US8429810B2 - Method of manufacturing rotor for dynamoelectric machine - Google Patents
Method of manufacturing rotor for dynamoelectric machine Download PDFInfo
- Publication number
- US8429810B2 US8429810B2 US12/585,543 US58554309A US8429810B2 US 8429810 B2 US8429810 B2 US 8429810B2 US 58554309 A US58554309 A US 58554309A US 8429810 B2 US8429810 B2 US 8429810B2
- Authority
- US
- United States
- Prior art keywords
- cooling fan
- rotor
- rotor core
- positive
- axial end
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K15/00—Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
- H02K15/02—Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
- H02K15/021—Magnetic cores
- H02K15/022—Magnetic cores with salient poles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K11/00—Resistance welding; Severing by resistance heating
- B23K11/002—Resistance welding; Severing by resistance heating specially adapted for particular articles or work
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K11/00—Resistance welding; Severing by resistance heating
- B23K11/10—Spot welding; Stitch welding
- B23K11/11—Spot welding
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K9/00—Arrangements for cooling or ventilating
- H02K9/02—Arrangements for cooling or ventilating by ambient air flowing through the machine
- H02K9/04—Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
- H02K9/06—Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium with fans or impellers driven by the machine shaft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2101/00—Articles made by soldering, welding or cutting
- B23K2101/36—Electric or electronic devices
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49009—Dynamoelectric machine
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49009—Dynamoelectric machine
- Y10T29/49012—Rotor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/4902—Electromagnet, transformer or inductor
- Y10T29/49075—Electromagnet, transformer or inductor including permanent magnet or core
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49316—Impeller making
- Y10T29/49336—Blade making
Definitions
- the present invention relates generally to methods of manufacturing rotors for dynamoelectric machines, such as electric motors and electric generators. More particularly, the invention relates to an improved method of fixing a cooling fan to an axial end face of a rotor core by resistance welding.
- the rotor core is made up of a pair of Lundell-type pole cores 100 each of which includes a plurality of claw poles extending in the axial direction of the rotor.
- the claw poles of one of the pole cores 100 are alternately arranged with those of the other pole core 100 in the circumferential direction of the rotor.
- the rotor further includes a plurality of permanent magnets 110 , each of which is interposed between a circumferentially-adjacent pair of the claw poles of the pole cores 100 .
- the resistance welding is performed as follows. First, a cooling fan 120 is disposed on an axial end face of one of the pole cores 100 (i.e., the upper one of the pole cores 100 in FIG. 8B ). Then, as shown in FIGS. 8A and 8B , a plurality of positive electrodes 130 are brought into contact with a surface of the cooling fan 120 from the opposite side to the pole core 100 , whereas a plurality of negative electrodes 140 are brought into contact with a surface of the pole core 100 . Thereafter, weld current is supplied to flow between each electrode pair consisting of one of the positive electrodes 130 and one of the negative electrodes 140 .
- the cooling fan 120 has a plurality of projections formed on a surface of the cooling fan 120 to be joined to the axial end face of the pole core 100 .
- the projections are melted by the heat generated by the resistance to the weld current between each electrode pair, thereby forming welds between the surface of the cooling fan 120 and the axial end face of the pole core 100 .
- each electrode pair is used to form only one weld between the cooling fan 120 and the pole core 100 . Therefore, it is necessary to supply a large amount of weld current to the electrode pairs in proportion to the number of the weld spots (i.e., the number of the projections). Accordingly, it is necessary to employ a large-capacity power source for the resistance welding.
- each of the permanent magnets is so magnetized as to reduce leakage magnetic flux between the circumferentially-adjacent pair of the claw poles of the pole cores 100 .
- the permanent magnets may be undesirably magnetized by a magnetic field created by the weld current. As a result, the permanent magnets may become unable to accomplish the function of reducing the leakage magnetic flux.
- a method of manufacturing a rotor for a dynamoelectric machine includes a rotating shaft, a rotor core fixed on the rotating shaft, and a cooling fan fixed to an axial end face of the rotor core.
- the method includes the step of fixing the cooling fan to the axial end face of the rotor core by resistance welding.
- the method is characterized in that in the resistance welding, both a positive electrode and a negative electrode are first brought into contact with the cooling fan to have the cooling fan held between the axial end face of the rotor core and both the positive and negative electrodes, and then weld current is supplied to flow from the positive electrode to the negative electrode.
- the cooling fan includes a pair of projections each of which makes up a weld spot between the cooling fan and the axial end face of the rotor core.
- the resistance welding is projection welding in which the positive and negative electrodes are respectively aligned with the projections of the cooling fan in the axial direction of the rotating shaft to concentrate the weld current on the projections.
- the rotor core is made up of a pair of Lundell-type pole cores each of which includes a plurality of claw poles extending in the axial direction of the rotating shaft.
- the claw poles of one of the pole cores are alternately arranged with those of the other pole core in the circumferential direction of the rotating shaft.
- the rotor further includes a plurality of permanent magnets each of which is interposed between a circumferentially-adjacent pair of the claw poles of the pole cores to reduce leakage magnetic flux between the pair of the claw poles.
- the cooling fan is composed of a pair of first and second cooling fan pieces which are disposed on the same plane perpendicular to the axial direction of the rotating shaft and separated from each other by an air gap extending in the radial direction of the rotating shaft.
- the positive and negative electrodes are respectively brought into contact with the first and second cooling fan pieces.
- the cooling fan includes first and second portions which are adjacent to each other with a cut formed therebetween.
- the positive and negative electrodes are respectively brought into contact with the first and second portions of the cooling fan.
- the cooling fan is composed of a pair of first and second cooling fan pieces each of which includes a plurality of blade portions and an annular connecting portion that connects the blade portions.
- the blade portions of the first cooling fan piece are alternately arranged with those of the second cooling fan piece in the circumferential direction of the rotating shaft, and the annular connecting portion of the first cooling fan piece is overlapped with that of the second cooling fan piece in the axial direction of the rotating shaft.
- the annular connecting portions of the first and second cooling fan pieces are electrically insulated from each other. In the resistance welding, the positive and negative electrodes are respectively brought into contact with the first and second cooling fan pieces.
- FIG. 1 is a schematic cross-sectional view of an automotive alternator according to the first embodiment of the invention
- FIG. 2A is a schematic end view of a rotor of the alternator
- FIG. 2B is a schematic cross-sectional view of the rotor with electrodes for resistance welding attached thereto;
- FIG. 3 is a schematic end view of the rotor illustrating the arrangement of a plurality of electrodes for resistance welding according to the first embodiment
- FIG. 4 is a schematic end view of the rotor illustrating a modification of the arrangement of the electrodes
- FIG. 5 is a schematic plan view of a cooling fan according to the second embodiment of the invention.
- FIG. 6 is a schematic end view of a rotor according to the third embodiment of the invention.
- FIG. 7A is a schematic plan view showing a pair of cooling fan pieces according to the fourth embodiment of the invention.
- FIG. 7B is a schematic plan view of a cooling fan which is obtained by assembling the cooling fan pieces of FIG. 7A together;
- FIGS. 8A and 8B are diagrams together illustrating a conventional welding method, wherein FIG. 8A is a schematic plan view of a cooling fan, and FIG. 8B is a schematic cross-sectional view of a rotor of an automotive alternator with electrodes for resistance welding attached thereto.
- FIGS. 1-7B Preferred embodiments of the present invention will be described hereinafter with reference to FIGS. 1-7B . It should be noted that, for the sake of clarity and understanding, identical components having identical functions in different embodiments of the invention have been marked, where possible, with the same reference numerals in each of the figures.
- FIG. 1 shows the overall configuration of an automotive alternator 1 which includes a rotor 3 manufactured by a method according to the first embodiment of the invention.
- the alternator 1 is designed to be used in a motor vehicle, such as a passenger car or a truck.
- the alternator 1 includes a stator 2 , the rotor 3 , a pair of housings 4 and 5 , a brush assembly 6 , and a rectifier 7 .
- the stator 2 includes a hollow cylindrical stator core 2 a and a three-phase stator coil 2 b wound around the stator core 2 a .
- the stator 2 generates three-phase AC power in a rotating magnetic field created by the rotor 3 .
- the rotor 3 includes a rotating shaft 9 , a rotor core made up of a pair of Lundell-type pole cores 10 fixed on the rotating shaft 9 , a field coil 11 wound around the pole cores 10 , a pair of cooling fans 12 respectively fixed to axial end faces of the pole cores 10 , and a plurality of permanent magnets 13 interposed between the pole cores 10 .
- a pulley 8 is mounted on an end portion of the rotating shaft 9 , so that torque generated by an engine of the vehicle can be transmitted to the rotor 3 via the pulley 8 , thereby driving the rotor 3 .
- the rotor 3 creates the rotating magnetic field during rotation thereof.
- Each of the pole cores 10 includes, as shown in FIG. 2B , a hollow cylindrical boss portion 10 a , a disc portion 10 b , and a plurality of claw poles 10 c .
- the boss portion 10 a is press-fitted on the rotating shaft 9 .
- the disc portion 10 b extends radially outward from an axially outer part of the boss portion 10 a .
- Each of the claw poles 10 c axially extends from a radially outer part of the disc portion 10 b toward the other one of the pole cores 10 .
- the pole cores 10 are so assembled together that: the inside axial end face of the boss portion 10 a of one of the pole cores 10 abuts that of the boss portion 10 a of the other pole core 10 ; and the claw poles 10 c of one of the pole cores 10 are interleaved with those of the other pole core 10 . Consequently, the claw poles 10 c of one of the pole cores 10 are alternately arranged with those of the other pole 10 in the circumferential direction of the rotating shaft 9 .
- the field coil 11 is wound around the radially outer surfaces of the boss portions 10 a of the pole cores 10 via a resin-made bobbin 14 .
- the field coil 11 has an opposite pair of ends that are respectively electrically connected to a pair of slip rings 15 ; the slip rings 15 are provided on an end portion of the rotating shaft 9 on the opposite side to the pulley 8 .
- the claw poles 10 c of one of the pole cores 10 are each magnetized to form a north pole, whereas the claw poles 10 c of the other pole core 10 are each magnetized to form a south pole.
- the rotating magnetic field is created with rotation of the north and south poles formed by the claw poles 10 c of the pole cores 10 .
- each of the cooling fans 12 includes a plurality of (e.g., seven) blade portions 12 a , which are equally spaced in the circumferential direction of the rotating shaft 9 , and an annular connecting portion 12 b that is located radially inside of the blade portions 12 a to connect all of the blade portions 12 a together.
- Each of the permanent magnets 13 is interposed between a circumferentially-adjacent pair of the claw poles 10 c of the pole cores 10 . Further, each of the permanent magnets 13 is so magnetized as to reduce leakage magnetic flux between the circumferentially-adjacent pair of the claw poles 10 c.
- the housings 4 and 5 together support and accommodate therein both the stator 2 and the rotor 3 . More specifically, as shown in FIG. 1 , the housings 4 and 5 are connected, by means of a plurality of bolts 18 , to each other with the stator core 2 a of the stator 2 sandwiched therebetween. Further, the housings 4 and 5 together rotatably support the rotating shaft 9 via a pair of bearings 16 and 17 that are respectively provided in the housings 4 and 5 .
- the brush assembly 6 is provided to supply the field current to the field coil 11 during rotation of the rotor 3 .
- the brush assembly 6 includes a pair of brushes 61 that are respectively spring-loaded on the slip rings 15 to establish sliding contacts with them during rotation of the rotor 3 .
- the rectifier 7 is configured to full-wave rectify the three-phase AC power output from the three-phase stator coil 2 b of the stator 2 into DC power. In addition, part of the DC power is used as the field current to energize the field coil 11 of the rotor 3 .
- the components of the rotor 3 are prepared which include the rotating shaft 9 , the pair of pole cores 10 , the field coil 11 , the pair of cooling fans 12 , and the plurality of permanent magnets 13 . Then, all of the components of the rotor 3 other than the cooling fans 12 are assembled together in any manner well known in the art. Thereafter, the cooling fans 12 are respectively joined, by resistance welding, to the axial end faces of the pole cores 10 . As a result, the rotor 3 is finally obtained.
- the method of manufacturing the rotor 3 is characterized by an improved method of performing resistance welding to join the cooling fans 12 respectively to the axial end faces of the pole cores 10 .
- cooling fans 12 are joined to the corresponding pole cores 10 by the same method; therefore, for the sake of simplicity, only the process of joining one of the cooling fans 12 to the axial end face of the corresponding pole core 10 will be described hereinbelow.
- the cooling fan 12 has a plurality of (e.g., ten) projections 12 c , each of which is formed on a surface of one of the blade portions 12 a of the cooling fan 12 . Further, on the surface of each of the blade portions 12 a , at least one of the projections 12 c is formed.
- Each of the projections 12 c makes up a weld spot between the cooling fan 12 and the axial end face of the pole core 10 . That is to say, the resistance welding performed in the present embodiment is projection welding.
- the cooling fan 12 is first placed on the pole core 10 , so that each of the projections 12 c of the cooling fan 12 abuts the axial end face of the pole core 10 .
- a plurality of pairs (e.g., five pairs) of positive electrodes 19 and negative electrodes 20 are placed on the cooling fan 12 , so that each of the positive and negative electrodes 19 and 20 is brought into contact with a surface of one of the blade portions 12 a on the opposite side to the pole core 10 .
- the number of the positive and negative electrodes 19 and 20 is the same as the number of the projections 12 c of the cooling fan 12 .
- each of the positive and negative electrodes 19 and 20 is aligned with a corresponding one of the projections 12 c of the cooling fan 12 in the axial direction of the rotating shaft 9 .
- the positive electrodes 19 are alternately arranged with the negative electrodes 20 in the circumferential direction of the rotating shaft 9 .
- weld current is supplied from a power source (not shown) to flow between each electrode pair consisting of one of the positive electrodes 19 and one of the negative electrodes 20 while pressing each electrode pair against the cooling fan 12 . Consequently, the weld current is concentrated on each of the projections 12 c of the cooling fan 12 . More specifically, for each electrode pair, the weld current sequentially passes the positive electrode 19 , the projection 12 c of the cooling fan 12 axially aligned with the positive electrode 19 , the pole core 10 , the projection 12 c of the cooling fan 12 axially aligned with the negative electrode 20 , and the negative electrode 20 .
- the above-described method of manufacturing the rotor 3 has the following advantages.
- both the positive and negative electrodes 19 and 20 are first brought into contact with the cooling fan 12 , from the opposite side to the pole core 10 , to have the cooling fan 12 held between the axial end face of the pole core 10 and both the positive and negative electrodes 19 and 20 ; then, the weld current is supplied to flow from the positive electrode 19 to the negative electrode 20 .
- the welding method according to the present embodiment it is possible to reduce the total amount of the weld current necessary for fixing the cooling fan 12 to the pole core 10 in comparison with the case of using the conventional welding method. As a result, it is possible to reduce the necessary capacity of the power source. In other words, it is possible to employ a small-capacity power source for the resistance welding.
- the welding method according to the present embodiment it is possible to reduce the total amount of the weld current flowing through the pole core 10 during the resistance welding in comparison with the case of using the conventional welding method. Consequently, it is possible to more reliably prevent the permanent magnets 13 from being undesirably magnetized by the weld current.
- the positive electrodes 19 are alternately arranged with the negative electrodes 20 in the circumferential direction of the rotating shaft 9 .
- the positive and negative electrodes 19 and 20 may also be arranged in any other manner.
- the positive and negative electrodes 19 and 20 may be arranged so that all of the positive electrodes 19 are adjacent to each other without the negative electrodes 20 interposed therebetween in the circumferential direction of the rotating shaft 9 .
- all of the ten projections 12 c are simultaneously welded to the pole core 10 by using the five electrode pairs.
- FIG. 5 shows a cooling fan 12 according to the second embodiment of the invention.
- the cooling fan 12 is composed of a pair of cooling fan pieces 12 A and 12 B which are disposed on the same plane perpendicular to the axial direction of the rotating shaft 9 and each occupy one half of the entire angular range (i.e., 360°) of the cooling fan 12 . Further, the cooling fan pieces 12 A and 12 B are separated from each other by an air gap 12 C that extends in the radial direction of the rotating shaft 9 .
- the positive electrode 19 and the negative electrode 20 are respectively brought into contact with the cooling fan pieces 12 A and 12 C from the opposite side to the pole core 10 ; then, the weld current is supplied to flow from the positive electrode 19 to the negative electrode 20 .
- each of the projections 12 c of the cooling fan pieces 12 A and 12 B can be supplied with the sufficient amount of the weld current, thereby preventing formation of a poor weld due to insufficient weld current.
- the cooling fan 12 is composed of the pair of cooling fan pieces 12 A and 12 B in the present embodiment.
- the cooling fan 12 may also be composed of more than two cooling fan pieces which are separated from each other by radial air gaps formed therebetween and each of which only contacts with electrodes having the same polarity.
- FIG. 6 shows a cooling fan 12 according to the third embodiment of the invention.
- the cooling fan 12 has a plurality of cuts (or slits) 21 each of which is formed between a circumferentially-adjacent pair of the blade portions 12 a of the cooling fan 12 . Further, each of the cuts 21 is so deeply formed in the radial direction of the rotating shaft 9 as to reach the annular connecting portion 12 b . As a result, the blade portions 12 a of the cooling fan 12 are connected to each other only by the annular connecting portion 12 b.
- the blade portions 12 a are connected to each other not only by the annular connecting portion 12 b but also by root parts of the blade portions 12 a which are integrally formed without cuts 21 formed therebetween.
- the positive and negative electrodes 19 and 20 are respectively brought into contact with two different ones of the blade portions 12 a of the cooling fan 12 ; then, the weld current is supplied to flow from the positive electrode 19 to the negative electrode 20 .
- each of the projections 12 c of the cooling core 12 can be supplied with the sufficient amount of the weld current, thereby preventing formation of a poor weld due to insufficient weld current.
- the blade portions 12 a of the cooling fan 12 are still connected to each other by the annular connecting portion 12 b . Therefore, the cooling 12 can still be easily handled as a one-piece component of the rotor 3 .
- FIG. 7A shows a pair of cooling fan pieces 12 C and 12 D according to the fourth embodiment of the invention.
- FIG. 7B shows a cooling fan 12 which is obtained by assembling the cooling fan pieces 12 C and 12 D together.
- each of the cooling fan pieces 12 C and 12 D includes a plurality of (e.g., four) blade portions 12 a , which are equally spaced in the circumferential direction, and an annular connecting portion 12 b that is located radially inside of the blade portions 12 a to connect all of the blade portions 12 a together.
- the cooling fan pieces 12 C and 12 D are assembled together so that: the blade portions 12 a of the cooling fan piece 12 C are alternately arranged with those of the cooling fan piece 12 D in the circumferential direction of the rotating shaft 9 ; and the annular connecting portion 12 b of the cooling fan piece 12 C is overlapped with that of the cooling fan piece 12 D in the axial direction of the rotating shaft 9 . Furthermore, the annular connecting portions 12 b of the cooling fan pieces 12 C and 12 D are electrically insulated from each other.
- the positive electrode 19 and the negative electrode 20 are respectively brought into contact with the cooling fan pieces 12 C and 12 D from the opposite side to the pole core 10 ; then, the weld current is supplied to flow from the positive electrode 19 to the negative electrode 20 .
- each of the projections 12 c of the cooling fan pieces 12 C and 12 D can be supplied with the sufficient amount of the weld current, thereby preventing formation of a poor weld due to insufficient weld current.
- all of the components of the rotor 3 other than the cooling fans 12 are first assembled together, and then the cooling fans 12 are respectively welded to the axial end faces of the pole cores 10 .
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Manufacture Of Motors, Generators (AREA)
Abstract
Description
Claims (2)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2008-241048 | 2008-09-19 | ||
| JP2008241048A JP4683102B2 (en) | 2008-09-19 | 2008-09-19 | Manufacturing method of rotor |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20100071196A1 US20100071196A1 (en) | 2010-03-25 |
| US8429810B2 true US8429810B2 (en) | 2013-04-30 |
Family
ID=41511043
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/585,543 Active 2030-09-15 US8429810B2 (en) | 2008-09-19 | 2009-09-17 | Method of manufacturing rotor for dynamoelectric machine |
Country Status (3)
| Country | Link |
|---|---|
| US (1) | US8429810B2 (en) |
| EP (1) | EP2166643B1 (en) |
| JP (1) | JP4683102B2 (en) |
Families Citing this family (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103433636B (en) * | 2013-08-22 | 2015-08-05 | 唐勇 | Pressure welding composite algorithm manufactures the method for bimetal metallurgy multiple tube |
| CN103624387B (en) * | 2013-12-13 | 2015-12-09 | 株洲湘火炬火花塞有限责任公司 | Automobile current generator cooling fan blade is welded to epitrochanterian welding method by one |
| JP7002568B2 (en) * | 2018-01-18 | 2022-01-20 | 三菱電機株式会社 | Rotor of rotary electric machine for vehicles and its manufacturing method |
| CN108526671B (en) * | 2018-05-30 | 2024-05-14 | 成都华川电装有限责任公司 | Welding fixture for claw pole rotor and fan of generator |
| CN109676226B (en) * | 2019-01-29 | 2024-04-19 | 宁国金鑫电机股份有限公司 | Welding shaping tool for rotor fan of automobile generator |
| CN112958893B (en) * | 2021-02-07 | 2023-03-14 | 重庆宝优机电有限公司 | Rotor spot welding device |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5241230A (en) * | 1991-10-15 | 1993-08-31 | Mitsubishi Denki K.K. | Cooling fan with reduced noise capability in an ac generator |
| JPH1085947A (en) | 1996-09-11 | 1998-04-07 | Miyachi Technos Corp | Method and device for controlling resistance welding |
| US6011235A (en) | 1996-09-11 | 2000-01-04 | Miyachi Technos Corporation | Method and apparatus for controlling resistance welding |
| US20030222054A1 (en) | 2000-12-06 | 2003-12-04 | Toyota Shatai Kabushiki Kaisha | Series spot welding method, device for carrying out the method, and electrodes employed in the method or the device |
| JP2004227954A (en) | 2003-01-23 | 2004-08-12 | Sony Corp | Lead terminals and power supply |
| WO2005072902A1 (en) | 2004-01-30 | 2005-08-11 | Mitsubishi Denki Kabushiki Kaisha | Welder for metal member having permanent magnet material and its welding method, and rotating electric machine |
| US20070001524A1 (en) | 2005-06-30 | 2007-01-04 | Denso Corporation | Alternator with a cooling fan rotated with a rotor |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7274121B2 (en) * | 2005-03-04 | 2007-09-25 | Remy Inc. | Systems and methods for fastening internal cooling fans to claw-pole electro-mechanical machines |
-
2008
- 2008-09-19 JP JP2008241048A patent/JP4683102B2/en active Active
-
2009
- 2009-09-17 US US12/585,543 patent/US8429810B2/en active Active
- 2009-09-18 EP EP09011938.9A patent/EP2166643B1/en active Active
Patent Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5241230A (en) * | 1991-10-15 | 1993-08-31 | Mitsubishi Denki K.K. | Cooling fan with reduced noise capability in an ac generator |
| JPH1085947A (en) | 1996-09-11 | 1998-04-07 | Miyachi Technos Corp | Method and device for controlling resistance welding |
| US6011235A (en) | 1996-09-11 | 2000-01-04 | Miyachi Technos Corporation | Method and apparatus for controlling resistance welding |
| US20030222054A1 (en) | 2000-12-06 | 2003-12-04 | Toyota Shatai Kabushiki Kaisha | Series spot welding method, device for carrying out the method, and electrodes employed in the method or the device |
| JP2004227954A (en) | 2003-01-23 | 2004-08-12 | Sony Corp | Lead terminals and power supply |
| WO2005072902A1 (en) | 2004-01-30 | 2005-08-11 | Mitsubishi Denki Kabushiki Kaisha | Welder for metal member having permanent magnet material and its welding method, and rotating electric machine |
| US20070040458A1 (en) | 2004-01-30 | 2007-02-22 | Mitsubishi Denki Kabushiki Kaisha | Welding set of metal member including permanent magnet and welding method thereof, as well as electric rotating machine |
| US7893381B2 (en) * | 2004-01-30 | 2011-02-22 | Mitsubishi Denki Kabushiki Kaisha | Welding set of metal member including permanent magnet and welding method thereof, as well as electric rotating machine |
| US20070001524A1 (en) | 2005-06-30 | 2007-01-04 | Denso Corporation | Alternator with a cooling fan rotated with a rotor |
Non-Patent Citations (2)
| Title |
|---|
| Aug. 17, 2012 Extended European Search Report issued in European Patent Application No. 09011938.9. |
| Office Action issued in Japanese Patent Application No. 2008-241048 dispatched on Sep. 14, 2010. (with English-Language translation). |
Also Published As
| Publication number | Publication date |
|---|---|
| EP2166643A2 (en) | 2010-03-24 |
| JP2010074982A (en) | 2010-04-02 |
| JP4683102B2 (en) | 2011-05-11 |
| EP2166643B1 (en) | 2017-11-08 |
| EP2166643A3 (en) | 2012-09-19 |
| US20100071196A1 (en) | 2010-03-25 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9419484B2 (en) | Stator for rotating electric machine | |
| JP5367362B2 (en) | Rotor for rotary electric machine in which intermediate sleeve is arranged between shaft and magnetic pole member, and method for manufacturing rotor | |
| US8772995B2 (en) | Stator for electric rotating machine | |
| US8429810B2 (en) | Method of manufacturing rotor for dynamoelectric machine | |
| EP2506401B1 (en) | Rotary electric machine | |
| US7671508B2 (en) | Automotive alternator having improved structure for effectively cooling field coil | |
| US20020053855A1 (en) | Alternator for vehicles having permanent magnets in rotor | |
| JP2003259583A (en) | Stator for rotating electric machine and method of manufacturing the same | |
| CN114651387B (en) | Method for manufacturing stator of rotating electric machine, stator of rotating electric machine, and rotating electric machine | |
| US9705384B2 (en) | Rotor for rotating electric machine | |
| JP2007295764A (en) | Stator for rotating electrical machine, method for manufacturing the same, and AC generator | |
| EP3716447A1 (en) | Generators with flat wire windings and methods of making generators with flat wire windings | |
| WO2012077215A1 (en) | Vehicle ac generator | |
| US20140154086A1 (en) | Front fan retention in dual internal fan alternator | |
| JP2007295763A (en) | Rotating electrical machine stator and AC generator | |
| CN110247522B (en) | Rotating electrical machine | |
| US20190319521A1 (en) | Rotor and rotating electric machine including rotor | |
| WO2017110360A1 (en) | Stator, rotary electric machine, and manufacturing method for stator | |
| GB1560746A (en) | Electrical machines | |
| US20130181555A1 (en) | Stator for electric rotating machine | |
| CN116264420A (en) | Rotors for rotating electrical machines | |
| JP2009055738A (en) | Method for welding cooling fan of rotor for rotating electrical machine | |
| JP4305978B2 (en) | Rotating electric machine stator and rotating electric machine | |
| JP3722174B2 (en) | Rotating electric machine | |
| CN111630757B (en) | Rotor of rotating electric machine for vehicle and method for manufacturing same |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: DENSO CORPORATION,JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KOJIMA, RYOTARO;SUGIYAMA, YUJI;MORIGUCHI, KEIGO;AND OTHERS;REEL/FRAME:023416/0211 Effective date: 20091002 Owner name: DENSO CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KOJIMA, RYOTARO;SUGIYAMA, YUJI;MORIGUCHI, KEIGO;AND OTHERS;REEL/FRAME:023416/0211 Effective date: 20091002 |
|
| FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| FPAY | Fee payment |
Year of fee payment: 4 |
|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |