US8966734B2 - Method of joining magnesium - Google Patents
Method of joining magnesium Download PDFInfo
- Publication number
- US8966734B2 US8966734B2 US13/241,635 US201113241635A US8966734B2 US 8966734 B2 US8966734 B2 US 8966734B2 US 201113241635 A US201113241635 A US 201113241635A US 8966734 B2 US8966734 B2 US 8966734B2
- Authority
- US
- United States
- Prior art keywords
- substrate
- overlap
- die
- magnesium
- region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D39/00—Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders
- B21D39/03—Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders of sheet metal otherwise than by folding
- B21D39/031—Joining superposed plates by locally deforming without slitting or piercing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21J—FORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
- B21J15/00—Riveting
- B21J15/10—Riveting machines
- B21J15/14—Riveting machines specially adapted for riveting specific articles, e.g. brake lining machines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23P—METAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
- B23P11/00—Connecting or disconnecting metal parts or objects by metal-working techniques not otherwise provided for
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/56—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using mechanical means or mechanical connections, e.g. form-fits
- B29C65/64—Joining a non-plastics element to a plastics element, e.g. by force
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/01—General aspects dealing with the joint area or with the area to be joined
- B29C66/05—Particular design of joint configurations
- B29C66/10—Particular design of joint configurations particular design of the joint cross-sections
- B29C66/11—Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
- B29C66/112—Single lapped joints
- B29C66/1122—Single lap to lap joints, i.e. overlap joints
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/40—General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
- B29C66/41—Joining substantially flat articles ; Making flat seams in tubular or hollow articles
- B29C66/43—Joining a relatively small portion of the surface of said articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/72—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
- B29C66/721—Fibre-reinforced materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/73—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
- B29C66/739—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
- B29C66/7392—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/74—Joining plastics material to non-plastics material
- B29C66/742—Joining plastics material to non-plastics material to metals or their alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/30—Vehicles, e.g. ships or aircraft, or body parts thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16B—DEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
- F16B5/00—Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16B—DEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
- F16B5/00—Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them
- F16B5/04—Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them by means of riveting
- F16B5/045—Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them by means of riveting without the use of separate rivets
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49826—Assembling or joining
- Y10T29/49863—Assembling or joining with prestressing of part
- Y10T29/49865—Assembling or joining with prestressing of part by temperature differential [e.g., shrink fit]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49826—Assembling or joining
- Y10T29/49888—Subsequently coating
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49826—Assembling or joining
- Y10T29/49908—Joining by deforming
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49826—Assembling or joining
- Y10T29/49908—Joining by deforming
- Y10T29/49936—Surface interlocking
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/4998—Combined manufacture including applying or shaping of fluent material
Definitions
- the present disclosure relates to methods of joining magnesium to magnesium or joining magnesium to another metal or non-metal substrate using a polymeric plug.
- Metal sheets are joined to form structural components, cosmetic components, or for other purposes.
- the sheets may be joined by using fasteners such as bolts and rivets which may be made of stainless steel or another material.
- magnesium may be selected as the metal sheet due to its high strength and relatively low weight.
- a concern is galvanic corrosion at the interface of a non-magnesium fastener and the magnesium sheet or at the interface of the magnesium sheet and any other non-magnesium sheet joined to the magnesium sheet.
- magnesium and magnesium alloys there are limitations to using magnesium and magnesium alloys in manufacturing.
- the present teachings provide methods of joining a magnesium substrate to a second substrate.
- a region of the magnesium substrate is aligned with a region of the second substrate to provide an overlap.
- a region of the overlap is deformed to provide a joint.
- a polymeric material is disposed into the joint.
- the present teachings provide methods of joining a magnesium substrate to a second substrate.
- a region of the magnesium substrate and a region of the second substrate are aligned to provide an overlap.
- the overlap is located between a first die and a second die.
- a polymer is injected from the first die towards the overlap to cause the overlap to deform towards the second die and to contact with a surface of the second die.
- the polymer is then solidified to interlock the magnesium substrate and the second metal substrate.
- the newly formed assembly is removed from the die set.
- the present teachings provide methods of joining a magnesium substrate to a second substrate.
- a region of the magnesium substrate and a region of the second substrate are aligned to provide an overlap.
- At least one of the magnesium substrate and the second substrate includes a non-conductive coating that contacts the other respective substrate.
- a region of the overlap is deformed to provide a joint while leaving the overlap intact.
- a polymeric material is disposed into the joint.
- FIGS. 1A-1F depict an exemplary process of joining a magnesium substrate to a second substrate according to various aspects of the present teachings
- FIGS. 2A-2C depict an exemplary process of joining a magnesium substrate to a second substrate using hydrostatic force from a flowing polymer according to various aspects of the present teachings.
- FIGS. 3A-3C depict an exemplary process of joining a magnesium substrate to a second substrate, where the substrates have an intermediary layer according to various aspects of the present teachings.
- Example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those who are skilled in the art. Numerous specific details are set forth such as examples of specific components, devices, and methods, to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms and that neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known device structures, and well-known technologies are not described in detail.
- first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another region, layer or section. Terms such as “first,” “second,” and other numerical terms when used herein do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the example embodiments.
- Spatially relative terms such as “inner,” “outer,” “beneath,” “below,” “lower,” “above,” “upper,” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. Spatially relative terms may be intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the example term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
- a “magnesium substrate” includes a workpiece or sub-part that includes at least about 75% by weight of magnesium.
- the second substrate is either another magnesium substrate or a different substrate, such as a metal or a non-metal substrate such as a reinforced thermoplastic, as non-limiting examples.
- the workpiece is a sheet of the material that is suitable for the particular manufacturing purposes. For example, in automotive applications the thickness of the sheet(s) is selected for whether the sheet forms a portion of a door panel or a portion of an engine component or some other component.
- Sheet metal or a “sheet” of the present teachings has a thickness measured as a gauge, generally from 0 to 36 gauge. In the alternate, the sheet metal or sheet has a thickness of from greater than or equal to about 0.1 millimeters to less than or equal to about 8.0 millimeters, including all sub-ranges. Where multiple metal sheets are employed, the sheets are either the same thickness or different thicknesses. While sheet metal is detailed in the present disclosure, other metal structures to be joined (such as tubes, blocks, coils, etc.) are also suitable for securing using the present teachings. Where a non-metal sheet is used, the thicknesses are the same as those detailed above.
- the “galvanic corrosion” mitigated refers to a phenomenon in which a less noble metal (more susceptible to corrosion) acts as an anode, and a more noble metal (less susceptible to corrosion) acts as a cathode to form a cell or battery where the less noble metal corrodes preferentially.
- a less noble metal more susceptible to corrosion
- the magnesium metal corrodes preferentially. If the magnesium metal is brought into contact with nickel, which is even more noble than stainless steel, the rate of galvanic corrosion would be greater due to the increased relative difference in nobility.
- Galvanic corrosion causes pitting and other surface damage. If this damage occurs at seams or interfaces between subcomponents of a part, it may reduce longevity, cause undesired cracks or breaks, and/or result in decreased performance of the part. Galvanic corrosion should be prevented to avoid premature and/or undesirable degradation of components.
- the methods employ polymeric fasteners as opposed to metal fasteners as polymers are generally non-reactive with the magnesium substrate and particularly suitable for the disclosed fixation techniques. Subsequently, the methods provide lightweight joining of magnesium pieces without the use of steel rivets, which can promote severe galvanic corrosion. This prevents cracking of the magnesium which is sometimes seen during insertion of self-piercing steel rivets. In addition to preventing the cracking, the use of the polymer fasteners of the present teachings further prevents the structural rotting that may be caused by galvanic corrosion.
- FIGS. 1A-1D an exemplary method according to the present teachings is depicted using an assembly 100 .
- a first substrate 10 and a second substrate 12 are aligned to provide an overlap 14 . While only two substrates 10 , 12 are depicted, it is understood that more than two substrates may be used within the scope of the present teachings. Further, the first substrate 10 and the second substrate 12 may be of different sizes, shapes, or thicknesses.
- the overlap 14 is disposed within a die 20 .
- the die 20 as depicted in a generically shaped die that includes an upper portion 22 and a lower portion 24 .
- the lower die portion 24 defines a die cavity 26 defined by inner die wall 28 .
- the overlap 14 is fixtured between the upper die portion 22 and the lower die portion 24 . As shown in FIG. 1B , the overlap 14 is fully encircled by the upper die portion 22 . While the fully encircled overlap 14 is detailed in the instant teachings, it is understood that the overlap 14 may have a partial perimeter about it as shaped by the contour of the upper die portion 22 and/or the lower die portion 24 , for example at discrete points (i.e.: two or more separate points that are spaced apart) or as a disconnected shape (i.e.: a J-shape or a semicircle, as non-limiting examples).
- Aligning the first substrate 10 and the second substrate 12 to form the overlap 14 allows for securing of the first substrate 10 to the second substrate 12 .
- clinching is suitable for use in the present teachings. Clinching is used to secure together substrates, like metal and non-metal sheets. Clinching includes stamping or otherwise forming corresponding indentations in at least two stacked metal sheets for mechanically fitting the sheets to each other.
- either one of the upper die portion 22 or the lower die portion 24 is electrically or thermally connected to a heat source to warm either the first substrate 10 and/or the second substrate 12 or both.
- a heat source to warm either the first substrate 10 and/or the second substrate 12 or both.
- the heating may be to a softening or deformation temperature of the respective metal(s) or non-metal substrate.
- the softening or deformation temperature is a temperature that is less than the melting point of the respective metal but that is greater than the temperature at which the respective metal is solid as well-known by one of skill in the art.
- the melting temperature is approximately 630 degrees C. to provide a liquid alloy.
- the softening temperature is actually a range of temperatures that is less than the melting point.
- An exemplary softening or deformation temperature of the AZ31B magnesium alloy is from about 250 degrees C. to about 500 degrees C., including all sub-ranges.
- the overlap 14 provides the areas of the first substrate 10 and the second substrate 12 that are deformed. In select aspects, the overlap 14 is deformed and is not pierced or otherwise destroyed.
- a bulbous tip 40 is depicted as being pressed against the overlap 14 in a circular pattern indicated by arrows 42 and 44 .
- the bulbous tip 40 is rotated and exerts a pressure against the first substrate 10 and the second substrate 12 , the overlap 14 is advanced towards the inner wall 28 of the die 20 .
- the bulbous tip 40 presses the overlap 14 against the inner wall 28 which in turn resists the force from the bulbous tip 40 to shape the overlap 14 and cause it to contact with the contours of an inner wall 28 of the die 20 .
- the bulbous tip matches at least a portion of the shape of the inner wall 28 of the die 20 .
- the multiple circular patterns indicated at arrows 42 and 44 assure that the deformed shape of the overlap 14 matches the shape of the interior wall 28 .
- the circular (or other directional) movement of the bulbous tip 40 is continued until the desired level of contouring is achieved. Still further, the bulbous tip 40 is able to travel up and down to push the overlap 14 against the inner wall 28 .
- the shaping of the overlap 14 results in the sheets 10 and 12 being secured, and particularly, the sheet 12 having an undercut to prevent peel.
- the first substrate 10 and second substrate 12 , and optionally at least a portion of the die 20 (and thus at least a portion of one of the first substrate 10 and the second substrate 12 ) are heated in select aspects to more easily allow the bulbous tip 40 to deform the overlap 14 .
- the deformed overlap 14 as shown at FIG. 1C forms a depression for a polymer plug 50 as shown in FIG. 1D .
- the polymer plug 50 holds the shape of the clinch and also prevents migration of moisture and debris.
- a general description of the polymer plug 50 is provided first followed by exemplary materials that are suitable for use as the polymer plug 50 .
- the polymer plug 50 secures the joint 60 .
- the polymer plug 50 is placed in the joint 60 or compressed in the joint 60 so that it sits in different orientations with respect to the first substrate 10 or the second substrate 12 .
- the polymer plug 50 sits proud with respect to the upper surface 34 of the second substrate 12 .
- the polymer plug 50 both sits proud with respect to the upper surface of the second substrate 12 and also extends over to a region of the first substrate 10 .
- This extension 52 provides an additional barrier for the interface of the first substrate 10 and the second substrate 12 .
- the polymer plug 50 sits flush with the upper surface 34 of the second substrate 12 . Regardless of the relative height of the polymer plug 50 , the joint 60 is protected from unwanted migration of water or other debris due to compression or curing of the plug, as detailed later herein.
- the second substrate 12 includes an upper surface 34 and a lower surface 36 while the first substrate 10 includes an upper surface 30 and a lower surface 32 .
- the orientation of the polymer plug 50 with respect to the upper surface 34 of the second substrate 12 or the upper surface 30 of the first substrate may be modified by compressing the polymer plug 50 once it is placed in the joint 60 .
- the orientation of the polymer plug 50 is also modifiable by filling the joint 60 with more or less of the polymer.
- the polymer is selected from a thermoplastic polymer or a thermosetting polymer.
- the polymer may be readily shaped at a temperature greater than the glass transition temperature or melting temperature of the polymer, while retaining maximum strength at ambient temperature, or about 25 degrees C.
- Suitable thermoplastics include polyamide or polypropylene for select uses. In structures which experience the automotive paint bake cycle (160 to 200 degrees C. for at least 20 minutes), high performance thermoplastics with a relatively high glass transition or crystallization temperature, such as polyphthalamide, polyphenylene sulfide, polyamide-imide, polyether sulphone, and polyarylene ketone, among others, may be employed.
- thermosets are also suitable for use in the present teachings. As compared to thermoplastics, thermosets demonstrate superior creep resistance and dimensional stability and are also suitable for a higher temperature exposure. In select aspects, these are B-staged epoxies or a crosslinkable thermoset below its glass transition temperature. B-staged epoxies include those in which only limited reaction between the resin and hardener has taken place so that the product is in a semi-cured, highly-viscous, but deformable state. In various aspects, deformation is facilitated at mildly elevated temperatures. Depending on their formulation the partial cure of such B-staged epoxies occurs at room temperature, about 25 degrees C., or at more elevated temperatures.
- Suitable examples include: epoxy resins, such as diglycidyl ether of bisphenol-A based resin (such as those sold by Momentive Specialty Chemicals of Columbus, Ohio under the tradename Hexion Epon 828) or novalac-based resin (such as those sold by Momentive Specialty Chemicals of Columbus, Ohio under the tradename Hexion Epon SU-2.5) cured with an amine, anhydride, or imidazole curing agent; unsaturated polyester resins, such as those based on propylene glycol cured with a peroxide and, optionally, thickened with magnesium oxide; and a vinyl ester resin (such as those sold by Ashland Composite Polymers of Covington, Ky. under the tradename Derakane) cured with a peroxide and, optionally, thickened with magnesium oxide.
- epoxy resins such as diglycidyl ether of bisphenol-A based resin (such as those sold by Momentive Specialty Chemicals of Columbus, Ohio under the tradename Hexion Ep
- Polymer plugs 50 made of thermosetting polymers may require an elevated temperature cure so that they may be inserted and upset at room temperature or about 25 degrees C. After insertion and upsetting, at least local application of heat to the polymer plug 50 will enable the polymer to cure and develop maximum strength to secure or interlock the joint 60 . Curing is achieved by using heat lamps, heated tooling, or by placing the joint 60 (and workpiece) in an oven or furnace, for example a paint bake oven. Any curing processes known in the art are suitable for use in the present teachings including exposure to ultraviolet radiation or exposure to electron beams.
- the polymer includes fiber reinforcements.
- Suitable fiber reinforcements may include glass and aramid fibers.
- Carbon fibers are also suitable provided they can be assuredly isolated from the magnesium.
- Mixed fibers are also suitable and are provided as a braid, a bunch, group, or as individual fibers.
- the fibers are positioned in the interior of a braided aramid or glass fiber sleeve, as non-limiting examples, to assure isolation of the carbon fibers. Fibers are uniformly distributed across the body cross-section or positioned selectively, for example to provide selective reinforcement or to facilitate upsetting with minimal fiber damage, or, as in the case of carbon fibers, to locate them out of possible contact with the workpiece(s).
- Natural fibers, such as bast fibers, including hemp and jute are also suitable for use in the present teachings.
- the polymer or polymer and fiber materials to be formed into the plug 50 are preheated to a temperature greater than the glass transition temperature of the polymer where a thermoplastic polymer is employed.
- thermosets such as B-staged epoxies and other crosslinkable thermosets may be inserted while at ambient temperatures so long as the temperature is below the glass transition temperature.
- Fiber reinforcements may be either short fiber (generally less than 2 mm) or long fibers (from about 2 mm to the full length of the plug.)
- a long fiber-reinforced plug 50 may be readily formed using pultrusion or extrusion to form an extended length of fiber-reinforced material and then cutting the extended length to form bodies of appropriate length.
- the body may preferably be circular in cross-section, both pultrusion and extrusion are suitable for preparing bodies of other than circular cross-section, including irregular cross-sections, if preferred.
- short fibers may be used, which will be mixed with the polymeric thermoplastic or thermoset resin when it is above its melting temperature.
- the dimensions of the plug 50 should be chosen to enhance joint strength.
- the polymer is solidified under pressure. This allows the polymer plug 50 to retain its shape and provide a barrier for the joint 60 .
- the pressure can include pressure while the polymer is curing or cooling.
- the solidified polymer plug 50 secures the joint 60 and provides the structural integrity to the system. Because the polymer plug 50 is employed, a magnesium substrate may be employed as at least one of the first substrate 10 or the second substrate 12 .
- the polymer plug 50 interlocks the joint 60 .
- the polymer plug 50 prevents corrosion at the interface of the first substrate 10 and the second substrate 12 .
- the joint 60 is interlocked such that the workpiece having the joint 60 is structurally sound and performs in the intended manner.
- the split in the lower die 24 as best shown in FIGS. 1A and 1C allows the lower die to be separated for removal from the formed clinch.
- methods of joining the first substrate 10 and the second substrate 12 include forming the joint 60 while simultaneously placing the polymer plug 50 .
- a region of the first substrate 10 and a region of the second substrate 12 are aligned to form the overlap 14 .
- the overlap 14 is located between the upper die portion 22 and the lower die portion 24 .
- a polymer, such as those detailed above is injected from the upper die portion 22 through a passage 70 defined by the upper die portion 22 .
- the polymer is pre-heated so that it is molten when traveling through the passage 70 along path 72 , or the polymer is heated once it is within the die 20 .
- the polymer is advanced towards the overlap 14 at a sufficient pressure and speed to push the overlap 14 towards the lower die portion 24 to cause the overlap to contact with the inner surface 28 of the die 20 .
- the amount of pressure and speed needed to deform the overlap 14 depends on the thickness of the first substrate 10 and the second substrate 12 and size of the desired joint 60 . Further, the temperature of the first substrate 10 and the second substrate 12 also partly determines the resistance to deformation. To facilitate shaping, at least one of the first substrate 10 and the second substrate 12 are heated in various aspects of the present teachings. A thicker overlap 14 would require that the polymer is advanced at a greater force than a relatively thinner overlap 14 .
- the polymer fills the cavity 26 and causes the overlap 14 to have the same contour as the inner surface 28 of the lower die portion 24 .
- the delivery of the polymer through the passage 70 is terminated when the desired amount of polymer is delivered.
- a polymer plug 50 intended to be flush with the upper surface 34 of the second substrate 12 as depicted in FIG. 1F may require an earlier termination of polymer delivery as compared to the preparation of a polymer plug 50 intended to cover the shoulder 52 as depicted in FIG. 1E .
- the polymer plug 50 is then solidified as detailed above to interlock the first substrate 10 with the second substrate 12 .
- various post processing steps including curing with a heat lamp, passing through an oven, exposing to UV light, or exposing to an electron beam as detailed above are applied, as needed to the polymer plug 50 to secure the joint 60 .
- a thermoplastic plug would be solidified by cooling to below the glass transition temperature or melting temperature.
- one of the first substrate 10 and the second substrate 12 includes a non-conductive coating 80 , as noted with assembly 300 .
- the non-conductive coating 80 contacts at least one of the substrates and serves as a barrier between at least a portion of the first substrate 10 and the second substrate 12 .
- the non-conductive coating 80 is on the upper surface 30 of the first substrate 10 .
- the non-conductive coating 80 contacts the lower surface 36 of the second substrate 12 and is sandwiched between the first substrate 10 and the second substrate 12 where they confined within the die 20 .
- the non-conductive coating is made of any suitable material.
- An exemplary set of materials for the non-conductive coating includes high strain materials including those classified as a polyolefin, a diene, a polystyrene, a polyamide, a polyester, a polyurethane, a fluorine-type elastomer, a silicon-type elastomer, and the like, used alone or in combination, as non-limiting examples. Still further, a ceramic material may be used in various aspects as the non-conductive coating 80 .
- non-conductive coating 80 is depicted as being the same length as the first substrate 10 , it is within the scope of the present teachings for the non-conductive coating 80 to be shorter than or longer than the first substrate 10 and/or second substrate 12 . It is also within the scope of the present teachings to have more than one non-conductive coating 80 in the system.
- the non-conductive coating 80 serves as the barrier to prevent galvanic corrosion of the magnesium while still optimizing the use of the light weight and high strength materials.
- the non-conductive coating 80 may be particularly useful when one of the first substrate 10 and the second substrate 12 is made of magnesium and the other is another metal.
- the polymeric material is disposed into the joint 60 to interlock the first substrate 10 and the second substrate 12 .
- the polymeric material includes the thermoset and thermoplastic materials detailed above.
- the fibers detailed above are incorporated into the polymer materials as detailed above.
- the polymer is delivered after shaping the overlap 14 to contact the contours of at least a portion of the die 20 in various aspects, for example, by shaping with a bulbous tip as shown in FIG. 3B .
- the polymer is delivered through the passage 70 along path 72 as depicted in FIGS. 2A-2C to shape the first substrate 10 , the non-conductive coating 80 , and the second substrate 12 .
- at least one of the die 20 , the first substrate 10 , and the second substrate 12 is connected to a source of electrical or thermal heat to soften at least one of the first substrate 10 and second substrate, as detailed above.
- the polymer plug 50 is then solidified as detailed above to interlock the first substrate 10 with the second substrate 12 .
- Various post processing steps including curing with a heat lamp, passing through an oven, exposing to UV light, or exposing to an electron beam as detailed above are applied, as needed to the polymer plug 50 to secure the joint 60 .
- the present teachings provide methods of joining a magnesium substrate to a second metal substrate.
- a region of the magnesium substrate and a region of the second substrate are aligned to provide an overlap.
- a region of the overlap is deformed to provide a joint.
- a polymeric material is disposed in the joint.
- the overlap is disposed in a die. Deforming a region of the overlap further includes contouring the overlap to contact a surface of the die. The deforming of a region of the overlap is selected from hot clinching and shaping with a bulbous tip. Where the overlap is shaped with a bulbous tip, the die is optionally heated to heat a region of the overlap.
- the polymer is optionally melted and then solidified under pressure.
- the polymeric material is cured or cooled to form a plug.
- the joint is secured with the plug.
- the upper surface of the plug is substantially flush with an upper surface of the overlap according to various aspects.
- the second substrate is the same material as the magnesium substrate, or the second substrate is a different material than the magnesium substrate.
- a method of joining a magnesium substrate to a second metal substrate includes aligning a region of the magnesium substrate and a region of the second substrate to provide an overlap, where the overlap is located between a first die and a second die.
- a polymer is injected from the first die towards the overlap to cause the overlap to deform towards the second die and to contact a surface of the second die. Injecting the polymer from the first die towards the second die creates a joint connecting the magnesium substrate and the second metal substrate.
- the polymer is solidified to interlock the magnesium substrate and the second metal substrate.
- the magnesium substrate and the second substrate are heated above a deformation temperature.
- the heating may be achieved by heating at least one of the first die and the second die or other suitable means.
- methods of joining a magnesium substrate to a second metal substrate include aligning a region of the magnesium substrate and a region of the second metal substrate to provide an overlap, where at least one of the magnesium substrate and the second metal substrate includes a non-conductive coating that contacts the other respective substrate.
- the non-conductive coating includes a material with strain properties high enough to accommodate the deformation of the workpiece.
- a region of the overlap is deformed to provide a joint while leaving the overlap intact.
- a polymeric material is disposed into the joint.
- a polymer is injected from the first die towards the overlap to cause the overlap to deform towards the second die and to contact a surface of the second die in select features.
- the overlap is secured in a die and deformed using a bulbous tip.
- the polymeric material is solidified to interlock the magnesium substrate and the second metal substrate.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Laminated Bodies (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
Abstract
Description
Claims (21)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/241,635 US8966734B2 (en) | 2011-09-23 | 2011-09-23 | Method of joining magnesium |
DE102012216731A DE102012216731A1 (en) | 2011-09-23 | 2012-09-19 | Method for joining magnesium |
CN201210354031.8A CN103016477B (en) | 2011-09-23 | 2012-09-21 | Method of joining magnesium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/241,635 US8966734B2 (en) | 2011-09-23 | 2011-09-23 | Method of joining magnesium |
Publications (2)
Publication Number | Publication Date |
---|---|
US20130074312A1 US20130074312A1 (en) | 2013-03-28 |
US8966734B2 true US8966734B2 (en) | 2015-03-03 |
Family
ID=47828127
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/241,635 Expired - Fee Related US8966734B2 (en) | 2011-09-23 | 2011-09-23 | Method of joining magnesium |
Country Status (3)
Country | Link |
---|---|
US (1) | US8966734B2 (en) |
CN (1) | CN103016477B (en) |
DE (1) | DE102012216731A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8966734B2 (en) | 2011-09-23 | 2015-03-03 | GM Global Technology Operations LLC | Method of joining magnesium |
DE102011122037A1 (en) * | 2011-12-22 | 2013-06-27 | Kathrein-Werke Kg | Method for producing a high-frequency electrical connection between two plate sections and an associated high-frequency electrical connection |
US10124560B2 (en) | 2014-06-12 | 2018-11-13 | GM Global Technology Operations LLC | Swiss cheese attachment |
FR3130658B1 (en) * | 2021-12-16 | 2024-01-19 | Psa Automobiles Sa | Assembly of sheets by stamping reinforced with a structural adhesive. |
Citations (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2458452A (en) | 1943-04-05 | 1949-01-04 | Vanni Pierre Georges | Driving device for revolving members |
US2510693A (en) | 1944-03-29 | 1950-06-06 | Lee B Green | Fastening member |
US2685813A (en) | 1951-09-18 | 1954-08-10 | Northrop Aircraft Inc | Prefabricated glass fiber rivet body |
US3512224A (en) * | 1968-04-29 | 1970-05-19 | Usm Corp | Grommet fastener and method for setting same |
US4133096A (en) | 1977-07-05 | 1979-01-09 | Boeing Commercial Airplane Company | Apparatus and method for self-positioning a squeezed rivet |
US4478544A (en) | 1982-06-04 | 1984-10-23 | Microdot Inc. | Composite rivet |
US4687396A (en) | 1985-05-29 | 1987-08-18 | Microdot Inc. | One-piece composite rivet with deformable head portion and mandrel |
US4736507A (en) | 1987-03-30 | 1988-04-12 | Microdot Inc. | Tool for setting plastic rivets |
US4831704A (en) | 1985-09-14 | 1989-05-23 | Eugen Rapp | Apparatus for connecting thin plates |
US4897912A (en) | 1987-07-08 | 1990-02-06 | Weldex, Inc. | Method and apparatus for forming joints |
US5051020A (en) | 1989-11-13 | 1991-09-24 | Tech-Line Engineering Co. | Leak proof joint |
US5203812A (en) | 1989-10-18 | 1993-04-20 | Eckold Gerd Juergen | Method of connecting two components |
US5361483A (en) | 1987-05-19 | 1994-11-08 | Rockwell International Corp. | Composite fasteners and method for fastening structural components therewith |
JPH07268244A (en) * | 1994-03-30 | 1995-10-17 | Bridgestone Corp | Surface-treating agent for metal and method of surface treatment for metal |
DE19500790A1 (en) | 1995-01-13 | 1996-07-18 | Bayer Ag | Method and device for producing plastic / metal composite bodies |
US6684479B2 (en) | 2001-08-22 | 2004-02-03 | General Motors Corporation | Method and apparatus for clinching metal sheets |
US6694597B2 (en) * | 2002-03-08 | 2004-02-24 | General Motors Corporation | Method for riveting metal members |
US6732420B2 (en) * | 2002-03-08 | 2004-05-11 | General Motors Corporation | Method for riveting metal members therewith |
DE102004002593A1 (en) * | 2003-01-16 | 2004-07-29 | Tox Pressotechnik Gmbh & Co. Kg | Checking process for machine tools, e.g. presses, involves using liquid or gas checking medium supplied to cavities in regions at risk at measured pressure |
WO2004085144A2 (en) | 2003-03-28 | 2004-10-07 | Corus Staal B.V. | A sheet material for forming applications, metal container made from such a sheet material and process for producing said sheet material |
US20050120532A1 (en) * | 2002-03-27 | 2005-06-09 | Fraunhofer-Gesellschaft Zur | Method, device and auxiliary joining element for joining at least two parts |
US20050125985A1 (en) * | 2003-11-10 | 2005-06-16 | Adams Thomas R. | Method for making a fiber reinforced composite rivet having an upset head |
US20050177993A1 (en) * | 2002-05-08 | 2005-08-18 | Bergkvist Hans R. | Method for mechanically joining two or more layers of sheet material |
DE102004053130A1 (en) * | 2004-10-29 | 2006-05-04 | Faurecia Innenraum Systeme Gmbh | Metal and plastic hybrid component for wide range of uses comprises thin metal layer with opening whose collar is inserted through opening in thin metal layer below and injected plastic deforms collar to lock in position |
DE10102712B4 (en) | 2001-01-22 | 2007-03-01 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Method for connecting at least partially overlapping components and device therefor |
US20080149256A1 (en) * | 2006-12-21 | 2008-06-26 | Gm Global Technology Operations, Inc. | Method and apparatus to minimize adhesive induced distortion |
US7698797B2 (en) * | 2005-02-02 | 2010-04-20 | Ford Global Technologies | Apparatus and method for forming a joint between adjacent members |
US7937816B2 (en) * | 2005-09-26 | 2011-05-10 | Valeo Systemes Thermiques S.A.S. | Assembly device between two laminated panels consisting of a resin layer inserted between two metal sheets |
US7996975B1 (en) * | 2004-09-30 | 2011-08-16 | Denslow Clark A | Method of making unified head for a staked fastener |
US8024848B2 (en) | 2008-10-08 | 2011-09-27 | GM Global Technology Operations LLC | Double-action clinching method |
US20120124816A1 (en) | 2010-11-23 | 2012-05-24 | Gm Global Technology Operations, Inc. | Joining magnesium with reinforced polymer composite fasteners |
DE102012216731A1 (en) | 2011-09-23 | 2013-03-28 | GM Global Technology Operations LLC (n.d. Ges. d. Staates Delaware) | Method for joining magnesium |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9412561D0 (en) * | 1994-06-22 | 1994-08-10 | Ariel Ind Plc | Improved means of fastening sheets by riveting |
GB2314794B (en) * | 1996-07-04 | 1999-01-06 | Avdel Textron Ltd | Self piercing riveting |
DE102004050161A1 (en) * | 2003-10-21 | 2005-06-02 | Behr Gmbh & Co. Kg | Hybrid component of two metal sheets and a plastics element, especially for vehicle construction, uses an injection molding/jointer assembly for molten plastics to force a penetration through a sheet and form a button lock |
-
2011
- 2011-09-23 US US13/241,635 patent/US8966734B2/en not_active Expired - Fee Related
-
2012
- 2012-09-19 DE DE102012216731A patent/DE102012216731A1/en not_active Withdrawn
- 2012-09-21 CN CN201210354031.8A patent/CN103016477B/en not_active Expired - Fee Related
Patent Citations (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2458452A (en) | 1943-04-05 | 1949-01-04 | Vanni Pierre Georges | Driving device for revolving members |
US2510693A (en) | 1944-03-29 | 1950-06-06 | Lee B Green | Fastening member |
US2685813A (en) | 1951-09-18 | 1954-08-10 | Northrop Aircraft Inc | Prefabricated glass fiber rivet body |
US3512224A (en) * | 1968-04-29 | 1970-05-19 | Usm Corp | Grommet fastener and method for setting same |
US4133096A (en) | 1977-07-05 | 1979-01-09 | Boeing Commercial Airplane Company | Apparatus and method for self-positioning a squeezed rivet |
US4478544A (en) | 1982-06-04 | 1984-10-23 | Microdot Inc. | Composite rivet |
US4687396A (en) | 1985-05-29 | 1987-08-18 | Microdot Inc. | One-piece composite rivet with deformable head portion and mandrel |
US4831704A (en) | 1985-09-14 | 1989-05-23 | Eugen Rapp | Apparatus for connecting thin plates |
US4736507A (en) | 1987-03-30 | 1988-04-12 | Microdot Inc. | Tool for setting plastic rivets |
US5361483A (en) | 1987-05-19 | 1994-11-08 | Rockwell International Corp. | Composite fasteners and method for fastening structural components therewith |
US4897912A (en) | 1987-07-08 | 1990-02-06 | Weldex, Inc. | Method and apparatus for forming joints |
US5203812A (en) | 1989-10-18 | 1993-04-20 | Eckold Gerd Juergen | Method of connecting two components |
US5051020A (en) | 1989-11-13 | 1991-09-24 | Tech-Line Engineering Co. | Leak proof joint |
JPH07268244A (en) * | 1994-03-30 | 1995-10-17 | Bridgestone Corp | Surface-treating agent for metal and method of surface treatment for metal |
DE19500790A1 (en) | 1995-01-13 | 1996-07-18 | Bayer Ag | Method and device for producing plastic / metal composite bodies |
DE10102712B4 (en) | 2001-01-22 | 2007-03-01 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Method for connecting at least partially overlapping components and device therefor |
US6684479B2 (en) | 2001-08-22 | 2004-02-03 | General Motors Corporation | Method and apparatus for clinching metal sheets |
US6694597B2 (en) * | 2002-03-08 | 2004-02-24 | General Motors Corporation | Method for riveting metal members |
US6732420B2 (en) * | 2002-03-08 | 2004-05-11 | General Motors Corporation | Method for riveting metal members therewith |
US20050120532A1 (en) * | 2002-03-27 | 2005-06-09 | Fraunhofer-Gesellschaft Zur | Method, device and auxiliary joining element for joining at least two parts |
US7377021B2 (en) * | 2002-03-27 | 2008-05-27 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung, E.V. | Method, device and auxiliary joining element for joining at least two parts |
US20050177993A1 (en) * | 2002-05-08 | 2005-08-18 | Bergkvist Hans R. | Method for mechanically joining two or more layers of sheet material |
DE102004002593A1 (en) * | 2003-01-16 | 2004-07-29 | Tox Pressotechnik Gmbh & Co. Kg | Checking process for machine tools, e.g. presses, involves using liquid or gas checking medium supplied to cavities in regions at risk at measured pressure |
WO2004085144A2 (en) | 2003-03-28 | 2004-10-07 | Corus Staal B.V. | A sheet material for forming applications, metal container made from such a sheet material and process for producing said sheet material |
US20050125985A1 (en) * | 2003-11-10 | 2005-06-16 | Adams Thomas R. | Method for making a fiber reinforced composite rivet having an upset head |
US7996975B1 (en) * | 2004-09-30 | 2011-08-16 | Denslow Clark A | Method of making unified head for a staked fastener |
DE102004053130A1 (en) * | 2004-10-29 | 2006-05-04 | Faurecia Innenraum Systeme Gmbh | Metal and plastic hybrid component for wide range of uses comprises thin metal layer with opening whose collar is inserted through opening in thin metal layer below and injected plastic deforms collar to lock in position |
US7698797B2 (en) * | 2005-02-02 | 2010-04-20 | Ford Global Technologies | Apparatus and method for forming a joint between adjacent members |
US7937816B2 (en) * | 2005-09-26 | 2011-05-10 | Valeo Systemes Thermiques S.A.S. | Assembly device between two laminated panels consisting of a resin layer inserted between two metal sheets |
US20080149256A1 (en) * | 2006-12-21 | 2008-06-26 | Gm Global Technology Operations, Inc. | Method and apparatus to minimize adhesive induced distortion |
US8024848B2 (en) | 2008-10-08 | 2011-09-27 | GM Global Technology Operations LLC | Double-action clinching method |
US20120124816A1 (en) | 2010-11-23 | 2012-05-24 | Gm Global Technology Operations, Inc. | Joining magnesium with reinforced polymer composite fasteners |
DE102012216731A1 (en) | 2011-09-23 | 2013-03-28 | GM Global Technology Operations LLC (n.d. Ges. d. Staates Delaware) | Method for joining magnesium |
CN103016477A (en) | 2011-09-23 | 2013-04-03 | 通用汽车环球科技运作有限责任公司 | Method of joining magnesium |
Non-Patent Citations (3)
Title |
---|
"TOX-ClinchRivet Ingeniously simple", Data sheet, TB 80.04-200904.en, 4 pages. |
"TOX—ClinchRivet Ingeniously simple", Data sheet, TB 80.04—200904.en, 4 pages. |
U.S. Appl. No. 12/952,246, filed Nov. 23, 2010 Berger et al. |
Also Published As
Publication number | Publication date |
---|---|
DE102012216731A1 (en) | 2013-03-28 |
CN103016477A (en) | 2013-04-03 |
US20130074312A1 (en) | 2013-03-28 |
CN103016477B (en) | 2015-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2121304B1 (en) | Method for producing a hybrid plastic/metal component and metal/plastic composite | |
DE10301520B4 (en) | Plastic-metal composite component | |
KR101857172B1 (en) | Hybrid suspension arm for vehicle and manufacturing method thereof | |
AU2007294461B2 (en) | Joining of concentric section polymer composite components | |
US9567675B2 (en) | Method for manufacturing a bonded body of galvanized steel sheet and adherend | |
DE102011118816B4 (en) | CONNECTING MAGNESIUM WITH FASTENERS FROM AN AMPLIFIED POLYMER COMPOSITION | |
KR101161928B1 (en) | Aluminum alloy composite and method of bonding therefor | |
US8966734B2 (en) | Method of joining magnesium | |
EP3040182B1 (en) | Method for producing a structural element, semi-finished product, method for producing a semi-finished product, structural element, and aircraft or spacecraft | |
US20100189957A1 (en) | Steel material composite and manufacturing method thereof | |
US20100119836A1 (en) | Stainless steel composite and manufacturing method thereof | |
JP5253416B2 (en) | Metal-resin composite and method for producing the same | |
US11090878B2 (en) | Method for producing a composite component for a motor vehicle | |
CN105473427A (en) | Fiber-composite plastic component | |
US20150343742A1 (en) | Composite component | |
WO2013153056A1 (en) | Joining two components which have different materials | |
US20050042023A1 (en) | Structural assemblies using integrally molded, and welded mechanically locking z-pins | |
CN111497261A (en) | Method for producing a common connection opening in two components, at least one of the components being made of a plastically deformable material | |
US20220355409A1 (en) | Hollow welding pin for assembling two different materials. | |
Rath et al. | Single point incremental forming of multi-matrix continuously-reinforced composites: A feasibility study | |
CN108349215B (en) | Forming a metal composite | |
DE102014111176B4 (en) | Process for producing a fiber composite component | |
KR20180044623A (en) | Adhering structure and method of different kinds materials | |
JP2020040368A (en) | Method for manufacturing composite body of coated metal contouring material and resin material | |
US20250320888A1 (en) | Self-piercing rivet, method for producing a self-piercing rivet, and method for connecting two elements by a self-piercing rivet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: GM GLOBAL TECHNOLOGY OPERATIONS LLC, MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BERGER, ELISABETH J.;CARTER, JON T.;FOSS, PETER H.;AND OTHERS;SIGNING DATES FROM 20110919 TO 20110920;REEL/FRAME:027207/0864 |
|
AS | Assignment |
Owner name: WILMINGTON TRUST COMPANY, DELAWARE Free format text: SECURITY AGREEMENT;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS LLC;REEL/FRAME:028458/0184 Effective date: 20101027 |
|
AS | Assignment |
Owner name: GM GLOBAL TECHNOLOGY OPERATIONS LLC, MICHIGAN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST COMPANY;REEL/FRAME:034186/0776 Effective date: 20141017 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20230303 |