US7812531B2 - Preventing stress transfer in OLED display components - Google Patents
Preventing stress transfer in OLED display components Download PDFInfo
- Publication number
- US7812531B2 US7812531B2 US11/782,797 US78279707A US7812531B2 US 7812531 B2 US7812531 B2 US 7812531B2 US 78279707 A US78279707 A US 78279707A US 7812531 B2 US7812531 B2 US 7812531B2
- Authority
- US
- United States
- Prior art keywords
- substrate
- oled
- encapsulation container
- materials
- perimeter seal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K77/00—Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
- H10K77/10—Substrates, e.g. flexible substrates
- H10K77/111—Flexible substrates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/84—Passivation; Containers; Encapsulations
- H10K50/841—Self-supporting sealing arrangements
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/87—Passivation; Containers; Encapsulations
- H10K59/871—Self-supporting sealing arrangements
- H10K59/872—Containers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/87—Passivation; Containers; Encapsulations
- H10K59/873—Encapsulations
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/301—Details of OLEDs
- H10K2102/302—Details of OLEDs of OLED structures
- H10K2102/3023—Direction of light emission
- H10K2102/3026—Top emission
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/301—Details of OLEDs
- H10K2102/311—Flexible OLED
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to OLED displays and more particularly to providing moisture protection for the OLED in the display.
- An organic light-emitting diode device also called an OLED device, commonly includes a substrate, an anode, a hole-transporting layer made of an organic compound, an organic luminescent layer with suitable dopants, an organic electron-transporting layer, and a cathode.
- OLED devices are attractive because of their low driving voltage, high luminance, wide-angle viewing, and capability for full-color flat emission displays. Tang et al. described this multilayer OLED device in their U.S. Pat. Nos. 4,769,292 and 4,885,211.
- OLED displays A common problem with OLED displays is sensitivity to moisture. They can be particular highly moisture-sensitive electronic devices, and require humidity control to levels below about 1000 ppm and some require humidity control below even 100 ppm.
- an encapsulation container encloses the OLED device and is secured to the substrate to form an enclosure. Desiccant material is formed on the inside surface of the enclosure to protect the OLED from moisture.
- a problem with this arrangement is that stress can be transferred between the substrate and the encapsulation container thereby causing mechanical damage to either or either of such elements (e.g. cracking) or to the adhesive used to secure the substrate and encapsulation container (e.g. delamination or cracking). This is particularly a problem as the OLED displays become larger and can flex during handling. This can also be a problem when the substrate and the encapsulation container comprise different materials with different coefficients of expansion.
- an OLED display comprising:
- an OLED having two spaced-apart electrodes and organic layers disposed there between and the OLED being disposed over the substrate;
- an encapsulation container fixed by perimeter seal to the substrate and disposed over the OLED to provide an enclosure
- the substrate or the encapsulation container or both including compliant regions that flex, compress, or expand under stress and reduce stress transfer between the substrate or the encapsulation container through the perimeter seal.
- FIG. 1 shows a cross-sectional view of one embodiment of an encapsulated OLED display including compliant regions according to this invention
- FIG. 2 shows a top view of one embodiment of an encapsulation container as used in FIG. 1 ;
- FIG. 3 shows a cross-sectional view of another embodiment of an encapsulation container according to this invention.
- FIG. 4 shows a cross-sectional view of another embodiment of an encapsulated OLED display including compliant regions according to this invention.
- FIG. 5 shows a cross-sectional view of another embodiment of an encapsulated OLED display including compliant regions according to this invention.
- OLED device or “organic light-emitting display” is used in its art-recognized meaning of a display device comprising organic light-emitting diodes as pixels.
- bottom-emitting refers to display devices that emit light and are viewed through the substrate upon which they are based.
- top-emitting refers to display devices in which light is primarily not emitted through the substrate but opposite to the substrate, and are viewed through the side opposite to the substrate.
- desiccant is employed to designate organic or inorganic materials used to physically or chemically absorb or react with moisture that would otherwise damage the highly moisture-sensitive electronic devices.
- FIG. 1 there is shown a cross-sectional view of one embodiment of an encapsulated OLED display including compliant regions according to this invention.
- OLED display 100 is formed over substrate 10 .
- OLED display 100 includes an OLED 25 disposed over substrate 10 and having organic layers 30 disposed between two spaced-apart electrodes 20 and 40 .
- An encapsulation container 70 is disposed over OLED 25 and is fixed to substrate 10 by perimeter seal 50 , providing enclosure 55 .
- a desiccant 60 can be located in enclosure 55 to protect the OLED display from moisture incursion around or through perimeter seal 50 .
- Encapsulation container 70 includes one or more compliant regions 75 that can flex, compress, or expand under stress.
- the compressing, expanding, or flexing of compliant regions 75 under stress reduces the stress transferred from encapsulation container 70 to substrate 10 or to perimeter seal 50 , and from substrate 10 to encapsulation container 70 or to perimeter seal 50 .
- Encapsulation container 70 can also include sealing base 85 , which is a region designed to form a seal with perimeter seal 50 , and a fitting region 80 , which is designed to shape the encapsulation container to fit over OLED 25 . Flexing, compressing, or expanding of the compliant regions also reduces the stress transferred from the inner portion of the encapsulation container 70 to the seal base 85 .
- the compliant regions can be formed by any way that provides for sufficient flexing, compressing, or expanding.
- the compliant regions can comprise multiple bends in a thin flexible material such as metal foils, polymer films, or rubbers to form accordion-like regions.
- a thin flexible material such as metal foils, polymer films, or rubbers to form accordion-like regions.
- solid compliant materials such as polymers can form the compliant regions or rubbers that have sufficiently low modulus.
- These solid compliant materials can be a single material or composite materials including other organic or inorganic components.
- Encapsulation container 70 can comprise an organic solid, an inorganic solid, or a combination of organic and inorganic solids.
- Encapsulation container 70 can be flexible, or can include a flexible portion and a rigid portion, and can be processed as separate individual pieces, such as sheets or wafers, or as continuous rolls.
- Typical encapsulation container materials include glass, plastic, metal, ceramic, semiconductor, metal oxide, metal nitride, metal sulfide, semiconductor oxide, semiconductor nitride, semiconductor sulfide, carbon or combinations thereof.
- Encapsulation container 70 , or a portion thereof, can be a flexible foil, e.g.
- encapsulation container 70 is a metal foil.
- the portion of encapsulation container 70 over organic layers 30 is transparent if OLED display 100 is top-emitting, but portions that cover non-emitting regions can be opaque.
- Encapsulation container 70 can be a homogeneous mixture of materials, a composite of materials, multiple layers of materials, or an assembly of multiple materials such as a rigid transparent window with an opaque frame and flexible foil in the compliant regions.
- FIG. 2 there is shown a top view of one embodiment of an encapsulation container 70 as used in FIG. 1 .
- Sealing base 85 encircles the entire encapsulation container, to provide a complete seal around the OLED display.
- compliant region 75 can be provided inside sealing base 85 .
- All or part of encapsulation container 70 can be formed of a flexible foil.
- Encapsulation container 70 is desirably formed of flexible foil in compliant region 75 , and the compliant regions can be provided by spaced-apart bends in the foil. Other regions of encapsulation container 70 can be flexible or rigid.
- Encapsulation container 70 can also include a rigid portion 90 disposed between or within the compliant regions. Rigid portion 90 can be transparent, e.g. for viewing a top-emitting OLED display.
- FIG. 3 there is shown a cross-sectional view of another embodiment of an encapsulation container according to this invention.
- Encapsulation container 150 has a compliant region 160 on the vertical portions of the encapsulation container.
- OLED display 200 includes a substrate 210 that is formed of a flexible material.
- the substrate 210 can be plastic with a moisture barrier coating or can be a transparent portion of glass or plastic with compliant regions and seal regions of metal foil, plastic, rubber, or other compliant materials.
- the substrate 210 can be opaque and can be formed of a metal foil or rigid metal with compliant regions of metal foil, plastic, rubber, or other compliant materials.
- Substrate 210 can include compliant regions 230 that are provided by spaced-apart bends in the substrate, by solid compliant materials as discussed in FIG. 1 , or by flexures formed in the substrate as described below in the embodiment of FIG. 5 .
- Encapsulation container 240 can be a rigid material or can include compliant regions as described above.
- FIG. 5 there is shown a cross-sectional view of another embodiment of an encapsulated OLED display 250 including compliant regions 270 according to this invention.
- the compliant regions are formed by flexures that comprise only one or two bends in a thin flexible material such as metal foils, polymer films, or rubbers.
- the flexure formed by the combination of the material and the geometry must be capable of reducing the stress transferred between encapsulation container 260 and substrate 10 through the perimeter seal.
- a key design parameter for the flexure-type compliant regions of the embodiment of FIG. 5 and the compliant regions of the embodiments of FIG. 1 , FIG. 2 , FIG. 3 , and FIG. 4 relates to the level of stress transferred between the substrate and the encapsulation container through the perimeter seal.
- the level of stress transferred due to thermal expansion or contraction, due to flexing of the OLED display, or due to any other forces applied to the substrate, encapsulation container, or the perimeter seal must remain less than the cohesive and adhesive strengths of the substrate, encapsulation container, and perimeter seal. Delamination of the encapsulation container from the perimeter seal or the substrate from the perimeter seal is particularly sensitive to peel forces between the perimeter seal and either the encapsulation container or the substrate.
- the compliant regions must be designed to maintain peel stress levels below the peel strength of both the perimeter seal to substrate and the perimeter seal to encapsulation container.
- the specific level of compliance depends on the material choices for the substrate, encapsulation container, and perimeter seal, as well as the level of stress to which the OLED display will exposed during the manufacturing and use of the display.
- Perimeter seal 50 can be organic, inorganic, or a combination of organic and inorganic.
- the organic perimeter seal material can include epoxies, polyurethanes, acrylates, silicones, polyamides, polyolefins, and polyesters, or combinations thereof.
- the inorganic perimeter seal material can include glass, ceramic, metal, semiconductor, metal oxide, semiconductor oxide, and metal solder, or combinations thereof.
- the perimeter seal can be bonded between the substrate and the encapsulation container in a bonding step accomplished by pressing, by melting and cooling, by reaction curing, or by a combination thereof. Typical materials bonded by pressure include pressure-sensitive adhesives.
- Typical materials bonded by melting and cooling include glass; hot melt adhesives such as polyolefins, polyesters, polyamides, or combinations thereof, or inorganic solders such as indium, tin, lead, silver, gold, or combinations thereof.
- Typical reaction curing methods include reactions resulting from heat, radiation such as UV radiation, mixing of two or more components, removal of ambient oxygen, or combinations thereof.
- Typical materials bonded by reaction curing include acrylates, epoxies, polyurethanes, silicones, or combinations thereof.
- Other inorganic materials typically used in adhesive materials include glass, ceramic, metal, semiconductor, metal oxide, semiconductor oxide, or combinations thereof.
- Stress in the OLED display can come from several sources.
- the substrate or the encapsulation container, or both, can flex.
- the stress from one (the substrate or the encapsulation container) can be transferred to the other through one or more parts of the perimeter seal.
- the temperature of the OLED display can change, either through changes in the environment of the OLED display, or through heating and cooling of the display itself by its own functioning. Such heating and cooling will cause expansion and contraction of the materials comprising the display.
- the substrate and encapsulation container are formed from different materials with different coefficients of expansion, the different expansion rates can cause stress to be placed upon the perimeter seal, or cause stress to be transferred between the substrate and encapsulation container through the perimeter seal.
- Such stress can break the perimeter seal, or crack or break a fragile part of the OLED display, e.g. a glass substrate. Compliant regions that flex, expand, or compress under the stress can reduce the stress transferred to or through the perimeter seal.
- the substrate can be an organic solid, an inorganic solid, or a combination of organic and inorganic solids.
- the substrate can be rigid or flexible and can be processed as separate individual pieces, such as sheets or wafers, or as a continuous roll. If the substrate is flexible, it is meant that it is not rigid and provides no structural benefit, e.g. glass of 1 mm thickness or less.
- Typical substrate materials include glass, plastic, metal, ceramic, semiconductor, metal oxide, metal nitride, metal sulfide, semiconductor oxide, semiconductor nitride, semiconductor sulfide, carbon, or combinations thereof, or any other materials commonly used in the formation of OLED devices, which can be either passive-matrix devices or active-matrix devices.
- the substrate can be a homogeneous mixture of materials, a composite of materials, or multiple layers of materials.
- the substrate can be flexible in one portion and rigid in another portion.
- compliant region 230 can be flexible, while other parts of substrate 210 can be rigid.
- rigid it is meant that the substrate or portion thereof is not flexible enough to relieve stress, e.g. through compliant regions as described herein. This can include substrates that provide little structural benefit and include a limited degree of flexibility, e.g. glass of 1 mm thickness or less.
- the substrate can be an OLED substrate, that is a substrate commonly used for preparing OLED devices, e.g. active-matrix low-temperature polysilicon or amorphous-silicon TFT substrate.
- the transmissive characteristic of the bottom support is immaterial, and therefore can be light transmissive, light absorbing or light reflective.
- the substrate can be any transmissive material including, but not limited to, glass and plastic.
- OLED devices that can be used in this invention have been well described in the art, and OLED display 100 can include layers commonly used for such devices.
- a bottom electrode 20 is formed over OLED substrate 10 and is most commonly configured as an anode, although the practice of this invention is not limited to this configuration.
- Example conductors for this application include, but are not limited to, indium-tin oxide, indium-zinc oxide, gold, iridium, molybdenum, palladium, platinum, aluminum or silver. If the device is bottom-emitting, the electrode must be transparent or nearly transparent. For such applications, metals must be thin (preferably less than 25 nm) or one must use transparent conductive oxides (e.g. indium-tin oxide, indium-zinc oxide), or a combination of these materials. Any suitable process such as evaporation, sputtering, chemical vapor deposition, or electrochemical deposition can deposit desired anode materials. Anode materials can be patterned using well-known photolithographic processes.
- Organic layers 30 comprise several layers as described in the art. While not always necessary, it is often useful that a hole-transporting layer be formed and disposed over the anode. Any suitable process such as evaporation, sputtering, chemical vapor deposition, electrochemical deposition, thermal transfer, or laser thermal transfer from a donor material can deposit desired hole-transporting materials.
- Hole-transporting materials useful in hole-transporting layers are well known to include compounds such as an aromatic tertiary amine, where the latter is understood to be a compound containing at least one trivalent nitrogen atom that is bonded only to carbon atoms, at least one of which is a member of an aromatic ring.
- the aromatic tertiary amine can be an arylamine, such as a monoarylamine, diarylamine, triarylamine, or a polymeric arylamine. Klupfel et al. in U.S. Pat. No. 3,180,730 illustrate exemplary monomeric triarylamines. In U.S. Pat. Nos. 3,567,450 and 3,658,520, Brantley et al. discloses other suitable triarylamines substituted with one or more vinyl radicals, or comprising at least one active hydrogen-containing group.
- a more preferred class of aromatic tertiary amines are those which include at least two aromatic tertiary amine moieties as described in U.S. Pat. Nos. 4,720,432 and 5,061,569. Such compounds include those represented by structural Formula A.
- Q 1 and Q 2 are independently selected aromatic tertiary amine moieties
- G is a linking group such as an arylene, cycloalkylene, or alkylene group of a carbon-to-carbon bond.
- At least one of Q1 or Q2 contains a polycyclic fused ring structure, e.g., naphthalene.
- G is an aryl group, it is conveniently a phenylene, biphenylene, or naphthalene moiety.
- a useful class of triarylamines satisfying structural Formula A and containing two triarylamine moieties is represented by structural Formula B.
- R 1 and R 2 each independently represent a hydrogen atom, an aryl group, or an alkyl group or R 1 and R 2 together represent the atoms completing a cycloalkyl group;
- R 3 and R 4 each independently represent an aryl group, which is in turn substituted with a diaryl substituted amino group, as indicated by structural Formula C.
- R 5 and R 6 are independently selected aryl groups.
- at least one of R 5 or R 6 contains a polycyclic fused ring structure, e.g., naphthalene.
- tetraaryldiamines Another class of aromatic tertiary amines is the tetraaryldiamines. Desirable tetraaryldiamines include two diarylamino groups, such as indicated by Formula C, and linked through an arylene group. Useful tetraaryldiamines include those represented by Formula D.
- each Are is an independently selected arylene group, such as a phenylene or anthracene moiety
- n is an integer of from 1 to 4.
- Ar, R 7 , R 8 , and R 9 are independently selected aryl groups.
- At least one of Ar, R 7 , R 8 , and R 9 is a polycyclic fused ring structure, e.g., naphthalene.
- the various alkyl, alkylene, aryl, and arylene moieties of the foregoing structural Formulae A, B, C, D, can each in turn be substituted.
- Typical substituents include alkyl groups, alkoxy groups, aryl groups, aryloxy groups, and halogens such as fluoride, chloride, and bromide.
- the various alkyl and alkylene moieties typically contain from 1 to about 6 carbon atoms.
- the cycloalkyl moieties can contain from 3 to about 10 carbon atoms, but typically contain five, six, or seven carbon atoms—e.g., cyclopentyl, cyclohexyl, and cycloheptyl ring structures.
- the aryl and arylene moieties are usually phenyl and phenylene moieties.
- the hole-transporting layer in an OLED device can be formed of a single or a mixture of aromatic tertiary amine compounds.
- a triarylamine such as a triarylamine satisfying the Formula B
- a tetraaryldiamine such as indicated by Formula D.
- a triarylamine is employed in combination with a tetraaryldiamine, the latter is positioned as a layer interposed between the triarylamine and the electron-injecting and transporting layer.
- Another class of useful hole-transporting materials includes polycyclic aromatic compounds as described in EP 1 009 041.
- polymeric hole-transporting materials can be used such as poly(N-vinylcarbazole) (PVK), polythiophenes, polypyrrole, polyaniline, and copolymers such as poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate), also called PEDOT/PSS.
- Light-emitting layers produce light in response to hole-electron recombination.
- the light-emitting layers are commonly disposed over the hole-transporting layer. Any suitable process such as evaporation, sputtering, chemical vapor deposition, electrochemical deposition, or radiation thermal transfer from a donor material can deposit desired organic light-emitting materials. Useful organic light-emitting materials are well known.
- the light-emitting layers of the OLED element comprise a luminescent or fluorescent material where electroluminescence is produced as a result of electron-hole pair recombination in this region.
- the light-emitting layers can be comprised of a single material, but more commonly include a host material doped with a guest compound or dopant where light emission comes primarily from the dopant.
- the dopant is selected to produce color light having a particular spectrum.
- the host materials in the light-emitting layers can be an electron-transporting material, as defined below, a hole-transporting material, as defined above, or another material that supports hole-electron recombination.
- the dopant is usually chosen from highly fluorescent dyes, but phosphorescent compounds, e.g., transition metal complexes as described in WO 98/55561, WO 00/18851, WO 00/57676, and WO 00/70655 are also useful.
- Dopants are typically coated as 0.01 to 10% by weight into the host material.
- Host and emitting molecules known to be of use include, but are not limited to, those disclosed in U.S. Pat. Nos. 4,768,292; 5,141,671; 5,150,006; 5,151,629; 5,294,870; 5,405,709; 5,484,922; 5,593,788; 5,645,948; 5,683,823; 5,755,999; 5,928,802; 5,935,720; 5,935,721; and 6,020,078.
- Form E Metal complexes of 8-hydroxyquinoline and similar derivatives constitute one class of useful host materials capable of supporting electroluminescence, and are particularly suitable for light emission of wavelengths longer than 500 nm, e.g., green, yellow, orange, and red.
- M represents a metal
- n is an integer of from 1 to 3;
- Z independently in each occurrence represents the atoms completing a nucleus having at least two fused aromatic rings.
- the metal can be a monovalent, divalent, or trivalent metal.
- the metal can, for example, be an alkali metal, such as lithium, sodium, or potassium; an alkaline earth metal, such as magnesium or calcium; or an earth metal, such as boron or aluminum.
- alkali metal such as lithium, sodium, or potassium
- alkaline earth metal such as magnesium or calcium
- earth metal such as boron or aluminum.
- any monovalent, divalent, or trivalent metal known to be a useful chelating metal can be employed.
- Z completes a heterocyclic nucleus containing at least two fused aromatic rings, at least one of which is an azole or azine ring. Additional rings, including both aliphatic and aromatic rings, can be fused with the two required rings, if required. To avoid adding molecular bulk without improving on function the number of ring atoms is usually maintained at 18 or less.
- the host material in the light-emitting layers can be an anthracene derivative having hydrocarbon or substituted hydrocarbon substituents at the 9 and 10 positions.
- derivatives of 9,10-di-(2-naphthyl)anthracene constitute one class of useful host materials capable of supporting electroluminescence, and are particularly suitable for light emission of wavelengths longer than 400 nm, e.g., blue, green, yellow, orange or red.
- Benzazole derivatives constitute another class of useful host materials capable of supporting electroluminescence, and are particularly suitable for light emission of wavelengths longer than 400 nm, e.g., blue, green, yellow, orange or red.
- An example of a useful benzazole is 2,2′,2′′-(1,3,5-phenylene)tris[1-phenyl-1H-benzimidazole].
- Desirable fluorescent dopants include perylene or derivatives of perylene, derivatives of anthracene, tetracene, xanthene, rubrene, coumarin, rhodamine, quinacridone, dicyanomethylenepyran compounds, thiopyran compounds, polymethine compounds, pyrilium and thiapyrilium compounds, derivatives of distryrylbenzene or distyrylbiphenyl, bis(azinyl)methane boron complex compounds, and carbostyryl compounds.
- organic emissive materials can be polymeric substances, e.g. polyphenylenevinylene derivatives, dialkoxy-polyphenylenevinylenes, poly-paraphenylene derivatives, and polyfluorene derivatives, as taught by Wolk et al. in commonly assigned U.S. Pat. No. 6,194,119 B1 and references cited therein.
- an electron-transporting layer disposed over the light-emitting layers. Any suitable process such as evaporation, sputtering, chemical vapor deposition, electrochemical deposition, thermal transfer, or laser thermal transfer from a donor material can deposit desired electron-transporting materials.
- Preferred electron-transporting materials for use in the electron-transporting layer are metal chelated oxinoid compounds, including chelates of oxine itself (also commonly referred to as 8-quinolinol or 8-hydroxyquinoline). Such compounds help to inject and transport electrons and exhibit both high levels of performance and are readily fabricated in the form of thin films. Exemplary of contemplated oxinoid compounds are those satisfying structural Formula E, previously described.
- electron-transporting materials include various butadiene derivatives as disclosed in U.S. Pat. No. 4,356,429 and various heterocyclic optical brighteners as described in U.S. Pat. No. 4,539,507. Certain benzazoles are also useful electron-transporting materials.
- Other electron-transporting materials can be polymeric substances, e.g. polyphenylenevinylene derivatives, poly-paraphenylene derivatives, polyfluorene derivatives, polythiophenes, polyacetylenes, and other conductive polymeric organic materials known in the art.
- An upper electrode 40 most commonly configured as a cathode is formed over the electron-transporting layer, or over the light-emitting layers if an electron-transporting layer is not used. If the device is top-emitting, the electrode must be transparent or nearly transparent. For such applications, metals must be thin (preferably less than 25 nm) or one must use transparent conductive oxides (e.g. indium-tin oxide, indium-zinc oxide), or a combination of these materials. Optically transparent cathodes have been described in more detail in U.S. Pat. No. 5,776,623. Evaporation, sputtering, or chemical vapor deposition can deposit cathode materials.
- patterning can be achieved through many well known methods including, but not limited to, through-mask deposition, integral shadow masking as described in U.S. Pat. No. 5,276,380 and EP 0 732 868, laser ablation, and selective chemical vapor deposition.
- OLED display 100 can include other layers as well.
- a hole-injecting layer can be formed over the anode, as described in U.S. Pat. No. 4,720,432, U.S. Pat. No. 6,208,075, EP 0 891 121 A1, and EP 1 029 909 A1.
- An electron-injecting layer such as alkaline or alkaline earth metals, alkali halide salts, or alkaline or alkaline earth metal-doped organic layers, can also be present between the cathode and the electron-transporting layer.
- Desiccant 60 is used to physically or chemically absorb or react with moisture that would otherwise damage the highly moisture-sensitive OLED 25 .
- the level of moisture inside OLED display 100 must be kept below 1000 ppm, and in some cases even lower. Therefore, the second desiccant material has an equilibrium humidity level less than 1000 ppm.
- Typical moisture-absorbing materials meeting this requirement include metals such as alkali metals (e.g. Li, Na), alkaline earth metals (e.g. Ba, Ca), or other moisture-reactive metals (e.g. Al, Fe); alkaline metal oxides (e.g. Li 2 O, Na 2 O); alkaline earth metal oxides (e.g. MgO, CaO, BaO); sulfates (e.g.
- anhydrous MgSO 4 metal halides (e.g. CaCl 2 ); perchlorates (e.g. Mg(ClO 4 ) 2 ); molecular sieves; tris(8-quinolinolato)aluminum (Alq) and aluminum/Alq mixtures; organometallic compounds described by Takahashi et al. in U.S. Pat. No. 6,656,609 and by Tsuruoka et al. in U.S. Patent Application 2003/0110981, including organometallic compounds of the type:
- R 1 , R 2 , and R 3 are selected from the group consisting of alkyl groups, aryl groups, cycloalkyl groups, heterocyclic groups, and acyl groups having one or more carbon atoms, and M is a trivalent metallic atom; organometallic compounds of the type:
- each of R 1 , R 2 , R 3 , R 4 , and R 5 is selected from the group consisting of alkyl groups, alkenyl groups, aryl groups, cycloalkyl groups, heterocyclic groups, and acyl groups having one or more carbon atoms, and M is a trivalent metal atom; organometallic compounds of the type:
- each of R 1 , R 2 , R 3 , and R 4 is selected from the group consisting of alkyl groups, alkenyl groups, aryl groups, cycloalkyl groups, heterocyclic groups, and acyl groups having one or more carbon atoms, and M is a tetravalent metal atom; and metals with work functions less than 4.5 eV and oxidizable in the presence of moisture, or combinations thereof.
- Moisture-absorbing material can be packaged within moisture permeable containers or binders.
- Desiccant 60 can be a single material, a homogeneous mixture of materials, a composite of materials, or multiple layers of materials, and can be deposited from a vapor or from solution, or they can be provided in a porous matrix such as a permeable package or tape.
- Particularly useful desiccant materials include those that are particulate materials formed into a polymeric matrix that can be patterned, as described by Boroson et al. in U.S. Pat. No. 6,226,890.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
Description
wherein R5 and R6 are independently selected aryl groups. In one embodiment, at least one of R5 or R6 contains a polycyclic fused ring structure, e.g., naphthalene.
wherein R1, R2, and R3 are selected from the group consisting of alkyl groups, aryl groups, cycloalkyl groups, heterocyclic groups, and acyl groups having one or more carbon atoms, and M is a trivalent metallic atom; organometallic compounds of the type:
wherein each of R1, R2, R3, R4, and R5 is selected from the group consisting of alkyl groups, alkenyl groups, aryl groups, cycloalkyl groups, heterocyclic groups, and acyl groups having one or more carbon atoms, and M is a trivalent metal atom; organometallic compounds of the type:
wherein each of R1, R2, R3, and R4 is selected from the group consisting of alkyl groups, alkenyl groups, aryl groups, cycloalkyl groups, heterocyclic groups, and acyl groups having one or more carbon atoms, and M is a tetravalent metal atom; and metals with work functions less than 4.5 eV and oxidizable in the presence of moisture, or combinations thereof. Moisture-absorbing material can be packaged within moisture permeable containers or binders.
- 10 substrate
- 20 electrode
- 25 OLED
- 30 organic layers
- 40 electrode
- 50 perimeter seal
- 55 enclosure
- 60 desiccant
- 70 encapsulation container
- 75 compliant region
- 80 fitting region
- 85 sealing base
- 90 rigid portion
- 100 OLED display
- 150 encapsulation container
- 160 compliant region
- 200 OLED display
- 210 substrate
- 230 compliant region
- 240 encapsulation container
- 250 OLED display
- 260 encapsulation container
- 270 compliant region
Claims (2)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/782,797 US7812531B2 (en) | 2007-07-25 | 2007-07-25 | Preventing stress transfer in OLED display components |
EP12004090A EP2498317A3 (en) | 2007-07-25 | 2008-07-23 | Preventing stress transfer in OLED display components |
PCT/US2008/008909 WO2009014699A1 (en) | 2007-07-25 | 2008-07-23 | Preventing stress transfer in oled display components |
EP08794648.9A EP2179459B1 (en) | 2007-07-25 | 2008-07-23 | Preventing stress transfer in oled display components |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/782,797 US7812531B2 (en) | 2007-07-25 | 2007-07-25 | Preventing stress transfer in OLED display components |
Publications (2)
Publication Number | Publication Date |
---|---|
US20090026945A1 US20090026945A1 (en) | 2009-01-29 |
US7812531B2 true US7812531B2 (en) | 2010-10-12 |
Family
ID=39971064
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/782,797 Active 2028-02-06 US7812531B2 (en) | 2007-07-25 | 2007-07-25 | Preventing stress transfer in OLED display components |
Country Status (3)
Country | Link |
---|---|
US (1) | US7812531B2 (en) |
EP (2) | EP2179459B1 (en) |
WO (1) | WO2009014699A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090096366A1 (en) * | 2007-10-15 | 2009-04-16 | Hitachi Displays, Ltd. | Organic electro-luminescent display device |
US9287524B2 (en) | 2013-10-15 | 2016-03-15 | Samsung Display Co., Ltd. | Organic light emitting display device and method of manufacturing the same |
CN106486019A (en) * | 2016-10-31 | 2017-03-08 | 昆山工研院新型平板显示技术中心有限公司 | Flexible display apparatus and its manufacture method |
US9887383B2 (en) * | 2015-09-22 | 2018-02-06 | Shenzhen China Star Optoelectronics Technology Co., Ltd | Encapsulating structure of flexible OLED device and flexible display device |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101127592B1 (en) | 2010-04-06 | 2012-03-23 | 삼성모바일디스플레이주식회사 | Organinc light emitting display device and electronic equipment having the same |
EP2586077B1 (en) | 2010-06-22 | 2016-12-14 | Koninklijke Philips N.V. | Organic electroluminescence device with separating foil |
CN102181412B (en) * | 2011-03-09 | 2012-12-12 | 南京工业大学 | Diaminobutyric acid-2-oxoglutarate transaminase and application thereof |
US9282614B2 (en) * | 2013-02-27 | 2016-03-08 | Htc Corporation | Electronic device and fabricating method of display module of electronic device |
KR102194667B1 (en) * | 2014-10-28 | 2020-12-24 | 삼성디스플레이 주식회사 | Organic light emitting display device and method for manufacturing the same |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4769292A (en) | 1987-03-02 | 1988-09-06 | Eastman Kodak Company | Electroluminescent device with modified thin film luminescent zone |
US4885211A (en) | 1987-02-11 | 1989-12-05 | Eastman Kodak Company | Electroluminescent device with improved cathode |
JPH11329716A (en) | 1998-05-08 | 1999-11-30 | Toyota Motor Corp | Gas-filled display |
JPH11339954A (en) | 1998-05-29 | 1999-12-10 | Toyota Motor Corp | Organic EL display |
JP2001118674A (en) | 1999-10-19 | 2001-04-27 | Auto Network Gijutsu Kenkyusho:Kk | Organic EL display |
US20010013756A1 (en) | 2000-02-04 | 2001-08-16 | Nec Corporation | Hermetic encapsulation package and method of fabrication thereof |
EP1448026A1 (en) | 2001-10-25 | 2004-08-18 | Harison Toshiba Lighting Corp. | Light emitting apparatus |
US20080284925A1 (en) * | 2006-08-03 | 2008-11-20 | Han Jefferson Y | Multi-touch sensing through frustrated total internal reflection |
Family Cites Families (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL124075C (en) | 1959-04-09 | |||
US3658520A (en) | 1968-02-20 | 1972-04-25 | Eastman Kodak Co | Photoconductive elements containing as photoconductors triarylamines substituted by active hydrogen-containing groups |
US3567450A (en) | 1968-02-20 | 1971-03-02 | Eastman Kodak Co | Photoconductive elements containing substituted triarylamine photoconductors |
US4356429A (en) | 1980-07-17 | 1982-10-26 | Eastman Kodak Company | Organic electroluminescent cell |
US4539507A (en) | 1983-03-25 | 1985-09-03 | Eastman Kodak Company | Organic electroluminescent devices having improved power conversion efficiencies |
DE3518323A1 (en) | 1985-05-22 | 1986-11-27 | SEVAR Entsorgungsanlagen GmbH, 8590 Marktredwitz | METHOD AND DEVICE FOR DRYING CLEANING SLUDGE |
US4720432A (en) | 1987-02-11 | 1988-01-19 | Eastman Kodak Company | Electroluminescent device with organic luminescent medium |
US5061569A (en) | 1990-07-26 | 1991-10-29 | Eastman Kodak Company | Electroluminescent device with organic electroluminescent medium |
US5151629A (en) | 1991-08-01 | 1992-09-29 | Eastman Kodak Company | Blue emitting internal junction organic electroluminescent device (I) |
US5150006A (en) | 1991-08-01 | 1992-09-22 | Eastman Kodak Company | Blue emitting internal junction organic electroluminescent device (II) |
US5141671A (en) | 1991-08-01 | 1992-08-25 | Eastman Kodak Company | Mixed ligand 8-quinolinolato aluminum chelate luminophors |
US5294870A (en) | 1991-12-30 | 1994-03-15 | Eastman Kodak Company | Organic electroluminescent multicolor image display device |
US5276380A (en) | 1991-12-30 | 1994-01-04 | Eastman Kodak Company | Organic electroluminescent image display device |
JP3445315B2 (en) | 1992-07-13 | 2003-09-08 | イーストマン コダック カンパニー | Aluminum chelate compound and internal junction type organic electroluminescent device |
US5405709A (en) | 1993-09-13 | 1995-04-11 | Eastman Kodak Company | White light emitting internal junction organic electroluminescent device |
JP3813217B2 (en) | 1995-03-13 | 2006-08-23 | パイオニア株式会社 | Method for manufacturing organic electroluminescence display panel |
US5593788A (en) | 1996-04-25 | 1997-01-14 | Eastman Kodak Company | Organic electroluminescent devices with high operational stability |
US5683823A (en) | 1996-01-26 | 1997-11-04 | Eastman Kodak Company | White light-emitting organic electroluminescent devices |
US5776623A (en) | 1996-07-29 | 1998-07-07 | Eastman Kodak Company | Transparent electron-injecting electrode for use in an electroluminescent device |
US5645948A (en) | 1996-08-20 | 1997-07-08 | Eastman Kodak Company | Blue organic electroluminescent devices |
JP3654909B2 (en) | 1996-12-28 | 2005-06-02 | Tdk株式会社 | Organic EL device |
US5935720A (en) | 1997-04-07 | 1999-08-10 | Eastman Kodak Company | Red organic electroluminescent devices |
US5755999A (en) | 1997-05-16 | 1998-05-26 | Eastman Kodak Company | Blue luminescent materials for organic electroluminescent devices |
US5928802A (en) | 1997-05-16 | 1999-07-27 | Eastman Kodak Company | Efficient blue organic electroluminescent devices |
GB9711237D0 (en) | 1997-06-02 | 1997-07-23 | Isis Innovation | Organomettallic Complexes |
US5935721A (en) | 1998-03-20 | 1999-08-10 | Eastman Kodak Company | Organic electroluminescent elements for stable electroluminescent |
CN1213127C (en) | 1998-09-09 | 2005-08-03 | 出光兴产株式会社 | Organic Electroluminescent Devices and Phenylenediamine Derivatives |
GB9820805D0 (en) | 1998-09-25 | 1998-11-18 | Isis Innovation | Divalent lanthanide metal complexes |
US6208075B1 (en) | 1998-11-05 | 2001-03-27 | Eastman Kodak Company | Conductive fluorocarbon polymer and method of making same |
US6361886B2 (en) | 1998-12-09 | 2002-03-26 | Eastman Kodak Company | Electroluminescent device with improved hole transport layer |
US6020078A (en) | 1998-12-18 | 2000-02-01 | Eastman Kodak Company | Green organic electroluminescent devices |
US6114088A (en) | 1999-01-15 | 2000-09-05 | 3M Innovative Properties Company | Thermal transfer element for forming multilayer devices |
KR101166264B1 (en) | 1999-03-23 | 2012-07-17 | 유니버시티 오브 서던 캘리포니아 | Cyclometallated metal complexes as phosphorescent dopants in organic leds |
EP2306495B1 (en) | 1999-05-13 | 2017-04-19 | The Trustees of Princeton University | Very high efficiency organic light emitting devices based on electrophosphorescence |
US6226890B1 (en) | 2000-04-07 | 2001-05-08 | Eastman Kodak Company | Desiccation of moisture-sensitive electronic devices |
JP3936151B2 (en) | 2000-05-08 | 2007-06-27 | 双葉電子工業株式会社 | Organic EL device |
JP4023655B2 (en) | 2001-11-07 | 2007-12-19 | 双葉電子工業株式会社 | Transparent film-like desiccant and transparent liquid desiccant |
JP2003229249A (en) * | 2002-02-06 | 2003-08-15 | Canon Electronics Inc | Organic electroluminescence panel |
KR100667358B1 (en) * | 2004-02-04 | 2007-01-12 | 엘지전자 주식회사 | Electro-luminescence display |
-
2007
- 2007-07-25 US US11/782,797 patent/US7812531B2/en active Active
-
2008
- 2008-07-23 EP EP08794648.9A patent/EP2179459B1/en active Active
- 2008-07-23 WO PCT/US2008/008909 patent/WO2009014699A1/en active Application Filing
- 2008-07-23 EP EP12004090A patent/EP2498317A3/en not_active Withdrawn
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4885211A (en) | 1987-02-11 | 1989-12-05 | Eastman Kodak Company | Electroluminescent device with improved cathode |
US4769292A (en) | 1987-03-02 | 1988-09-06 | Eastman Kodak Company | Electroluminescent device with modified thin film luminescent zone |
JPH11329716A (en) | 1998-05-08 | 1999-11-30 | Toyota Motor Corp | Gas-filled display |
JPH11339954A (en) | 1998-05-29 | 1999-12-10 | Toyota Motor Corp | Organic EL display |
JP2001118674A (en) | 1999-10-19 | 2001-04-27 | Auto Network Gijutsu Kenkyusho:Kk | Organic EL display |
US20010013756A1 (en) | 2000-02-04 | 2001-08-16 | Nec Corporation | Hermetic encapsulation package and method of fabrication thereof |
EP1448026A1 (en) | 2001-10-25 | 2004-08-18 | Harison Toshiba Lighting Corp. | Light emitting apparatus |
US20050062412A1 (en) * | 2001-10-25 | 2005-03-24 | Yoshio Taniguchi | Light emitting apparatus |
US20080284925A1 (en) * | 2006-08-03 | 2008-11-20 | Han Jefferson Y | Multi-touch sensing through frustrated total internal reflection |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090096366A1 (en) * | 2007-10-15 | 2009-04-16 | Hitachi Displays, Ltd. | Organic electro-luminescent display device |
US9287524B2 (en) | 2013-10-15 | 2016-03-15 | Samsung Display Co., Ltd. | Organic light emitting display device and method of manufacturing the same |
US9887383B2 (en) * | 2015-09-22 | 2018-02-06 | Shenzhen China Star Optoelectronics Technology Co., Ltd | Encapsulating structure of flexible OLED device and flexible display device |
CN106486019A (en) * | 2016-10-31 | 2017-03-08 | 昆山工研院新型平板显示技术中心有限公司 | Flexible display apparatus and its manufacture method |
Also Published As
Publication number | Publication date |
---|---|
EP2179459A1 (en) | 2010-04-28 |
US20090026945A1 (en) | 2009-01-29 |
WO2009014699A1 (en) | 2009-01-29 |
EP2179459B1 (en) | 2015-04-08 |
EP2498317A2 (en) | 2012-09-12 |
EP2498317A3 (en) | 2012-11-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8022624B2 (en) | Moisture protection for OLED display | |
US7812531B2 (en) | Preventing stress transfer in OLED display components | |
US8016631B2 (en) | Desiccant sealing arrangement for OLED devices | |
US20070172971A1 (en) | Desiccant sealing arrangement for OLED devices | |
US7948178B2 (en) | Hermetic seal | |
US7316756B2 (en) | Desiccant for top-emitting OLED | |
CN101728489B (en) | Organic light emitting diode display device and method of fabricating same | |
US8657985B2 (en) | Encapsulated organic electronic devices and method for making same | |
US20060246811A1 (en) | Encapsulating emissive portions of an OLED device | |
US20060087230A1 (en) | Desiccant film in top-emitting OLED | |
JP2000003783A (en) | Organic EL display | |
WO2005013336A2 (en) | Protected organic electronic devices and methods for making the same | |
US20090161216A1 (en) | Display device and method for manufacturing the same | |
US20060059705A1 (en) | Lewis acid organometallic desiccant | |
JP2000357587A (en) | Organic el display device | |
KR101011718B1 (en) | Organic light emitting device and manufacturing method thereof | |
US20060060086A1 (en) | Desiccant having a reactive salt | |
JP2000100561A (en) | Organic electroluminescent device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: EASTMAN KODAK COMPANY, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BOROSON, MICHAEL L.;RICKS, MICHELE L.;PALONE, THOMAS W.;REEL/FRAME:019607/0873 Effective date: 20070724 |
|
AS | Assignment |
Owner name: GLOBAL OLED TECHNOLOGY LLC,DELAWARE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:EASTMAN KODAK COMPANY;REEL/FRAME:024068/0468 Effective date: 20100304 Owner name: GLOBAL OLED TECHNOLOGY LLC, DELAWARE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:EASTMAN KODAK COMPANY;REEL/FRAME:024068/0468 Effective date: 20100304 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552) Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |