[go: up one dir, main page]

US8429810B2 - Method of manufacturing rotor for dynamoelectric machine - Google Patents

Method of manufacturing rotor for dynamoelectric machine Download PDF

Info

Publication number
US8429810B2
US8429810B2 US12/585,543 US58554309A US8429810B2 US 8429810 B2 US8429810 B2 US 8429810B2 US 58554309 A US58554309 A US 58554309A US 8429810 B2 US8429810 B2 US 8429810B2
Authority
US
United States
Prior art keywords
cooling fan
rotor
rotor core
positive
axial end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US12/585,543
Other versions
US20100071196A1 (en
Inventor
Ryotaro Kojima
Yuji Sugiyama
Keigo Moriguchi
Koji Kondo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Assigned to DENSO CORPORATION reassignment DENSO CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KOJIMA, RYOTARO, KONDO, KOJI, MORIGUCHI, KEIGO, SUGIYAMA, YUJI
Publication of US20100071196A1 publication Critical patent/US20100071196A1/en
Application granted granted Critical
Publication of US8429810B2 publication Critical patent/US8429810B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/021Magnetic cores
    • H02K15/022Magnetic cores with salient poles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/002Resistance welding; Severing by resistance heating specially adapted for particular articles or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/10Spot welding; Stitch welding
    • B23K11/11Spot welding
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • H02K9/06Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium with fans or impellers driven by the machine shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49009Dynamoelectric machine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49009Dynamoelectric machine
    • Y10T29/49012Rotor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49075Electromagnet, transformer or inductor including permanent magnet or core
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/49336Blade making

Definitions

  • the present invention relates generally to methods of manufacturing rotors for dynamoelectric machines, such as electric motors and electric generators. More particularly, the invention relates to an improved method of fixing a cooling fan to an axial end face of a rotor core by resistance welding.
  • the rotor core is made up of a pair of Lundell-type pole cores 100 each of which includes a plurality of claw poles extending in the axial direction of the rotor.
  • the claw poles of one of the pole cores 100 are alternately arranged with those of the other pole core 100 in the circumferential direction of the rotor.
  • the rotor further includes a plurality of permanent magnets 110 , each of which is interposed between a circumferentially-adjacent pair of the claw poles of the pole cores 100 .
  • the resistance welding is performed as follows. First, a cooling fan 120 is disposed on an axial end face of one of the pole cores 100 (i.e., the upper one of the pole cores 100 in FIG. 8B ). Then, as shown in FIGS. 8A and 8B , a plurality of positive electrodes 130 are brought into contact with a surface of the cooling fan 120 from the opposite side to the pole core 100 , whereas a plurality of negative electrodes 140 are brought into contact with a surface of the pole core 100 . Thereafter, weld current is supplied to flow between each electrode pair consisting of one of the positive electrodes 130 and one of the negative electrodes 140 .
  • the cooling fan 120 has a plurality of projections formed on a surface of the cooling fan 120 to be joined to the axial end face of the pole core 100 .
  • the projections are melted by the heat generated by the resistance to the weld current between each electrode pair, thereby forming welds between the surface of the cooling fan 120 and the axial end face of the pole core 100 .
  • each electrode pair is used to form only one weld between the cooling fan 120 and the pole core 100 . Therefore, it is necessary to supply a large amount of weld current to the electrode pairs in proportion to the number of the weld spots (i.e., the number of the projections). Accordingly, it is necessary to employ a large-capacity power source for the resistance welding.
  • each of the permanent magnets is so magnetized as to reduce leakage magnetic flux between the circumferentially-adjacent pair of the claw poles of the pole cores 100 .
  • the permanent magnets may be undesirably magnetized by a magnetic field created by the weld current. As a result, the permanent magnets may become unable to accomplish the function of reducing the leakage magnetic flux.
  • a method of manufacturing a rotor for a dynamoelectric machine includes a rotating shaft, a rotor core fixed on the rotating shaft, and a cooling fan fixed to an axial end face of the rotor core.
  • the method includes the step of fixing the cooling fan to the axial end face of the rotor core by resistance welding.
  • the method is characterized in that in the resistance welding, both a positive electrode and a negative electrode are first brought into contact with the cooling fan to have the cooling fan held between the axial end face of the rotor core and both the positive and negative electrodes, and then weld current is supplied to flow from the positive electrode to the negative electrode.
  • the cooling fan includes a pair of projections each of which makes up a weld spot between the cooling fan and the axial end face of the rotor core.
  • the resistance welding is projection welding in which the positive and negative electrodes are respectively aligned with the projections of the cooling fan in the axial direction of the rotating shaft to concentrate the weld current on the projections.
  • the rotor core is made up of a pair of Lundell-type pole cores each of which includes a plurality of claw poles extending in the axial direction of the rotating shaft.
  • the claw poles of one of the pole cores are alternately arranged with those of the other pole core in the circumferential direction of the rotating shaft.
  • the rotor further includes a plurality of permanent magnets each of which is interposed between a circumferentially-adjacent pair of the claw poles of the pole cores to reduce leakage magnetic flux between the pair of the claw poles.
  • the cooling fan is composed of a pair of first and second cooling fan pieces which are disposed on the same plane perpendicular to the axial direction of the rotating shaft and separated from each other by an air gap extending in the radial direction of the rotating shaft.
  • the positive and negative electrodes are respectively brought into contact with the first and second cooling fan pieces.
  • the cooling fan includes first and second portions which are adjacent to each other with a cut formed therebetween.
  • the positive and negative electrodes are respectively brought into contact with the first and second portions of the cooling fan.
  • the cooling fan is composed of a pair of first and second cooling fan pieces each of which includes a plurality of blade portions and an annular connecting portion that connects the blade portions.
  • the blade portions of the first cooling fan piece are alternately arranged with those of the second cooling fan piece in the circumferential direction of the rotating shaft, and the annular connecting portion of the first cooling fan piece is overlapped with that of the second cooling fan piece in the axial direction of the rotating shaft.
  • the annular connecting portions of the first and second cooling fan pieces are electrically insulated from each other. In the resistance welding, the positive and negative electrodes are respectively brought into contact with the first and second cooling fan pieces.
  • FIG. 1 is a schematic cross-sectional view of an automotive alternator according to the first embodiment of the invention
  • FIG. 2A is a schematic end view of a rotor of the alternator
  • FIG. 2B is a schematic cross-sectional view of the rotor with electrodes for resistance welding attached thereto;
  • FIG. 3 is a schematic end view of the rotor illustrating the arrangement of a plurality of electrodes for resistance welding according to the first embodiment
  • FIG. 4 is a schematic end view of the rotor illustrating a modification of the arrangement of the electrodes
  • FIG. 5 is a schematic plan view of a cooling fan according to the second embodiment of the invention.
  • FIG. 6 is a schematic end view of a rotor according to the third embodiment of the invention.
  • FIG. 7A is a schematic plan view showing a pair of cooling fan pieces according to the fourth embodiment of the invention.
  • FIG. 7B is a schematic plan view of a cooling fan which is obtained by assembling the cooling fan pieces of FIG. 7A together;
  • FIGS. 8A and 8B are diagrams together illustrating a conventional welding method, wherein FIG. 8A is a schematic plan view of a cooling fan, and FIG. 8B is a schematic cross-sectional view of a rotor of an automotive alternator with electrodes for resistance welding attached thereto.
  • FIGS. 1-7B Preferred embodiments of the present invention will be described hereinafter with reference to FIGS. 1-7B . It should be noted that, for the sake of clarity and understanding, identical components having identical functions in different embodiments of the invention have been marked, where possible, with the same reference numerals in each of the figures.
  • FIG. 1 shows the overall configuration of an automotive alternator 1 which includes a rotor 3 manufactured by a method according to the first embodiment of the invention.
  • the alternator 1 is designed to be used in a motor vehicle, such as a passenger car or a truck.
  • the alternator 1 includes a stator 2 , the rotor 3 , a pair of housings 4 and 5 , a brush assembly 6 , and a rectifier 7 .
  • the stator 2 includes a hollow cylindrical stator core 2 a and a three-phase stator coil 2 b wound around the stator core 2 a .
  • the stator 2 generates three-phase AC power in a rotating magnetic field created by the rotor 3 .
  • the rotor 3 includes a rotating shaft 9 , a rotor core made up of a pair of Lundell-type pole cores 10 fixed on the rotating shaft 9 , a field coil 11 wound around the pole cores 10 , a pair of cooling fans 12 respectively fixed to axial end faces of the pole cores 10 , and a plurality of permanent magnets 13 interposed between the pole cores 10 .
  • a pulley 8 is mounted on an end portion of the rotating shaft 9 , so that torque generated by an engine of the vehicle can be transmitted to the rotor 3 via the pulley 8 , thereby driving the rotor 3 .
  • the rotor 3 creates the rotating magnetic field during rotation thereof.
  • Each of the pole cores 10 includes, as shown in FIG. 2B , a hollow cylindrical boss portion 10 a , a disc portion 10 b , and a plurality of claw poles 10 c .
  • the boss portion 10 a is press-fitted on the rotating shaft 9 .
  • the disc portion 10 b extends radially outward from an axially outer part of the boss portion 10 a .
  • Each of the claw poles 10 c axially extends from a radially outer part of the disc portion 10 b toward the other one of the pole cores 10 .
  • the pole cores 10 are so assembled together that: the inside axial end face of the boss portion 10 a of one of the pole cores 10 abuts that of the boss portion 10 a of the other pole core 10 ; and the claw poles 10 c of one of the pole cores 10 are interleaved with those of the other pole core 10 . Consequently, the claw poles 10 c of one of the pole cores 10 are alternately arranged with those of the other pole 10 in the circumferential direction of the rotating shaft 9 .
  • the field coil 11 is wound around the radially outer surfaces of the boss portions 10 a of the pole cores 10 via a resin-made bobbin 14 .
  • the field coil 11 has an opposite pair of ends that are respectively electrically connected to a pair of slip rings 15 ; the slip rings 15 are provided on an end portion of the rotating shaft 9 on the opposite side to the pulley 8 .
  • the claw poles 10 c of one of the pole cores 10 are each magnetized to form a north pole, whereas the claw poles 10 c of the other pole core 10 are each magnetized to form a south pole.
  • the rotating magnetic field is created with rotation of the north and south poles formed by the claw poles 10 c of the pole cores 10 .
  • each of the cooling fans 12 includes a plurality of (e.g., seven) blade portions 12 a , which are equally spaced in the circumferential direction of the rotating shaft 9 , and an annular connecting portion 12 b that is located radially inside of the blade portions 12 a to connect all of the blade portions 12 a together.
  • Each of the permanent magnets 13 is interposed between a circumferentially-adjacent pair of the claw poles 10 c of the pole cores 10 . Further, each of the permanent magnets 13 is so magnetized as to reduce leakage magnetic flux between the circumferentially-adjacent pair of the claw poles 10 c.
  • the housings 4 and 5 together support and accommodate therein both the stator 2 and the rotor 3 . More specifically, as shown in FIG. 1 , the housings 4 and 5 are connected, by means of a plurality of bolts 18 , to each other with the stator core 2 a of the stator 2 sandwiched therebetween. Further, the housings 4 and 5 together rotatably support the rotating shaft 9 via a pair of bearings 16 and 17 that are respectively provided in the housings 4 and 5 .
  • the brush assembly 6 is provided to supply the field current to the field coil 11 during rotation of the rotor 3 .
  • the brush assembly 6 includes a pair of brushes 61 that are respectively spring-loaded on the slip rings 15 to establish sliding contacts with them during rotation of the rotor 3 .
  • the rectifier 7 is configured to full-wave rectify the three-phase AC power output from the three-phase stator coil 2 b of the stator 2 into DC power. In addition, part of the DC power is used as the field current to energize the field coil 11 of the rotor 3 .
  • the components of the rotor 3 are prepared which include the rotating shaft 9 , the pair of pole cores 10 , the field coil 11 , the pair of cooling fans 12 , and the plurality of permanent magnets 13 . Then, all of the components of the rotor 3 other than the cooling fans 12 are assembled together in any manner well known in the art. Thereafter, the cooling fans 12 are respectively joined, by resistance welding, to the axial end faces of the pole cores 10 . As a result, the rotor 3 is finally obtained.
  • the method of manufacturing the rotor 3 is characterized by an improved method of performing resistance welding to join the cooling fans 12 respectively to the axial end faces of the pole cores 10 .
  • cooling fans 12 are joined to the corresponding pole cores 10 by the same method; therefore, for the sake of simplicity, only the process of joining one of the cooling fans 12 to the axial end face of the corresponding pole core 10 will be described hereinbelow.
  • the cooling fan 12 has a plurality of (e.g., ten) projections 12 c , each of which is formed on a surface of one of the blade portions 12 a of the cooling fan 12 . Further, on the surface of each of the blade portions 12 a , at least one of the projections 12 c is formed.
  • Each of the projections 12 c makes up a weld spot between the cooling fan 12 and the axial end face of the pole core 10 . That is to say, the resistance welding performed in the present embodiment is projection welding.
  • the cooling fan 12 is first placed on the pole core 10 , so that each of the projections 12 c of the cooling fan 12 abuts the axial end face of the pole core 10 .
  • a plurality of pairs (e.g., five pairs) of positive electrodes 19 and negative electrodes 20 are placed on the cooling fan 12 , so that each of the positive and negative electrodes 19 and 20 is brought into contact with a surface of one of the blade portions 12 a on the opposite side to the pole core 10 .
  • the number of the positive and negative electrodes 19 and 20 is the same as the number of the projections 12 c of the cooling fan 12 .
  • each of the positive and negative electrodes 19 and 20 is aligned with a corresponding one of the projections 12 c of the cooling fan 12 in the axial direction of the rotating shaft 9 .
  • the positive electrodes 19 are alternately arranged with the negative electrodes 20 in the circumferential direction of the rotating shaft 9 .
  • weld current is supplied from a power source (not shown) to flow between each electrode pair consisting of one of the positive electrodes 19 and one of the negative electrodes 20 while pressing each electrode pair against the cooling fan 12 . Consequently, the weld current is concentrated on each of the projections 12 c of the cooling fan 12 . More specifically, for each electrode pair, the weld current sequentially passes the positive electrode 19 , the projection 12 c of the cooling fan 12 axially aligned with the positive electrode 19 , the pole core 10 , the projection 12 c of the cooling fan 12 axially aligned with the negative electrode 20 , and the negative electrode 20 .
  • the above-described method of manufacturing the rotor 3 has the following advantages.
  • both the positive and negative electrodes 19 and 20 are first brought into contact with the cooling fan 12 , from the opposite side to the pole core 10 , to have the cooling fan 12 held between the axial end face of the pole core 10 and both the positive and negative electrodes 19 and 20 ; then, the weld current is supplied to flow from the positive electrode 19 to the negative electrode 20 .
  • the welding method according to the present embodiment it is possible to reduce the total amount of the weld current necessary for fixing the cooling fan 12 to the pole core 10 in comparison with the case of using the conventional welding method. As a result, it is possible to reduce the necessary capacity of the power source. In other words, it is possible to employ a small-capacity power source for the resistance welding.
  • the welding method according to the present embodiment it is possible to reduce the total amount of the weld current flowing through the pole core 10 during the resistance welding in comparison with the case of using the conventional welding method. Consequently, it is possible to more reliably prevent the permanent magnets 13 from being undesirably magnetized by the weld current.
  • the positive electrodes 19 are alternately arranged with the negative electrodes 20 in the circumferential direction of the rotating shaft 9 .
  • the positive and negative electrodes 19 and 20 may also be arranged in any other manner.
  • the positive and negative electrodes 19 and 20 may be arranged so that all of the positive electrodes 19 are adjacent to each other without the negative electrodes 20 interposed therebetween in the circumferential direction of the rotating shaft 9 .
  • all of the ten projections 12 c are simultaneously welded to the pole core 10 by using the five electrode pairs.
  • FIG. 5 shows a cooling fan 12 according to the second embodiment of the invention.
  • the cooling fan 12 is composed of a pair of cooling fan pieces 12 A and 12 B which are disposed on the same plane perpendicular to the axial direction of the rotating shaft 9 and each occupy one half of the entire angular range (i.e., 360°) of the cooling fan 12 . Further, the cooling fan pieces 12 A and 12 B are separated from each other by an air gap 12 C that extends in the radial direction of the rotating shaft 9 .
  • the positive electrode 19 and the negative electrode 20 are respectively brought into contact with the cooling fan pieces 12 A and 12 C from the opposite side to the pole core 10 ; then, the weld current is supplied to flow from the positive electrode 19 to the negative electrode 20 .
  • each of the projections 12 c of the cooling fan pieces 12 A and 12 B can be supplied with the sufficient amount of the weld current, thereby preventing formation of a poor weld due to insufficient weld current.
  • the cooling fan 12 is composed of the pair of cooling fan pieces 12 A and 12 B in the present embodiment.
  • the cooling fan 12 may also be composed of more than two cooling fan pieces which are separated from each other by radial air gaps formed therebetween and each of which only contacts with electrodes having the same polarity.
  • FIG. 6 shows a cooling fan 12 according to the third embodiment of the invention.
  • the cooling fan 12 has a plurality of cuts (or slits) 21 each of which is formed between a circumferentially-adjacent pair of the blade portions 12 a of the cooling fan 12 . Further, each of the cuts 21 is so deeply formed in the radial direction of the rotating shaft 9 as to reach the annular connecting portion 12 b . As a result, the blade portions 12 a of the cooling fan 12 are connected to each other only by the annular connecting portion 12 b.
  • the blade portions 12 a are connected to each other not only by the annular connecting portion 12 b but also by root parts of the blade portions 12 a which are integrally formed without cuts 21 formed therebetween.
  • the positive and negative electrodes 19 and 20 are respectively brought into contact with two different ones of the blade portions 12 a of the cooling fan 12 ; then, the weld current is supplied to flow from the positive electrode 19 to the negative electrode 20 .
  • each of the projections 12 c of the cooling core 12 can be supplied with the sufficient amount of the weld current, thereby preventing formation of a poor weld due to insufficient weld current.
  • the blade portions 12 a of the cooling fan 12 are still connected to each other by the annular connecting portion 12 b . Therefore, the cooling 12 can still be easily handled as a one-piece component of the rotor 3 .
  • FIG. 7A shows a pair of cooling fan pieces 12 C and 12 D according to the fourth embodiment of the invention.
  • FIG. 7B shows a cooling fan 12 which is obtained by assembling the cooling fan pieces 12 C and 12 D together.
  • each of the cooling fan pieces 12 C and 12 D includes a plurality of (e.g., four) blade portions 12 a , which are equally spaced in the circumferential direction, and an annular connecting portion 12 b that is located radially inside of the blade portions 12 a to connect all of the blade portions 12 a together.
  • the cooling fan pieces 12 C and 12 D are assembled together so that: the blade portions 12 a of the cooling fan piece 12 C are alternately arranged with those of the cooling fan piece 12 D in the circumferential direction of the rotating shaft 9 ; and the annular connecting portion 12 b of the cooling fan piece 12 C is overlapped with that of the cooling fan piece 12 D in the axial direction of the rotating shaft 9 . Furthermore, the annular connecting portions 12 b of the cooling fan pieces 12 C and 12 D are electrically insulated from each other.
  • the positive electrode 19 and the negative electrode 20 are respectively brought into contact with the cooling fan pieces 12 C and 12 D from the opposite side to the pole core 10 ; then, the weld current is supplied to flow from the positive electrode 19 to the negative electrode 20 .
  • each of the projections 12 c of the cooling fan pieces 12 C and 12 D can be supplied with the sufficient amount of the weld current, thereby preventing formation of a poor weld due to insufficient weld current.
  • all of the components of the rotor 3 other than the cooling fans 12 are first assembled together, and then the cooling fans 12 are respectively welded to the axial end faces of the pole cores 10 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

There is disclosed a method of manufacturing a rotor for a dynamoelectric machine. The rotor includes a rotating shaft, a rotor core fixed on the rotating shaft, and a cooling fan fixed to an axial end face of the rotor core. The method includes the step of fixing the cooling fan to the axial end face of the rotor core by resistance welding. The method is characterized in that in the resistance welding, both a positive electrode and a negative electrode are first brought into contact with the cooling fan to have the cooling fan held between the axial end face of the rotor core and both the positive and negative electrodes, and then weld current is supplied to flow from the positive electrode to the negative electrode.

Description

CROSS-REFERENCE TO RELATED APPLICATION
This application is based on and claims priority from Japanese Patent Application No. 2008-241048, filed on Sep. 19, 2008, the content of which is hereby incorporated by reference in its entirety into this application.
BACKGROUND OF THE INVENTION
1. Technical Field of the Invention
The present invention relates generally to methods of manufacturing rotors for dynamoelectric machines, such as electric motors and electric generators. More particularly, the invention relates to an improved method of fixing a cooling fan to an axial end face of a rotor core by resistance welding.
2. Description of the Related Art
International Publication No. WO 2005/072902, an English equivalent of which is U.S. Patent Application Publication No. 2007/0040458, discloses a method of fixing a cooling fan to an axial end face of a rotor core by resistance welding. Both the cooling fan and the rotor core are included in, for example, a rotor of an automotive alternator.
More specifically, as shown in FIG. 8B, the rotor core is made up of a pair of Lundell-type pole cores 100 each of which includes a plurality of claw poles extending in the axial direction of the rotor. The claw poles of one of the pole cores 100 are alternately arranged with those of the other pole core 100 in the circumferential direction of the rotor. The rotor further includes a plurality of permanent magnets 110, each of which is interposed between a circumferentially-adjacent pair of the claw poles of the pole cores 100.
The resistance welding is performed as follows. First, a cooling fan 120 is disposed on an axial end face of one of the pole cores 100 (i.e., the upper one of the pole cores 100 in FIG. 8B). Then, as shown in FIGS. 8A and 8B, a plurality of positive electrodes 130 are brought into contact with a surface of the cooling fan 120 from the opposite side to the pole core 100, whereas a plurality of negative electrodes 140 are brought into contact with a surface of the pole core 100. Thereafter, weld current is supplied to flow between each electrode pair consisting of one of the positive electrodes 130 and one of the negative electrodes 140. In addition, the cooling fan 120 has a plurality of projections formed on a surface of the cooling fan 120 to be joined to the axial end face of the pole core 100. During the resistance welding, the projections are melted by the heat generated by the resistance to the weld current between each electrode pair, thereby forming welds between the surface of the cooling fan 120 and the axial end face of the pole core 100.
However, in the above resistance welding, each electrode pair is used to form only one weld between the cooling fan 120 and the pole core 100. Therefore, it is necessary to supply a large amount of weld current to the electrode pairs in proportion to the number of the weld spots (i.e., the number of the projections). Accordingly, it is necessary to employ a large-capacity power source for the resistance welding.
Further, in the rotor, each of the permanent magnets is so magnetized as to reduce leakage magnetic flux between the circumferentially-adjacent pair of the claw poles of the pole cores 100. However, when a large amount of the weld current flows through the pole core 100 which is to be joined to the cooling fan 120, the permanent magnets may be undesirably magnetized by a magnetic field created by the weld current. As a result, the permanent magnets may become unable to accomplish the function of reducing the leakage magnetic flux.
SUMMARY OF THE INVENTION
According to the present invention, there is provided a method of manufacturing a rotor for a dynamoelectric machine. The rotor includes a rotating shaft, a rotor core fixed on the rotating shaft, and a cooling fan fixed to an axial end face of the rotor core. The method includes the step of fixing the cooling fan to the axial end face of the rotor core by resistance welding. The method is characterized in that in the resistance welding, both a positive electrode and a negative electrode are first brought into contact with the cooling fan to have the cooling fan held between the axial end face of the rotor core and both the positive and negative electrodes, and then weld current is supplied to flow from the positive electrode to the negative electrode.
With the above method, it is possible to form two welds between the cooling fan and the rotor core at the same time using only the pair of the positive and negative electrodes. Consequently, it is possible to reduce the total amount of the weld current necessary for fixing the cooling fan to the rotor core in comparison with the case of using the conventional method disclosed in International Publication No. WO 2005/072902. As a result, it is possible to employ a small-capacity power source for the resistance welding.
According to a further implementation of the invention, the cooling fan includes a pair of projections each of which makes up a weld spot between the cooling fan and the axial end face of the rotor core. The resistance welding is projection welding in which the positive and negative electrodes are respectively aligned with the projections of the cooling fan in the axial direction of the rotating shaft to concentrate the weld current on the projections.
By performing the above projection welding, it is possible to form high-quality welds between the cooling fan and the axial end face of the rotor core.
The rotor core is made up of a pair of Lundell-type pole cores each of which includes a plurality of claw poles extending in the axial direction of the rotating shaft. The claw poles of one of the pole cores are alternately arranged with those of the other pole core in the circumferential direction of the rotating shaft. The rotor further includes a plurality of permanent magnets each of which is interposed between a circumferentially-adjacent pair of the claw poles of the pole cores to reduce leakage magnetic flux between the pair of the claw poles.
With the method according to the invention, it is possible to reduce the total amount of the weld current flowing through the rotor core during the resistance welding in comparison with the case of using the conventional method. Consequently, it is possible to more reliably prevent the permanent magnets from being undesirably magnetized by the weld current.
In one preferred embodiment of the invention, the cooling fan is composed of a pair of first and second cooling fan pieces which are disposed on the same plane perpendicular to the axial direction of the rotating shaft and separated from each other by an air gap extending in the radial direction of the rotating shaft. In the resistance welding, the positive and negative electrodes are respectively brought into contact with the first and second cooling fan pieces.
With the air gap formed between the first and second cooling fan pieces, it is possible to block the weld current from flowing directly between the two cooling fan pieces. Consequently, it is possible to ensure a sufficient amount of the weld current which sequentially passes the positive electrode, the first cooling fan piece, the rotor core, the second cooling fan piece, and the negative electrode. As a result, it is possible to form two high-quality welds between the rotor core and the first and second cooling fan pieces.
In another preferred embodiment of the invention, the cooling fan includes first and second portions which are adjacent to each other with a cut formed therebetween. In the resistance welding, the positive and negative electrodes are respectively brought into contact with the first and second portions of the cooling fan.
With the cut formed between the first and second portions of the cooling fan, it is possible to limit the weld current from flowing directly between the two portions. Consequently, it is possible to ensure a sufficient amount of the weld current which sequentially passes the positive electrode, the first portion of the cooling fan, the rotor core, the second portion of the cooling fan, and the negative electrode. As a result, it is possible to form two high-quality welds between the rotor core and the first and second portions of the cooling fan.
In yet another preferred embodiment of the invention, the cooling fan is composed of a pair of first and second cooling fan pieces each of which includes a plurality of blade portions and an annular connecting portion that connects the blade portions. The blade portions of the first cooling fan piece are alternately arranged with those of the second cooling fan piece in the circumferential direction of the rotating shaft, and the annular connecting portion of the first cooling fan piece is overlapped with that of the second cooling fan piece in the axial direction of the rotating shaft. The annular connecting portions of the first and second cooling fan pieces are electrically insulated from each other. In the resistance welding, the positive and negative electrodes are respectively brought into contact with the first and second cooling fan pieces.
With the electrical insulation provided between the annular connecting portions of the first and second cooling fan pieces, it is possible to block the weld current from flowing directly between the two cooling fan pieces. Consequently, it is possible to ensure a sufficient amount of the weld current which sequentially passes the positive electrode, the first cooling fan piece, the rotor core, the second cooling fan piece, and the negative electrode. As a result, it is possible to form two high-quality welds between the rotor core and the first and second cooling fan pieces.
BRIEF DESCRIPTION OF THE DRAWINGS
The present invention will be understood more fully from the detailed description given hereinafter and from the accompanying drawings of preferred embodiments of the invention, which, however, should not be taken to limit the invention to the specific embodiments but are for the purpose of explanation and understanding only.
In the accompanying drawings:
FIG. 1 is a schematic cross-sectional view of an automotive alternator according to the first embodiment of the invention;
FIG. 2A is a schematic end view of a rotor of the alternator;
FIG. 2B is a schematic cross-sectional view of the rotor with electrodes for resistance welding attached thereto;
FIG. 3 is a schematic end view of the rotor illustrating the arrangement of a plurality of electrodes for resistance welding according to the first embodiment;
FIG. 4 is a schematic end view of the rotor illustrating a modification of the arrangement of the electrodes;
FIG. 5 is a schematic plan view of a cooling fan according to the second embodiment of the invention;
FIG. 6 is a schematic end view of a rotor according to the third embodiment of the invention;
FIG. 7A is a schematic plan view showing a pair of cooling fan pieces according to the fourth embodiment of the invention;
FIG. 7B is a schematic plan view of a cooling fan which is obtained by assembling the cooling fan pieces of FIG. 7A together; and
FIGS. 8A and 8B are diagrams together illustrating a conventional welding method, wherein FIG. 8A is a schematic plan view of a cooling fan, and FIG. 8B is a schematic cross-sectional view of a rotor of an automotive alternator with electrodes for resistance welding attached thereto.
DESCRIPTION OF PREFERRED EMBODIMENTS
Preferred embodiments of the present invention will be described hereinafter with reference to FIGS. 1-7B. It should be noted that, for the sake of clarity and understanding, identical components having identical functions in different embodiments of the invention have been marked, where possible, with the same reference numerals in each of the figures.
First Embodiment
FIG. 1 shows the overall configuration of an automotive alternator 1 which includes a rotor 3 manufactured by a method according to the first embodiment of the invention. The alternator 1 is designed to be used in a motor vehicle, such as a passenger car or a truck.
As shown in FIG. 1, the alternator 1 includes a stator 2, the rotor 3, a pair of housings 4 and 5, a brush assembly 6, and a rectifier 7.
The stator 2 includes a hollow cylindrical stator core 2 a and a three-phase stator coil 2 b wound around the stator core 2 a. The stator 2 generates three-phase AC power in a rotating magnetic field created by the rotor 3.
The rotor 3 includes a rotating shaft 9, a rotor core made up of a pair of Lundell-type pole cores 10 fixed on the rotating shaft 9, a field coil 11 wound around the pole cores 10, a pair of cooling fans 12 respectively fixed to axial end faces of the pole cores 10, and a plurality of permanent magnets 13 interposed between the pole cores 10. In addition, a pulley 8 is mounted on an end portion of the rotating shaft 9, so that torque generated by an engine of the vehicle can be transmitted to the rotor 3 via the pulley 8, thereby driving the rotor 3. The rotor 3 creates the rotating magnetic field during rotation thereof.
Each of the pole cores 10 includes, as shown in FIG. 2B, a hollow cylindrical boss portion 10 a, a disc portion 10 b, and a plurality of claw poles 10 c. The boss portion 10 a is press-fitted on the rotating shaft 9. The disc portion 10 b extends radially outward from an axially outer part of the boss portion 10 a. Each of the claw poles 10 c axially extends from a radially outer part of the disc portion 10 b toward the other one of the pole cores 10.
The pole cores 10 are so assembled together that: the inside axial end face of the boss portion 10 a of one of the pole cores 10 abuts that of the boss portion 10 a of the other pole core 10; and the claw poles 10 c of one of the pole cores 10 are interleaved with those of the other pole core 10. Consequently, the claw poles 10 c of one of the pole cores 10 are alternately arranged with those of the other pole 10 in the circumferential direction of the rotating shaft 9.
The field coil 11 is wound around the radially outer surfaces of the boss portions 10 a of the pole cores 10 via a resin-made bobbin 14. The field coil 11 has an opposite pair of ends that are respectively electrically connected to a pair of slip rings 15; the slip rings 15 are provided on an end portion of the rotating shaft 9 on the opposite side to the pulley 8.
When field current is supplied to the field coil 11 via the slip rings 15, the claw poles 10 c of one of the pole cores 10 are each magnetized to form a north pole, whereas the claw poles 10 c of the other pole core 10 are each magnetized to form a south pole. The rotating magnetic field is created with rotation of the north and south poles formed by the claw poles 10 c of the pole cores 10.
The cooling fans 12 are respectively fixed to the axial end faces of the pole cores 10 (more specifically, the outside axial end faces of the disc portions 10 b) to create a cooling air flow during rotation of the rotor 3. As shown in FIG. 2A, each of the cooling fans 12 includes a plurality of (e.g., seven) blade portions 12 a, which are equally spaced in the circumferential direction of the rotating shaft 9, and an annular connecting portion 12 b that is located radially inside of the blade portions 12 a to connect all of the blade portions 12 a together.
Each of the permanent magnets 13 is interposed between a circumferentially-adjacent pair of the claw poles 10 c of the pole cores 10. Further, each of the permanent magnets 13 is so magnetized as to reduce leakage magnetic flux between the circumferentially-adjacent pair of the claw poles 10 c.
The housings 4 and 5 together support and accommodate therein both the stator 2 and the rotor 3. More specifically, as shown in FIG. 1, the housings 4 and 5 are connected, by means of a plurality of bolts 18, to each other with the stator core 2 a of the stator 2 sandwiched therebetween. Further, the housings 4 and 5 together rotatably support the rotating shaft 9 via a pair of bearings 16 and 17 that are respectively provided in the housings 4 and 5.
The brush assembly 6 is provided to supply the field current to the field coil 11 during rotation of the rotor 3. The brush assembly 6 includes a pair of brushes 61 that are respectively spring-loaded on the slip rings 15 to establish sliding contacts with them during rotation of the rotor 3.
The rectifier 7 is configured to full-wave rectify the three-phase AC power output from the three-phase stator coil 2 b of the stator 2 into DC power. In addition, part of the DC power is used as the field current to energize the field coil 11 of the rotor 3.
After having described the overall configuration of the alternator 1, the method of manufacturing the rotor 3 according to the present embodiment will be described hereinafter.
First, all of the components of the rotor 3 are prepared which include the rotating shaft 9, the pair of pole cores 10, the field coil 11, the pair of cooling fans 12, and the plurality of permanent magnets 13. Then, all of the components of the rotor 3 other than the cooling fans 12 are assembled together in any manner well known in the art. Thereafter, the cooling fans 12 are respectively joined, by resistance welding, to the axial end faces of the pole cores 10. As a result, the rotor 3 is finally obtained.
Moreover, the method of manufacturing the rotor 3 is characterized by an improved method of performing resistance welding to join the cooling fans 12 respectively to the axial end faces of the pole cores 10.
It should be noted that the cooling fans 12 are joined to the corresponding pole cores 10 by the same method; therefore, for the sake of simplicity, only the process of joining one of the cooling fans 12 to the axial end face of the corresponding pole core 10 will be described hereinbelow.
As illustrated in FIG. 2A, in the present embodiment, the cooling fan 12 has a plurality of (e.g., ten) projections 12 c, each of which is formed on a surface of one of the blade portions 12 a of the cooling fan 12. Further, on the surface of each of the blade portions 12 a, at least one of the projections 12 c is formed.
Each of the projections 12 c makes up a weld spot between the cooling fan 12 and the axial end face of the pole core 10. That is to say, the resistance welding performed in the present embodiment is projection welding.
In performing the projection welding, referring to FIG. 2B, the cooling fan 12 is first placed on the pole core 10, so that each of the projections 12 c of the cooling fan 12 abuts the axial end face of the pole core 10.
Then, a plurality of pairs (e.g., five pairs) of positive electrodes 19 and negative electrodes 20 are placed on the cooling fan 12, so that each of the positive and negative electrodes 19 and 20 is brought into contact with a surface of one of the blade portions 12 a on the opposite side to the pole core 10. The number of the positive and negative electrodes 19 and 20 is the same as the number of the projections 12 c of the cooling fan 12. Further, as shown in FIG. 3, each of the positive and negative electrodes 19 and 20 is aligned with a corresponding one of the projections 12 c of the cooling fan 12 in the axial direction of the rotating shaft 9. The positive electrodes 19 are alternately arranged with the negative electrodes 20 in the circumferential direction of the rotating shaft 9.
Thereafter, weld current is supplied from a power source (not shown) to flow between each electrode pair consisting of one of the positive electrodes 19 and one of the negative electrodes 20 while pressing each electrode pair against the cooling fan 12. Consequently, the weld current is concentrated on each of the projections 12 c of the cooling fan 12. More specifically, for each electrode pair, the weld current sequentially passes the positive electrode 19, the projection 12 c of the cooling fan 12 axially aligned with the positive electrode 19, the pole core 10, the projection 12 c of the cooling fan 12 axially aligned with the negative electrode 20, and the negative electrode 20. As a result, for each of the projections 12 c of the cooling fan 12, the contacting portions of the projection 12 c and the pole core 10 are melted and mixed together, thereby forming a weld between the cooling fan 12 and the axial end face of the pole core 10.
The above-described method of manufacturing the rotor 3 has the following advantages.
In the present embodiment, for each electrode pair consisting of one of the positive electrodes 19 and one of the negative electrodes 20, both the positive and negative electrodes 19 and 20 are first brought into contact with the cooling fan 12, from the opposite side to the pole core 10, to have the cooling fan 12 held between the axial end face of the pole core 10 and both the positive and negative electrodes 19 and 20; then, the weld current is supplied to flow from the positive electrode 19 to the negative electrode 20.
With the above welding method, it is possible to form two welds between the cooling fan 12 and the axial end face of the pole core 10 at the same time using only one electrode pair.
In comparison, in the case of using the conventional welding method disclosed in International Publication No. WO 2005/072902, to form two welds at the same time, it is necessary to employ two electrode pairs that are electrically connected to a power source in parallel with each other.
Therefore, with the welding method according to the present embodiment, it is possible to reduce the total amount of the weld current necessary for fixing the cooling fan 12 to the pole core 10 in comparison with the case of using the conventional welding method. As a result, it is possible to reduce the necessary capacity of the power source. In other words, it is possible to employ a small-capacity power source for the resistance welding.
Further, with the welding method according to the present embodiment, it is possible to reduce the total amount of the weld current flowing through the pole core 10 during the resistance welding in comparison with the case of using the conventional welding method. Consequently, it is possible to more reliably prevent the permanent magnets 13 from being undesirably magnetized by the weld current.
In addition, in the present embodiment, the positive electrodes 19 are alternately arranged with the negative electrodes 20 in the circumferential direction of the rotating shaft 9. However, the positive and negative electrodes 19 and 20 may also be arranged in any other manner. For example, as shown in FIG. 4, the positive and negative electrodes 19 and 20 may be arranged so that all of the positive electrodes 19 are adjacent to each other without the negative electrodes 20 interposed therebetween in the circumferential direction of the rotating shaft 9. Moreover, in the present embodiment, all of the ten projections 12 c are simultaneously welded to the pole core 10 by using the five electrode pairs. However, it is also possible to use only one electrode pair to weld all of the ten projections 12 c in five stages, in each of which two of the projections 12 c are simultaneously welded to the pole core 10.
Second Embodiment
FIG. 5 shows a cooling fan 12 according to the second embodiment of the invention.
As shown in FIG. 5, in the present embodiment, the cooling fan 12 is composed of a pair of cooling fan pieces 12A and 12B which are disposed on the same plane perpendicular to the axial direction of the rotating shaft 9 and each occupy one half of the entire angular range (i.e., 360°) of the cooling fan 12. Further, the cooling fan pieces 12A and 12B are separated from each other by an air gap 12C that extends in the radial direction of the rotating shaft 9.
In welding the cooling fan 12 to the corresponding pole core 10, for each electrode pair consisting of one of the positive electrodes 19 and one of the negative electrodes 20, the positive electrode 19 and the negative electrode 20 are respectively brought into contact with the cooling fan pieces 12A and 12C from the opposite side to the pole core 10; then, the weld current is supplied to flow from the positive electrode 19 to the negative electrode 20.
In the present embodiment, with the air gap formed between the cooling fan pieces 12A and 12B, it is possible to block the weld current from flowing from the cooling fan piece 12A directly to the cooling fan piece 12B. Consequently, for each electrode pair, it is possible to ensure a sufficient amount of the weld current which sequentially passes the positive electrode 19, the projection 12 c of the cooling fan piece 12A axially aligned with the positive electrode 19, the pole core 10, the projection 12 c of the cooling fan piece 128 axially aligned with the negative electrode 20, and the negative electrode 20. As a result, each of the projections 12 c of the cooling fan pieces 12A and 12B can be supplied with the sufficient amount of the weld current, thereby preventing formation of a poor weld due to insufficient weld current.
In addition, as described above, the cooling fan 12 is composed of the pair of cooling fan pieces 12A and 12B in the present embodiment. However, the cooling fan 12 may also be composed of more than two cooling fan pieces which are separated from each other by radial air gaps formed therebetween and each of which only contacts with electrodes having the same polarity.
Third Embodiment
FIG. 6 shows a cooling fan 12 according to the third embodiment of the invention.
As shown in FIG. 6, in the present embodiment, the cooling fan 12 has a plurality of cuts (or slits) 21 each of which is formed between a circumferentially-adjacent pair of the blade portions 12 a of the cooling fan 12. Further, each of the cuts 21 is so deeply formed in the radial direction of the rotating shaft 9 as to reach the annular connecting portion 12 b. As a result, the blade portions 12 a of the cooling fan 12 are connected to each other only by the annular connecting portion 12 b.
In comparison, in the case of the cooling fan 12 according to the first embodiment (shown in FIG. 2A), the blade portions 12 a are connected to each other not only by the annular connecting portion 12 b but also by root parts of the blade portions 12 a which are integrally formed without cuts 21 formed therebetween.
In the present embodiment, in welding the cooling fan 12 to the corresponding pole core 10, for each electrode pair consisting of one of the positive electrodes 19 and one of the negative electrodes 20, the positive and negative electrodes 19 and 20 are respectively brought into contact with two different ones of the blade portions 12 a of the cooling fan 12; then, the weld current is supplied to flow from the positive electrode 19 to the negative electrode 20.
With the cuts 21 formed between the blade portions 12 a of the cooling fan 12, it is possible to limit the weld current from flowing directly between the blade portions 12 a. Consequently, for each electrode pair, it is possible to ensure a sufficient amount of the weld current which sequentially passes the positive electrode 19, the projection 12 c of the cooling fan 12 axially aligned with the positive electrode 19, the pole core 10, the projection 12 c of the cooling fan 12 axially aligned with the negative electrode 20, and the negative electrode 20. As a result, each of the projections 12 c of the cooling core 12 can be supplied with the sufficient amount of the weld current, thereby preventing formation of a poor weld due to insufficient weld current.
In addition, in the present embodiment, the blade portions 12 a of the cooling fan 12 are still connected to each other by the annular connecting portion 12 b. Therefore, the cooling 12 can still be easily handled as a one-piece component of the rotor 3.
Fourth Embodiment
FIG. 7A shows a pair of cooling fan pieces 12C and 12D according to the fourth embodiment of the invention. FIG. 7B shows a cooling fan 12 which is obtained by assembling the cooling fan pieces 12C and 12D together.
As shown in FIG. 7A, each of the cooling fan pieces 12C and 12D includes a plurality of (e.g., four) blade portions 12 a, which are equally spaced in the circumferential direction, and an annular connecting portion 12 b that is located radially inside of the blade portions 12 a to connect all of the blade portions 12 a together.
Moreover, as shown in FIG. 7B, the cooling fan pieces 12C and 12D are assembled together so that: the blade portions 12 a of the cooling fan piece 12C are alternately arranged with those of the cooling fan piece 12D in the circumferential direction of the rotating shaft 9; and the annular connecting portion 12 b of the cooling fan piece 12C is overlapped with that of the cooling fan piece 12D in the axial direction of the rotating shaft 9. Furthermore, the annular connecting portions 12 b of the cooling fan pieces 12C and 12D are electrically insulated from each other.
In welding the cooling fan 12 to the corresponding pole core 10, for each electrode pair consisting of one of the positive electrodes 19 and one of the negative electrodes 20, the positive electrode 19 and the negative electrode 20 are respectively brought into contact with the cooling fan pieces 12C and 12D from the opposite side to the pole core 10; then, the weld current is supplied to flow from the positive electrode 19 to the negative electrode 20.
In the present embodiment, with the electrical insulation provided between the annular connecting portions 12 b of the cooling fan pieces 12C and 12D, it is possible to block the weld current from flowing from the cooling fan piece 12C directly to the cooling fan piece 12D. Consequently, for each electrode pair, it is possible to ensure a sufficient amount of the weld current which sequentially passes the positive electrode 19, the projection 12 c of the cooling fan piece 12C axially aligned with the positive electrode 19, the pole core 10, the projection 12 c of the cooling fan piece 12D axially aligned with the negative electrode 20, and the negative electrode 20. As a result, each of the projections 12 c of the cooling fan pieces 12C and 12D can be supplied with the sufficient amount of the weld current, thereby preventing formation of a poor weld due to insufficient weld current.
While the above particular embodiments and modifications have been shown and described, it will be understood by those skilled in the art that various further modifications, changes, and improvements may be made without departing from the spirit of the invention.
For example, in the first embodiment, all of the components of the rotor 3 other than the cooling fans 12 are first assembled together, and then the cooling fans 12 are respectively welded to the axial end faces of the pole cores 10. However, it is also possible to first weld the cooling fans 12 respectively to the axial end faces of the pole cores 10 and then assemble all of the components of the rotor 3 together.

Claims (2)

What is claimed is:
1. A method of manufacturing a rotor for a dynamoelectric machine, the rotor including a rotor core supported by a rotating shaft and at least one cooling fan fixed to an axial end face of the rotor core, the method comprising a step of resistance-welding the cooling fan to the axial end face of the rotor core,
wherein the cooling fan includes a plurality of fan blades and a ring portion located radially inside of the fan blades so as to connect the fan blades together;
a slit is formed between two circumferentially-adjacent fan blades of the cooling fan so that the two fan blades are connected only by the ring portion of the cooling fan; and
in the resistance-welding step, a positive welding electrode and a negative welding electrode are respectively brought into contact with the two fan blades so that the cooling fan is held between the axial end face of the rotor core and both the positive and negative welding electrodes, and then weld current is supplied so as to flow from the positive welding electrode to the negative welding electrode,
wherein the cooling fan further includes a pair of projections respectively provided in the two fan blades of the cooling fan so as to form two weld spots between the cooling fan and the axial end face of the rotor core, and
in the resistance welding step, the positive and negative welding electrodes are respectively aligned with the two projections of the cooling fan in an axial direction of the rotating shaft and pressed against the cooling fan, thereby concentrating the weld current on the two projections.
2. The method as set forth in claim 1, wherein the rotor core is made up of a pair of Lundell-type pole cores each of which includes a plurality of claw-shaped magnetic poles formed on an outer periphery thereof,
the pole cores are opposed in an axial direction so that the claw-shaped magnetic poles of one of the pole cores mesh with those of the other pole core, and
between each circumferentially-adjacent pair of the claw-shaped magnetic poles of the pole cores, there is interposed a permanent magnet that is magnetized in a direction to reduce leakage magnetic flux between the pair of the claw-shaped magnetic poles.
US12/585,543 2008-09-19 2009-09-17 Method of manufacturing rotor for dynamoelectric machine Active 2030-09-15 US8429810B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-241048 2008-09-19
JP2008241048A JP4683102B2 (en) 2008-09-19 2008-09-19 Manufacturing method of rotor

Publications (2)

Publication Number Publication Date
US20100071196A1 US20100071196A1 (en) 2010-03-25
US8429810B2 true US8429810B2 (en) 2013-04-30

Family

ID=41511043

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/585,543 Active 2030-09-15 US8429810B2 (en) 2008-09-19 2009-09-17 Method of manufacturing rotor for dynamoelectric machine

Country Status (3)

Country Link
US (1) US8429810B2 (en)
EP (1) EP2166643B1 (en)
JP (1) JP4683102B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103433636B (en) * 2013-08-22 2015-08-05 唐勇 Pressure welding composite algorithm manufactures the method for bimetal metallurgy multiple tube
CN103624387B (en) * 2013-12-13 2015-12-09 株洲湘火炬火花塞有限责任公司 Automobile current generator cooling fan blade is welded to epitrochanterian welding method by one
JP7002568B2 (en) * 2018-01-18 2022-01-20 三菱電機株式会社 Rotor of rotary electric machine for vehicles and its manufacturing method
CN108526671B (en) * 2018-05-30 2024-05-14 成都华川电装有限责任公司 Welding fixture for claw pole rotor and fan of generator
CN109676226B (en) * 2019-01-29 2024-04-19 宁国金鑫电机股份有限公司 Welding shaping tool for rotor fan of automobile generator
CN112958893B (en) * 2021-02-07 2023-03-14 重庆宝优机电有限公司 Rotor spot welding device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5241230A (en) * 1991-10-15 1993-08-31 Mitsubishi Denki K.K. Cooling fan with reduced noise capability in an ac generator
JPH1085947A (en) 1996-09-11 1998-04-07 Miyachi Technos Corp Method and device for controlling resistance welding
US6011235A (en) 1996-09-11 2000-01-04 Miyachi Technos Corporation Method and apparatus for controlling resistance welding
US20030222054A1 (en) 2000-12-06 2003-12-04 Toyota Shatai Kabushiki Kaisha Series spot welding method, device for carrying out the method, and electrodes employed in the method or the device
JP2004227954A (en) 2003-01-23 2004-08-12 Sony Corp Lead terminals and power supply
WO2005072902A1 (en) 2004-01-30 2005-08-11 Mitsubishi Denki Kabushiki Kaisha Welder for metal member having permanent magnet material and its welding method, and rotating electric machine
US20070001524A1 (en) 2005-06-30 2007-01-04 Denso Corporation Alternator with a cooling fan rotated with a rotor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7274121B2 (en) * 2005-03-04 2007-09-25 Remy Inc. Systems and methods for fastening internal cooling fans to claw-pole electro-mechanical machines

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5241230A (en) * 1991-10-15 1993-08-31 Mitsubishi Denki K.K. Cooling fan with reduced noise capability in an ac generator
JPH1085947A (en) 1996-09-11 1998-04-07 Miyachi Technos Corp Method and device for controlling resistance welding
US6011235A (en) 1996-09-11 2000-01-04 Miyachi Technos Corporation Method and apparatus for controlling resistance welding
US20030222054A1 (en) 2000-12-06 2003-12-04 Toyota Shatai Kabushiki Kaisha Series spot welding method, device for carrying out the method, and electrodes employed in the method or the device
JP2004227954A (en) 2003-01-23 2004-08-12 Sony Corp Lead terminals and power supply
WO2005072902A1 (en) 2004-01-30 2005-08-11 Mitsubishi Denki Kabushiki Kaisha Welder for metal member having permanent magnet material and its welding method, and rotating electric machine
US20070040458A1 (en) 2004-01-30 2007-02-22 Mitsubishi Denki Kabushiki Kaisha Welding set of metal member including permanent magnet and welding method thereof, as well as electric rotating machine
US7893381B2 (en) * 2004-01-30 2011-02-22 Mitsubishi Denki Kabushiki Kaisha Welding set of metal member including permanent magnet and welding method thereof, as well as electric rotating machine
US20070001524A1 (en) 2005-06-30 2007-01-04 Denso Corporation Alternator with a cooling fan rotated with a rotor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Aug. 17, 2012 Extended European Search Report issued in European Patent Application No. 09011938.9.
Office Action issued in Japanese Patent Application No. 2008-241048 dispatched on Sep. 14, 2010. (with English-Language translation).

Also Published As

Publication number Publication date
EP2166643A2 (en) 2010-03-24
JP2010074982A (en) 2010-04-02
JP4683102B2 (en) 2011-05-11
EP2166643B1 (en) 2017-11-08
EP2166643A3 (en) 2012-09-19
US20100071196A1 (en) 2010-03-25

Similar Documents

Publication Publication Date Title
US9419484B2 (en) Stator for rotating electric machine
JP5367362B2 (en) Rotor for rotary electric machine in which intermediate sleeve is arranged between shaft and magnetic pole member, and method for manufacturing rotor
US8772995B2 (en) Stator for electric rotating machine
US8429810B2 (en) Method of manufacturing rotor for dynamoelectric machine
EP2506401B1 (en) Rotary electric machine
US7671508B2 (en) Automotive alternator having improved structure for effectively cooling field coil
US20020053855A1 (en) Alternator for vehicles having permanent magnets in rotor
JP2003259583A (en) Stator for rotating electric machine and method of manufacturing the same
CN114651387B (en) Method for manufacturing stator of rotating electric machine, stator of rotating electric machine, and rotating electric machine
US9705384B2 (en) Rotor for rotating electric machine
JP2007295764A (en) Stator for rotating electrical machine, method for manufacturing the same, and AC generator
EP3716447A1 (en) Generators with flat wire windings and methods of making generators with flat wire windings
WO2012077215A1 (en) Vehicle ac generator
US20140154086A1 (en) Front fan retention in dual internal fan alternator
JP2007295763A (en) Rotating electrical machine stator and AC generator
CN110247522B (en) Rotating electrical machine
US20190319521A1 (en) Rotor and rotating electric machine including rotor
WO2017110360A1 (en) Stator, rotary electric machine, and manufacturing method for stator
GB1560746A (en) Electrical machines
US20130181555A1 (en) Stator for electric rotating machine
CN116264420A (en) Rotors for rotating electrical machines
JP2009055738A (en) Method for welding cooling fan of rotor for rotating electrical machine
JP4305978B2 (en) Rotating electric machine stator and rotating electric machine
JP3722174B2 (en) Rotating electric machine
CN111630757B (en) Rotor of rotating electric machine for vehicle and method for manufacturing same

Legal Events

Date Code Title Description
AS Assignment

Owner name: DENSO CORPORATION,JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KOJIMA, RYOTARO;SUGIYAMA, YUJI;MORIGUCHI, KEIGO;AND OTHERS;REEL/FRAME:023416/0211

Effective date: 20091002

Owner name: DENSO CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KOJIMA, RYOTARO;SUGIYAMA, YUJI;MORIGUCHI, KEIGO;AND OTHERS;REEL/FRAME:023416/0211

Effective date: 20091002

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12