US8723101B2 - Integrated movement sensing key with a reflection unit comprising semicircle motifs - Google Patents
Integrated movement sensing key with a reflection unit comprising semicircle motifs Download PDFInfo
- Publication number
- US8723101B2 US8723101B2 US12/533,399 US53339909A US8723101B2 US 8723101 B2 US8723101 B2 US 8723101B2 US 53339909 A US53339909 A US 53339909A US 8723101 B2 US8723101 B2 US 8723101B2
- Authority
- US
- United States
- Prior art keywords
- operation member
- unit
- integrated key
- rotation
- reflection unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H36/00—Switches actuated by change of magnetic field or of electric field, e.g. by change of relative position of magnet and switch, by shielding
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/94—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
- H03K17/965—Switches controlled by moving an element forming part of the switch
- H03K17/968—Switches controlled by moving an element forming part of the switch using opto-electronic devices
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/033—Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
- G06F3/0338—Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of limited linear or angular displacement of an operating part of the device from a neutral position, e.g. isotonic or isometric joysticks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/033—Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
- G06F3/0354—Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
- G06F3/03543—Mice or pucks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/033—Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
- G06F3/0362—Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 1D translations or rotations of an operating part of the device, e.g. scroll wheels, sliders, knobs, rollers or belts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H13/00—Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch
- H01H13/02—Details
- H01H13/12—Movable parts; Contacts mounted thereon
- H01H13/14—Operating parts, e.g. push-button
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H15/00—Switches having rectilinearly-movable operating part or parts adapted for actuation in opposite directions, e.g. slide switch
- H01H15/02—Details
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05G—CONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
- G05G9/00—Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously
- G05G9/02—Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only
- G05G9/04—Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously
- G05G9/047—Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously the controlling member being movable by hand about orthogonal axes, e.g. joysticks
- G05G2009/04703—Mounting of controlling member
- G05G2009/04714—Mounting of controlling member with orthogonal axes
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05G—CONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
- G05G9/00—Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously
- G05G9/02—Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only
- G05G9/04—Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously
- G05G9/047—Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously the controlling member being movable by hand about orthogonal axes, e.g. joysticks
- G05G2009/0474—Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously the controlling member being movable by hand about orthogonal axes, e.g. joysticks characterised by means converting mechanical movement into electric signals
- G05G2009/04759—Light-sensitive detector, e.g. photoelectric
Definitions
- the present invention relates to an integrated key which senses a rotation, a push, a movement toward the front, rear, right and left of a key.
- an eight-direction button is a device which preferably includes a button for front, rear, right and left and four diagonal directions to manipulate moment in eight-directions.
- the eight-direction button can manipulate movement only in eight-directions such as front, rear, right and left.
- a more subdivided manipulation for further flexibility movement has become necessary in order to allow more control from the center point as well as eight-directions.
- the present invention provides an integrated key which preferably allows a more subdivided manipulation of movement 2-dimensionally from a center point, and preferably performs a rotation and push operation.
- the present invention features an integrated key using an optical sensor
- the integrated key preferably comprises a housing which has an accommodation space inside, while an upper portion is suitably open, an operation member which has a guide unit which preferably sticks to the housing between an upper end and a lower end of the operation member while a handle is preferably formed in an upper side and a reflection unit is preferably formed at a bottom surface; and an optical sensor, which preferably measures one or more of a separation distance with the reflection a rotation of the operation member, and a location coordinate value of the operation member, and suitably outputs a sensing signal according to the measurement
- an integrated key using an optical sensor further includes a supporting member which suitably enables up and down movement of the operation member while preferably wrapping the guide unit of the operation member.
- the supporting member suitably includes a main body which wraps the guide unit of the operation member; a groove which is preferably installed at the bottom surface of a main body suitably corresponding to the guide groove; an elastic body which is preferably inserted into the groove; and a body which is suitably supported by the elastic body in the guide groove which is able to move up and down.
- the guide unit preferably includes a plurality of grooves which are suitably formed at an outer circumference of the operation member; an elastic body which is preferably inserted in the plurality of grooves respectively; and a rotator which preferably moves the operation member to an outside direction from a center point according to contraction or tension of the elastic body and makes the operation member have various location coordinate values, or contacts with an inner circumference of the supporting member to rotate.
- the optical sensor includes a main body which has a panel shape; a distance and rotation sensor which is suitably installed at a central part of a main body, suitably senses an up and down movement of the operation member through a separation distance measurement with the operation member, and suitably senses a rotation of a reflector of the operation member; and a location detecting sensor which preferably is respectively installed in a girth of the main body, and calculates a movement distance and a movement direction through calculating a location coordinate value of the operation member by making use of the separation distance with the operation member, a separation distance between the rotation sensor and the operation member and a horizontal/vertical length of the main body.
- the integrated key using an optical sensor of the present invention suitably measures one or more separation distances with the reflection unit of an operation member, whether rotation, or a location coordinate value of the operation member, and then, suitably outputs a sensing signal according to the measurement.
- the integrated key described herein is capable of measuring a more subdivided movement direction of the operation member and the movement distance, thereby, allowing a suitably more precise manipulation of an electronic device such as a navigation device.
- vehicle or “vehicular” or other similar term as used herein is inclusive of motor vehicles in general such as passenger automobiles including sports utility vehicles (SUV), buses, trucks, various commercial vehicles, watercraft including a variety of boats and ships, aircraft, and the like, and includes hybrid vehicles, electric vehicles, plug-in hybrid electric vehicles, hydrogen-powered vehicles and other alternative fuel vehicles (e.g. fuels derived from resources other than petroleum).
- motor vehicles in general such as passenger automobiles including sports utility vehicles (SUV), buses, trucks, various commercial vehicles, watercraft including a variety of boats and ships, aircraft, and the like, and includes hybrid vehicles, electric vehicles, plug-in hybrid electric vehicles, hydrogen-powered vehicles and other alternative fuel vehicles (e.g. fuels derived from resources other than petroleum).
- SUV sports utility vehicles
- plug-in hybrid electric vehicles e.g. fuels derived from resources other than petroleum
- a hybrid vehicle is a vehicle that has two or more sources of power, for example both gasoline-powered and electric-powered.
- FIG. 1 is a front view of the present invention.
- FIG. 2 is a perspective view of an optical sensor and the lower portion of an operation member of the present invention.
- FIG. 3 is a side view showing the distance measuring unit of an optical sensor which measures distance between an optical sensor and the lower portion of an operation member.
- FIGS. 4 a to 4 d are front views of the reflection unit of an operation member of the present invention.
- FIG. 5 is a side view of a rotation sensor of the present invention which senses a rotation of an operation member.
- FIG. 6 is a configuration diagram of a location calculation unit of the present invention which calculates the location of an operation member.
- FIGS. 7 a to 7 d are perspective views of a location calculation unit of the present invention which calculates the location according to the various movement directions and movement distances of an operation member.
- the present invention includes an integrated key using an optical sensor, the integrated key comprising a housing comprising an accommodation space, an operation member; and an optical sensor.
- the housing comprises an accommodation space inside, wherein the upper portion of the housing is open.
- the operation member has a guide unit.
- the guide unit sticks to the housing between an upper end and a lower end of the operation member.
- a handle is formed in an upper side and a reflection unit is formed at a bottom surface of the operation member.
- the optical sensor measures one or more of a separation distance with the reflection a rotation of the operation member, and a location coordinate value of the operation member, and outputs a sensing signal according to the measurement.
- the integrated key further comprises a supporting member.
- the supporting member comprises a main body, a groove, an elastic body, and an up and down movement body.
- FIG. 1 a cross-sectional view of an integrated key 100 using an optical sensor of the present invention is shown.
- the integrated key 100 using an optical sensor of the present invention preferably includes a housing 10 , an operation member 20 , a supporting member 30 and an optical sensor 40 .
- the housing 10 has a rectangular shape.
- an opening 14 is formed in the upper portion of the housing 10 while the side of the housing 10 and the floor side are preferably closed such that an accommodation space is suitably formed inside.
- a fixing unit 12 for supporting a supporting member 30 to which the operation member 20 is inserted is suitably formed in the accommodation space of the housing 10 .
- a penetration hole 18 is suitably formed in the central part of a fixing unit 12 so that the lower portion of the operation member 20 may be able to pass.
- the penetration hole 18 is suitably formed with a diameter corresponding to a range that does not exceed a location coordinate value (x, y) of the operation member 20 in the direction of front, rear, left and right so that the lower portion of the operation member 20 might be suitably positioned within a measurement area of the optical sensor 40 with respect to the location coordinate value (x, y) of the operation member 20 .
- a guide groove 16 is suitably formed in the upper portion of the fixing unit 12 to which an up and down movement piece 32 b that is suitably installed at the bottom surface of the supporting member 30 is inserted to guide the up and down movement of the up and down movement piece 32 b.
- the operation member 20 preferably includes a handle 21 , a reflection unit 23 a and a guide unit 22 .
- the handle 21 is suitably formed in the upper portion of the operation member 20 , being formed with a cylindrical shape such that a user can suitably grip the handle to perform the movement operation in a direction from the center to the outside, a rotation operation and a push motion.
- the reflection unit 23 a is preferably formed in the bottom surface of the operation member 20 in such a manner that one or more semicircle motifs is suitably formed to be symmetrical in one side radius and the other side radius based on a center.
- the semicircle motif is coated with a gray color.
- the guide unit 22 is suitably extended to a circumferential direction from the center between the handle 21 and the reflection unit 23 a.
- a plurality of grooves 22 - 1 , 22 - 2 are suitably formed with numerous gaps while an elastic body 22 a and a rotator 22 b are prepared in the plurality of grooves 22 - 1 , 22 - 2 .
- the rotator 22 b is partly exposed to the outside of the groove and supported, by the support piece 22 c installed at both sides of an inlet part of grooves 22 - 1 , 22 - 2 .
- the rotator 22 b of the guide unit 22 preferably contacts the inner circumference of the supporting member 30 .
- the operation member 20 is also preferably able to rotate.
- the operation member 20 is suitably able to move from the center to the circumferential direction.
- the supporting member 30 includes a main body in which a first through-hole 30 a and a second through-hole 30 b are suitably formed in the upper portion and the lower portion respectively, and an accommodation space is prepared inside of the main body such that the main body preferably has the shape of a cylinder.
- the guide unit 22 of the operation member 20 is suitably inserted in the accommodation space of the main body of the supporting member 30 .
- the handle 21 of the operation member 20 is exposed to the outside by the first through-hole 30 a such that it is exposed to the upper of the housing 10 .
- the bottom of the operation member 20 is suitably exposed to the outside by the second through-hole such that it is inserted into the penetration hole 18 of the housing 10 .
- a plurality of grooves 32 - 1 , 32 - 2 , an elastic body 32 a inserted into the plurality of grooves 32 - 1 , 32 - 2 , the up and down movement piece 32 b which moves up and down by the elastic body 32 a and guided into the guide groove 16 of the housing 10 , and a support piece 32 c which prevents the up and down movement piece 32 b from leaving the groove are prepared.
- the optical sensor 40 is suitably installed at the floor side of the housing 10 of the operation member 20 , and separated from the reflection unit 23 a with a preset distance.
- the optical sensor 40 comprises the optical sensor of the ELMOS corp. Accordingly, the optical sensor 40 measures one or more of the separation distances with the reflection unit 23 a of the operation member 20 , whether rotation of the reflection unit 23 a , or the location coordinate value of the operation member 20 , and suitably outputs the sensing signal according to the measurement.
- FIG. 2 a perspective view of an optical sensor 40 and a lower portion of an operation member 20 of the present invention is shown.
- the optical sensor 40 includes a main body 41 , a distance and rotation sensor 42 , and a location detecting sensor 44 .
- the main body 41 comprises of a panel suitably shaped like a square, supporting the distance measuring sensor and the location detecting sensor 44 prepared in the upper portion.
- the distance and rotation sensor 42 is suitably installed at the central part of a main body 41 as a single unit.
- such distance measuring sensor includes a light-emitting unit (not shown), a light-receiving unit (not shown) and a distance measuring unit (not shown), and a rotation sensing unit (not shown).
- the light-emitting unit radiates light towards the reflection unit 23 a of the lower portion of the operation member 20 over a preset period.
- the light-receiving unit receives light which is suitably light-emitted by the light-emitting unit and suitably reflected by the reflection unit 23 a.
- FIG. 3 a side view showing a distance measuring unit of an optical sensor 40 which measures a distance between an optical sensor 40 and a lower portion of an operation member 20 is shown.
- the distance measuring unit preferably measures the distance between the optical sensor 40 and the lower portion of the operation member 20 .
- the distance measuring suitably determines that the operation member 20 performs a push motion, so that it suitably generates a sensing signal according to the push motion.
- the rotation sensing unit analyzes the wave of light which is suitably received in the light-receiving unit and senses the rotation of the operation member 20 . The method of analyzing the wave of the light and sensing whether the rotation of the operation member 20 by the rotation sensing unit will be illustrated in detail herein.
- FIGS. 4 a to 4 c are front views of a reflection unit 23 a of a preferred operation member 20 of the present invention
- FIG. 5 is a side view of a rotation sensing unit of the present invention senses the rotation of the operation member 20 .
- the reflection unit 23 a is suitably formed in such a manner that one or more semicircle motifs is suitably formed to be symmetrical in one side radius and the other side radius. Accordingly, the light-emitting unit simultaneously radiates light having different frequencies to two points, that is, P 1 and P 2 , on the same diameter.
- the reflection unit 23 a in the case the reflection unit 23 a is suitably positioned at a first location (state 1 , FIG. 4 a ), a half-moon motif does not exist toward P 1 and P 2 . Accordingly, if a light is radiated to P 1 and P 2 , the light received at the light-receiving unit is suitably analyzed as a waveform that both P 1 and P 2 does not contact with the half-moon motif. Further, in certain preferred embodiments, the reflection unit 23 a is suitably positioned at a second location (state 2 , FIG. 4 b ), the half-moon motif exists in P 1 and P 2 . Thus, if the light-emitting unit radiates light toward P 1 and P 2 , the light received at the light-receiving unit is suitably analyzed as a waveform that both P 1 and P 2 contact with the half-moon motif.
- the reflection unit 23 a is suitably positioned at a third location (state 3 , FIG. 4 c ), the half-moon motif suitably exists in P 1 whereas the half-moon motif does not exist in P 2 . Accordingly, if the light-emitting unit radiates light toward P 1 and P 2 , the light P 1 received at the light-receiving unit is suitably analyzed as a waveform that contacted the half-moon motif while P 2 is suitably analyzed as a waveform which does not contact with the half-moon motif.
- the rotation sensing unit analyzes the waveform of light of P 1 and P 2 in a preset periodic interval and suitably determines that the operation member 20 rotates counterclockwise when the waveform of the operation unit preferably changes from state 1 ⁇ state 2 ⁇ state 3 ⁇ state 1 . Then, in further exemplary embodiments, the rotation sensing unit outputs a sensing signal according to the above operation.
- the sensing signal is generated according to a suitably rotation angle which is preferably set according to the moment when state 1 becomes state 2 , state 3 and then state 1 . Accordingly, in further preferred embodiments, the number of the half-moon motif of the reflection unit 23 a can suitably increase so that the rotation angle of the operation member 20 can be more accurately measured.
- the rotation sensing unit analyzes the waveform of P 1 and P 2 in a preset periodic interval and then suitably determines that the operation member 20 rotates clockwise when the waveform of the operation unit changes from state 1 ⁇ state 3 ⁇ state 2 ⁇ state 1 . Then, in further exemplary embodiments, the rotation sensing unit outputs a sensing signal according to the above operation.
- the sensing signal is suitably generated according to a rotation angle which is suitably set according to the moment when the state 1 becomes the state 3 , the state 2 and the state 1 .
- the location detecting sensor 44 includes four pairs of a light-emitting unit (not shown), a light-receiving unit (not shown) and a distance measuring unit (not shown) respectively installed in the girth of the main body 41 , and one location calculation unit (not shown).
- the four light-emitting units radiate light which have different frequencies toward the reflection unit 23 a of the lower portion of the operation member 20 in a preset periodic interval.
- the four light-receiving units preferably receive light which is light-emitted by the light-emitting unit and reflected by the reflection unit 23 a .
- the distance measuring unit suitably measures the distance between the optical sensor 40 and the lower portion of the operation member 20 through a reciprocating speed of light which is suitably radiated from the four light-emitting units respectively and received by the four light-receiving units respectively.
- FIG. 6 is a configuration diagram of a location calculation unit of the present invention which suitably calculates the location of an operation member 20 .
- the location calculation unit calculates a location coordinate value ⁇ circle around (x) ⁇ , ⁇ circle around (y) ⁇ of the operation member 20 , preferably using Pythagoras' theorem by making use of the diagonal distance ⁇ circle around (a) ⁇ circle around (b) ⁇ circle around (c) ⁇ circle around (d) ⁇ between each light-emitting unit and the lower portion of an operation member 20 delivered from the distance measuring unit of the four location detecting sensors 44 , a separation distance ⁇ circle around (h) ⁇ which is preset between the rotation sensing unit and the operation member 20 , and a horizontal and vertical length ⁇ circle around (l) ⁇ of the main body 41 .
- a 2 h 2 +x 2 +y 2
- b 2 h 2 +x 2 +(L ⁇ y) 2
- c 2 h 2 +(L ⁇ x) 2 +(L ⁇ y) 2
- d 2 h 2 +(L ⁇ x) 2 +y 2 .
- FIGS. 7 a to 7 d are perspective views of a preferred location calculation unit of the present invention which suitably calculates the location according to the various movement directions and movement distance of an operation member 20 .
- the location calculation unit can suitably generate a sensing signal according to a location coordinate value ⁇ circle around (x) ⁇ , ⁇ circle around (y) ⁇ according to the various movement directions and movement distance of an operation member 20 .
- push motion is defined.
- the up and down movement piece 32 b installed at the bottom surface of a supporting member 30 suitably contracts the elastic body 32 a while being moved to the groove 32 - 1 , and the lower portion of an operation member 20 suitably approaches the distance and rotation sensor 42 of the optical sensor 40 .
- the distance measuring unit of the distance and rotation sensor 42 preferably measures the distance between the optical sensor 40 and the lower portion of the operation member 20 through a reciprocating speed of light which is radiated from the light-emitting unit and reflected by the reflection unit 23 a.
- the distance measuring unit of the distance and rotation sensor 42 preferably determines that the operation member 20 performs a suitable push motion, so that it generates a sensing signal according to the suitable push motion.
- the up and down movement piece 32 b installed at the bottom surface of the supporting member 30 returns to the original location due to tension of the elastic body 32 a while moving the handle 21 of the operation member 20 to its original location.
- rotating motion is defined.
- a pressurizing portion of the operation member 20 preferably receives a rotational force from a user
- the operation member 20 suitably rotates along the inner circumference of the supporting member 30 inside of the accommodation space of the supporting member 30 by the guide unit 22 of the operation member 20 .
- the rotation sensing unit of the distance and rotation sensor 42 analyzes the waveform a light from P 1 and P 2 which the light-receiving unit received in a preset periodic interval and suitably determines that the operation member 20 rotates counterclockwise when the waveform of the operation unit changes from state 1 ⁇ state 2 ⁇ state 3 ⁇ state 1 .
- the rotation sensing unit of the distance and rotation sensor 42 suitably generates a sensing signal according to a set movement angle by state according to a counterclockwise rotation at the moment when state 1 becomes state 2 , state 3 and then state 1 .
- the number of the half-moon motif of the reflection unit 23 a can be suitably increased so that the rotation angle of the operation member 20 can be more accurately measured.
- the rotation sensing unit of the distance and rotation sensor 42 analyzes the waveform of P 1 and P 2 which the light-receiving unit received in a preset periodic interval. As a result of the analysis, the rotation sensing unit of the distance and rotation sensor 42 determines that the operation member 20 rotates clockwise when the waveform of the operation unit changes from state 1 ⁇ state 3 ⁇ state 2 ⁇ state 1 . Then, the rotation sensing unit of the distance and rotation sensor 42 generates a sensing signal according to a set movement angle by state according to a clockwise rotation at the moment when state 1 becomes state 3 , state 2 and then state 1 .
- the operation member 20 is suitably moved to a certain direction inside of the accommodation space of the supporting member 30 , preferably with a certain distance by the guide unit 22 of the operation member 20 , if a pressurizing portion of the operation member 20 moves to the particular direction by a user that is based in the center as the specific distance.
- the distance measuring unit of the location detecting sensor 44 suitably measures distance between the optical sensor 40 and the lower portion of the operation member 20 through a reciprocating speed of a light which is suitably radiated from the four light-emitting units respectively and suitably received by the four light-receiving units respectively.
- the location calculation unit of the distance and rotation sensor 42 suitably calculates a location coordinate value ⁇ circle around (x) ⁇ , ⁇ circle around (y) ⁇ of the operation member 20 using Pythagoras' theorem by making use of the diagonal distance ⁇ circle around (a) ⁇ circle around (b) ⁇ circle around (c) ⁇ circle around (d) ⁇ between each light-emitting unit and the lower portion of the operation member 20 delivered from the distance measuring unit of the four location detecting sensors 44 , a separation distance ⁇ circle around (h) ⁇ which is suitably preset between the rotation sensing unit and the operation member 20 and a horizontal and vertical length ⁇ circle around (l) ⁇ of the main body 41 .
- the location calculation unit preferably generates a sensing signal according to the location coordinate value ⁇ circle around (x) ⁇ , ⁇ circle around (y) ⁇ according to the movement direction and movement distance of the operation member 20 .
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Switches Operated By Changes In Physical Conditions (AREA)
- Position Input By Displaying (AREA)
- Optical Transform (AREA)
Abstract
Description
Claims (9)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2008-0103294 | 2008-10-21 | ||
KR1020080103294A KR100994008B1 (en) | 2008-10-21 | 2008-10-21 | Integrated key using light sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
US20100096537A1 US20100096537A1 (en) | 2010-04-22 |
US8723101B2 true US8723101B2 (en) | 2014-05-13 |
Family
ID=42107903
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/533,399 Active 2031-03-10 US8723101B2 (en) | 2008-10-21 | 2009-07-31 | Integrated movement sensing key with a reflection unit comprising semicircle motifs |
Country Status (2)
Country | Link |
---|---|
US (1) | US8723101B2 (en) |
KR (1) | KR100994008B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102019220005A1 (en) * | 2019-12-18 | 2021-06-24 | Continental Automotive Gmbh | Rotary actuator with optical detection of the rotary position |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101501141B1 (en) * | 2013-09-17 | 2015-03-12 | (주)코텍 | Control knob with image equipment |
US10444040B2 (en) * | 2015-09-25 | 2019-10-15 | Apple Inc. | Crown with three-dimensional input |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3239673A (en) * | 1963-04-30 | 1966-03-08 | Honeywell Inc | Photosensitive device for determining relative rotation |
JPH06111695A (en) | 1992-09-29 | 1994-04-22 | Pioneer Electron Corp | Jog-dial switch |
JPH08287779A (en) | 1995-04-11 | 1996-11-01 | Mic Electron Co | Video jog shuttle switch |
GB2312685A (en) * | 1996-04-30 | 1997-11-05 | Thomas Isaac Passmore | Bobbin thread payoff detection device for sewing machines |
US5943233A (en) * | 1994-12-26 | 1999-08-24 | Sharp Kabushiki Kaisha | Input device for a computer and the like and input processing method |
US6121955A (en) * | 1997-08-06 | 2000-09-19 | Primax Electronics Ltd. | Computer joystick having two optical sensors for generating vector signals |
JP2000299034A (en) | 1999-04-14 | 2000-10-24 | Nidec Copal Corp | Rotary encoder with switch |
US6232959B1 (en) * | 1995-04-03 | 2001-05-15 | Steinar Pedersen | Cursor control device for 2-D and 3-D applications |
JP2003068161A (en) | 2001-08-24 | 2003-03-07 | Nec Kansai Ltd | El panel and key switch with el panel |
KR20060033525A (en) | 2004-10-15 | 2006-04-19 | 현대모비스 주식회사 | Multifunction switch |
JP2006323692A (en) | 2005-05-19 | 2006-11-30 | Smk Corp | Jog switch |
KR100711139B1 (en) | 2005-07-28 | 2007-04-24 | 포스텍전자주식회사 | Multifunction switch |
-
2008
- 2008-10-21 KR KR1020080103294A patent/KR100994008B1/en not_active Expired - Fee Related
-
2009
- 2009-07-31 US US12/533,399 patent/US8723101B2/en active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3239673A (en) * | 1963-04-30 | 1966-03-08 | Honeywell Inc | Photosensitive device for determining relative rotation |
JPH06111695A (en) | 1992-09-29 | 1994-04-22 | Pioneer Electron Corp | Jog-dial switch |
US5943233A (en) * | 1994-12-26 | 1999-08-24 | Sharp Kabushiki Kaisha | Input device for a computer and the like and input processing method |
US6232959B1 (en) * | 1995-04-03 | 2001-05-15 | Steinar Pedersen | Cursor control device for 2-D and 3-D applications |
JPH08287779A (en) | 1995-04-11 | 1996-11-01 | Mic Electron Co | Video jog shuttle switch |
GB2312685A (en) * | 1996-04-30 | 1997-11-05 | Thomas Isaac Passmore | Bobbin thread payoff detection device for sewing machines |
US6121955A (en) * | 1997-08-06 | 2000-09-19 | Primax Electronics Ltd. | Computer joystick having two optical sensors for generating vector signals |
JP2000299034A (en) | 1999-04-14 | 2000-10-24 | Nidec Copal Corp | Rotary encoder with switch |
JP2003068161A (en) | 2001-08-24 | 2003-03-07 | Nec Kansai Ltd | El panel and key switch with el panel |
KR20060033525A (en) | 2004-10-15 | 2006-04-19 | 현대모비스 주식회사 | Multifunction switch |
JP2006323692A (en) | 2005-05-19 | 2006-11-30 | Smk Corp | Jog switch |
KR100711139B1 (en) | 2005-07-28 | 2007-04-24 | 포스텍전자주식회사 | Multifunction switch |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102019220005A1 (en) * | 2019-12-18 | 2021-06-24 | Continental Automotive Gmbh | Rotary actuator with optical detection of the rotary position |
Also Published As
Publication number | Publication date |
---|---|
US20100096537A1 (en) | 2010-04-22 |
KR100994008B1 (en) | 2010-11-11 |
KR20100044007A (en) | 2010-04-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mohammad | Using ultrasonic and infrared sensors for distance measurement | |
US11402924B2 (en) | Magnetic arrangement for detecting relative movements or relative positions | |
ES2213181T3 (en) | REPLACEMENT PROCEDURE TO ZERO OF THE DEVICES OF AN APPLIANCE WITH PROBE OF A 3-D COORDINATE MEASUREMENT SYSTEM. | |
US5898421A (en) | Gyroscopic pointer and method | |
KR101026611B1 (en) | Apparatus and method for determining direction variables of long objects | |
JPH06511555A (en) | Point-by-point measurement method and system for spatial coordinates | |
EP0527797B1 (en) | Device for determination of the topography of a surface | |
CN1920760A (en) | Electronic pen having an ultrasonic wave controller | |
US8723101B2 (en) | Integrated movement sensing key with a reflection unit comprising semicircle motifs | |
US9475185B2 (en) | Hand tool having a pivot grip for sensing measurements behind a target surface | |
JPH05240940A (en) | Optical measuring system | |
US8528220B2 (en) | Six-direction indicator | |
JP4189901B2 (en) | Multi-axis potentiometer | |
JP3918732B2 (en) | Non-contact 3D relative displacement measuring device | |
JPH06100467B2 (en) | Proximity sensor | |
JPH07175583A (en) | Instruction input device | |
US20210103344A1 (en) | 3-D Input Device | |
RU2301439C1 (en) | Three-dimensional micro-joystick | |
JP2012103113A (en) | Measuring device, position measurement system, measuring method, calibration method and program | |
US10495531B2 (en) | Force sensor | |
US20240167849A1 (en) | 3D Input Apparatus, Mobile Device and 3D Input Device | |
CN217367118U (en) | Rocker magnetic field induction structure and game rocker | |
JP2000275011A (en) | Measuring apparatus and measuring method for moving object | |
RU2180134C2 (en) | Handler | |
JP2021148583A (en) | Stroke sensor module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: HYUNDAI MOTOR COMPANY,KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KANG, KI DONG;REEL/FRAME:023039/0828 Effective date: 20090724 Owner name: HYUNDAI MOTOR COMPANY, KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KANG, KI DONG;REEL/FRAME:023039/0828 Effective date: 20090724 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551) Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |