime greater than 10 ⁇ 13 seconds;
- react means to effect reacting (polymerization and/or crosslinking) as well as to effect depolymerization or other reactions.
- optical system means a system for controlling light, the system including at least one element chosen from refractive optical elements such as lenses, reflective optical elements such as mirrors, and diffractive optical elements such as gratings.
- Optical elements shall also include diffusers, waveguides, and other elements known in the optical arts;
- Exposure system means an optical system plus a light source
- “sufficient light” means light of sufficient intensity and appropriate wavelength to effect photoreactive absorption
- photosensitizer means a molecule that lowers the energy required to activate a photoinitiator by absorbing light of lower energy than is required by the photoinitiator for activation and interacting with the photoinitiator to produce a photoinitiating species therefrom;
- photochemically effective amounts means amounts sufficient to enable the reactive species to undergo at least partial reaction under the selected exposure conditions (as evidenced, for example, by a change in density, viscosity, color, pH, refractive index, or other physical or chemical property);
- “transit” means passing light completely through a volume of a photoreactive composition
- focus or “focusing” means bringing collimated light to a point or forming an image of an object.
- FIG. 1 a illustrates a multidirectional reacting approach wherein 2 beams are incident from the same side of the photoreactive reactive composition.
- FIG. 1 b illustrates a photoreactive composition placed between the focusing lenses so that light beams are incident upon the reacting region from opposite sides of the substrate.
- FIG. 2 illustrates a multidirectional reacting approach employing diffractive and mico-optical elements extended to more than two beams lying within the same plane or in different planes.
- the angle between the beams incident upon the photoreactive composition can be changed to alter the overlap cross-section and thus to control the shape of the reacted region.
- a preferred system for photoreactive absorption can include an exposure system that includes a light source and an appropriate optical element, and a photoreactive composition that includes at least one reactive species, at least one photoreactive photosensitizer, optionally at least one electron donor compound, and optionally at least one photoinitiator for the photoreactive composition.
- the photoinitiator is typically optional except when the reactive species is a cationic resin.
- the method of the present invention can be used to prepare complex, three-dimensional objects by exposure of a photoreactive composition to a light source of sufficient energy to cause a photoreactive composition to react (e.g., react).
- a photoreactive composition e.g., react
- unreacted material is separated from the desired object by, e.g., washing with a solvent or other art-known means.
- FIG. 1 a A general diagram of a particular embodiment of this multidirectional reacting approach is shown in FIG. 1 a .
- Light beam 110 from laser 100 is split into two beams 111 and 112 by beamsplitter 120 .
- Beams 111 and 112 are reflected by mirrors 130 a and 130 b and 130 c, d, e, f , and g , respectively, before being focused by lenses 160 b and 160 a , respectively, to the same volume element within the photoreactive composition 155 .
- Mirrors 130 d and 130 e are mounted on translation stage 140 which can be moved to match the pathlengths of the two beams to allow the overlap of the short pulses within the desired reacting volumetric region.
- FIG. 1 b illustrates the situation where incident beams 170 a and 170 b (focused by lenses 180 a and 180 b , respectively) are used to react the same volumetric region within photoreactive composition 190 , but are incident from opposite sides of the composition.
- a voxel is a three-dimensional pixel or volume element, usually the smallest definable volume with a size and shape.
- the shape of the reacted voxel can be defined by the crossing region as well as the pulse timing and focal spot position and shape.
- Moving one of the optical components the shape and size of the beam can be varied very quickly. Moving an optical component is much easier than changing the pulse length of the laser and can be easier than changing the optical delay time.
- a further advantage of the invention is that it allows use of lower numerical aperture (NA) optics. Lower NA optics are usually easier to use, have greater working distances (so deeper structures can be made), and are cheaper.
- NA numerical aperture
- Another advantage of the invention is that using more than two beams from non-overlapping directions also increases the contrast of the exposure system. That is, the difference between each individual beam intensity (which cannot have enough intensity to react the material by itself to stay within the spirit of this invention) and the intensity total of all the beams is much greater.
- the position of the reacted region of a material is defined by the relative timing of the two pulses and the size and position of the two focal spots of the lenses.
- the voxel cannot be made smaller than about half the length of the peak intensity region of the light pulse. This arrangement does nothing to lower the damage threshold in thermally insulating materials (including polymers, polymer precursors and dyes) less than about 10 mm thick and does very little for damage threshold for insulating materials less than 100 mm thick.
- Using multiple, non-counter propagating beams increases the surface area over which the light is introduced to the sample.
- any orientation of the beams can prove useful.
- mutually orthogonal beams which can form blocks
- symmetrically distributed beams which can form approximate spheres
- nearly counter propagating beams which can form lines.
- Using low NA lenses and four beams in a regular tetrahedral arrangement one can make a large, approximately symmetrical voxel. Using more beams symmetrically arranged would increase the symmetry.
- the shape of the voxel can then be varied somewhat just by changing the combination of beams used to react the material and adjusting the power levels as necessary to compensate for the missing beams.
- the reacting material is usually coated on a planar backing. All the beams can come from one side of the plane. This is necessary if any part of the substrate or support is opaque. The beams can come from opposite sides of the material plane if the substrate and all supports are transparent.
- the relative polarization of the two beams may be set depending on whether or not optical interference is desired.
- This multidirectional reacting approach can be extended to more than two beams lying within the same plane or in different planes.
- the angle between the beams incident upon the photoreactive composition can be changed to alter the overlap cross-section and thus to control the shape of the reacted region.
- Overlapping beams also provide additional control over the size and shape of the volume at peak power since the region of overlap of two beams depends on the pulse duration and the angle between the beams. This can result in additional z-axis resolution for the process without the constraint imposed by the smaller working distances characteristic of high numerical aperture lenses.
- a different embodiment of this multidirectional approach employs diffractive and micro-optical elements.
- the diffractive element 210 (a linear grating in this case) splits the incoming beam 200 into several beams 220 a - 220 e propagating in different directions. Each of these beams passes through a transparent adjustable optical delay element 230 a - 230 e consisting of an electro-optical material (such as LiNbO 3 ). Altering the voltage applied across this material changes the material refractive index (which in turn changes the effective optical path length). After each beam passes through its individual optical delay element, the beams are incident upon a refractive microlens array 240 . The aspheric off-axis lenses in this array steer and focus the incident beams to the same volumetric region 260 within the photoreactive material 250 . Introduction of appropriate delay into each beam path allows the overlap of all pulses at the desired location in space and time.
- a more general diffractive optical element may be used to separate the incident beam into a two-dimensional array of beams instead of using a linear diffraction grating to create a one-dimensional fan of beams.
- the final focusing/steering refractive microlens array shown in FIG. 2 may be replaced with a diffractive optical element performing the same function.
- a large portion of the system may be constructed as an integrated optical device in which the beam-splitting grating and optical delay elements are constructed using waveguides on a planar substrate (the conventional way LiNbO 3 devices are constructed).
- the electro-optic refractive index control described above may be replaced in an integrated optical system by a fixed optical delay element. However, fine adjustment of the length of each optical path is necessary to compensate for system construction errors in a practical system; therefore, the tunable system embodiment shown in FIG. 2 is preferred to a fixed system.
- the shape and orientation angle of the volume element within the photoreactive composition that is illuminated by the refractive optical elements can be controlled by appropriate design of the focusing elements (such as by incorporating off-axis, aspheric, and anamorphic surfaces).
- WO 99/54784 describes the use of two counter propagating beams for enhanced z-axis resolution; the exact vertical location of reacting is determined by the relative delay between the two pulses (which is controlled by a mechanical stage which moves several mirrors within one beam path).
- the relative delay between multiple non-counter propagating beams is used in conjunction with active focal length control (of the focusing lenses) to determine the location of the reacted voxel within a multiphoton reactive composition (which may be stationary or moving).
- Placement of a set of optical delay elements between the refractive microlens array 240 and the multiphoton-reactive (i.e., photoreactive) composition 250 allows the simultaneous control of the relative delay between each pulse and the location of the focal point of each beam within the photoreactive composition 250 .
- the optical delay elements 230 a - 230 e provide the optical delay necessary to control the relative timing of each pulse so they overlap within the desired voxel.
- the additional set of optical delay elements placed into the beams as they are focused changes the focal point of each lens.
- electro-optical delay elements such as LiNbO 3
- electro-optical delay elements allows the synchronization of the change in focal position with the change in pulse delay.
- the reacted voxel can be moved vertically (and horizontally to a lesser degree) without requiring translation of the photoreactive composition.
- the invention is not limited to static lenses used in conjunction with electrically-addressable planar optical delay elements to yield adjustable focal lengths; any devices capable of active focal length control are understood to be included in the spirit of the present invention.
- the synchronized combination of active control over the shape of the reacted voxel (by turning multiple beams on and off and changing the relative delay between beams) and the location of the reacted voxel (by adjustment of the focal lengths of the lenses and the relative delay between beams) allows increased throughput compared to a system in which voxel movement only results from translation of the photoreactive composition.
- Photoreactive compositions useful in the present invention include at least one reactive species, at least one photoreactive photosensitizer, optionally at least one electron donor compound, and optionally at least one photoinitiator for the photoreactive composition.
- Photoreactive species suitable for use in the photoreactive compositions include both photoreactive and non-photoreactive species.
- Photoreactive species are generally preferred and include, for example, addition-polymerizable monomers and oligomers and addition-crosslinkable polymers (such as free-radically polymerizable or crosslinkable ethylenically-unsaturated species including, for example, acrylates, methacrylates, and certain vinyl compounds such as styrenes), as well as cationically-polymerizable monomers and oligomers and cationically-crosslinkable polymers (including, for example, epoxies, vinyl ethers, cyanate esters, etc.), and the like, and mixtures thereof.
- addition-polymerizable monomers and oligomers and addition-crosslinkable polymers such as free-radically polymerizable or crosslinkable ethylenically-unsaturated species including, for example, acrylates, methacrylates, and certain vinyl compounds such
- Suitable ethylenically-unsaturated species are described, for example, by Palazzotto et al. in U.S. Pat. No. 5,545,676 at column 1, line 65, through column 2, line 26, and include mono-, di-, and poly-acrylates and methacrylates (for example, methyl acrylate, methyl methacrylate, ethyl acrylate, isopropyl methacrylate, n-hexyl acrylate, stearyl acrylate, allyl acrylate, glycerol diacrylate, glycerol triacrylate, ethyleneglycol diacrylate, diethyleneglycol diacrylate, triethyleneglycol dimethacrylate, 1,3-propanediol diacrylate, 1,3-propanediol dimethacrylate, trimethylolpropane triacrylate, 1,2,4-butanetriol trimethacrylate, 1,4-cyclohexanediol diacrylate
- Suitable reactive polymers include polymers with pendant (meth)acrylate groups, for example, having from 1 to about 50 (meth)acrylate groups per polymer chain.
- polymers examples include aromatic acid (meth)acrylate half ester resins such as SarboxTM resins available from Sartomer (for example, SarboxTM 400, 401, 402, 404, and 405).
- Other useful reactive polymers photoreactive by free radical chemistry include those polymers that have a hydrocarbyl backbone and pendant peptide groups with free-radically polymerizable functionality attached thereto, such as those described in U.S. Pat. No. 5,235,015 (Ali et al.). Mixtures of two or more monomers, oligomers, and/or reactive polymers can be used if desired.
- Preferred ethylenically-unsaturated species include acrylates, aromatic acid (meth)acrylate half ester resins, and polymers that have a hydrocarbyl backbone and pendant peptide groups with free-radically polymerizable functionality attached thereto.
- Suitable cationically-reactive species are described, for example, by Oxman et al. in U.S. Pat. Nos. 5,998,495 and 6,025,406 and include epoxy resins.
- Such materials broadly called epoxides, include monomeric epoxy compounds and epoxides of the polymeric type and can be aliphatic, alicyclic, aromatic, or heterocyclic. These materials generally have, on the average, at least 1 polymerizable epoxy group per molecule (preferably, at least about 1.5 and, more preferably, at least about 2).
- the polymeric epoxides include linear polymers having terminal epoxy groups (for example, a diglycidyl ether of a polyoxyalkylene glycol), polymers having skeletal oxirane units (for example, polybutadiene polyepoxide), and polymers having pendant epoxy groups (for example, a glycidyl methacrylate polymer or copolymer).
- the epoxides can be pure compounds or can be mixtures of compounds containing one, two, or more epoxy groups per molecule.
- These epoxy-containing materials can vary greatly in the nature of their backbone and substituent groups.
- the backbone can be of any type and substituent groups thereon can be any group that does not substantially interfere with cationic react at room temperature.
- permissible substituent groups include halogens, ester groups, ethers, sulfonate groups, siloxane groups, nitro groups, phosphate groups, and the like.
- the molecular weight of the epoxy-containing materials can vary from about 58 to about 100,000 or more.
- Useful epoxy-containing materials include those which contain cyclohexene oxide groups such as epoxycyclohexanecarboxylates, typified by 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, 3,4-epoxy-2-methylcyclohexylmethyl-3,4-epoxy-2-methylcyclohexane carboxylate, and bis(3,4-epoxy-6-methylcyclohexylmethyl) adipate.
- cyclohexene oxide groups such as epoxycyclohexanecarboxylates, typified by 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, 3,4-epoxy-2-methylcyclohexylmethyl-3,4-epoxy-2-methylcyclohexane carboxylate, and bis(3,4-epoxy-6-methylcyclohexylmethyl) adipate.
- epoxy-containing materials that are useful include glycidyl ether monomers of the formula
- R′ is alkyl or aryl and n is an integer of 1 to 6.
- examples are glycidyl ethers of polyhydric phenols obtained by reacting a polyhydric phenol with an excess of a chlorohydrin such as epichlorohydrin (for example, the diglycidyl ether of 2,2-bis-(2,3-epoxypropoxyphenol)-propane). Additional examples of epoxides of this type are described in U.S. Pat. No. 3,018,262, and in Handbook of Epoxy Resins , Lee and Neville, McGraw-Hill Book Co., New York (1967).
- epoxy resins can also be utilized.
- epoxides that are readily available include octadecylene oxide, epichlorohydrin, styrene oxide, vinyl cyclohexene oxide, glycidol, glycidylmethacrylate, diglycidyl ethers of Bisphenol A (for example, those available under the trade designations EponTM 828, EponTM 825, EponTM 1004, and EponTM 1010 from Resolution Performance Products, formerly Shell Chemical Co., as well as DERTM-331, DERTM-332, and DERTM-334 from Dow Chemical Co.), vinylcyclohexene dioxide (for example, ERL-4206 from Union Carbide Corp.), 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexene carboxylate (for example, ERL-4221 or CyracureTM UVR 6110 or UVR 6105 from Union Carbide Corp.), 3,4-ep
- Other useful epoxy resins comprise copolymers of acrylic acid esters of glycidol (such as glycidylacrylate and glycidylmethacrylate) with one or more copolymerizable vinyl compounds.
- examples of such copolymers are 1:1 styrene-glycidylmethacrylate, 1:1 methylmethacrylate-glycidylacrylate, and a 62.5:24:13.5 methylmethacrylate-ethyl acrylate-glycidylmethacrylate.
- epoxy resins are well known and contain such epoxides as epichlorohydrins, alkylene oxides (for example, propylene oxide), styrene oxide, alkenyl oxides (for example, butadiene oxide), and glycidyl esters (for example, ethyl glycidate).
- alkylene oxides for example, propylene oxide
- styrene oxide alkenyl oxides
- alkenyl oxides for example, butadiene oxide
- glycidyl esters for example, ethyl glycidate
- Useful epoxy-functional polymers include epoxy-functional silicones such as those described in U.S. Pat. No. 4,279,717 (Eckberg), which are commercially available from the General Electric Company. These are polydimethylsiloxanes in which 1-20 mole % of the silicon atoms have been substituted with epoxyalkyl groups (preferably, epoxy cyclohexylethyl, as described in U.S. Pat. No. 5,753,346 (Kessel)).
- Blends of various epoxy-containing materials can also be utilized. Such blends can comprise two or more weight average molecular weight distributions of epoxy-containing compounds (such as low molecular weight (below 200), intermediate molecular weight (about 200 to 10,000), and higher molecular weight (above about 10,000)).
- the epoxy resin can contain a blend of epoxy-containing materials having different chemical natures (such as aliphatic and aromatic) or functionalities (such as polar and non-polar).
- Other cationically-reactive polymers such as vinyl ethers and the like) can additionally be incorporated, if desired.
- Preferred epoxies include aromatic glycidyl epoxies (such as the EponTM resins available from Resolution Performance Products) and cycloaliphatic epoxies (such as ERL-4221 and ERL-4299 available from Union Carbide).
- Suitable cationally-reactive species also include vinyl ether monomers, oligomers, and reactive polymers (for example, methyl vinyl ether, ethyl vinyl ether, tert-butyl vinyl ether, isobutyl vinyl ether, triethyleneglycol divinyl ether (Rapi-CureTM DVE-3, available from International Specialty Products, Wayne, N.J.), trimethylolpropane trivinyl ether (TMPTVE, available from BASF Corp., Mount Olive, N.J.), and the VectomerTM divinyl ether resins from Allied Signal (for example, VectomerTM 2010, VectomerTM 2020, VectomerTM 4010, and VectomerTM 4020 and their equivalents available from other manufacturers)), and mixtures thereof.
- vinyl ether monomers for example, methyl vinyl ether, ethyl vinyl ether, tert-butyl vinyl ether, isobutyl vinyl ether, triethyleneglycol divinyl
- Blends in any proportion) of one or more vinyl ether resins and/or one or more epoxy resins can also be utilized.
- Polyhydroxy-functional materials such as those described, for example, in U.S. Pat. No. 5,856,373 (Kaisaki et al.)
- epoxy- and/or vinyl ether-functional materials can also be utilized.
- Non-photoreactive species include, for example, reactive polymers whose solubility can be increased upon acid- or radical-induced reaction.
- reactive polymers include, for example, aqueous insoluble polymers bearing ester groups that can be converted by photogenerated acid to aqueous soluble acid groups (for example, poly(4-tert-butoxycarbonyloxystyrene).
- Non-photoreactive species also include the chemically-amplified photoresists described by R. D. Allen, G. M. Wallraff, W. D. Hinsberg, and L. L. Simpson in “High Performance Acrylic Polymers for Chemically Amplified Photoresist Applications,” J. Vac. Sci. Technol. B, 9, 3357 (1991).
- catalytic species typically hydrogen ions
- irradiation irradiation
- cascade occurs when hydrogen ions initiate reactions that generate more hydrogen ions or other acidic species, thereby amplifying reaction rate.
- acid-catalyzed chemically-amplified photoresist systems include deprotection (for example, t-butoxycarbonyloxystyrene resists as described in U.S. Pat. No.
- THP tetrahydropyran
- THP-phenolic materials such as those described in U.S. Pat. No. 3,779,778, t-butyl methacrylate-based materials such as those described by R. D Allen et al. in Proc. SPIE, 2438, 474 (1995), and the like
- depolymerization for example, polyphthalaldehyde-based materials
- rearrangement for example, materials based on the pinacol rearrangements.
- Useful non-photoreactive species also include leuco dyes, which tend to be colorless until they are oxidized by acid generated by the photoreactive photoinitiator system, and which, once oxidized, exhibit a visible color. (Oxidized dyes are colored by virtue of their absorbance of light in the visible portion of the electromagnetic spectrum (approximately 400-700 nm).)
- Leuco dyes useful in the present invention are those that are reactive or oxidizable under moderate oxidizing conditions and yet that are not so reactive as to oxidize under common environmental conditions. There are many such chemical classes of leuco dyes known to the imaging chemist.
- Leuco dyes useful as reactive species in the present invention include acrylated leuco azine, phenoxazine, and phenothiazine, which can, in part, be represented by the structural formula:
- R 1 and R 2 are independently selected from H and alkyl groups of 1 to about 4 carbon atoms;
- R 3 , R 4 , R 6 , and R 7 are independently selected from H and alkyl groups of 1 to about 4 carbon atoms, preferably methyl;
- R 5 is selected from alkyl groups of 1 to about 16 carbon atoms, alkoxy groups of 1 to about 16 carbon atoms, and aryl groups of up to about 16 carbon atoms;
- R 8 is selected from —N(R 1 )(R 2 ), H, alkyl groups of 1 to about 4 carbon atoms, wherein R 1 and R 2 are independently selected and defined as above;
- R 9 and R 10 are independently selected from H and alkyl groups of 1 to about 4 carbon atoms; and
- R 11 is selected from alkyl groups of 1 to about 4 carbon atoms and aryl groups of up to about 11 carbon atoms (preferably, phenyl groups).
- leuco dyes include, but are not limited to, Leuco Crystal Violet (4,4′,4′′-methylidynetris-(N,N-dimethylaniline)), Leuco Malachite Green (p,p′-benzylidenebis-(N,N-dimethylaniline)), Leuco Atacryl Orange-LGM (Color Index Basic Orange 21, Comp. No. 48035 (a Fischer's base type compound)) having the structure
- Leuco Atacryl Yellow-R (Color Index Basic Yellow 11, Comp. No. 48055) having the structure
- Leuco Ethyl Violet (4,4′,4′′-methylidynetris-(N,N-diethylaniline), Leuco Victoria Blu-BGO (Color Index Basic Blue 728a, Comp. No. 44040; 4,4′-methylidynebis-(N,N,-dimethylaniline)-4-N-ethyl-1-napthalamine)), and LeucoAtlantic Fuchsine Crude (4,4′,4′′-methylidynetris-aniline).
- the leuco dye(s) can generally be present at levels of at least about 0.01% by weight of the total weight of a light sensitive layer (preferably, at least about 0.3% by weight; more preferably, at least about 1% by weight; most preferably, at least about 2% to 10% or more by weight).
- Other materials such as binders, plasticizers, stabilizers, surfactants, antistatic agents, coating aids, lubricants, fillers, and the like can also be present in the light sensitive layer.
- One of skill in the art can readily determine the desirable amount of additives. For example, the amount of filler is chosen such that there is no undesirable scatter at the writing wavelength.
- mixtures of different types of reactive species can be utilized in the photoreactive compositions.
- mixtures of free-radically-reactive species and cationically-reactive species, mixtures of photoreactive species and non-photoreactive species, and so forth, are also useful.
- Photoreactive photosensitizers suitable for use in the photoreactive photoinitiator system of the photoreactive compositions are those that are capable of simultaneously absorbing at least two photons when exposed to sufficient light.
- they Preferably, they have a two-photon absorption cross-section greater than that of fluorescein (that is, greater than that of 3′,6′-dihydroxyspiro[isobenzofuran-1(3H),9′-[9H]xanthen]3-one).
- the cross-section can be greater than about 50 ⁇ 10 ⁇ 50 cm 4 sec/photon, as measured by the method described by C. Xu and W. W. Webb in J. Opt. Soc. Am. B, 13, 481 (1996) (which is referenced by Marder and Perry et al. in International Publication No. WO 98/21521 at page 85, lines 18-22).
- This method involves the comparison (under identical excitation intensity and photosensitizer concentration conditions) of the two-photon fluorescence intensity of the photosensitizer with that of a reference compound.
- the reference compound can be selected to match as closely as possible the spectral range covered by the photosensitizer absorption and fluorescence.
- an excitation beam can be split into two arms, with 50% of the excitation intensity going to the photosensitizer and 50% to the reference compound.
- the relative fluorescence intensity of the photosensitizer with respect to the reference compound can then be measured using two photomultiplier tubes or other calibrated detector.
- the fluorescence quantum efficiency of both compounds can be measured under one-photon excitation.
- the two-photon absorption cross-section of the photosensitizer ( ⁇ sam ) is equal to ⁇ ref K (I sam /I ref )( ⁇ sam / ⁇ ref ), wherein ⁇ ref is the two-photon absorption cross-section of the reference compound, I sam is the fluorescence intensity of the photosensitizer, I ref is the fluorescence intensity of the reference compound ⁇ sam is the fluorescence quantum efficiency of the photosensitizer, ⁇ ref is the fluorescence quantum efficiency of the reference compound, and K is a correction factor to account for slight differences in the optical path and response of the two detectors.
- K can be determined by measuring the response with the same photosensitizer in both the sample and reference arms. To ensure a valid measurement, the clear quadratic dependence of the two-photon fluorescence intensity on excitation power can be confirmed, and relatively low concentrations of both the photosensitizer and the reference compound can be utilized (to avoid fluorescence reabsorption and photosensitizer aggregration effects).
- the yield of electronic excited states can to be measured and compared with a known standard.
- various methods of measuring excited state yield are known (including, for example, transient absorbance, phosphorescence yield, photoproduct formation or disappearance of photosensitizer (from photoreaction), and the like).
- the two-photon absorption cross-section of the photosensitizer is greater than about 1.5 times that of fluorescein (or, alternatively, greater than about 75 ⁇ 10 ⁇ 50 cm 4 sec/photon, as measured by the above method); more preferably, greater than about twice that of fluorescein (or, alternatively, greater than about 100 ⁇ 10 ⁇ 50 cm 4 sec/photon); most preferably, greater than about three times that of fluorescein (or, alternatively, greater than about 150 ⁇ 10 ⁇ 50 cm 4 sec/photon); and optimally, greater than about four times that of fluorescein (or, alternatively, greater than about 200 ⁇ 10 ⁇ 50 cm 4 sec/photon).
- the photosensitizer is soluble in the reactive species (if the reactive species is liquid) or is compatible with the reactive species and with any binders (as described below) that are included in the composition.
- the photosensitizer is also capable of sensitizing 2-methyl-4,6-bis(trichloromethyl)-s-triazine under continuous irradiation in a wavelength range that overlaps the single photon absorption spectrum of the photosensitizer (single photon absorption conditions), using the test procedure described in U.S. Pat. No. 3,729,313. Using currently available materials, that test can be carried out as follows:
- a standard test solution can be prepared having the following composition: 5.0 parts of a 5% (weight by volume) solution in methanol of 45,000-55,000 molecular weight, 9.0-13.0% hydroxyl content polyvinyl butyral (ButvarTM B76, Monsanto); 0.3 parts trimethylolpropane trimethacrylate; and 0.03 parts 2-methyl-4,6-bis(trichloromethyl)-s-triazine (see Bull. Chem. Soc. Japan, 42, 2924-2930 (1969)). To this solution can be added 0.01 parts of the compound to be tested as a photosensitizer.
- the resulting solution can then be knife-coated onto a 0.05 mm clear polyester film using a knife orifice of 0.05 mm, and the coating can be air dried for about 30 minutes.
- a 0.05 mm clear polyester cover mm can be carefullly placed over the dried but soft and tacky coating with minimum entrapment of air.
- the resulting sandwich construction can then be exposed for three minutes to 161,000 Lux of incident light from a tungsten light source providing light in both the visible and ultraviolet range (FCHTM 650 watt quartz-iodine lamp, General Electric). Exposure can be made through a stencil so as to provide exposed and unexposed areas in the construction.
- the cover film can be removed, and the coating can be treated with a finely divided colored powder, such as a color toner powder of the type conventionally used in xerography.
- a finely divided colored powder such as a color toner powder of the type conventionally used in xerography.
- the tested compound is a photosensitizer
- the trimethylolpropane trimethacrylate monomer will be polymerized in the light-exposed areas by the light-generated free radicals from the 2-methyl-4,6-bis(trichloromethyl)-s-triazine. Since the polymerized areas will be essentially tack-free, the colored powder will selectively adhere essentially only to the tacky, unexposed areas of the coating, providing a visual image corresponding to that in the stencil.
- a photosensitizer can also be selected based in part upon shelf stability considerations. Accordingly, selection of a particular photosensitizer can depend to some extent upon the particular reactive species utilized (as well as upon the choices of electron donor compound and/or photoinitiator).
- Particularly preferred photoreactive photosensitizers include those exhibiting large photoreactive absorption cross-sections, such as Rhodamine B (that is, N-[9-(2-carboxyphenyl)-6-(diethylamino)-3H-xanthen-3-ylidene]-N-ethylethanaminium chloride, and the hexafluoroantimonate salt of Rhodamine B) and the four classes of photosensitizers described, for example, by Marder and Perry et al. in International Patent Publication Nos. WO 98/21521 and WO 99/53242.
- the four classes can be described as follows: (a) molecules in which two donors are connected to a conjugated ⁇ (pi)-electron bridge; (b) molecules in which two donors are connected to a conjugated ⁇ (pi)-electron bridge which is substituted with one or more electron accepting groups; (c) molecules in which two acceptors are connected to a conjugated ⁇ (pi)-electron bridge; and (d) molecules in which two acceptors are connected to a conjugated ⁇ (pi)-electron bridge which is substituted with one or more electron donating groups (where “bridge” means a molecular fragment that connects two or more chemical groups, “donor” means an atom or group of atoms with a low ionization potential that can be bonded to a conjugated ⁇ (pi)-electron bridge, and “acceptor” means an atom or group of atoms with a high electron affinity that can be bonded to a conjugated ⁇ (pi)-electron bridge).
- photosensitizers include:
- the four above-described classes of photosensitizers can be prepared by reacting aldehydes with ylides under standard Wittig conditions or by using the McMurray reaction, as detailed in International Patent Publication No. WO 98/21521.
- photosensitizers in the present invention include but are not limited to fluorescein, p-bis(o-methylstyryl)benzene, eosin, rose Bengal, erythrosin, Coumarin 307 (Eastman Kodak), Cascade Blue hydrazide trisodium salt, Lucifer Yellow CH ammonium salt, 4,4-difluoro-1,3,5,7,8-pentamethyl-4-bora-3 ⁇ ,4 ⁇ -diazaindacene-2,6-disulfonic acid disodium salt, 1,1-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate, Indo-1 pentapotassium salt (Molecular Probes), 5-dimethylaminonaphthalene-1-sulfonyl hydrazine, 4′,6-diamidino-2-phenylindole dihydrochloride, 5,7-diio
- Electron donor compounds useful in the photoreactive photoinitiator system of the photoreactive compositions are those compounds (other than the photosensitizer itself) that are capable of donating an electron to an electronic excited state of the photosensitizer.
- the electron donor compounds preferably have an oxidation potential that is greater than zero and less than or equal to that of p-dimethoxybenzene vs. a standard saturated calomel electrode.
- the oxidation potential is between about 0.3 and 1 volt vs. a standard saturated calomel electrode (“S.C.E.”).
- the electron donor compound is also preferably soluble in the reactive species and is selected based in part upon shelf stability considerations (as described above). Suitable donors are generally capable of increasing the speed of reaction (e.g., react) or the image density of a photoreactive composition upon exposure to light of the desired wavelength.
- electron donor compounds suitable for use with particular photosensitizers and photoinitiators can be selected by comparing the oxidation and reduction potentials of the three components (as described, for example, in U.S. Pat. No. 4,859,572 (Farid et al.)).
- Such potentials can be measured experimentally (for example, by the methods described by R. J. Cox, Photographic Sensitivity , Chapter 15, Academic Press (1973)) or can be obtained from references such as N. L. Weinburg, Ed., Technique of Electroorganic Synthesis Part II Techniques of Chemistry , Vol. V (1975), and C. K. Mann and K. K. Barnes, Electrochemical Reactions in Nonaqueous Systems (1970).
- the potentials reflect relative energy relationships and can be used in the following manner to guide electron donor compound selection.
- the photosensitizer When the photosensitizer is in an electronic excited state, an electron in the highest occupied molecular orbital (HOMO) of the photosensitizer has been lifted to a higher energy level (namely, the lowest unoccupied molecular orbital (LUMO) of the photosensitizer), and a vacancy is left behind in the molecular orbital it initially occupied.
- the photoinitiator can accept the electron from the higher energy orbital, and the electron donor compound can donate an electron to fill the vacancy in the originally occupied orbital, provided that certain relative energy relationships are satisfied.
- the reduction potential of the photoinitiator is less negative (or more positive) than that of the photosensitizer, an electron in the higher energy orbital of the photosensitizer is readily transferred from the photosensitizer to the lowest unoccupied molecular orbital (LUMO) of the photoinitiator, since this represents an exothermic process. Even if the process is instead slightly endothermic (that is, even if the reduction potential of the photosensitizer is up to 0.1 volt more negative than that of the photoinitiator) ambient thermal activation can readily overcome such a small barrier.
- the reduction potential of the photosensitizer can be up to 0.2 volt (or more) more negative than that of a second-to-react photoinitiator, or the oxidation potential of the photosensitizer can be up to 0.2 volt (or more) more positive than that of a second-to-react electron donor compound.
- Suitable electron donor compounds include, for example, those described by D. F. Eaton in Advances in Photochemistry , edited by B. Voman et al., Volume 13, pp. 427-488, John Wiley and Sons, New York (1986); by Oxman et al. in U.S. Pat. No. 6,025,406 at column 7, lines 42-61; and by Palazzotto et al. in U.S. Pat. No. 5,545,676 at column 4, line 14 through column 5, line 18.
- Preferred amine electron donor compounds include alkyl-, aryl-, alkaryl- and aralkyl-amines (for example, methylamine, ethylamine, propylamine, butylamine, triethanolamine, amylamine, hexylamine, 2,4-dimethylaniline, 2,3-dimethylaniline, o-, m- and p-toluidine, benzylamine, aminopyridine, N,N′-dimethylethylenediamine, N,N′-diethylethylenediamine, N,N′-dibenzylethylenediamine, N,N′-diethyl-1,3-propanediamine, N,N′-diethyl-2-butene-1,4-diamine, N,N′-dimethyl-1,6-hexanediamine, piperazine, 4,4′-trimethylenedipiperidine, 4,4′-ethylenedipiperidine, p-N,N-dimethylamin
- Tertiary aromatic alkylamines particularly those having at least one electron-withdrawing group on the aromatic ring, have been found to provide especially good shelf stability. Good shelf stability has also been obtained using amines that are solids at room temperature. Good photographic speed has been obtained using amines that contain one or more julolidinyl moieties.
- Preferred amide electron donor compounds include N,N-dimethylacetamide, N,N-diethylacetamide, N-methyl-N-phenylacetamide, hexamethylphosphoramide, hexaethylphosphoramide, hexapropylphosphoramide, trimorpholinophosphine oxide, tripiperidinophosphine oxide, and mixtures thereof.
- Preferred alkylarylborate salts include
- Suitable ether electron donor compounds include 4,4′-dimethoxybiphenyl, 1,2,4-trimethoxybenzene, 1,2,4,5-tetramethoxybenzene, and the like, and mixtures thereof.
- Suitable urea electron donor compounds include N,N′-dimethylurea, N,N-dimethylurea, N,N′-diphenylurea, tetramethylthiourea, tetraethylthiourea, tetra-n-butylthiourea, N,N-di-n-butylthiourea, N,N′-di-n-butylthiourea, N,N-diphenylthiourea, N,N′-diphenyl-N,N′-diethylthiourea, and the like, and mixtures thereof.
- Preferred electron donor compounds for free radical-induced reactions include amines that contain one or more julolidinyl moieties, alkylarylborate salts, and salts of aromatic sulfinic acids.
- the electron donor compound can also be omitted, if desired (for example, to improve the shelf stability of the photoreactive composition or to modify resolution, contrast, and reciprocity).
- Preferred electron donor compounds for acid-induced reactions include 4-dimethylaminobenzoic acid, ethyl 4-dimethylaminobenzoate, 3-dimethylaminobenzoic acid, 4-dimethylaminobenzoin, 4-dimethylaminobenzaldehyde, 4-dimethylaminobenzonitrile, 4-dimethylaminophenethyl alcohol, and 1,2,4-trimethoxybenzene.
- Suitable photoinitiators for the reactive species of the photoreactive compositions are those that are capable of being photosensitized by accepting an electron from an electronic excited state of the photoreactive photosensitizer, resulting in the formation of at least one free radical and/or acid.
- Such photoinitiators include iodonium salts (for example, diaryliodonium salts), chloromethylated triazines (for example, 2-methyl-4,6-bis(trichloromethyl)-s-triazine, 2,4,6-tris(trichloromethyl)-s-triazine, and 2-aryl-4,6-bis(trichloromethyl)-s-triazine), diazonium salts (for example, phenyldiazonium salts optionally substituted with groups such as alkyl, alkoxy, halo, or nitro), sulfonium salts (for example, triarylsulfonium salts optionally substituted with alkyl or alkoxy groups, and optionally having 2,2′ oxy groups bridging adjacent aryl moieties), azinium salts (for example, an N-alkoxypyridinium salt), and triarylimidazolyl dimers (preferably, 2,4,5-triphenylimidazo
- the photoinitiator is preferably soluble in the reactive species and is preferably shelf-stable (that is, does not spontaneously promote reaction of the reactive species when dissolved therein in the presence of the photosensitizer and the electron donor compound). Accordingly, selection of a particular photoinitiator can depend to some extent upon the particular reactive species, photosensitizer, and electron donor compound chosen, as described above.
- Preferred photoinitiators are those that exhibit large photoreactive adsorption cross-sections, as described, e.g., by Marder, Perry et al., in PCT Patent Applications WO 98/21521 and WO 995/3242, and by Goodman et al., in PCT Patent Application WO 99/54784.
- Suitable iodonium salts include those described by Palazzotto et al. in U.S. Pat. No. 5,545,676 at column 2, lines 28 through 46. Suitable iodonium salts are also described in U.S. Pat. Nos. 3,729,313, 3,741,769, 3,808,006, 4,250,053 and 4,394,403.
- the iodonium salt can be a simple salt (for example, containing an anion such as Cl ⁇ , Br ⁇ , I ⁇ or C 4 H 5 SO 3 ⁇ ) or a metal complex salt (for example, containing SbF 6 ⁇ , PF 6 ⁇ , BF 4 ⁇ , tetrakis(perfluorophenyl)borate, SbF 5 OH ⁇ or AsF 6 ⁇ ). Mixtures of iodonium salts can be used if desired.
- aromatic iodonium complex salt photoinitiators examples include diphenyliodonium tetrafluoroborate; di(4-methylphenyl)iodonium tetrafluoroborate; phenyl-4-methylphenyliodonium tetrafluoroborate; di(4-heptylphenyl)iodonium tetrafluoroborate; di(3-nitrophenyl)iodonium hexafluorophosphate; di(4-chlorophenyl)iodonium hexafluorophosphate; di(naphthyl)iodonium tetrafluoroborate; di(4-trifluoromethylphenyl)iodonium tetrafluoroborate; diphenyliodonium hexafluorophosphate; di(4-methylphenyl)iodonium hexafluorophosphate; diphenyliodonium hexafluor
- Aromatic iodonium complex salts can be prepared by metathesis of corresponding aromatic iodonium simple salts (such as, for example, diphenyliodonium bisulfate) in accordance with the teachings of Beringer et al., J. Am. Chem. Soc., 81, 342 (1959).
- Preferred iodonium salts include diphenyliodonium salts (such as diphenyliodonium chloride, diphenyliodonium hexafluorophosphate, and diphenyliodonium tetrafluoroborate), diaryliodonium hexafluoroantimonate (for example, SarCatTM SR 1012 available from Sartomer Company), and mixtures thereof.
- diphenyliodonium salts such as diphenyliodonium chloride, diphenyliodonium hexafluorophosphate, and diphenyliodonium tetrafluoroborate
- diaryliodonium hexafluoroantimonate for example, SarCatTM SR 1012 available from Sartomer Company
- Useful chloromethylated triazines include those described in U.S. Pat. No. 3,779,778 (Smith et al.) at column 8, lines 45-50, which include 2,4-bis(trichloromethyl)-6-methyl-s-triazine, 2,4,6-tris(trichloromethyl)-s-triazine, and the more preferred chromophore-substituted vinylhalomethyl-s-triazines disclosed in U.S. Pat. Nos. 3,987,037 and 3,954,475 (Bonham et al.).
- Useful diazonium salts include those described in U.S. Pat. No. 4,394,433 (Gatzke), which comprise a light sensitive aromatic moiety (for example, pyrrolidine, morpholine, aniline, and diphenyl amine) with an external diazonium group (—N + ⁇ N) and an anion (for example, chloride, tri-isopropyl naphthalene sulfonate, tetrafluoroborate, and the bis(perfluoroalkylsulfonyl)methides) associated therewith.
- a light sensitive aromatic moiety for example, pyrrolidine, morpholine, aniline, and diphenyl amine
- an external diazonium group —N + ⁇ N
- an anion for example, chloride, tri-isopropyl naphthalene sulfonate, tetrafluoroborate, and the bis(perfluoroalkylsulfonyl)me
- Examples of useful diazonium cations include 1-diazo-4-anilinobenzene, N-(4-diazo-2,4-dimethoxy phenyl)pyrrolidine, 1-diazo-2,4-diethoxy-4-morpholino benzene, 1-diazo-4-benzoyl amino-2,5-diethoxy benzene, 4-diazo-2,5-dibutoxy phenyl morpholino, 4-diazo-1-dimethyl aniline, 1-diazo-N,N-dimethylaniline, 1-diazo-4-N-methyl-N-hydroxyethyl aniline, and the like.
- Useful sulfonium salts include those described in U.S. Pat. No. 4,250,053 (Smith) at column 1, line 66, through column 4, line 2, which can be represented by the formulas:
- R 1 , R 2 , and R 3 are each independently selected from aromatic groups having from about 4 to about 20 carbon atoms (for example, substituted or unsubstituted phenyl, naphthyl, thienyl, and furanyl, where substitution can be with such groups as alkoxy, alkylthio, arylthio, halogen, and so forth) and alkyl groups having from 1 to about 20 carbon atoms.
- alkyl includes substituted alkyl (for example, substituted with such groups as halogen, hydroxy, alkoxy, or aryl). At least one of R 1 , R 2 , and R 3 is aromatic, and, preferably, each is independently aromatic.
- Z is selected from the group consisting of a covalent bond, oxygen, sulfur, —S( ⁇ O)—, —C( ⁇ O)—, —(O ⁇ )S( ⁇ O)—, and —N(R)—, where R is aryl (of about 6 to about 20 carbons, such as phenyl), acyl (of about 2 to about 20 carbons, such as acetyl, benzoyl, and so forth), a carbon-to-carbon bond, or —R 4 ⁇ )C(—R 5 )—, where R 4 and R 5 are independently selected from the group consisting of hydrogen, alkyl groups having from 1 to about 4 carbon atoms, and alkenyl groups having from about 2 to about 4 carbon atoms, and X ⁇ is as described below.
- Suitable anions, X ⁇ , for the sulfonium salts (and for any of the other types of photoinitiators) include a variety of anion types such as, for example, imide, methide, boron-centered, phosphorous-centered, antimony-centered, arsenic-centered, and aluminum-centered anions.
- Suitable imide and methide anions include (C 2 F 5 SO 2 ) 2 N ⁇ , (C 4 F 9 SO 2 ) 2 N ⁇ , (C 8 F 17 SO 2 ) 3 C ⁇ , (CF 3 SO 2 ) 3 C ⁇ , (CF 3 SO 2 ) 2 N ⁇ , (C 4 F 9 SO 2 ) 3 C ⁇ , (CF 3 SO 2 ) 2 (C 4 F 9 SO 2 )C ⁇ , (CF 3 SO 2 ) 2 (C 4 F 9 SO 2 )N ⁇ , ((CF 3 ) 2 NC 2 F 4 SO 2 ) 2 N ⁇ , (CF 3 ) 2 NC 2 F 4 SO 2 C ⁇ (SO 2 CF 3 ) 2 , (3,5-bis(CF 3 )C 6 H 3 )SO 2 N ⁇ SO 2 CF 3 , C 6 H 5 SO 2 C ⁇ (SO 2 CF 3 ) 2 , C 6 H 5 SO 2 N ⁇ (SO 2 CF 3 ) 2
- boron-centered anions include F 4 B ⁇ , (3,5-bis(CF 3 )C 6 H 3 ) 4 B ⁇ , (C 6 F 5 ) 4 B ⁇ , (p-CF 3 C 6 H 4 ) 4 B ⁇ , (m-CF 3 C 6 H 4 ) 4 B ⁇ , (p-FC 6 H 4 ) 4 B ⁇ , (C 6 F 5 ) 3 (CH 3 )B ⁇ , (C 6 F 5 ) 3 (n-C 4 H 9 )B ⁇ , (p-CH 3 C 6 H 4 ) 3 (C 6 F 5 )B ⁇ , (C 6 F 5 ) 3 FB ⁇ , (C 6 H 5 ) 3 (C 6 F 5 )B ⁇ , (CH 3 ) 2 (p-CF 3 C 6 H 4 ) 2 B ⁇ , (C 6 F 5 ) 3 (n-C 18 H 37 O)B ⁇ ,
- Preferred boron-centered anions generally contain 3 or more halogen-substituted aromatic hydrocarbon radicals attached to boron, with fluorine being the most preferred halogen.
- Illustrative, but not limiting, examples of the preferred anions include (3,5-bis(CF 3 )C 6 H 3 ) 4 B ⁇ , (C 6 F 5 ) 4 B ⁇ , (C 6 F 5 ) 3 (n-C 4 H 9 )B ⁇ , (C 6 F 5 ) 3 FB ⁇ , and (C 6 F 5 ) 3 (CH 3 )B ⁇ .
- Suitable anions containing other metal or metalloid centers include, for example, (3,5-bis(CF 3 )C 6 H 3 ) 4 Al ⁇ , (C 6 F 5 ) 4 Al ⁇ , (C 6 F 5 ) 2 F 4 P ⁇ , (C 6 F 5 )F 5 P ⁇ , F 6 P ⁇ , (C 6 F 5 )F 5 Sb ⁇ , F 6 Sb ⁇ , (HO)F 5 Sb ⁇ , and F 6 As ⁇ .
- the anion, X ⁇ is selected from tetrafluoroborate, hexafluorophosphate, hexafluoroarsenate, hexafluoroantimonate, and hydroxypentafluoroantimonate (for example, for use with cationically-reactive species such as epoxy resins).
- Suitable sulfonium salt photoinitiators include:
- Preferred sulfonium salts include triaryl-substituted salts such as triarylsulfonium hexafluoroantimonate (for example, SarCatTM SR1010 available from Sartomer Company), triarylsulfonium hexafluorophosphate (for example, SarCatTM SR 1011 available from Sartomer Company), and triarylsulfonium hexafluoroantimonate (for example, SarCatTM K185 available from Sartomer Company).
- triarylsulfonium hexafluoroantimonate for example, SarCatTM SR1010 available from Sartomer Company
- triarylsulfonium hexafluorophosphate for example, SarCatTM SR 1011 available from Sartomer Company
- triarylsulfonium hexafluoroantimonate for example, SarCatTM K185 available from Sartomer Company
- Useful azinium salts include those described in U.S. Pat. No. 4,859,572 (Farid et al.) at column 8, line 51, through column 9, line 46, which include an azinium moiety, such as a pyridinium, diazinium, or triazinium moiety.
- the azinium moiety can include one or more aromatic rings, typically carbocyclic aromatic rings (for example, quinolinium, isoquinolinium, benzodiazinium, and naphthodiazonium moieties), fused with an azinium ring.
- a quaternizing substituent of a nitrogen atom in the azinium ring can be released as a free radical upon electron transfer from the electronic excited state of the photosensitizer to the azinium photoinitiator.
- the quaternizing substituent is an oxy substituent.
- the oxy substituent, —O-T, which quaternizes a ring nitrogen atom of the azinium moiety can be selected from among a variety of synthetically convenient oxy substituents.
- the moiety T can, for example, be an alkyl radical, such as methyl, ethyl, butyl, and so forth.
- the alkyl radical can be substituted.
- T can be an acyl radical, such as an —OC(O)-T 1 radical, where T 1 can be any of the various alkyl and aralkyl radicals described above.
- T 1 can be an aryl radical, such as phenyl or naphthyl. The aryl radical can in turn be substituted.
- T 1 can be a tolyl or xylyl radical.
- T typically contains from 1 to about 18 carbon atoms, with alkyl moieties in each instance above preferably being lower allyl moieties and aryl moieties in each instance preferably containing about 6 to about 10 carbon atoms.
- Highest activity levels have been realized when the oxy substituent, —O-T, contains 1 or 2 carbon atoms.
- the azinium nuclei need include no substituent other than the quaternizing substituent. However, the presence of other substituents is not detrimental to the activity of these photoinitiators.
- Useful triarylimidazolyl dimers include those described in U.S. Pat. No. 4,963,471 (Trout et al.) at column 8, lines 18-28. These dimers include, for example, 2-(o-chlorophenyl)-4,5-bis(m-methoxyphenyl)-1,1′-biimidazole; 2,2′-bis(o-chlorophenyl)-4,4′,5,5′-tetraphenyl-1,1′-biimidazole; and 2,5-bis(o-chlorophenyl)-4-[3,4-dimethoxyphenyl]-1,1′-biimidazole.
- Preferred photoinitiators include iodonium salts (more preferably, aryliodonium salts), chloromethylated triazines, triarylimidazolyl dimers (more preferably, 2,4,5-triphenylimidazolyl dimers), sulfonium salts, and diazonium salts. More preferred are aryliodonium salts, chloromethylated triazines, and the 2,4,5-triphenylimidazolyl dimers (with aryliodonium salts and the triazines being most preferred).
- the reactive species, photoreactive photosensitizers, electron donor compounds, and photoinitiators can be prepared by the methods described above or by other methods known in the art, and many are commercially available. These four components can be combined under “safe light” conditions using any order and manner of combination (optionally, with stirring or agitation), although it is sometimes preferable (from a shelf life and thermal stability standpoint) to add the photoinitiator last (and after any heating step that is optionally used to facilitate dissolution of other components).
- Solvent can be used, if desired, provided that the solvent is chosen so as to not react appreciably with the components of the composition. Suitable solvents include, for example, acetone, dichloromethane, and acetonitrile.
- the reactive species itself can also sometimes serve as a solvent for the other components.
- the components of the photoinitiator system are present in photochemically effective amounts (as defined above).
- the composition contains at least about 5%, preferably at least about 10%, and more preferably, at least about 20%, by weight of one or more reactive species.
- the composition contains up to about 99.79%, preferably up to about 95%, and more preferably up to about 80%, by weight of one or more reactive species.
- the composition contains at least about 0.01%, preferably at least about 0.1%, more preferably, at least about 0.2%, by weight of one or more photosensitizers.
- the composition contains up to about 10%, preferably up to about 5%, and more preferably up to about 2%, by weight of one or more photosensitizers.
- the composition contains at least about 0.1% by weight of one or more electron donors.
- the composition contains up to about 10%, and preferably up to about 5%, by weight of one or more electron donors.
- the composition contains at least about 0.1% by weight of one or more photoinitiators.
- the composition contains up to about 10%, and preferably up to about 5%, by weight of one or more photoinitiators.
- the reactive species is a leuco dye
- the composition generally can contain at least about 0.01%, preferably at least about 0.3%, more preferably at least about 1%, and most preferably at least about 2%, by weight of one or more leuco dyes.
- the reactive species is a leuco dye
- the composition generally can contain up to about 10% by weight of one or more leuco dyes. These percentages are based on the total weight of solids, i.e., the total weight of components other than solvent.
- adjuvants can be included in the photoreactive compositions, depending upon the desired end use. Suitable adjuvants include solvents, diluents, resins, binders, plasticizers, pigments, dyes, inorganic or organic reinforcing or extending fillers (at preferred amounts of about 10% to 90% by weight based on the total weight of the composition), thixotropic agents, indicators, inhibitors, stabilizers, ultraviolet absorbers, medicaments (for example, leachable fluorides), and the like. The amounts and types of such adjuvants and their manner of addition to the compositions will be familiar to those skilled in the art.
- nonreactive polymeric binders in the compositions in order, for example, to control viscosity and to provide film-forming properties.
- Such polymeric binders can generally be chosen to be compatible with the reactive species.
- polymeric binders that are soluble in the same solvent that is used for the reactive species, and that are free of functional groups that can adversely affect the course of reaction of the reactive species can be utilized.
- Binders can be of a molecular weight suitable to achieve desired film-forming properties and solution rheology (for example, molecular weights between about 5,000 and 1,000,000 daltons; preferably between about 10,000 and 500,000 daltons; more preferably, between about 15,000 and 250,000 daltons).
- Suitable polymeric binders include, for example, polystyrene, poly(methyl methacrylate), poly(styrene)-co-(acrylonitrile), cellulose acetate butyrate, and the like.
- the resulting photoreactive compositions can be coated on a substrate, if desired, by any of a variety of coating methods known to those skilled in the art (including, for example, knife coating and spin coating).
- the substrate can be chosen from a wide variety of films, sheets, and other surfaces, depending upon the particular application and the method of exposure to be utilized. Preferred substrates are generally sufficiently flat to enable the preparation of a layer of photoreactive composition having a uniform thickness. For applications where coating is less desirable, the photoreactive compositions can alternatively be exposed in bulk form.
- Useful exposure systems include at least one light source (usually a pulsed laser) and at least one optical element.
- Suitable light sources include, for example, femtosecond near-infrared titanium sapphire oscillators (for example, a Coherent Mira Optima 900-F) pumped by an argon ion laser (for example, a Coherent Innova).
- This laser operating at 76 MHz, has a pulse width of less than 200 femtoseconds, is tunable between 700 and 980 nm, and has average power up to 1.4 Watts.
- any light source that provides sufficient intensity (to effect photoreactive absorption) at a wavelength appropriate for the photosensitizer (used in the photoreactive composition) can be utilized.
- Such wavelengths can generally be in the range of about 300 nm to about 1500 nm; preferably, from about 600 nm to about 1100 nm; more preferably, from about 750 nm to about 850 nm.
- Peak intensities can generally range from at least about 10 6 W/cm 2 .
- the upper limit on the pulse fluence (energy per pulse per unit area) is generally dictated by the ablation threshold of the photoreactive composition.
- Q-switched Nd:YAG lasers for example, a Spectra-Physics Quanta-Ray PRO
- visible wavelength dye lasers for example, a Spectra-Physics Sirah pumped by a Spectra-Physics Quanta-Ray PRO
- Q-switched diode pumped lasers for example, a Spectra-Physics FCbarTM
- Preferred light sources are near infrared-pulsed lasers having a pulse length less than about 10 nanoseconds (more preferably, less than about 1 nanosecond; most preferably, less than about 10 picoseconds). Other pulse lengths can be used as long as the peak intensity and fluence criteria given above are met.
- Optical elements useful in carrying out the method of the invention include refractive optical elements (for example, lenses and prisms), reflective optical elements (for example, retroreflectors or focusing mirrors), diffractive optical elements (for example, gratings, phase masks, and holograms), diffusers, Pockels cells, wave-guides, wave plates, birefringent liquid crystals, and the like.
- refractive optical elements for example, lenses and prisms
- reflective optical elements for example, retroreflectors or focusing mirrors
- diffractive optical elements for example, gratings, phase masks, and holograms
- diffusers for example, Pockels cells, wave-guides, wave plates, birefringent liquid crystals, and the like.
- Such optical elements are useful for focusing, beam delivery, beam/mode shaping, pulse shaping, and pulse timing.
- combinations of optical elements can be utilized, and other appropriate combinations will be recognized by those skilled in the art. It is often desirable to use optics with large numerical aperture
- the exposure system can include a scanning confocal microscope (BioRad MRC600) equipped with a 0.75 NA objective (Zeiss 20 ⁇ Fluar).
- exposure of the photoreactive composition can be carried out using a light source (as described above) along with an optical system as a means for controlling the three-dimensional spatial distribution of light intensity within the composition.
- a light source as described above
- the light from a pulsed laser can be split into two parts and then recombined spatially and temporally at a location within the volume of the reactive composition.
- the focal point can be scanned or translated in a three-dimensional pattern that corresponds to a desired shape, thereby creating the desired shape.
- the exposed or illuminated volume of the composition can be scanned either by moving the composition itself or by moving the light source (for example, moving a laser beam using galvo-mirrors).
- the resulting image can optionally be developed by removing either the exposed or the unexposed regions through use of an appropriate solvent, for example, or by other art-known means.
- Complex, three-dimensional objects can be prepared in this manner.
- Exposure times generally depend upon the type of exposure system used to cause image formation (and its accompanying variables such as numerical aperture, geometry of light intensity spatial distribution, the peak light intensity during the laser pulse (higher intensity and shorter pulse duration roughly correspond to peak light intensity)), as well as upon the nature of the composition exposed (and its concentrations of photosensitizer, photoinitiator, and electron donor compound). Generally, higher peak light intensity in the regions of focus allows shorter exposure times, everything else being equal.
- Linear imaging or “writing” speeds generally can be about 5 to 100,000 microns/second using a laser pulse duration of about 10 ⁇ 8 to 10 ⁇ 15 seconds (preferably, about 10 ⁇ 11 to 10 ⁇ 14 second) and about 10 2 to 10 9 pulses per second (preferably, about 10 3 to 10 8 pulses per second).
- This example describes a method of separating a writing laser beam into multiple beams and combining the beams at the writing volume, thereby allowing an increase in two-photon writing intensity without the detrimental effects of one-photon absorption in the intervening volumes.
- a test sample consisting of a 12.7 centimeters (cm) diameter polished glass wafer, thickness of 8 millimeters (mm), average surface roughness of 0.1 micrometer ( ⁇ m), provides a base for a polymer coating.
- a thin layer of unreacted methyl methacrylate (MMA) with a 1% loading of a two-photon initiator (4,4-bis(diphenylamino)-trans-stilbene) covers the polished side of the glass wafer.
- the photoreactive coating consists of 40% by weight tris(2-hydroxyethylene) isocyanurate triacrylate, 59% by weight MMA, and 1% by weight two-photon absorber dissolved to 40% concentration in a dioxane solvent. This layer of photoreactive material is approximately 100 ⁇ m thick.
- the ultrafast light source is a Spectra Physics HurricaneTM laser, operating at a wavelength of 800 nanometers (nm), pulse repetition rate of 80 megahertz (Mz), output power of 750 milliwatts (mW), and a nominal pulse width of 100 femtoseconds (fs).
- Light from this laser source travels through an optical train splitting the beam into multiple components and recombining the components through an imaging lens to the focal position of the lens. No individual component beam retraces the path of any other beam except at the focal point of the imaging lens.
- a diffractive mask separates the incident beam into multiple beams.
- Recombination of the beams occurs in a confocal imaging system that focuses the individual beams within a cylindrical volume of approximately 10 ⁇ m radius.
- the individual beams overlap with good spatial and temporal characteristics.
- Micrometer adjustments of the imaging system bring the final focal position to coincide with the top surface of a sample.
- the sample moves relative to the laser beam through an X-Y stage system; the laser beam is stationary relative to the stage motion.
- Test patterns consist of linear lines approximately 5 centimeters (cm) long with adjacent lines spaced approximately 5 millimeters (mm) apart. Comparative examples using a single beam to photoreact the two-photon loaded MMA coating are accomplished by blocking all but one of the individual beams from the diffractive phase mask.
- Exposure of the photoreactive composition on the covered glass wafer occurs by continuously moving the sample relative to the focal position of the imaging system.
- the sample stage moved uniformly at a speed of 100 micrometers per second ( ⁇ m/s) past the light source.
- ⁇ m/s 100 micrometers per second
- Careful visual inspection of the sample in bright light reveals faint lines, due to a refractive index change between photopolymerized and unphotopolymerized material.
- Single and multiple beam photopolymerization experiments test the threshold for damaging the polymer due to one-photon absorption processes.
- threshold experiments for 2-photon photopolymerization test both techniques for equivalence of the writing thresholds.
- Sample exposure occurs at four levels of writing power: threshold, 25 ⁇ -threshold, 50 ⁇ -threshold, and 100 ⁇ threshold, covering the range of conditions from initial photopolymerization to damaging the polymer arrangement.
- Tris(2-hydroxyethylene)isocyanurate triacrylate is commercially available from Sartomer Co., West Chester, Pa. under the tradename SR-368.
- SR-9008 is an alkoxylated trifunctional acrylate commercially available from Sartomer Company, Inc., West Chester, Pa.
- aromatic iodonium complex salts such as diphenyliodonium hexafluorophosphate may be prepared by metathesis of corresponding aromatic iodonium simple salts (such as, for example, diphenyliodonium bisulfate) in accordance with the teachings of Beringer et al., J. Am. Chem. Soc., 81, 342 (1959).
- the complex salt diphenyliodonium tetrafluoroborate is prepared by the addition at 60° C.
- the two-photon sensitizing dye, bis-[4-(diphenylamino)styryl]-1,4-(dimethoxy)benzene is prepared as follows: (1) Reaction of 1,4-bis-bromomethyl-2,5-dimethoxybenzene with triethylphosphite (Horner Eamons reagent): 1,4-bis-bromomethyl-2,5-dimethoxybenzene is prepared according to the literature procedure (Syper et. al., Tetrahedron, 1983, 39, 781-792). 1,4-bis-bromomethyl-2,5-dimethoxybenzene (253 g, 0.78 mol) is placed into a 1000-mL round bottom flask.
- Triethyl phosphite 300 g, 2.10 mol is added. The reaction is heated to vigorous reflux with stirring for 48 hours under nitrogen atmosphere. The reaction mixture is cooled and the excess P(OEt) 3 is removed under vacuum using a Kugelrohr apparatus. The desired product is not actually distilled, but the Kugelrohr is used to remove the excess P(OEt) 3 by distilling it away from the product. Upon heating to 100° C. at 0.1 mmHg a clear oil results. Upon cooling the desired product solidifies. The product is suitable for use directly in the next step, and 1 H NMR is consistent with the proposed structure.
- the test substrate consists of a photoreactive composition coated on to one side of an optically transparent microscope slide.
- a 2% solution of trimethoxysilylpropylmethacrylate in aqueous ethanol (pH of approximately 4.5) is spun coat on the substrates, which are then baked in a 130° C. oven for 10 min.
- a thin layer of the photoreactive composition see Table 2, 40% by weight of solids in dioxane (available from Mallinckrodt Baker, Phillipsburg, N.J.), is then spun coat over the entire wafer and baked in an 80° C. oven to remove the solvent.
- the final layer of photoreactive coating is approximately 60 ⁇ m thick.
- the light source used for Examples 2 and 3 is a diode pumped Ti:sapphire laser (Spectra-Physics) operating at a wavelength of 800 nm, pulse width 100 fs, pulse repetition rate of 80 MHz, beam diameter of approximately 2 mm, and an average output power of 860 mW.
- the optical train (similar to the diagram of FIG. 1 a ) splits the original light beam into two parts by use of a beam splitter.
- Low-dispersion mirrors are used to steer the beams toward the sample; a translation stage containing one or more mirrors provides adjustment for precise matching of pathlengths.
- Optical attenuators located in each beam path) are used to vary the optical power of the beams.
- the two beams have linear polarization states that are parallel when the beams are combined.
- photoreacting is accomplished by superimposing the focal spots formed by each objective lens at the substrate/polymer interface. Overlap of the focal spots in time and space is verified by observation of the intensity of fluorescence from the photoreactive reactive composition. The situation where the beams overlap in space (but not time) is demonstrated by a doubling of the fluorescence (compared to the fluorescence resulting from a single beam). When ideal conditions are reached (and the beams overlap in space and time) a quadrupling of the fluorescence is observed. The optical power in each beam is then reduced until the photoreactive reaction occurs only for overlap in space and time; individual beams do not cause a reaction.
- Exposure of the photoreactive composition covered sample occurs by continuously moving the sample such that the superimposed focal spots always remained at the substrate/polymer interface.
- the test structures consist of continuously scanned lines that are 0.5 to 5 cm long with 0.0625 cm spacing between the lines, with all lines lying in the same plane. Each line is the result of a single pass of energy from the laser. Developing the reacted polymeric coating using N,N-dimethyl formamide removes the unreacted regions from the substrate, revealing photoreacted lines. Moreover, the photoreacted lines exhibit good adhesion to the substrate.
- the two beams are incident from the same side of the photoreactive reactive composition.
- the angle between the two beams is varied from nearly zero (limited by the ability of the objective lenses to be brought into close proximity to each other) to nearly 180 degrees (limited by the ability of the objective lenses to be brought into close proximity to the photoreactive composition).
- changing the direction from which the beams are incident allows the reacting of volumetric regions having different shapes.
- the sample preparation, laser source and optical train are identical to those described above in Example 2.
- the photoreactive composition is placed between the focusing lenses (as shown in FIG. 1 b ) so that the light beams are incident upon the reacting region from opposite sides of the substrate.
- the angle between the incident beams is varied from nearly zero (both beams arrive at glancing angles to the substrate) to nearly, but not quite, 180 degrees.
- changing the direction from which the beams are incident allows the reacting of volumetric regions having different shapes.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Polymerisation Methods In General (AREA)
- Materials For Photolithography (AREA)
- Lasers (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
Description
where R′ is alkyl or aryl and n is an integer of 1 to 6. Examples are glycidyl ethers of polyhydric phenols obtained by reacting a polyhydric phenol with an excess of a chlorohydrin such as epichlorohydrin (for example, the diglycidyl ether of 2,2-bis-(2,3-epoxypropoxyphenol)-propane). Additional examples of epoxides of this type are described in U.S. Pat. No. 3,018,262, and in Handbook of Epoxy Resins, Lee and Neville, McGraw-Hill Book Co., New York (1967).
wherein X is selected from O, S, and —N—R11, with S being preferred; R1 and R2 are independently selected from H and alkyl groups of 1 to about 4 carbon atoms; R3, R4, R6, and R7 are independently selected from H and alkyl groups of 1 to about 4 carbon atoms, preferably methyl; R5 is selected from alkyl groups of 1 to about 16 carbon atoms, alkoxy groups of 1 to about 16 carbon atoms, and aryl groups of up to about 16 carbon atoms; R8 is selected from —N(R1)(R2), H, alkyl groups of 1 to about 4 carbon atoms, wherein R1 and R2 are independently selected and defined as above; R9 and R10 are independently selected from H and alkyl groups of 1 to about 4 carbon atoms; and R11 is selected from alkyl groups of 1 to about 4 carbon atoms and aryl groups of up to about 11 carbon atoms (preferably, phenyl groups). The following compounds are examples of this type of leuco dye:
Leuco Ethyl Violet (4,4′,4″-methylidynetris-(N,N-diethylaniline), Leuco Victoria Blu-BGO (Color Index Basic Blue 728a, Comp. No. 44040; 4,4′-methylidynebis-(N,N,-dimethylaniline)-4-N-ethyl-1-napthalamine)), and LeucoAtlantic Fuchsine Crude (4,4′,4″-methylidynetris-aniline).
- Ar3B−(n-C4H9)N+(C2H5)4
- Ar3B−(n-C4H9)N+(CH3)4
- Ar3B−(n-C4H9)N+(n-C4H9)4
- Ar3B−(n-C4H9)Li+
- Ar3B−(n-C4H9)N+(C6H13)4
- Ar3B−—(C4H9)N+(CH3)3(CH2)2CO2(CH2)2CH3
- Ar3B−—(C4H9)N+(CH3)3(CH2)2OCO(CH2)2CH3
- Ar3B−-(sec-C4H9)N+(CH3)3(CH2)2CO2(CH2)2CH3
- Ar3B−-(sec-C4H9)N+(C6H13)4
- Ar3B−—(C4H9)N+(C8H17)4
- Ar3B−—(C4H9)N+(CH3)4
- (p-CH3O—C6H4)3B−(n-C4H9)N+(n-C4H9)4
- Ar3B−—(C4H9)N+(CH3)3(CH2)2OH
- ArB−(n-C4H9)3N+(CH3)4
- ArB−(C2H5)3N+(CH3)4
- Ar2B−(n-C4H9)2N+(CH3)4
- Ar3B−(C4H9)N+(C4H9)4
- Ar4B−N+(C4H9)4
- ArB−(CH3)3N+(CH3)4
- (n-C4H9)4B−N+(CH3)4
- Ar3B−(C4H9)P+(C4H9)4
(where Ar is phenyl, naphthyl, substituted (preferably, fluoro-substituted) phenyl, substituted naphthyl, and like groups having greater numbers of fused aromatic rings), as well as tetramethylammonium n-butyltriphenylborate and tetrabutylammonium n-hexyl-tris(3-fluorophenyl)borate (available as CGI 437 and CGI 746 from Ciba Specialty Chemicals Corporation), and mixtures thereof.
wherein R1, R2, and R3 are each independently selected from aromatic groups having from about 4 to about 20 carbon atoms (for example, substituted or unsubstituted phenyl, naphthyl, thienyl, and furanyl, where substitution can be with such groups as alkoxy, alkylthio, arylthio, halogen, and so forth) and alkyl groups having from 1 to about 20 carbon atoms. As used here, the term “alkyl” includes substituted alkyl (for example, substituted with such groups as halogen, hydroxy, alkoxy, or aryl). At least one of R1, R2, and R3 is aromatic, and, preferably, each is independently aromatic. Z is selected from the group consisting of a covalent bond, oxygen, sulfur, —S(═O)—, —C(═O)—, —(O═)S(═O)—, and —N(R)—, where R is aryl (of about 6 to about 20 carbons, such as phenyl), acyl (of about 2 to about 20 carbons, such as acetyl, benzoyl, and so forth), a carbon-to-carbon bond, or —R4
- triphenylsulfonium tetrafluoroborate
- methyldiphenylsulfonium tetrafluoroborate
- dimethylphenylsulfonium hexafluorophosphate
- triphenylsulfonium hexafluorophosphate
- triphenylsulfonium hexafluoroantimonate
- diphenylnaphthylsulfonium hexafluoroarsenate
- tritolysulfonium hexafluorophosphate
- anisyldiphenylsulfonium hexafluoroantimonate
- 4-butoxyphenyldiphenylsulfonium tetrafluoroborate
- 4-chlorophenyldiphenylsulfonium hexafluorophosphate
- tri(4-phenoxyphenyl)sulfonium hexafluorophosphate
- di(4-ethoxyphenyl)methylsulfonium hexafluoroarsenate
- 4-acetonylphenyldiphenylsulfonium tetrafluoroborate
- 4-thiomethoxyphenyldiphenylsulfonium hexafluorophosphate
- di(methoxysulfonylphenyl)methylsulfonium hexafluoroantimonate
- di(nitrophenyl)phenylsulfonium hexafluoroantimonate
- di(carbomethoxyphenyl)methylsulfonium hexafluorophosphate
- 4-acetamidophenyldiphenylsulfonium tetrafluoroborate
- dimethylnaphthylsulfonium hexafluorophosphate
- trifluoromethyldiphenylsulfonium tetrafluoroborate
- p-(phenylthiophenyl)diphenylsulfonium hexafluoroantimonate
- 10-methylphenoxathiinium hexafluorophosphate
- 5-methylthianthrenium hexafluorophosphate
- 10-phenyl-9,9-dimethylthioxanthenium hexafluorophosphate
- 10-phenyl-9-oxothioxanthenium tetrafluoroborate
- 5-methyl-10-oxothianthrenium tetrafluoroborate
- 5-methyl-10,10-dioxothianthrenium hexafluorophosphate
TABLE 1 | ||||
Writing Power | Multiple Beam | Single Beam | ||
Threshold | Photoreacted | Photoreacted | ||
25X Threshold | Photoreacted | Photoreacted | ||
50X Threshold | Photoreacted | Damage | ||
100X Threshold | Damage | Damage | ||
TABLE 2 |
Photoreactive composition for Example 2 & 3 |
Ingredient | Weight % |
Poly(styrene-co-acrylonitrile) (MW ~165,000 g/mol) | 26.55 |
SR-368 (Sartomer Co., West Chester, PA) | 35.40 |
SR-9008 (Sartomer Co., West Chester, PA) | 35.40 |
Diphenyliodonium hexafluorophosphate | 1.77 |
Bis-[4-(diphenylamino)stryl]-1,4- | 0.88 |
(dimethoxy)benzene | |
Claims (32)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/297,961 US7790353B2 (en) | 2000-06-15 | 2001-06-14 | Multidirectional photoreactive absorption method |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US21170800P | 2000-06-15 | 2000-06-15 | |
PCT/US2001/019124 WO2001096959A2 (en) | 2000-06-15 | 2001-06-14 | Multidirectional photoreactive absorption method |
US10/297,961 US7790353B2 (en) | 2000-06-15 | 2001-06-14 | Multidirectional photoreactive absorption method |
Publications (2)
Publication Number | Publication Date |
---|---|
US20040223385A1 US20040223385A1 (en) | 2004-11-11 |
US7790353B2 true US7790353B2 (en) | 2010-09-07 |
Family
ID=22788030
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/297,961 Expired - Fee Related US7790353B2 (en) | 2000-06-15 | 2001-06-14 | Multidirectional photoreactive absorption method |
Country Status (6)
Country | Link |
---|---|
US (1) | US7790353B2 (en) |
EP (1) | EP1292861B1 (en) |
JP (1) | JP2004503928A (en) |
KR (1) | KR100811017B1 (en) |
AU (1) | AU2001266918A1 (en) |
WO (1) | WO2001096959A2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10133174B2 (en) | 2013-12-06 | 2018-11-20 | 3M Innovative Properties Company | Liquid photoreactive composition and method of fabricating structures |
US12326401B2 (en) * | 2019-05-21 | 2025-06-10 | Politechnika Warszawska | Refractive index distribution standard |
Families Citing this family (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7005229B2 (en) | 2002-10-02 | 2006-02-28 | 3M Innovative Properties Company | Multiphoton photosensitization method |
KR100810547B1 (en) | 2000-06-15 | 2008-03-18 | 쓰리엠 이노베이티브 프로퍼티즈 캄파니 | Method for manufacturing encapsulated optical member, optical element and coupling method thereof |
US7381516B2 (en) | 2002-10-02 | 2008-06-03 | 3M Innovative Properties Company | Multiphoton photosensitization system |
US7265161B2 (en) | 2002-10-02 | 2007-09-04 | 3M Innovative Properties Company | Multi-photon reactive compositions with inorganic particles and method for fabricating structures |
US7118845B2 (en) | 2000-06-15 | 2006-10-10 | 3M Innovative Properties Company | Multiphoton photochemical process and articles preparable thereby |
US7233739B2 (en) * | 2001-10-22 | 2007-06-19 | Patel C Kumar N | Optical bit stream reader system |
US7001708B1 (en) * | 2001-11-28 | 2006-02-21 | University Of Central Florida Research Foundation, Inc. | Photosensitive polymeric material for worm optical data storage with two-photon fluorescent readout |
US6750266B2 (en) | 2001-12-28 | 2004-06-15 | 3M Innovative Properties Company | Multiphoton photosensitization system |
US7232650B2 (en) | 2002-10-02 | 2007-06-19 | 3M Innovative Properties Company | Planar inorganic device |
US7608384B1 (en) * | 2002-11-27 | 2009-10-27 | University Of Central Florida Research Foundation, Inc. | Two-photon fluorescent ternary optical data storage |
US20030155667A1 (en) * | 2002-12-12 | 2003-08-21 | Devoe Robert J | Method for making or adding structures to an article |
DE602004007500D1 (en) | 2003-04-24 | 2007-08-23 | Haute Ecole Arc Ne Be Ju | MICRO STRUCTURE PROCESS |
US7771915B2 (en) * | 2003-06-27 | 2010-08-10 | Fujifilm Corporation | Two-photon absorbing optical recording material and two-photon absorbing optical recording and reproducing method |
JP2005142002A (en) * | 2003-11-06 | 2005-06-02 | Toyota Industries Corp | Lighting device and display device |
DE602004018483D1 (en) * | 2004-07-30 | 2009-01-29 | Agfa Graphics Nv | Photopolymerizable composition. |
US7816654B2 (en) * | 2005-01-16 | 2010-10-19 | Baer Stephen C | Single wavelength stimulated emission depletion microscopy |
US8597871B2 (en) * | 2005-06-18 | 2013-12-03 | The Regents Of The University Of Colorado | Three-dimensional direct-write lithography |
US7583444B1 (en) | 2005-12-21 | 2009-09-01 | 3M Innovative Properties Company | Process for making microlens arrays and masterforms |
US7561252B2 (en) * | 2005-12-29 | 2009-07-14 | Asml Holding N.V. | Interferometric lithography system and method used to generate equal path lengths of interfering beams |
EP2018263B1 (en) * | 2006-05-18 | 2017-03-01 | 3M Innovative Properties Company | Process for making light guides with extraction structures |
US8257885B1 (en) * | 2006-12-07 | 2012-09-04 | Hrl Laboratories, Llc | Recording reflection Bragg Gratings and apodizing reflection Bragg Gratings |
US9102083B2 (en) * | 2007-09-06 | 2015-08-11 | 3M Innovative Properties Company | Methods of forming molds and methods of forming articles using said molds |
US20100308497A1 (en) * | 2007-09-06 | 2010-12-09 | David Moses M | Tool for making microstructured articles |
WO2009032813A2 (en) | 2007-09-06 | 2009-03-12 | 3M Innovative Properties Company | Lightguides having light extraction structures providing regional control of light output |
WO2009048705A1 (en) * | 2007-10-11 | 2009-04-16 | 3M Innovative Properties Company | Highly functional multiphoton curable reactive species |
WO2009048808A1 (en) * | 2007-10-11 | 2009-04-16 | 3M Innovative Properties Company | Chromatic confocal sensor |
EP2206115A1 (en) * | 2007-10-23 | 2010-07-14 | STX Aprilis, Inc. | Apparatus and methods for threshold control of photopolymerization for holographic data storage using at least two wavelengths |
EP2232531B1 (en) * | 2007-12-12 | 2018-09-19 | 3M Innovative Properties Company | Method for making structures with improved edge definition |
CN101960385B (en) | 2008-02-26 | 2012-11-07 | 3M创新有限公司 | Multi-photon exposure system |
US8053743B2 (en) * | 2008-03-17 | 2011-11-08 | Baer Stephen C | Superresolution in devices with single wavelength illumination |
US20140030655A1 (en) * | 2011-04-22 | 2014-01-30 | 3M Innovative Properties Company | Enhanced Multi-Photon Imaging Resolution Method |
CN102768466A (en) * | 2011-05-05 | 2012-11-07 | 中国科学院理化技术研究所 | Chemical amplification type positive photoresist, preparation method and application thereof in two-photon fine processing |
AU2014242096B2 (en) | 2013-03-13 | 2018-06-28 | Amo Development, Llc | Laser eye surgery system |
AU2014249863B2 (en) | 2013-03-13 | 2018-07-12 | Amo Development, Llc | Free floating patient interface for laser surgery system |
US20170225393A1 (en) * | 2016-02-04 | 2017-08-10 | Global Filtration Systems, A Dba Of Gulf Filtration Systems Inc. | Apparatus and method for forming three-dimensional objects using two-photon absorption linear solidification |
DE102016214606B3 (en) | 2016-08-05 | 2017-08-31 | Karlsruher Institut für Technologie | Method and device for the lithographic production of a target structure at a non-planar starting structure |
US11579465B2 (en) * | 2018-01-14 | 2023-02-14 | Light Field Lab, Inc. | Four dimensional energy-field package assembly |
US10807311B2 (en) | 2018-09-10 | 2020-10-20 | Rebecca Metcalf | Additive manufacturing device with IR targeting and related methods |
KR102550408B1 (en) * | 2023-02-14 | 2023-07-03 | (주)오로스 테크놀로지 | Apparatus and Method for Measuring Overlay |
Citations (122)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3018262A (en) | 1957-05-01 | 1962-01-23 | Shell Oil Co | Curing polyepoxides with certain metal salts of inorganic acids |
US3117099A (en) | 1959-12-24 | 1964-01-07 | Union Carbide Corp | Curable mixtures comprising epoxide compositions and divalent tin salts |
US3635545A (en) * | 1967-04-14 | 1972-01-18 | Eastman Kodak Co | Multiple beam generation |
US3677634A (en) | 1968-12-23 | 1972-07-18 | Ibm | Contactless mask pattern exposure process and apparatus system having virtual extended depth of focus |
US3720921A (en) * | 1970-07-14 | 1973-03-13 | Ibm | Recording in reversible, photochromic medium |
US3729313A (en) | 1971-12-06 | 1973-04-24 | Minnesota Mining & Mfg | Novel photosensitive systems comprising diaryliodonium compounds and their use |
US3741769A (en) | 1972-10-24 | 1973-06-26 | Minnesota Mining & Mfg | Novel photosensitive polymerizable systems and their use |
US3758186A (en) | 1966-11-30 | 1973-09-11 | Battelle Development Corp | Method of copying holograms |
US3779778A (en) | 1972-02-09 | 1973-12-18 | Minnesota Mining & Mfg | Photosolubilizable compositions and elements |
US3806221A (en) | 1969-11-26 | 1974-04-23 | Siemens Ag | Holographic method of recording and reproducing etching masks |
US3808006A (en) | 1971-12-06 | 1974-04-30 | Minnesota Mining & Mfg | Photosensitive material containing a diaryliodium compound, a sensitizer and a color former |
US3954475A (en) | 1971-09-03 | 1976-05-04 | Minnesota Mining And Manufacturing Company | Photosensitive elements containing chromophore-substituted vinyl-halomethyl-s-triazines |
US3987037A (en) | 1971-09-03 | 1976-10-19 | Minnesota Mining And Manufacturing Company | Chromophore-substituted vinyl-halomethyl-s-triazines |
DE2546079A1 (en) | 1975-10-15 | 1977-05-05 | Leitz Ernst Gmbh | Mirror condenser for top illumination fluorescence microscopy - increases illumination by reflecting transmitted rays back through preparation from metallised surface |
US4041476A (en) | 1971-07-23 | 1977-08-09 | Wyn Kelly Swainson | Method, medium and apparatus for producing three-dimensional figure product |
US4078229A (en) | 1975-01-27 | 1978-03-07 | Swanson Wyn K | Three dimensional systems |
US4228861A (en) | 1979-08-02 | 1980-10-21 | Hart Thomas E | Folding track removing implement |
US4238840A (en) | 1967-07-12 | 1980-12-09 | Formigraphic Engine Corporation | Method, medium and apparatus for producing three dimensional figure product |
US4250053A (en) | 1979-05-21 | 1981-02-10 | Minnesota Mining And Manufacturing Company | Sensitized aromatic iodonium or aromatic sulfonium salt photoinitiator systems |
US4279717A (en) | 1979-08-03 | 1981-07-21 | General Electric Company | Ultraviolet curable epoxy silicone coating compositions |
US4288861A (en) | 1977-12-01 | 1981-09-08 | Formigraphic Engine Corporation | Three-dimensional systems |
US4333165A (en) | 1975-01-27 | 1982-06-01 | Formigraphic Engine Corporation | Three-dimensional pattern making methods |
US4394403A (en) | 1974-05-08 | 1983-07-19 | Minnesota Mining And Manufacturing Company | Photopolymerizable compositions |
US4394433A (en) | 1979-12-07 | 1983-07-19 | Minnesota Mining And Manufacturing Company | Diazonium imaging system |
US4458345A (en) * | 1982-03-31 | 1984-07-03 | International Business Machines Corporation | Process for optical information storage |
US4466080A (en) | 1975-01-27 | 1984-08-14 | Formigraphic Engine Corporation | Three-dimensional patterned media |
US4471470A (en) | 1977-12-01 | 1984-09-11 | Formigraphic Engine Corporation | Method and media for accessing data in three dimensions |
US4491628A (en) | 1982-08-23 | 1985-01-01 | International Business Machines Corporation | Positive- and negative-working resist compositions with acid generating photoinitiator and polymer with acid labile groups pendant from polymer backbone |
US4496216A (en) | 1982-12-30 | 1985-01-29 | Polaroid Corporation | Method and apparatus for exposing photosensitive material |
US4515445A (en) | 1982-02-11 | 1985-05-07 | Carl-Zeiss-Stiftung, Heidenheim/Brenz | Optical system for transmitted-light microscopy with incident illumination |
US4547037A (en) | 1980-10-16 | 1985-10-15 | Regents Of The University Of Minnesota | Holographic method for producing desired wavefront transformations |
US4588664A (en) | 1983-08-24 | 1986-05-13 | Polaroid Corporation | Photopolymerizable compositions used in holograms |
US4614705A (en) | 1984-02-17 | 1986-09-30 | Ricoh Co., Ltd. | Optical information recording medium |
US4642126A (en) | 1985-02-11 | 1987-02-10 | Norton Company | Coated abrasives with rapidly curable adhesives and controllable curvature |
US4652274A (en) | 1985-08-07 | 1987-03-24 | Minnesota Mining And Manufacturing Company | Coated abrasive product having radiation curable binder |
US4666236A (en) | 1982-08-10 | 1987-05-19 | Omron Tateisi Electronics Co. | Optical coupling device and method of producing same |
US4775754A (en) | 1987-10-07 | 1988-10-04 | Minnesota Mining And Manufacturing Company | Preparation of leuco dyes |
US4859572A (en) | 1988-05-02 | 1989-08-22 | Eastman Kodak Company | Dye sensitized photographic imaging system |
US4877717A (en) | 1986-07-26 | 1989-10-31 | Fujitsu Limited | Process for the production of optical elements |
US4963471A (en) | 1989-07-14 | 1990-10-16 | E. I. Du Pont De Nemours And Company | Holographic photopolymer compositions and elements for refractive index imaging |
US5006746A (en) | 1987-12-29 | 1991-04-09 | Seiko Instruments Inc. | Travelling-wave motor |
US5034613A (en) | 1989-11-14 | 1991-07-23 | Cornell Research Foundation, Inc. | Two-photon laser microscopy |
US5035476A (en) | 1990-06-15 | 1991-07-30 | Hamamatsu Photonics K.K. | Confocal laser scanning transmission microscope |
US5037917A (en) | 1989-06-09 | 1991-08-06 | The Dow Chemical Company | Perfluorocyclobutane ring-containing polymers |
US5145942A (en) | 1990-09-28 | 1992-09-08 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Methyl substituted polyimides containing carbonyl and ether connecting groups |
US5159037A (en) | 1989-06-09 | 1992-10-27 | The Dow Chemical Company | Perfluorocyclobutane ring-containing polymers |
US5159038A (en) | 1989-06-09 | 1992-10-27 | Dow Chemical Company | Perfluorocyclobutane ring-containing polymers |
DE4142327A1 (en) | 1991-12-20 | 1993-06-24 | Wacker Chemie Gmbh | Iodonium salts and process for their preparation |
US5225918A (en) | 1990-07-18 | 1993-07-06 | Sony Magnescale, Inc. | Hologram scale, apparatus for making hologram scale, moving member having hologram scale assembled hologram scale and apparatus for making assembled hologram scale |
US5235015A (en) | 1991-02-21 | 1993-08-10 | Minnesota Mining And Manufacturing Company | High speed aqueous solvent developable photopolymer compositions |
DE4219376A1 (en) | 1992-06-12 | 1993-12-16 | Wacker Chemie Gmbh | Sulfonium salts and process for their preparation |
US5283777A (en) | 1991-04-26 | 1994-02-01 | Pioneer Electronic Corporation | Three-dimensional optical recording medium and optical information recording apparatus using the same |
US5289407A (en) | 1991-07-22 | 1994-02-22 | Cornell Research Foundation, Inc. | Method for three dimensional optical data storage and retrieval |
US5377043A (en) | 1992-05-11 | 1994-12-27 | Cornell Research Foundation, Inc. | Ti:sapphire-pumped high repetition rate femtosecond optical parametric oscillator |
DE4326473A1 (en) * | 1993-08-06 | 1995-02-09 | European Molecular Biology Lab Embl | Scanning microscope for viewing at an angle relative to the illumination |
US5405733A (en) | 1992-05-12 | 1995-04-11 | Apple Computer, Inc. | Multiple beam laser exposure system for liquid crystal shutters |
US5422753A (en) | 1993-12-23 | 1995-06-06 | Xerox Corporation | Binary diffraction optical element for controlling scanning beam intensity in a raster output scanning (ROS) optical system |
US5446172A (en) | 1990-04-30 | 1995-08-29 | General Electric Company | Method for making triarylsulfonium hexafluorometal or metalloid salts |
US5478869A (en) | 1991-10-24 | 1995-12-26 | Tosoh Corporation | Protective coating material |
US5479273A (en) * | 1989-05-18 | 1995-12-26 | Pilkington P.E. Limited | Hologram construction |
US5529813A (en) * | 1992-08-20 | 1996-06-25 | E. I. Du Pont De Nemours And Company | Process for microstructuring surfaces of oriented polymeric substratesusing laser radiation |
US5545676A (en) | 1987-04-02 | 1996-08-13 | Minnesota Mining And Manufacturing Company | Ternary photoinitiator system for addition polymerization |
US5633735A (en) | 1990-11-09 | 1997-05-27 | Litel Instruments | Use of fresnel zone plates for material processing |
US5665522A (en) | 1995-05-02 | 1997-09-09 | Minnesota Mining And Manufacturing Company | Visible image dyes for positive-acting no-process printing plates |
US5703140A (en) | 1995-01-30 | 1997-12-30 | Fuji Photo Film Co., Ltd. | Photopolymerizable composition |
US5747550A (en) | 1995-06-05 | 1998-05-05 | Kimberly-Clark Worldwide, Inc. | Method of generating a reactive species and polymerizing an unsaturated polymerizable material |
US5750641A (en) | 1996-05-23 | 1998-05-12 | Minnesota Mining And Manufacturing Company | Polyimide angularity enhancement layer |
US5753346A (en) | 1992-10-02 | 1998-05-19 | Minnesota Mining & Manufacturing Company | Cationically co-curable polysiloxane release coatings |
US5759744A (en) | 1995-02-24 | 1998-06-02 | University Of New Mexico | Methods and apparatus for lithography of sparse arrays of sub-micrometer features |
US5759721A (en) | 1995-10-06 | 1998-06-02 | Polaroid Corporation | Holographic medium and process for use thereof |
US5770737A (en) | 1997-09-18 | 1998-06-23 | The United States Of America As Represented By The Secretary Of The Air Force | Asymmetrical dyes with large two-photon absorption cross-sections |
US5832931A (en) * | 1996-10-30 | 1998-11-10 | Photogen, Inc. | Method for improved selectivity in photo-activation and detection of molecular diagnostic agents |
US5847812A (en) | 1996-06-14 | 1998-12-08 | Nikon Corporation | Projection exposure system and method |
US5854868A (en) | 1994-06-22 | 1998-12-29 | Fujitsu Limited | Optical device and light waveguide integrated circuit |
US5856373A (en) | 1994-10-31 | 1999-01-05 | Minnesota Mining And Manufacturing Company | Dental visible light curable epoxy system with enhanced depth of cure |
US5859251A (en) | 1997-09-18 | 1999-01-12 | The United States Of America As Represented By The Secretary Of The Air Force | Symmetrical dyes with large two-photon absorption cross-sections |
US5864412A (en) | 1995-09-08 | 1999-01-26 | Seagate Technology, Inc. | Multiphoton photorefractive holographic recording media |
USRE36113E (en) | 1992-09-16 | 1999-02-23 | The University Of New Mexico | Method for fine-line interferometric lithography |
US5912257A (en) * | 1995-09-06 | 1999-06-15 | The Research Foundation Of State University Of New York | Two-photon upconverting dyes and applications |
US5952152A (en) | 1995-11-24 | 1999-09-14 | Ciba Specialty Chemicals Corporation | Borate coinitiators for photopolymerization |
US5998495A (en) | 1997-04-11 | 1999-12-07 | 3M Innovative Properties Company | Ternary photoinitiator system for curing of epoxy/polyol resin compositions |
US6005137A (en) | 1997-06-10 | 1999-12-21 | 3M Innovative Properties Company | Halogenated acrylates and polymers derived therefrom |
US6020591A (en) * | 1997-07-11 | 2000-02-01 | Imra America, Inc. | Two-photon microscopy with plane wave illumination |
US6025406A (en) | 1997-04-11 | 2000-02-15 | 3M Innovative Properties Company | Ternary photoinitiator system for curing of epoxy resins |
US6025938A (en) | 1994-02-28 | 2000-02-15 | Digital Optics Corporation | Beam homogenizer |
US6030266A (en) | 1996-07-29 | 2000-02-29 | Commissariat A L'energie Atomique | Process and apparatus for the formation of patterns in a photoresist by continuous laser irradiation, application to the production of microtips emissive cathode electron sources and flat display screens |
US6043913A (en) * | 1997-07-09 | 2000-03-28 | Industrial Technology Research Institute | Apparatus for producing dot matrix hologram |
US6048911A (en) | 1997-12-12 | 2000-04-11 | Borden Chemical, Inc. | Coated optical fibers |
US6051366A (en) | 1994-05-27 | 2000-04-18 | Kodak Polychrome Graphics Llc | Visible radiation sensitive composition and recording material producible therefrom |
US6100405A (en) | 1999-06-15 | 2000-08-08 | The United States Of America As Represented By The Secretary Of The Air Force | Benzothiazole-containing two-photon chromophores exhibiting strong frequency upconversion |
US6103454A (en) | 1998-03-24 | 2000-08-15 | Lucent Technologies Inc. | Recording medium and process for forming medium |
US6107011A (en) | 1999-01-06 | 2000-08-22 | Creo Srl | Method of high resolution optical scanning utilizing primary and secondary masks |
US6115339A (en) | 1998-06-17 | 2000-09-05 | International Business Machines Corporation | Method and system in an optical storage disc drive for conserving laser power |
US6215095B1 (en) | 1997-04-28 | 2001-04-10 | 3D Systems, Inc. | Apparatus and method for controlling exposure of a solidifiable medium using a pulsed radiation source in building a three-dimensional object using stereolithography |
US6262423B1 (en) | 1996-12-22 | 2001-07-17 | Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E. V. | Scanning microscope in which a sample is simultaneously and optically excited at various points |
US6267913B1 (en) | 1996-11-12 | 2001-07-31 | California Institute Of Technology | Two-photon or higher-order absorbing optical materials and methods of use |
US6297910B1 (en) * | 1998-05-19 | 2001-10-02 | Seagate Technology Llc | Laser-texturing data zone on a magnetic disk surface by using degenerative two wave mixing |
US6312876B1 (en) | 1999-07-08 | 2001-11-06 | Taiwan Semiconductor Manufacturing Company | Method for placing identifying mark on semiconductor wafer |
US6316153B1 (en) | 1998-04-21 | 2001-11-13 | The University Of Connecticut | Free-form fabricaton using multi-photon excitation |
US6322933B1 (en) | 1999-01-12 | 2001-11-27 | Siros Technologies, Inc. | Volumetric track definition for data storage media used to record data by selective alteration of a format hologram |
US6322931B1 (en) | 1999-07-29 | 2001-11-27 | Siros Technologies, Inc. | Method and apparatus for optical data storage using non-linear heating by excited state absorption for the alteration of pre-formatted holographic gratings |
US6327074B1 (en) * | 1998-11-25 | 2001-12-04 | University Of Central Florida | Display medium using emitting particles dispersed in a transparent host |
US20020034693A1 (en) * | 2000-08-31 | 2002-03-21 | Takashi Fukuda | Information recording method |
US6441356B1 (en) * | 2000-07-28 | 2002-08-27 | Optical Biopsy Technologies | Fiber-coupled, high-speed, angled-dual-axis optical coherence scanning microscopes |
US6469755B1 (en) | 1998-10-29 | 2002-10-22 | Hitachi, Ltd. | Illuminating arrangement with reflector having inclined irregularities or corrugations |
US6541591B2 (en) | 2000-12-21 | 2003-04-01 | 3M Innovative Properties Company | High refractive index microreplication resin from naphthyloxyalkylmethacrylates or naphthyloxyacrylates polymers |
US6573026B1 (en) * | 1999-07-29 | 2003-06-03 | Corning Incorporated | Femtosecond laser writing of glass, including borosilicate, sulfide, and lead glasses |
US6608228B1 (en) | 1997-11-07 | 2003-08-19 | California Institute Of Technology | Two-photon or higher-order absorbing optical materials for generation of reactive species |
US20030155667A1 (en) | 2002-12-12 | 2003-08-21 | Devoe Robert J | Method for making or adding structures to an article |
US6618174B2 (en) | 1996-11-15 | 2003-09-09 | Diffraction, Ltd | In-line holographic mask for micromachining |
US6624915B1 (en) * | 2000-03-16 | 2003-09-23 | Science Applications International Corporation | Holographic recording and micro/nanofabrication via ultrafast holographic two-photon induced photopolymerization (H-TPIP) |
US20040012872A1 (en) | 2001-06-14 | 2004-01-22 | Fleming Patrick R | Multiphoton absorption method using patterned light |
US6703188B1 (en) | 1999-03-29 | 2004-03-09 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Method of fabricating optical waveguide structure |
US20040067431A1 (en) | 2002-10-02 | 2004-04-08 | 3M Innovative Properties Company | Multiphoton photosensitization system |
US6750266B2 (en) | 2001-12-28 | 2004-06-15 | 3M Innovative Properties Company | Multiphoton photosensitization system |
US20050009175A1 (en) | 1999-03-03 | 2005-01-13 | Symyx Technologies, Inc. | Chemical processing microsystems comprising high-temperature parallel flow microreactors |
US6852766B1 (en) | 2000-06-15 | 2005-02-08 | 3M Innovative Properties Company | Multiphoton photosensitization system |
US6855478B2 (en) | 2000-06-15 | 2005-02-15 | 3M Innovative Properties Company | Microfabrication of organic optical elements |
US7014988B2 (en) | 2000-06-15 | 2006-03-21 | 3M Innovative Properties Company | Multiphoton curing to provide encapsulated optical elements |
US7026103B2 (en) | 2000-06-15 | 2006-04-11 | 3M Innovative Properties Company | Multicolor imaging using multiphoton photochemical processes |
US7060419B2 (en) | 2000-06-15 | 2006-06-13 | 3M Innovative Properties Company | Process for producing microfluidic articles |
US7166409B2 (en) | 2000-06-15 | 2007-01-23 | 3M Innovative Properties Company | Multipass multiphoton absorption method and apparatus |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2003A (en) * | 1841-03-12 | Improvement in horizontal windivhlls | ||
US2004A (en) * | 1841-03-12 | Improvement in the manner of constructing and propelling steam-vessels | ||
US2006A (en) * | 1841-03-16 | Clamp for crimping leather | ||
US5034513A (en) * | 1987-05-27 | 1991-07-23 | The United States Of America As Represented By The Secretary Of Agriculture | Avian interleukin-2 |
US5335015A (en) * | 1992-10-30 | 1994-08-02 | Texas Instruments Incorporated | Method for improved dynamic range of BCMD image sensors |
US5611925A (en) * | 1994-03-23 | 1997-03-18 | Filtration Systems, Inc. | Hub ring and supporting plate for a filter and methods for manufacturing these members |
US5665493A (en) * | 1995-10-03 | 1997-09-09 | Sri International | Gated recording of holograms using rare-earth doped ferroelectric materials |
JP3270814B2 (en) * | 1996-08-27 | 2002-04-02 | 日本板硝子株式会社 | Manufacturing method of diffractive optical element |
-
2001
- 2001-06-14 JP JP2002511024A patent/JP2004503928A/en active Pending
- 2001-06-14 EP EP01944513.9A patent/EP1292861B1/en not_active Expired - Lifetime
- 2001-06-14 KR KR1020027016988A patent/KR100811017B1/en not_active Expired - Fee Related
- 2001-06-14 AU AU2001266918A patent/AU2001266918A1/en not_active Abandoned
- 2001-06-14 WO PCT/US2001/019124 patent/WO2001096959A2/en active Application Filing
- 2001-06-14 US US10/297,961 patent/US7790353B2/en not_active Expired - Fee Related
Patent Citations (126)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3018262A (en) | 1957-05-01 | 1962-01-23 | Shell Oil Co | Curing polyepoxides with certain metal salts of inorganic acids |
US3117099A (en) | 1959-12-24 | 1964-01-07 | Union Carbide Corp | Curable mixtures comprising epoxide compositions and divalent tin salts |
US3758186A (en) | 1966-11-30 | 1973-09-11 | Battelle Development Corp | Method of copying holograms |
US3635545A (en) * | 1967-04-14 | 1972-01-18 | Eastman Kodak Co | Multiple beam generation |
US4238840A (en) | 1967-07-12 | 1980-12-09 | Formigraphic Engine Corporation | Method, medium and apparatus for producing three dimensional figure product |
US3677634A (en) | 1968-12-23 | 1972-07-18 | Ibm | Contactless mask pattern exposure process and apparatus system having virtual extended depth of focus |
US3806221A (en) | 1969-11-26 | 1974-04-23 | Siemens Ag | Holographic method of recording and reproducing etching masks |
US3720921A (en) * | 1970-07-14 | 1973-03-13 | Ibm | Recording in reversible, photochromic medium |
US4041476A (en) | 1971-07-23 | 1977-08-09 | Wyn Kelly Swainson | Method, medium and apparatus for producing three-dimensional figure product |
US3954475A (en) | 1971-09-03 | 1976-05-04 | Minnesota Mining And Manufacturing Company | Photosensitive elements containing chromophore-substituted vinyl-halomethyl-s-triazines |
US3987037A (en) | 1971-09-03 | 1976-10-19 | Minnesota Mining And Manufacturing Company | Chromophore-substituted vinyl-halomethyl-s-triazines |
US3729313A (en) | 1971-12-06 | 1973-04-24 | Minnesota Mining & Mfg | Novel photosensitive systems comprising diaryliodonium compounds and their use |
US3808006A (en) | 1971-12-06 | 1974-04-30 | Minnesota Mining & Mfg | Photosensitive material containing a diaryliodium compound, a sensitizer and a color former |
US3779778A (en) | 1972-02-09 | 1973-12-18 | Minnesota Mining & Mfg | Photosolubilizable compositions and elements |
US3741769A (en) | 1972-10-24 | 1973-06-26 | Minnesota Mining & Mfg | Novel photosensitive polymerizable systems and their use |
US4394403A (en) | 1974-05-08 | 1983-07-19 | Minnesota Mining And Manufacturing Company | Photopolymerizable compositions |
US4078229A (en) | 1975-01-27 | 1978-03-07 | Swanson Wyn K | Three dimensional systems |
US4333165A (en) | 1975-01-27 | 1982-06-01 | Formigraphic Engine Corporation | Three-dimensional pattern making methods |
US4466080A (en) | 1975-01-27 | 1984-08-14 | Formigraphic Engine Corporation | Three-dimensional patterned media |
DE2546079A1 (en) | 1975-10-15 | 1977-05-05 | Leitz Ernst Gmbh | Mirror condenser for top illumination fluorescence microscopy - increases illumination by reflecting transmitted rays back through preparation from metallised surface |
US4288861A (en) | 1977-12-01 | 1981-09-08 | Formigraphic Engine Corporation | Three-dimensional systems |
US4471470A (en) | 1977-12-01 | 1984-09-11 | Formigraphic Engine Corporation | Method and media for accessing data in three dimensions |
US4250053A (en) | 1979-05-21 | 1981-02-10 | Minnesota Mining And Manufacturing Company | Sensitized aromatic iodonium or aromatic sulfonium salt photoinitiator systems |
US4228861A (en) | 1979-08-02 | 1980-10-21 | Hart Thomas E | Folding track removing implement |
US4279717A (en) | 1979-08-03 | 1981-07-21 | General Electric Company | Ultraviolet curable epoxy silicone coating compositions |
US4394433A (en) | 1979-12-07 | 1983-07-19 | Minnesota Mining And Manufacturing Company | Diazonium imaging system |
US4547037A (en) | 1980-10-16 | 1985-10-15 | Regents Of The University Of Minnesota | Holographic method for producing desired wavefront transformations |
US4515445A (en) | 1982-02-11 | 1985-05-07 | Carl-Zeiss-Stiftung, Heidenheim/Brenz | Optical system for transmitted-light microscopy with incident illumination |
US4458345A (en) * | 1982-03-31 | 1984-07-03 | International Business Machines Corporation | Process for optical information storage |
US4666236A (en) | 1982-08-10 | 1987-05-19 | Omron Tateisi Electronics Co. | Optical coupling device and method of producing same |
US4491628A (en) | 1982-08-23 | 1985-01-01 | International Business Machines Corporation | Positive- and negative-working resist compositions with acid generating photoinitiator and polymer with acid labile groups pendant from polymer backbone |
US4496216A (en) | 1982-12-30 | 1985-01-29 | Polaroid Corporation | Method and apparatus for exposing photosensitive material |
US4588664A (en) | 1983-08-24 | 1986-05-13 | Polaroid Corporation | Photopolymerizable compositions used in holograms |
US4614705A (en) | 1984-02-17 | 1986-09-30 | Ricoh Co., Ltd. | Optical information recording medium |
US4642126A (en) | 1985-02-11 | 1987-02-10 | Norton Company | Coated abrasives with rapidly curable adhesives and controllable curvature |
US4652274A (en) | 1985-08-07 | 1987-03-24 | Minnesota Mining And Manufacturing Company | Coated abrasive product having radiation curable binder |
US4877717A (en) | 1986-07-26 | 1989-10-31 | Fujitsu Limited | Process for the production of optical elements |
US5545676A (en) | 1987-04-02 | 1996-08-13 | Minnesota Mining And Manufacturing Company | Ternary photoinitiator system for addition polymerization |
US4775754A (en) | 1987-10-07 | 1988-10-04 | Minnesota Mining And Manufacturing Company | Preparation of leuco dyes |
US5006746A (en) | 1987-12-29 | 1991-04-09 | Seiko Instruments Inc. | Travelling-wave motor |
US4859572A (en) | 1988-05-02 | 1989-08-22 | Eastman Kodak Company | Dye sensitized photographic imaging system |
US5479273A (en) * | 1989-05-18 | 1995-12-26 | Pilkington P.E. Limited | Hologram construction |
US5037917A (en) | 1989-06-09 | 1991-08-06 | The Dow Chemical Company | Perfluorocyclobutane ring-containing polymers |
US5159037A (en) | 1989-06-09 | 1992-10-27 | The Dow Chemical Company | Perfluorocyclobutane ring-containing polymers |
US5159038A (en) | 1989-06-09 | 1992-10-27 | Dow Chemical Company | Perfluorocyclobutane ring-containing polymers |
US4963471A (en) | 1989-07-14 | 1990-10-16 | E. I. Du Pont De Nemours And Company | Holographic photopolymer compositions and elements for refractive index imaging |
US5034613A (en) | 1989-11-14 | 1991-07-23 | Cornell Research Foundation, Inc. | Two-photon laser microscopy |
US5446172A (en) | 1990-04-30 | 1995-08-29 | General Electric Company | Method for making triarylsulfonium hexafluorometal or metalloid salts |
US5035476A (en) | 1990-06-15 | 1991-07-30 | Hamamatsu Photonics K.K. | Confocal laser scanning transmission microscope |
US5225918A (en) | 1990-07-18 | 1993-07-06 | Sony Magnescale, Inc. | Hologram scale, apparatus for making hologram scale, moving member having hologram scale assembled hologram scale and apparatus for making assembled hologram scale |
US5145942A (en) | 1990-09-28 | 1992-09-08 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Methyl substituted polyimides containing carbonyl and ether connecting groups |
US5633735A (en) | 1990-11-09 | 1997-05-27 | Litel Instruments | Use of fresnel zone plates for material processing |
US5235015A (en) | 1991-02-21 | 1993-08-10 | Minnesota Mining And Manufacturing Company | High speed aqueous solvent developable photopolymer compositions |
US5283777A (en) | 1991-04-26 | 1994-02-01 | Pioneer Electronic Corporation | Three-dimensional optical recording medium and optical information recording apparatus using the same |
US5289407A (en) | 1991-07-22 | 1994-02-22 | Cornell Research Foundation, Inc. | Method for three dimensional optical data storage and retrieval |
US5478869A (en) | 1991-10-24 | 1995-12-26 | Tosoh Corporation | Protective coating material |
DE4142327A1 (en) | 1991-12-20 | 1993-06-24 | Wacker Chemie Gmbh | Iodonium salts and process for their preparation |
US5377043A (en) | 1992-05-11 | 1994-12-27 | Cornell Research Foundation, Inc. | Ti:sapphire-pumped high repetition rate femtosecond optical parametric oscillator |
US5405733A (en) | 1992-05-12 | 1995-04-11 | Apple Computer, Inc. | Multiple beam laser exposure system for liquid crystal shutters |
DE4219376A1 (en) | 1992-06-12 | 1993-12-16 | Wacker Chemie Gmbh | Sulfonium salts and process for their preparation |
US5529813A (en) * | 1992-08-20 | 1996-06-25 | E. I. Du Pont De Nemours And Company | Process for microstructuring surfaces of oriented polymeric substratesusing laser radiation |
USRE36113E (en) | 1992-09-16 | 1999-02-23 | The University Of New Mexico | Method for fine-line interferometric lithography |
US5753346A (en) | 1992-10-02 | 1998-05-19 | Minnesota Mining & Manufacturing Company | Cationically co-curable polysiloxane release coatings |
DE4326473A1 (en) * | 1993-08-06 | 1995-02-09 | European Molecular Biology Lab Embl | Scanning microscope for viewing at an angle relative to the illumination |
US5422753A (en) | 1993-12-23 | 1995-06-06 | Xerox Corporation | Binary diffraction optical element for controlling scanning beam intensity in a raster output scanning (ROS) optical system |
US6025938A (en) | 1994-02-28 | 2000-02-15 | Digital Optics Corporation | Beam homogenizer |
US6051366A (en) | 1994-05-27 | 2000-04-18 | Kodak Polychrome Graphics Llc | Visible radiation sensitive composition and recording material producible therefrom |
US5854868A (en) | 1994-06-22 | 1998-12-29 | Fujitsu Limited | Optical device and light waveguide integrated circuit |
US5856373A (en) | 1994-10-31 | 1999-01-05 | Minnesota Mining And Manufacturing Company | Dental visible light curable epoxy system with enhanced depth of cure |
US5703140A (en) | 1995-01-30 | 1997-12-30 | Fuji Photo Film Co., Ltd. | Photopolymerizable composition |
US5759744A (en) | 1995-02-24 | 1998-06-02 | University Of New Mexico | Methods and apparatus for lithography of sparse arrays of sub-micrometer features |
US5665522A (en) | 1995-05-02 | 1997-09-09 | Minnesota Mining And Manufacturing Company | Visible image dyes for positive-acting no-process printing plates |
US5747550A (en) | 1995-06-05 | 1998-05-05 | Kimberly-Clark Worldwide, Inc. | Method of generating a reactive species and polymerizing an unsaturated polymerizable material |
US5912257A (en) * | 1995-09-06 | 1999-06-15 | The Research Foundation Of State University Of New York | Two-photon upconverting dyes and applications |
US5864412A (en) | 1995-09-08 | 1999-01-26 | Seagate Technology, Inc. | Multiphoton photorefractive holographic recording media |
US5759721A (en) | 1995-10-06 | 1998-06-02 | Polaroid Corporation | Holographic medium and process for use thereof |
US5952152A (en) | 1995-11-24 | 1999-09-14 | Ciba Specialty Chemicals Corporation | Borate coinitiators for photopolymerization |
US5750641A (en) | 1996-05-23 | 1998-05-12 | Minnesota Mining And Manufacturing Company | Polyimide angularity enhancement layer |
US5847812A (en) | 1996-06-14 | 1998-12-08 | Nikon Corporation | Projection exposure system and method |
US6030266A (en) | 1996-07-29 | 2000-02-29 | Commissariat A L'energie Atomique | Process and apparatus for the formation of patterns in a photoresist by continuous laser irradiation, application to the production of microtips emissive cathode electron sources and flat display screens |
US5832931A (en) * | 1996-10-30 | 1998-11-10 | Photogen, Inc. | Method for improved selectivity in photo-activation and detection of molecular diagnostic agents |
US6267913B1 (en) | 1996-11-12 | 2001-07-31 | California Institute Of Technology | Two-photon or higher-order absorbing optical materials and methods of use |
US6618174B2 (en) | 1996-11-15 | 2003-09-09 | Diffraction, Ltd | In-line holographic mask for micromachining |
DE19653413C2 (en) | 1996-12-22 | 2002-02-07 | Stefan Hell | Scanning microscope, in which a sample is simultaneously optically excited in several sample points |
US6262423B1 (en) | 1996-12-22 | 2001-07-17 | Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E. V. | Scanning microscope in which a sample is simultaneously and optically excited at various points |
US5998495A (en) | 1997-04-11 | 1999-12-07 | 3M Innovative Properties Company | Ternary photoinitiator system for curing of epoxy/polyol resin compositions |
US6025406A (en) | 1997-04-11 | 2000-02-15 | 3M Innovative Properties Company | Ternary photoinitiator system for curing of epoxy resins |
US6215095B1 (en) | 1997-04-28 | 2001-04-10 | 3D Systems, Inc. | Apparatus and method for controlling exposure of a solidifiable medium using a pulsed radiation source in building a three-dimensional object using stereolithography |
US6005137A (en) | 1997-06-10 | 1999-12-21 | 3M Innovative Properties Company | Halogenated acrylates and polymers derived therefrom |
US6043913A (en) * | 1997-07-09 | 2000-03-28 | Industrial Technology Research Institute | Apparatus for producing dot matrix hologram |
US6020591A (en) * | 1997-07-11 | 2000-02-01 | Imra America, Inc. | Two-photon microscopy with plane wave illumination |
US5770737A (en) | 1997-09-18 | 1998-06-23 | The United States Of America As Represented By The Secretary Of The Air Force | Asymmetrical dyes with large two-photon absorption cross-sections |
US5859251A (en) | 1997-09-18 | 1999-01-12 | The United States Of America As Represented By The Secretary Of The Air Force | Symmetrical dyes with large two-photon absorption cross-sections |
US6608228B1 (en) | 1997-11-07 | 2003-08-19 | California Institute Of Technology | Two-photon or higher-order absorbing optical materials for generation of reactive species |
US6048911A (en) | 1997-12-12 | 2000-04-11 | Borden Chemical, Inc. | Coated optical fibers |
US6103454A (en) | 1998-03-24 | 2000-08-15 | Lucent Technologies Inc. | Recording medium and process for forming medium |
US6316153B1 (en) | 1998-04-21 | 2001-11-13 | The University Of Connecticut | Free-form fabricaton using multi-photon excitation |
US6297910B1 (en) * | 1998-05-19 | 2001-10-02 | Seagate Technology Llc | Laser-texturing data zone on a magnetic disk surface by using degenerative two wave mixing |
US6115339A (en) | 1998-06-17 | 2000-09-05 | International Business Machines Corporation | Method and system in an optical storage disc drive for conserving laser power |
US6469755B1 (en) | 1998-10-29 | 2002-10-22 | Hitachi, Ltd. | Illuminating arrangement with reflector having inclined irregularities or corrugations |
US6327074B1 (en) * | 1998-11-25 | 2001-12-04 | University Of Central Florida | Display medium using emitting particles dispersed in a transparent host |
US6107011A (en) | 1999-01-06 | 2000-08-22 | Creo Srl | Method of high resolution optical scanning utilizing primary and secondary masks |
US6322933B1 (en) | 1999-01-12 | 2001-11-27 | Siros Technologies, Inc. | Volumetric track definition for data storage media used to record data by selective alteration of a format hologram |
US20050009175A1 (en) | 1999-03-03 | 2005-01-13 | Symyx Technologies, Inc. | Chemical processing microsystems comprising high-temperature parallel flow microreactors |
US6703188B1 (en) | 1999-03-29 | 2004-03-09 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Method of fabricating optical waveguide structure |
US6100405A (en) | 1999-06-15 | 2000-08-08 | The United States Of America As Represented By The Secretary Of The Air Force | Benzothiazole-containing two-photon chromophores exhibiting strong frequency upconversion |
US6312876B1 (en) | 1999-07-08 | 2001-11-06 | Taiwan Semiconductor Manufacturing Company | Method for placing identifying mark on semiconductor wafer |
US6573026B1 (en) * | 1999-07-29 | 2003-06-03 | Corning Incorporated | Femtosecond laser writing of glass, including borosilicate, sulfide, and lead glasses |
US6322931B1 (en) | 1999-07-29 | 2001-11-27 | Siros Technologies, Inc. | Method and apparatus for optical data storage using non-linear heating by excited state absorption for the alteration of pre-formatted holographic gratings |
US6624915B1 (en) * | 2000-03-16 | 2003-09-23 | Science Applications International Corporation | Holographic recording and micro/nanofabrication via ultrafast holographic two-photon induced photopolymerization (H-TPIP) |
US20050054744A1 (en) | 2000-06-15 | 2005-03-10 | 3M Innovative Properties Company | Multiphoton photosensitization system |
US7014988B2 (en) | 2000-06-15 | 2006-03-21 | 3M Innovative Properties Company | Multiphoton curing to provide encapsulated optical elements |
US7060419B2 (en) | 2000-06-15 | 2006-06-13 | 3M Innovative Properties Company | Process for producing microfluidic articles |
US20060078831A1 (en) | 2000-06-15 | 2006-04-13 | 3M Innovative Properties Company | Multiphoton curing to provide encapsulated optical elements |
US7026103B2 (en) | 2000-06-15 | 2006-04-11 | 3M Innovative Properties Company | Multicolor imaging using multiphoton photochemical processes |
US20070087284A1 (en) | 2000-06-15 | 2007-04-19 | 3M Innovative Properties Company | Multipass multiphoton absorption method and apparatus |
US7166409B2 (en) | 2000-06-15 | 2007-01-23 | 3M Innovative Properties Company | Multipass multiphoton absorption method and apparatus |
US6852766B1 (en) | 2000-06-15 | 2005-02-08 | 3M Innovative Properties Company | Multiphoton photosensitization system |
US6855478B2 (en) | 2000-06-15 | 2005-02-15 | 3M Innovative Properties Company | Microfabrication of organic optical elements |
US6441356B1 (en) * | 2000-07-28 | 2002-08-27 | Optical Biopsy Technologies | Fiber-coupled, high-speed, angled-dual-axis optical coherence scanning microscopes |
US20020034693A1 (en) * | 2000-08-31 | 2002-03-21 | Takashi Fukuda | Information recording method |
US6541591B2 (en) | 2000-12-21 | 2003-04-01 | 3M Innovative Properties Company | High refractive index microreplication resin from naphthyloxyalkylmethacrylates or naphthyloxyacrylates polymers |
US20040012872A1 (en) | 2001-06-14 | 2004-01-22 | Fleming Patrick R | Multiphoton absorption method using patterned light |
US6750266B2 (en) | 2001-12-28 | 2004-06-15 | 3M Innovative Properties Company | Multiphoton photosensitization system |
US20040067431A1 (en) | 2002-10-02 | 2004-04-08 | 3M Innovative Properties Company | Multiphoton photosensitization system |
US20030155667A1 (en) | 2002-12-12 | 2003-08-21 | Devoe Robert J | Method for making or adding structures to an article |
Non-Patent Citations (105)
Title |
---|
"Corning SNF-28 optical fiber Product Information" datasheet. Corning Incorporated, New York, 2002 (Product Brochure PI1036, Issued: Apr. 2002, Supersedes: Dec. 2001, ISO 9001 Registered) 4 pgs. |
"Gaussian Beam Propagation," CVI Melles Griot Inc., Albuquerque, NM, copyright 2002, retrieved from the internet at <http://www.mellesgriot.com/products/optics/gb—2—3.htm> on Nov. 20, 2009, 7 pgs. |
"Gaussian Beam Propagation," CVI Melles Griot Inc., Albuquerque, NM, copyright 2002, retrieved from the internet at on Nov. 20, 2009, 7 pgs. |
Ashley et al., Holographic Data Storage, IBM J. Res. Develop. vol. 44, No. 3, May 2000, pp. 341-368. |
Badlwinson, Auxiliaries Associated With Main Dye Classes, Colorants and Auxiliaries, vol. 2, 1990, Chapter 12. |
Belfield et al., "multiphoton-absorbing organic material for microfabrication, emerging optical applications and non-destructive three dimensional imaging", J. Phys. Org. Chem., vol. 13, pp. 837-849 (2000). * |
Belfield et al., Multiphoton-Absorbing Organic Materials For Microfabrication, emerging Optical Applications and Non-Destructive Three-Dimensional Imaging, J. Phys. Org.,vol. 13, pp. 837-849, 2000. |
Belfield et al., Near-IR two photon absorbing dyes and photoinitiated cationic polymerization, Polymer Preprints, vol. 41(1) pp. 578-579 (Mar. 2000). * |
Belfield et al., Near-IR Two-Photon Photoinitiated Polymerization Using a Fluorone/Amine Initiating System, J. Am. Chem. Soc., 2000, 122 pp. 1217-1218. |
Beringer et al., J. Am. Chem. Soc. 81, 342 (1959). |
Bogdanov et al., "Parallel, confocal, and complete spectrum imager for fluorescent detection of high density micro array", Proc. SPIE vol. 3605 pp. 298-307 (Jan. 1999). |
Boiko et al., Thresold Enhancement in Two-Photon Photopolymerization, SPIE, vol. 4097, pp. 254-263, 2000. |
Buist et al., "Real time two photon absorption microscopy using multi-point excitation", J., Microsc. vol. 192(2) pp. 217-226 (Nov. 1998). |
Bull. Chem. Soc. Japan, 42, 2924-2930 (1969), Wakabayashi et al. |
Bunning et al. Electronically Switchable Grating Formed Using Ultrafast Holographic Two-Photon-Induced Photopolymerization, Chem. Mater., 2000, 12 pp. 2842-2844. |
Bunning et al., Electrically Switchable Grating Formed Using Ultrafast Holographic Two-Photon-Induced Photopolymerization, Chem. Mater. 2000, vol. 12, pp. 2842-2844. |
C. Xu and W. W. Webb in J. Opt. Soc. Am. B, 13, 481 (1996). |
Cambaliza et al., Opt. Commun. vol. 184(1-4) pp. 25-35 (Oct. 2000). * |
Campagnola et al., 3-Dimensional Submicron Polymcrization of Acrylamide by Multiphoton Excitation of Xanthene Dyes, Macromolecules, 2000, vol. 33, pp. 1511-1513. |
Clark et al., "Fiber delivery of femtosecond pulses from a Ti:sapphire laser," Opt. Lett., vol. 26(17); pp. 1320-1322 (Sep. 1, 2001). |
Cumpston B H et al., New Photopolmers Based on Two-Photon Absorbing Chromophores and Application to Three-Dimensional Microfabrication and Optical Storage, Mat. Res. Soc. Symp. Proc., vol. 488, pp. 217-225, 1998, XP008000191. |
Cumpston et. al. Two-Photon Polymerization Initiators For Three-Dimensional Optical Data Storage and Microfabrication, Nature, vol. 398, Mar. 4, 1999, pp. 51-54. |
D. F. Eaton in Advances in Photochemistry, B. Voman et al., vol. 13, pp. 427-488, (1986). |
Davidson, The Chemistry of Photoinitiators Some Recent Developments, J. Photochem. Photobiol. A., vol. 73, pp. 81-96, 1993. |
Dektar et al., Photochemistry of Triarylsulfonium Salts, J. Am. Chem. Soc., vol. 112, pp. 6004-6015, 1990. |
Denk et al., Two-Photon Laser Scanning Fluorescence Microscopy, Science, vol. 248, pp. 73-76, Apr. 1990. |
Diamond et al., Two-Photon Holography in 3-D Photopolymer Host-Guest Matrix, Optics Express, vol. 6, No. 3, Jan. 31, 2000, pp. 64-68. |
Diamond et al., Two-Photon Holography in 3-D Photopolymer Host-Guest Matrix: errata ,Optic Express, vol. 6, No. 4, Feb. 14, 2000, pp. 109-110. |
Dvornikov et al., Two-Photon Three-Dimensional Optical Storage Memory, Advances in Chemistry Series, vol. 240, pp. 161-177, 1994. |
Goppert-Mayer, Uber Elmentarakte Mit zwei Quantesprungen, Ann. Phys., vol. 9, pp. 273-294, 1931. |
Grime, G.W., "holographic diffraction gratings recorded in photoresist", in Non-Silver Photographic Processes, Cox,Ed. (1975) pp. 275-285. * |
He et al., Two-Photon Absorption and Optical-Limiting Properties of Novel Organic Compounds, Optics Letters, vol. 20, No. 5, pp. 435-437, Mar. 1995. |
Hell et al., "Fundamental improvement of resolution with a 4Pi-confacl fluorescence microscope using two photon excitation". Opt. Commun. vol. 93 (5,6) pp. 277-282 (1992). * |
Hitz, "Hollow fiber delivers distortion free femtosecond pulses," Opt. Lett., vol. 29 (11); pp. 1285-1287 (Jun. 2004) [retrieved on Aug. 30, 2005. Retrieved from the Internet: ]. |
Hitz, "Hollow fiber delivers distortion free femtosecond pulses," Opt. Lett., vol. 29 (11); pp. 1285-1287 (Jun. 2004) [retrieved on Aug. 30, 2005. Retrieved from the Internet: <http:www.photonics.com/spectra/research/XQ/ASP/preaid.194/QX/read.htm>]. |
Hong-Bo Sun et al., Three-dimensional Photonic Crystal Structures Achieved With Two-Photon-Absorption Photopolymerization of Material, Applied Physics Letters, vol. 74, No. 6, Feb. 8, 1999, pp. 786-788. |
Hong-Bo Sun, Real Three-Dimensional Microstructures Fabricated by Photpolymerization of Resins Through Two-Photon Absorption, Optical Letters, vol. 25, No. 5, pp. 1110-1112, Aug. 2000. |
I. B. Berlman in Handbook of Fluorescence Spectra of Aromatic Molecules, Second Edition, pp. 24-27, Academic Press, New York (1971). |
Ichihara et al., "High-Speed Confocal Fluorescence Microscopy Using a Nipkow Scanner with Microlenses for 3-D Imaging of Single Fluorescent Molecule in Real Time," Bioimages, Jun. 1996;4(2):57-62. |
Ito, Chemical Amplification Resists: History and Development Within IBM, IBM J. Res. Develop., vol. 41, No. ½, pp. 69-80, Mar. 1997. |
J. N. Demas and G. A. Crosby in J. Phys. Chem. 75, 991-1024 (1971). |
J. V. Morris, M. A. Mahoney, and J. R. Huber in J. Phys. Chem. 80, 969-974 (1976). |
Jenkins et al., Fundamentals of Optics, 3rd Edition, McGraw-Hill, New York, pp. 331, 1957. |
Joshi et al., Three-dimensional Optical Circuitry Using Two-Photo-Assisted Polymerization, Applied Physics Letters, vol. 74, No. 2, Jan. 11, 1999, pp. 170-172. |
Kato et al., "Multiple-spot parallel processing for laser micronanofabrication," Applied Physics Letters, 2005; 86:044102-1 to 044102-3. |
Kavarnos et al., Photosensitization by Reversible Electron Transfer : Theories, Experimental Evidence, and Examples, Chem. Rev., vol. 86, pp. 401-449, Apr. 1986. |
Kawata et al., Two-Photon Photopolymerization of Functional Micro-Devices, Journal of Photopolymer Science and Technology, vol. 15, No. 3, pp. 471-474, 2002. |
Kawata S. et al., Photon-Iduces Micro/Nano Fabrication, Manipulation and Imaging with Unconvential Photo-Active Systems, Mol. Cryst. Liq. Cryst., vol. 314, pp. 173-178, Aug. 25, 1997, XP001059839. |
Kennedy et al., p-Bis(o-methylstyryl) benzene as a Power-Squared Sensor for Two-Photon Absorption Measurements between 537 and 694 nm, Anal. Chem., vol. 58, pp. 2643-2647, 1986. |
Kewitsch et al., Self-Focusing and Self-Trapping of Optical Beams Upon Photopolymerization, Optics Letters,vol. 21, No. 1, pp. 24-26, Jan. 1996. |
Kirkpatrick et al. Holographic Recording Using Two-Photon-Induced Photopolymerization, Appl. Phys. A, vol. 69, pp. 461-464, 1999. |
Kosar, Photochemical Formation and Destruction of Dyes, Light-Sensitive Systems, John Wiley & Sons, New York, NY, 1965, Chapter 8. |
Kuebler S M et al., Three-Dimensional Microfabrication Using Two-Photon Activated Chemistry, SPIE vol. 3937, pp. 97-105, Jan. 27, 2000 XP008000209. |
Lakowicz et al., "Fluorescence spectral properties of . . . ", J. Phys. Chem., vol. 100(50) pp. 19406-19411 (1996). * |
Large, Photographic Sensitivity, Academic Press (1973), R.J. Cox, ed., pp. 241-263. |
Lee et al., Micromachining Applications of a High Resolution Ultrathick Photoresist, J.Vac. Sci. Technol. B, vol. 13, pp. 3012-3016, Dec. 1995. |
Lindek et al. "confocal theta microscopy and 4Pi-confocal theta microscopy" Proc. SPIE 2184 , pp. 188-194 (1994). * |
Lindek et al. "resolution improvement by non confocal theta microscopy", Opt. Lett., vol. 24(21) pp. 1505-1507 (Nov. 1999). * |
Lindek et al. "Two new high-resolution confocal fluorescence microscopies (4Pi, Theta) with one- and two-photon excitation" in Handbook of Biological Confocal Microscopy, J. Pawley Ed, pp. 417-430 (1995). * |
Lipson et al., Nature of the Potential Energy Surfaces for the Sn1 Reaction A Picosecond Kinetic Study of Homolysis and Heterolysis for Diphenylmethyl Chlorides, J. Am. Chem. Soc., vol. 118, pp. 2992-2997, 1996. |
Lorenz et al., SU-8: a low cost negative resist for MEMS, J. Micromech. Microeng. , vol. 7, pp. 121-124, 1997. |
Maiti et al., Measuring Serotonin Distribution in Live Cells with Three-Photon Excitation, Science, vol. 275, pp. 530-532, Jan. 1997. |
Makukha et al., Two-Photon-Excitation Spatial Distribution for Cross Focused Gaussian Beams, Applied Optics, vol. 40, No. 23, pp. 3932-3936 (Aug. 10, 2001). |
March, Advanced Organic Chemistry: Reactions, Mechanisms and Structure, Four Edition, 1992, Wiley-Interscience, New York, Chapter 2. |
March, Advanced Organic Chemistry: Reactions, Mechanisms and Structure, Four Edition, 1992, Wiley-Interscience, New York, Chapter 9. |
March., Advanced Organic Chemistry: Reactions, Mechanisms and Structure, Four Edition, 1992, Wiley-Interscience, New York, p. 205. |
Maruo et al., Three-Dimensional Microfabrication With Two-Photon-Absorbed Photopolymerization, Optics Letters, vol. 22, No. 2, pp. 132-134, Jan. 1997. |
Maruo et al., Two-Photon-Absorbed Photopolymerization for Three-Dimensional Microfabrication, IEEE, The Tenth Annual International Workshop on Micro Electro Mechanical Systems, pp. 169-174, 1997. |
Maruo s et al., Movable Microstructures made by Two-Photon Three-Dimensional Microfabrication, 1999 International Symposium on Micromechatronics and Human Science, vol. 23, pp. 173-178 XP002191032. |
McClelland et al., Flash Photolysis Study of a Friedel-Crafts alkylation. Reaction of the Photogenerated 9-Fluorenyl cation with aromatic compounds, J. Chem. Soc., vol. 2, pp. 1531-1543, 1996. |
McClelland et al., Laser Flash Photolysis of 9-Fluorenol. Production and Reactivities of the 9-Fluorenol Radical Cation and the 9-Fluorenyl Cation, J. Am. Chem. Soc., vol. 112, pp. 4857-4861, 1990. |
Misawa et al., Microfabrication by Femtosecond Laser Irradiation, SPIE,, vol. 3933, pp. 246-260, 2000. |
Misawa et al., Multibeam Laser Manipulation and Fixation of Microparticles, Appl. Phys. Letter, vol. 60, No. 3, pp. 310-312, Jan. 20, 1992. (XP 002189602). |
Miwa, Femtosecond Two-Photon Stereo-Lithography, Applied Physics A, vol. 73, No. 5, pp. 561-566, 2001. |
Odian, Principles of Polymerization Second Edition John Wiley & Sons, New York, 1981, pp. 181. |
Parthenopoulos et al., Three-Dimensional Optical Storage Memory, Science, vol. 245, pp. 843-845, Aug. 1989. |
Payne et al. "High intensity laser beam attenuation based upon two-step absorption mechanism". J. Appl. Phys. vol. 72(9) pp. 4281-4287 (Nov. 1992). |
Pitts et al., Submicro Multiphoton Free-Form Fabrication of Proteins and Polymers : Studies of Reaction Efficiencies and Applications in Sustained Release, Macromolecules, vol. 33, pp. 1514-1523, 2000. |
R. D Allen et al. in Proc. SPIE 2438, 474 (1995). |
R. D. Allen, G. M. Wallraff, W. D. Hinsberg, and L. L. Simpson in High Performance Acrylic Polymers for Chemically Amplified Photoresist Applications, J. Vac. Sci. Technol. B, 9, 3357 (1991). |
Richardson, Langmuir-Blodgett Films, An Introduction to Molecular Electronics, Chapter 10, 1995. |
Serbin et al., Femtosecond Laser-Induced Two-Photon Polymerization of Inorganic-Organic Hybrid Materials for Applications in Photonics, Optics Letters, vol. 28, No. 5, pp. 301-303, Mar. 2003. |
Shaw et al., Negative Photoresists for Optical Lithography, IBM J. Res. Develop., vol. 41, No. ½, pp. 81-94, Jan./Mar. 1997. |
Shirai et al., Photoacid and Photobase Generators : Chemistry and Applications to Polymeric Materials, Prog. Polym. Sci., vol. 21, pp. 1-45, 1996. |
Smith, Modern Optic Engineering, 1966, McGraw-Hill, pp. 104-105. |
Stellacci et al., Laser and Electon-Beam Induced Growth of Nanoparticles for 2D and 3D Metal Patterning, Adv. Mater., vol. 14, No. 3, pp. 194-198, Feb. 2002. |
Strickler et al., 3-D Optical Data Storage by Two-Photon Excitation, Adv. Mater., vol. 5, No. 6, pp. 479, 1993. |
Strickler et al., Three-Dimensional Optical Data Storage in Refractive Media by Two-Photon Point Excitation, Optics Letters, vol. 16, No. 22, pp. 1780-1782, Nov. 1991. |
Sun et al., Photonic Crystal Structures With SubmicrometerSpatial Resolution Achieved by High Power Femtosecond Laser-Induced Photopolymerization, SPIE, vol. 3888, pp. 122-130, 2000. (XP 001051864). |
Syper et al., Synthesis of Oxiranylquinones as New Potential Bioreductive Alkylating Agents, Tetrahedron, vol. 39, No. 5, pp. 781-792, 1983. |
Tanaka et al., Three-Dimensional Fabrication and Observation of Micro-Structures Using Two-Photon Absorption and Fluorescence, SPIE, vol. 3937, pp. 92-96, Jan. 27, 2000, XP001051866. |
Thayumanavan et al., Synthesis of Unsymmetrical Triarylamines for Photonic Applications via One-Pot Palladium-Catalyzed Aminations, Chem. Mater., vol. 9, pp. 3231-3235, 1997. |
Tiziani et al., "Three-dimensional analysis by a microlens-array confocal arrangement," Applied Optics, Feb. 1, 1994;33(4):567-572. |
U.S. Appl. No. 60/211,708. * |
Wan et al., Contrasting Photosolvolytic Reactivities of 9-Fluorenol vs. 5-Suberenol Derivatives. Enhanced Rate of Formation of Cyclically Conjugated Four pi Carbocations in the Excited State, J. Am. Chem. Soc., vol. 111, pp. 4887-4895, 1989. |
Wan et al., Contrasting Photosolvolytic Reactivities of 9-Fluorenol vs. 5-Suberenol Derivatives. Enhanced Rate of Formation of Cyclically Conjugated Four π Carbocations in the Excited State, J. Am. Chem. Soc., vol. 111, pp. 4887-4895, 1989. |
Watanabe et al., Photoreponsive Hydrogel Microstructure Fabricated by Two-Photon Initiated Polymerization, Adv. Func. Mater., vol. 12, No. 9, pp. 611-614, Sep. 2002. |
Webpage Journal of Physical Organic Chemistry, vol. 13, issue 12, (Dec. 2000) "Published online: Nov. 9, 2000" (3 pages). * |
Wenseleers et al., Five Orders-of-Magnitude Enhancement of Two-Photon Absorption for Dyes on Silver Nanoparticle Fractal Clusters, J. Phys. Chem. B, vol. 106, pp. 6853-6863, 2002. |
Williams et al., Two-Photon Molecular Excitation Provides Intrinsic 3-Dimensional Resolution for Laser-based Microscopy and Microphotochemistry, FASEB Journal, vol. 8, pp. 804-813, Aug. 1994. |
Xu et al., Multiphoton Fluorescence Excitation: New Spectral Windows for Biological Nonlinear Microscopy, Proc. Natl. Acad. Sci. USA, vol. 93, pp. 10763-10768, Oct. 1996. |
Yuste et al., Dendritic Spines as Basic Functional Units of Neuronal Integration, Nature, vol. 375, pp. 682-684, Jun. 1995. |
Zhou et al., An Efficient Two-Photon-Generated Photoacid Applied To Positive-Tone 3D Microfabrication, Science, vol. 296, pp. 1106-1109, May 10, 2002. |
Zhou et al.. Efficient Photacids Based Upon Triarylamine Dialkylsulfonium Salts, J. Am. Chem. Soc., vol. 124, No. 9, pp. 1897-1901. |
Zollinger, Color Chemistry, VCH, Weinheim, GE, 1991, Chapter 8. |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10133174B2 (en) | 2013-12-06 | 2018-11-20 | 3M Innovative Properties Company | Liquid photoreactive composition and method of fabricating structures |
US12326401B2 (en) * | 2019-05-21 | 2025-06-10 | Politechnika Warszawska | Refractive index distribution standard |
Also Published As
Publication number | Publication date |
---|---|
KR20030076234A (en) | 2003-09-26 |
EP1292861B1 (en) | 2014-11-19 |
EP1292861A2 (en) | 2003-03-19 |
AU2001266918A1 (en) | 2001-12-24 |
WO2001096959A3 (en) | 2002-05-02 |
WO2001096959A2 (en) | 2001-12-20 |
JP2004503928A (en) | 2004-02-05 |
US20040223385A1 (en) | 2004-11-11 |
KR100811017B1 (en) | 2008-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7790353B2 (en) | Multidirectional photoreactive absorption method | |
US7166409B2 (en) | Multipass multiphoton absorption method and apparatus | |
US6852766B1 (en) | Multiphoton photosensitization system | |
US20040012872A1 (en) | Multiphoton absorption method using patterned light | |
EP1297021B1 (en) | Multiphoton photosensitization system | |
US7060419B2 (en) | Process for producing microfluidic articles | |
US6750266B2 (en) | Multiphoton photosensitization system | |
US7118845B2 (en) | Multiphoton photochemical process and articles preparable thereby | |
US20030155667A1 (en) | Method for making or adding structures to an article | |
KR100795762B1 (en) | Multiphoton Absorption Using Patterned Light | |
WO2001096452A2 (en) | Method for making or adding structures to an article |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: 3M INNOVATIVE PROPERTIES COMPANY, MINNESOTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FLEMING, PATRICK R.;DEVOE, ROBERT J.;LEATHERDALE, CATHERINE A.;AND OTHERS;REEL/FRAME:013597/0036;SIGNING DATES FROM 20021204 TO 20021210 Owner name: 3M INNOVATIVE PROPERTIES COMPANY, MINNESOTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FLEMING, PATRICK R.;DEVOE, ROBERT J.;LEATHERDALE, CATHERINE A.;AND OTHERS;SIGNING DATES FROM 20021204 TO 20021210;REEL/FRAME:013597/0036 |
|
CC | Certificate of correction | ||
FPAY | Fee payment |
Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.) |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20180907 |