[go: up one dir, main page]

US9108495B2 - Wheel for pedal-assisted bikes - Google Patents

Wheel for pedal-assisted bikes Download PDF

Info

Publication number
US9108495B2
US9108495B2 US14/004,915 US201214004915A US9108495B2 US 9108495 B2 US9108495 B2 US 9108495B2 US 201214004915 A US201214004915 A US 201214004915A US 9108495 B2 US9108495 B2 US 9108495B2
Authority
US
United States
Prior art keywords
locking
wheel according
gear
wheel
fixed structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US14/004,915
Other versions
US20140008964A1 (en
Inventor
Adriano Zanfei
Fabio Giorgi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
C R D Centro Ricerche Ducati Trento Srl
Original Assignee
C R D Centro Ricerche Ducati Trento Srl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by C R D Centro Ricerche Ducati Trento Srl filed Critical C R D Centro Ricerche Ducati Trento Srl
Assigned to C.R.D. CENTRO RICERCHE DUCATI TRENTO S.R.L. reassignment C.R.D. CENTRO RICERCHE DUCATI TRENTO S.R.L. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GIORGI, Fabio, ZANFEI, ADRIANO
Publication of US20140008964A1 publication Critical patent/US20140008964A1/en
Application granted granted Critical
Publication of US9108495B2 publication Critical patent/US9108495B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K7/0007Disposition of motor in, or adjacent to, traction wheel the motor being electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M6/00Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
    • B62M6/40Rider propelled cycles with auxiliary electric motor
    • B62M6/60Rider propelled cycles with auxiliary electric motor power-driven at axle parts
    • B62M6/65Rider propelled cycles with auxiliary electric motor power-driven at axle parts with axle and driving shaft arranged coaxially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B1/00Spoked wheels; Spokes thereof
    • B60B1/02Wheels with wire or other tension spokes
    • B60B1/0261Wheels with wire or other tension spokes characterised by spoke form
    • B60B1/0276Wheels with wire or other tension spokes characterised by spoke form the spoke being crooked in the middle and having double length

Definitions

  • the present invention relates to a wheel for pedal-assisted bikes.
  • Pedal-assisted bikes are bicycles with an auxiliary electric motor having the following specifications:
  • the electric motor is controlled by means of a processing and control unit which controls the power supply according to the pedal force of the user, balancing the engagement of the transmission gradually from when pedalling starts, to make this smooth and regular.
  • pedal-assisted bikes have a force sensor in correspondence to the pedals or a speed sensor positioned in the pedal crank or both.
  • the electric motor is housed directly in the hub of the motorised wheel and is powered by a battery pack which, instead, is fitted on the bicycle frame.
  • the integration of the battery pack in the motorised wheel only in part simplifies pedal-assisted system fitting and removal operations because it in any case remains necessary to install force and/or speed sensors on the bike pedal crank, as well as all other components.
  • the motorised wheels for pedal-assisted bikes can not always be combined in a practical and easy way with the traditional mechanical gears usually used to reduce or multiply the motion transmission ratio from the pedal crank.
  • the fact that the hub of the motorised wheel is almost completely occupied by the electric motor in fact determines the fact that this wheel cannot be combined with gear change devices inside the hub, such as, e.g., the Rohloff gear change but can only be combined with external devices, such as traditional derailleur gears, which nevertheless are not standardised and vary according to the bike model.
  • the main object of the present invention is to provide a wheel for pedal-assisted bike that can be fitted on any traditional already-existing bike model, providing this, in a practical, easy and functional way, with the functions of pedal-assisted bikes.
  • Another object of the present invention is to provide a wheel for pedal-assisted bikes that allows overcoming the mentioned drawbacks of the background art within the ambit of a simple, rational, easy and effective to use as well as low cost solution.
  • FIG. 1 is a side view of a bike with the wheel according to the invention
  • FIG. 2 is an axonometric view of a portion of the wheel according to the invention.
  • FIG. 3 is an exploded view of the portion of wheel in FIG. 2 ;
  • FIG. 4 is an axial section view of the portion of wheel in FIG. 2 ;
  • FIG. 5 is a section view, on enlarged scale, of a detail of FIG. 4 ;
  • FIG. 6 is an exploded view of the speed gear device of the wheel according to the invention.
  • FIG. 7 is a broken view of the speed gear device of the wheel according to the invention.
  • FIG. 8 is a crosswise, schematic and partial section view, which shows the speed gear device of the wheel according to the invention with one of the sun gears in release position;
  • FIG. 9 is a crosswise, schematic and partial section view, which shows the speed gear device of the wheel according to the invention with one of the sun gears in locking position;
  • FIG. 10 is an axonometric view which shows a portion of the speed gear device of the wheel according to the invention.
  • the wheel 1 is set to be fitted on any type of bike B having a frame T and a driving pedal crank P.
  • the wheel 1 is fitted as rear wheel of the bike B.
  • the wheel 1 comprises a fixed structure 2 which is associable with the rear part of the frame T and which, in particular, has a first axle 3 and a second axle 4 arranged on opposite sides of the wheel 1 and fixable to the frame T in a way in itself traditional.
  • the first axle 3 is rigidly associated with a cup element 5 , in turn rigidly associated with a disc element 6 , at the centre of which a plaque 7 is screwed on and a sleeve 8 is interlocked.
  • the sleeve 8 ends up with a pin extremity 8 a which supports or defines the second axle 4 .
  • the fixed structure 2 is therefore made up of the axles 3 , 4 , of the cup element 5 , of the disc element 6 , of the plaque 7 and of the sleeve 8 .
  • the circle element 10 , 11 , 12 can turn with respect to the fixed structure 2 around a main rotation axis A coaxial with the axles 3 , 4 .
  • the circle element 10 , 11 , 12 comprises:
  • a propulsion disc 13 e.g., of the traditional gear pinion type, which can be connected to the driving pedal crank P by means of a flexible part 9 such as a chain or the like.
  • propulsion disc 13 With the propulsion disc 13 are associated motion transmission means 14 , 15 , 16 suitable for transferring the rotation motion from the propulsion disc 13 to the circle element 10 , 11 , 12 .
  • the motion transmission means 14 , 15 , 16 comprise:
  • the succession of connections along which the motion is transmitted from the propulsion disc 13 to the circle element 10 , 11 , 12 is the following: the propulsion disc 13 is associated with the speed gear device 14 which is associated with the freewheel mechanism 15 which is associated with the first detection device 16 which is associated with the circle element 10 , 11 , 12 .
  • the speed gear device 14 is substantially coaxial to the main rotation axis A and is of the planetary type.
  • the speed gear device 14 comprises:
  • All the sun gears 22 a , 22 b , 22 c , 22 d comprise a central hole 25 which allows them to be positioned around the sleeve 8 and the housing of the locking device 23 , 24 .
  • the central holes 25 of the sun gears 22 a , 22 b , 22 c , 22 d are shaped so as to define a plurality of grooves 26 .
  • the locking device 23 , 24 comprises two groups of locking bodies 23 , arranged on diametrically opposite sides of the main rotation axis A and fitted in succession along two corresponding longitudinal slots 27 obtained in the sleeve 8 .
  • Each locking body 23 is housed in the longitudinal slot 27 in correspondence to the central hole 25 of a respective sun gear 22 a , 22 b , 22 c , 22 d and is mobile perpendicular to the main rotation axis A between a locking position, wherein it is fitted in one of the grooves 26 obtained in the respective sun gear 22 a , 22 b , 22 c , 22 d preventing its rotation ( FIG. 9 ), and a release position wherein it is moved away from the grooves 26 and the respective sun gear 22 a , 22 b , 22 c , 22 d is released ( FIG. 8 ).
  • the locking device 23 , 24 furthermore, comprises an operating shaft 24 which is housed in the sleeve 8 and, therefore, is arranged inside the central holes 25 coaxially to the sun gears 22 a , 22 b , 22 c , 22 d.
  • the operating shaft 24 has two series of eccentric profiles 24 a , one for each group of locking bodies 23 .
  • the eccentric profiles 24 a are suitable for cooperating with the locking bodies 23 for their movement between the locking position and the release position.
  • the angular positions of the eccentric profiles 24 a are substantially staggered the one to the other (in particular by around 36°) and the operating shaft 24 is rotatable around its own axis, coinciding with the main rotation axis A, in a series of operative angular positions wherein one of the eccentric profiles 24 a places the corresponding locking body 23 in the locking position while the other locking bodies 23 remain in release position.
  • the speed gear device 14 also comprises a solidarization mechanism 28 , 29 suitable for making the annulus gear 17 and the planet carrier body 19 , 20 , 21 integral with each other.
  • the solidarization mechanism 28 , 29 comprises:
  • the operating shaft 24 can be placed in four operative angular positions, corresponding to the selective locking of the four sun gears 22 a , 22 b , 22 c , 22 d and to the positioning of the solidarization element 28 in idle position, and in a fifth operative angular position, corresponding to the release of all four sun gears 22 a , 22 b , 22 c , 22 d and to the placement of the solidarization element 28 in coupling position.
  • a retention mechanism 31 , 32 , 33 is also provided suitable for retaining the operating shaft 24 in the operative angular positions.
  • the retention mechanism 31 , 32 , 33 comprises two retention bodies 31 , of the type of two small balls or the like, fitted in two corresponding longitudinal grooves 32 obtained on the operating shaft 24 .
  • the two retention bodies 31 are secured to the operating shaft 24 in a way sliding along a direction parallel to the main rotation axis A between an engaged position, wherein the retention bodies 31 are fitted in corresponding seats 33 obtained on the plaque 7 of the fixed structure 2 , and a disengaged position, wherein the retention bodies 31 are moved away and released from the seats 33 .
  • the plaque 7 in particular, has a plurality of seats 33 , at least one for each operative angular position ( FIG. 10 ).
  • the small balls 31 are pushed towards the seats 33 by means of a spring 32 a which tends to keep them in engaged position until, by means of the application of an external force, the operating shaft 24 is made to rotate around itself forcing the small balls 31 into the disengaged position until the subsequent operative angular position is reached.
  • the speed gear device 14 has a control system 34 .
  • the control system 34 consists of an actuator element for placing in rotation the operating shaft 24 around its own axis between the different operative angular positions.
  • the actuator element 34 comprises a coupling body 35 , with a substantially cylindrical shape, which is housed in the cup element 5 , is keyed to one extremity of the operating shaft 24 and is to be connected to a control wire 36 .
  • the control wire 36 in particular, can consist of a tie rod having one extremity stably attached to the coupling body 35 and the opposite extremity associated with a control lever 37 , located on the frame T of the bike B.
  • the actuator element 34 consists in a motorized body, of the type of an electric actuator, of the step-by-step or continuous type, which is intended to make the operating shaft 24 rotate in an automated way and is interlocked with an electronic start signal given by the user.
  • the freewheel mechanism 15 and the first detection device 16 are arranged both the freewheel mechanism 15 and the first detection device 16 , which allow the motion to be transmitted from the planet carrier body 19 , 20 , 21 to the circle element 10 , 11 , 12 .
  • the wheel 1 usefully has also an electric motor 54 , 55 , which is associated with the disc element 6 of the fixed structure 2 and is suitable for cooperating with the motion coming from the driving pedal crank P and from the propulsion disc 13 to motorise the circle element 10 , 11 , 12 .
  • the electric motor 54 , 55 comprises a statoric element 54 fitted on the disc element 6 and a rotoric element 55 associated with a supporting hub 53 which is rigidly associated with the circle element 10 , 11 , 12 .
  • the electric motor 54 , 55 is e.g. of the Torque type with permanent or reluctance magnets or the like, with the statoric element 54 and the rotoric element 55 which are substantially ring-shaped and are arranged one inside the other substantially around the motion transmission means 14 , 15 , 16 .
  • the wheel 1 For the power supply of the electric motor 54 , 55 , the wheel 1 has a power supply unit 56 associated with the disc element 6 of the fixed structure 2 .
  • the power supply unit 56 is made up, e.g., of one or more battery packs operatively connected to the statoric element 54 of the electric motor 54 , 55 .
  • a processing and control unit 57 which is operatively connected to the first detection device 16 , to the second detection device 41 , 42 , 43 and to the electric motor 54 , 55 and is suitable for commanding the start of the electric motor 54 , 55 depending on the force detected by the first detection device 16 and, if necessary, on other programmable operating parameters.
  • the processing and control unit 57 is associated with a wireless data transmission device 58 , of the radio wave, Bluetooth type or the like, suitable for interfacing the processing and control unit 57 with an external electronic device 59 , having a display screen and usable by a user.
  • the external electronic device 59 consists, e.g., of a dedicated on-board computer or of a software installable on the user's cell phone; in both cases, the external electronic device 59 can be fitted in a practical and convenient way on the handlebars M of the bike B and can be used to display the operating data of the processing and control unit (bike speed, pedalling speed, pedalling force, etc.) and to set the operating parameters.
  • the processing and control unit bicycle speed, pedalling speed, pedalling force, etc.
  • the processing and control unit 57 can be set to manage the operation of this motorised part, if necessary by interfacing the external electronic device 59 and enabling the user to select the most suitable transmission ratio during riding, giving commands onto the external electronic device 59 .
  • the central boxed casing 10 of the circle element 10 , 11 , 12 is suitable for containing the main mechanical and electronic components of the wheel 1 , in particular the motion transmission means 14 , 15 , 16 , the electric motor 54 , 55 , the power supply unit 56 and the processing and control unit 57 , but also the wireless data transmission device 58 .
  • the operation of the present invention is the following.
  • the rotation is transferred from the coupling 21 as long as the user applies to the driving pedal crank P a rotation equal to or greater than that of the circle element 10 , 11 , 12 .
  • the thrust generated on the driving pedal crank P is transmitted to the first detection device 16 and to the circle element 10 , 11 , 12 .
  • the first detection device 16 gives an electronic signal corresponding to the transmitted force, this signal being processed by the processing and control unit 57 to control or not the start of the electric motor 54 , 55 depending on a mapping of pre-set parameters.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Retarders (AREA)
  • Transmission Devices (AREA)
  • Structure Of Transmissions (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

Wheel for pedal-assisted bikes includes:
  • a fixed structure associable with the frame of a bike having a driving pedal crank;
    • a circle element mounted on the structure for rotation around a main rotation axis;
    • a propulsion disc rotatably mounted on the structure and connectable to the crank;
    • an electric motor associated with the structure and for cooperating with the propulsion disc to motorize the circle element; and
    • transmission elements for transmitting rotary motion from the disc to the circle element which include a first detection device for detecting the force transmitted to the circle element from the disc, and including:
    • a first plate associated in rotation with one of the disc and the circle element;
    • a second plate associated with the other of the disc and the circle element;
    • at least a motion transmission part between the first plate and second plate.

Description

TECHNICAL FIELD
The present invention relates to a wheel for pedal-assisted bikes.
BACKGROUND ART
Pedal-assisted bikes are bicycles with an auxiliary electric motor having the following specifications:
    • maximum continuous power rating of the electric motor: 0.25 kW;
    • motor supply gradually reduced and interrupted when 25 km/h is achieved;
    • motor supply interrupted before 25 km/h if the cyclist stops pedalling.
The electric motor is controlled by means of a processing and control unit which controls the power supply according to the pedal force of the user, balancing the engagement of the transmission gradually from when pedalling starts, to make this smooth and regular.
For this purpose, pedal-assisted bikes have a force sensor in correspondence to the pedals or a speed sensor positioned in the pedal crank or both.
In traditional pedal-assisted bikes, the electric motor is housed directly in the hub of the motorised wheel and is powered by a battery pack which, instead, is fitted on the bicycle frame.
Considering the need to equip the bike with all the aforementioned components designed to perform various different functions, the traditional pedal-assisted systems are usually conceived, right from the design stage, to be fitted on a specific bike model.
Only rarely in fact is it possible to develop a kit able to adapt to several bike models, taking into account the considerable differences between the bicycles on the market, in particular their frames which, of course, have shapes and dimensions so different as to prevent a practical and complete standardisation of pedal-assisted systems.
It must also be underlined that the fitting of a kit for pedal-assisted bikes during the after-sales stage, even if this were possible, usually calls for the performance of inconvenient and not very practical operations concerning the adjustment and the fitting of the various components to the frame which more often than not cannot be performed by the end user and requires the intervention of an expert technician.
To partially overcome the aforementioned drawbacks, the integration is known in the motorised wheel of not only the electrical drive motor but also of the battery pack, as described for example in the patent document WO 2010/091323.
This constructive solution however is not without drawbacks either.
In this respect, it should first of all be noticed that the integration of the battery pack in the motorised wheel only in part simplifies pedal-assisted system fitting and removal operations because it in any case remains necessary to install force and/or speed sensors on the bike pedal crank, as well as all other components.
To this must be added that, quite apart from where the battery pack is positioned either on the wheel or on the frame, the motorised wheels for pedal-assisted bikes can not always be combined in a practical and easy way with the traditional mechanical gears usually used to reduce or multiply the motion transmission ratio from the pedal crank. The fact that the hub of the motorised wheel is almost completely occupied by the electric motor in fact determines the fact that this wheel cannot be combined with gear change devices inside the hub, such as, e.g., the Rohloff gear change but can only be combined with external devices, such as traditional derailleur gears, which nevertheless are not standardised and vary according to the bike model.
DESCRIPTION OF THE INVENTION
The main object of the present invention is to provide a wheel for pedal-assisted bike that can be fitted on any traditional already-existing bike model, providing this, in a practical, easy and functional way, with the functions of pedal-assisted bikes.
Another object of the present invention is to provide a wheel for pedal-assisted bikes that allows overcoming the mentioned drawbacks of the background art within the ambit of a simple, rational, easy and effective to use as well as low cost solution.
The above mentioned objects are achieved by the present wheel for pedal-assisted bikes, comprising:
    • at least a fixed structure associable with the frame of a bike having a driving pedal crank;
    • at least a circle element mounted on said fixed structure in a rotatable way around a main rotation axis;
    • at least a propulsion disc mounted on said fixed structure in a rotatable way and connectable to said driving pedal crank;
    • motion transmission means for the transmission of the rotary motion from said propulsion disc to said circle element, and comprising at least a speed gear device suitable for changing the motion transmission ratio from said propulsion disc to said circle element; and
    • at least an electric motor associated with said fixed structure and suitable for cooperating with said propulsion disc to motorize said circle element;
characterised in that said speed gear device comprises:
    • an annulus gear with internal teeth, associated with said propulsion disc;
    • at least a first group of planet gears, made integral with each other and having a different number of teeth, of which at least one primary planet gear engaging with said annulus gear;
    • a planet carrier body which supports said first group of planet gears;
    • a second group of sun gears, having a different number of teeth and engaging with a respective planet gear, of which at least one primary sun gear engaging with said primary planet gear; and
    • a locking device for the selective locking of said sun gears, suitable for preventing alternately the rotation of only one of said sun gears and to release the rotation of the remaining ones, the transmission ratio between said annulus gear and said planet carrier body being established by which sun gear is locked.
BRIEF DESCRIPTION OF THE DRAWINGS
Other characteristics and advantages of the present invention will become more evident from the description of a preferred, but not sole, embodiment of a wheel for pedal-assisted bikes, illustrated purely as an example but not limited to the annexed drawings in which:
FIG. 1 is a side view of a bike with the wheel according to the invention;
FIG. 2 is an axonometric view of a portion of the wheel according to the invention;
FIG. 3 is an exploded view of the portion of wheel in FIG. 2;
FIG. 4 is an axial section view of the portion of wheel in FIG. 2;
FIG. 5 is a section view, on enlarged scale, of a detail of FIG. 4;
FIG. 6 is an exploded view of the speed gear device of the wheel according to the invention;
FIG. 7 is a broken view of the speed gear device of the wheel according to the invention;
FIG. 8 is a crosswise, schematic and partial section view, which shows the speed gear device of the wheel according to the invention with one of the sun gears in release position;
FIG. 9 is a crosswise, schematic and partial section view, which shows the speed gear device of the wheel according to the invention with one of the sun gears in locking position;
FIG. 10 is an axonometric view which shows a portion of the speed gear device of the wheel according to the invention.
EMBODIMENTS OF THE INVENTION
With particular reference to such Figures, globally indicated by 1 is a wheel for pedal-assisted bikes.
The wheel 1 is set to be fitted on any type of bike B having a frame T and a driving pedal crank P.
In the particular embodiment shown in FIG. 1, for example, the wheel 1 is fitted as rear wheel of the bike B.
For this purpose, the wheel 1 comprises a fixed structure 2 which is associable with the rear part of the frame T and which, in particular, has a first axle 3 and a second axle 4 arranged on opposite sides of the wheel 1 and fixable to the frame T in a way in itself traditional.
The first axle 3 is rigidly associated with a cup element 5, in turn rigidly associated with a disc element 6, at the centre of which a plaque 7 is screwed on and a sleeve 8 is interlocked.
The sleeve 8 ends up with a pin extremity 8 a which supports or defines the second axle 4.
In the particular embodiment shown in the illustrations, the fixed structure 2 is therefore made up of the axles 3, 4, of the cup element 5, of the disc element 6, of the plaque 7 and of the sleeve 8.
On the fixed structure 2 is fitted in a rotatable way a circle element 10, 11, 12.
The circle element 10, 11, 12 can turn with respect to the fixed structure 2 around a main rotation axis A coaxial with the axles 3, 4.
The circle element 10, 11, 12 comprises:
    • a central boxed casing 10, with a substantially discoid shape;
    • an external circular framework 11, supporting a tyre for the circulation of the bike B on the road; and
    • a series of tie-rods 12 for connecting the central boxed casing 10 to the external circular framework 11.
In correspondence to the second axle 4 of the fixed structure 2 is fitted in a rotatable way a propulsion disc 13, e.g., of the traditional gear pinion type, which can be connected to the driving pedal crank P by means of a flexible part 9 such as a chain or the like.
With the propulsion disc 13 are associated motion transmission means 14, 15, 16 suitable for transferring the rotation motion from the propulsion disc 13 to the circle element 10, 11, 12.
The motion transmission means 14, 15, 16 comprise:
    • a speed gear device 14 suitable for changing the motion transmission ratio from the propulsion disc 13 to the circle element 10, 11, 12;
    • a freewheel mechanism 15; and
    • a first detection device 16 suitable for detecting the force (or, in other words the torque) coming from the propulsion disc 13 and transmitted to the circle element 10, 11, 12.
More in detail, it is underlined that the succession of connections along which the motion is transmitted from the propulsion disc 13 to the circle element 10, 11, 12 is the following: the propulsion disc 13 is associated with the speed gear device 14 which is associated with the freewheel mechanism 15 which is associated with the first detection device 16 which is associated with the circle element 10, 11, 12.
The speed gear device 14 is substantially coaxial to the main rotation axis A and is of the planetary type.
More in detail, the speed gear device 14 comprises:
    • an annulus gear 17 with inner teeth, fitted on the second axle 4 in a rotatable way around the main rotation axis A and on which the propulsion disc 13 is keyed;
    • a plurality of first groups of planet gears 18 a, 18 b, 18 c, 18 d. The planet gears 18 a, 18 b, 18 c, 18 d of each first group are made integral with one another and have a different number of teeth. In particular, the planet gears 18 a, 18 b, 18 c, 18 d of each group are made separately and then joined together, e.g. by welding or slot-in coupling. In the particular embodiment shown in the illustrations, there are four planet gears 18 a, 18 b, 18 c, 18 d for each group and they have a primary planet gear 18 a engaging with the inner teeth of the annulus gear 17, a secondary planet gear 18 b adjacent to the primary one, a tertiary planet gear 18 c adjacent to the secondary one and a quaternary planet gear 18 d adjacent to the tertiary one. Alternative embodiments cannot however be ruled out having a different number of planet gears 18 a, 18 b, 18 c, 18 d;
    • a planet carrier body 19, 20, 21 supporting the first groups of planet gears 18 a, 18 b, 18 c, 18 d. The planet carrier body 19, 20, 21, in particular, has a series of axes 19 supporting in a rotatable way the first groups of planet gears 18 a, 18 b, 18 c, 18 d and which are associated with a transversal plate 20 terminating in a coupling 21, which is fitted around the sleeve 8, is rotatable coaxially with the main rotation axis A and represents the exit motor body of the speed gear device 14;
    • a second group of sun gears 22 a, 22 b, 22 c, 22 d, which are not directly connected the one to the other and can turn with different rotation speeds around the main rotation axis A. The sun gears 22 a, 22 b, 22 c, 22 d have a different number of teeth and engage with a respective planet gear 18 a, 18 b, 18 c, 18 d of each first group. In particular, the sun gears 22 a, 22 b, 22 c, 22 d are split into a primary sun gear 22 a engaging with the primary planet gear 18 a, a secondary sun gear 22 b engaging with the secondary planet gear 18 b, a tertiary sun gear 22 c engaging with the tertiary planet gear 18 c and a quaternary sun gear 22 d engaging with the quaternary planet gear 18 d; and
    • a locking device 23, 24 for the selective locking of the sun gears 22 a, 22 b, 22 c, 22 d. The locking device 23, 24, in particular, is suitable for preventing alternatively the rotation of just one of the sun gears 22 a, 22 b, 22 c, 22 d and releasing the rotation of the remaining ones. This way, the transmission ratio between the annulus gear 17 and the planet carrier body 19, 20, 21 depends on which sun gear 22 a, 22 b, 22 c, 22 d remains locked.
All the sun gears 22 a, 22 b, 22 c, 22 d comprise a central hole 25 which allows them to be positioned around the sleeve 8 and the housing of the locking device 23, 24.
The central holes 25 of the sun gears 22 a, 22 b, 22 c, 22 d are shaped so as to define a plurality of grooves 26.
Advantageously, the locking device 23, 24 comprises two groups of locking bodies 23, arranged on diametrically opposite sides of the main rotation axis A and fitted in succession along two corresponding longitudinal slots 27 obtained in the sleeve 8.
The operation of the locking bodies 23 of one group is the same as those of the other group and, consequently, to make exposition easier in the rest of the present description, reference will be made to just one group of locking bodies 23.
Each locking body 23 is housed in the longitudinal slot 27 in correspondence to the central hole 25 of a respective sun gear 22 a, 22 b, 22 c, 22 d and is mobile perpendicular to the main rotation axis A between a locking position, wherein it is fitted in one of the grooves 26 obtained in the respective sun gear 22 a, 22 b, 22 c, 22 d preventing its rotation (FIG. 9), and a release position wherein it is moved away from the grooves 26 and the respective sun gear 22 a, 22 b, 22 c, 22 d is released (FIG. 8).
The locking device 23, 24, furthermore, comprises an operating shaft 24 which is housed in the sleeve 8 and, therefore, is arranged inside the central holes 25 coaxially to the sun gears 22 a, 22 b, 22 c, 22 d.
The operating shaft 24 has two series of eccentric profiles 24 a, one for each group of locking bodies 23.
The eccentric profiles 24 a are suitable for cooperating with the locking bodies 23 for their movement between the locking position and the release position.
The angular positions of the eccentric profiles 24 a are substantially staggered the one to the other (in particular by around 36°) and the operating shaft 24 is rotatable around its own axis, coinciding with the main rotation axis A, in a series of operative angular positions wherein one of the eccentric profiles 24 a places the corresponding locking body 23 in the locking position while the other locking bodies 23 remain in release position.
Usefully, the speed gear device 14 also comprises a solidarization mechanism 28, 29 suitable for making the annulus gear 17 and the planet carrier body 19,20,21 integral with each other.
The solidarization mechanism 28, 29 comprises:
    • a solidarization element 28 secured to the annulus gear 17 in a prismatic way, i.e., it cannot rotate with respect to this but is sliding along a direction parallel to the main rotation axis A between a coupling position, wherein the solidarization element 28 is rigidly engaged with the primary sun gear 22 a, and an idle position, wherein the solidarization element 28 is moved away and released from the primary sun gear 22 a; and
    • a helical profile 29 obtained on the operating shaft 24 and suitable for cooperating with an auxiliary element 28 a associated with the solidarization element 28 for its movement between the coupling position and the idle position in contrast to an elastic return body 30, of the type of a spring or the like.
In practice, with reference to the particular embodiment of the invention shown in the illustrations, the operating shaft 24 can be placed in four operative angular positions, corresponding to the selective locking of the four sun gears 22 a, 22 b, 22 c, 22 d and to the positioning of the solidarization element 28 in idle position, and in a fifth operative angular position, corresponding to the release of all four sun gears 22 a, 22 b, 22 c, 22 d and to the placement of the solidarization element 28 in coupling position.
Advantageously, a retention mechanism 31, 32, 33 is also provided suitable for retaining the operating shaft 24 in the operative angular positions.
The retention mechanism 31, 32, 33 comprises two retention bodies 31, of the type of two small balls or the like, fitted in two corresponding longitudinal grooves 32 obtained on the operating shaft 24.
Along the longitudinal grooves 32, in practice, the two retention bodies 31 are secured to the operating shaft 24 in a way sliding along a direction parallel to the main rotation axis A between an engaged position, wherein the retention bodies 31 are fitted in corresponding seats 33 obtained on the plaque 7 of the fixed structure 2, and a disengaged position, wherein the retention bodies 31 are moved away and released from the seats 33.
The plaque 7, in particular, has a plurality of seats 33, at least one for each operative angular position (FIG. 10).
The small balls 31 are pushed towards the seats 33 by means of a spring 32 a which tends to keep them in engaged position until, by means of the application of an external force, the operating shaft 24 is made to rotate around itself forcing the small balls 31 into the disengaged position until the subsequent operative angular position is reached.
For the selection of the transmission ratio by a user, the speed gear device 14 has a control system 34.
The control system 34 consists of an actuator element for placing in rotation the operating shaft 24 around its own axis between the different operative angular positions.
In the particular embodiment shown in the illustrations, the actuator element 34 comprises a coupling body 35, with a substantially cylindrical shape, which is housed in the cup element 5, is keyed to one extremity of the operating shaft 24 and is to be connected to a control wire 36.
The control wire 36, in particular, can consist of a tie rod having one extremity stably attached to the coupling body 35 and the opposite extremity associated with a control lever 37, located on the frame T of the bike B.
Alternative embodiments of the invention are however possible wherein the actuator element 34 consists in a motorized body, of the type of an electric actuator, of the step-by-step or continuous type, which is intended to make the operating shaft 24 rotate in an automated way and is interlocked with an electronic start signal given by the user. Around the coupling 21 of the planet carrier body 19, 20, 21 are arranged both the freewheel mechanism 15 and the first detection device 16, which allow the motion to be transmitted from the planet carrier body 19, 20, 21 to the circle element 10, 11, 12. The wheel 1 usefully has also an electric motor 54, 55, which is associated with the disc element 6 of the fixed structure 2 and is suitable for cooperating with the motion coming from the driving pedal crank P and from the propulsion disc 13 to motorise the circle element 10, 11, 12.
The electric motor 54, 55 comprises a statoric element 54 fitted on the disc element 6 and a rotoric element 55 associated with a supporting hub 53 which is rigidly associated with the circle element 10, 11, 12.
The electric motor 54, 55 is e.g. of the Torque type with permanent or reluctance magnets or the like, with the statoric element 54 and the rotoric element 55 which are substantially ring-shaped and are arranged one inside the other substantially around the motion transmission means 14, 15, 16.
Such particular solution permits reducing the overall measurements in a practical and functional way.
For the power supply of the electric motor 54, 55, the wheel 1 has a power supply unit 56 associated with the disc element 6 of the fixed structure 2.
The power supply unit 56 is made up, e.g., of one or more battery packs operatively connected to the statoric element 54 of the electric motor 54, 55.
On the fixed structure 2 is also fitted a processing and control unit 57 which is operatively connected to the first detection device 16, to the second detection device 41, 42, 43 and to the electric motor 54, 55 and is suitable for commanding the start of the electric motor 54, 55 depending on the force detected by the first detection device 16 and, if necessary, on other programmable operating parameters.
The processing and control unit 57 is associated with a wireless data transmission device 58, of the radio wave, Bluetooth type or the like, suitable for interfacing the processing and control unit 57 with an external electronic device 59, having a display screen and usable by a user.
The external electronic device 59 consists, e.g., of a dedicated on-board computer or of a software installable on the user's cell phone; in both cases, the external electronic device 59 can be fitted in a practical and convenient way on the handlebars M of the bike B and can be used to display the operating data of the processing and control unit (bike speed, pedalling speed, pedalling force, etc.) and to set the operating parameters. It must also be underlined that in the event of the actuator element 34 consisting in a motorised part interlocked with an electronic start signal given by the user, the processing and control unit 57 can be set to manage the operation of this motorised part, if necessary by interfacing the external electronic device 59 and enabling the user to select the most suitable transmission ratio during riding, giving commands onto the external electronic device 59.
Usefully, the central boxed casing 10 of the circle element 10, 11, 12 is suitable for containing the main mechanical and electronic components of the wheel 1, in particular the motion transmission means 14, 15, 16, the electric motor 54, 55, the power supply unit 56 and the processing and control unit 57, but also the wireless data transmission device 58.
The operation of the present invention is the following.
During normal use of the bike B, the thrust produced by the user on the driving pedal crank P is transferred to the propulsion disc 13 which drags the annulus gear 17 in rotation.
Depending on the transmission ratio selected by means of the control system 34, the rotation motion is transferred from the annulus gear 17 to the coupling 21 which drags the freewheel mechanism 15 in rotation.
By means of the freewheel mechanism 15 the rotation is transferred from the coupling 21 as long as the user applies to the driving pedal crank P a rotation equal to or greater than that of the circle element 10, 11, 12.
From the freewheel mechanism 15, the thrust generated on the driving pedal crank P is transmitted to the first detection device 16 and to the circle element 10, 11, 12.
During such transmission, the first detection device 16 gives an electronic signal corresponding to the transmitted force, this signal being processed by the processing and control unit 57 to control or not the start of the electric motor 54, 55 depending on a mapping of pre-set parameters.
In the event of the electric motor 54, 55 being started, between the statoric element 54 and the rotoric element 55 a force is produced having the same direction of movement as the bike B which aids the pedalling of the user in making the wheel 1 rotate.

Claims (17)

The invention claimed is:
1. A wheel for pedal-assisted bikes, the wheel comprising:
at least a fixed structure associable with the frame of a bike having a driving pedal crank;
at least a circle element mounted on said fixed structure in a rotatable manner around a main rotation axis;
at least a propulsion disc mounted on said fixed structure in a rotatable manner and connectable to said driving pedal crank;
motion transmission means for the transmission of the rotary motion from said propulsion disc to said circle element, the motion transmission means comprising at least a speed gear device configured to change the motion transmission ratio from the propulsion disc to the circle element; and
at least an electric motor associated with said fixed structure and configured to cooperate with said propulsion disc to motorize said circle element,
wherein the speed gear device includes:
an annulus gear with internal teeth, associated with said propulsion disc,
at least a first group of planet gears made integral with each other and having a different number of teeth, of which at least one primary planet gear engages with said annulus gear,
a planet carrier body which supports said first group of planet gears,
a second group of sun gears having a different number of teeth and engaging with a respective planet gear, of which at least one primary sun gear engages with said primary planet gear, and
a locking device for selective locking of said sun gears, the locking device configured to prevent alternately the rotation of only one of said sun gears and to release the rotation of the remaining sun gears, the transmission ratio between said annulus gear and said planet carrier body being established by which of the sun gears is locked.
2. The wheel according to the claim 1, wherein said speed gear device is substantially coaxial to said main rotation axis.
3. The wheel according to the claim 1, wherein said sun gears comprise a central hole for housing said locking device.
4. The wheel according to the claim 3, wherein said locking device comprises at least a group of locking bodies, each of the locking bodies being housed in said central hole of a respective sun gear and being mobile perpendicular to said main rotation axis between a locking position in which the locking body is fitted in at least a groove obtained in said respective sun gear preventing the respective sun gear from rotating, and a release position in which the locking body is moved away from said groove and said respective sun gear is released.
5. The wheel according to the claim 4, wherein said locking device comprises at least an operating shaft for operating said locking bodies, which is housed in said central holes coaxially to said sun gears and has at least a series of eccentric profiles configured to cooperate with said locking bodies for their movement between said locking position and said release position.
6. The wheel according to the claim 5, wherein angular positions of said eccentric profiles are substantially staggered the one to the other, said operating shaft being rotatable around its own axis in a series of operative angular positions in which one of said eccentric profiles places the corresponding locking body in the locking position while the other locking bodies remain in the release position.
7. The wheel according to claim 5, wherein said speed gear device comprises a solidarization mechanism configured to make said annulus gear integral with said planet carrier body.
8. The wheel according to the claim 7, wherein said solidarization mechanism comprises a solidarization element fastened to said annulus gear in a sliding way along a direction parallel to said main rotation axis between a coupling position in which said solidarization element is rigidly engaged with the primary sun gear, and an idle position in which said solidarization element is moved away and released from said primary sun gear.
9. The wheel according to the claim 8, wherein said solidarization mechanism comprises a helical profile obtained on said operating shaft and configured to cooperate with said solidarization element for its movement between said coupling position and said idle position in contrast to an elastic return body.
10. The wheel according to claim 6, wherein said locking device comprises a retention mechanism configured to retain said operating shaft in said operative angular positions.
11. The wheel according to the claim 10, wherein said retention mechanism comprises at least a retention body fastened to said operating shaft in a sliding way along a direction parallel to said main rotation axis between an engagement position in which said retention body is fitted in a corresponding seat obtained in said fixed structure, and a disengagement position in which said retention body is moved away and released from said seat, said fixed structure having a plurality of said seats with at least one seat for each of said operative angular positions.
12. The wheel according to claim 4, wherein said locking device comprises at least two of said groups of locking bodies, arranged on diametrically opposite sides of said main rotation axis.
13. The wheel according to claim 1, wherein said speed gear device comprises a plurality of said first groups of planet gears.
14. The wheel according to claim 6, wherein said speed gear device comprises a control system for the selection of the transmission ratio by a user which has an actuator element for placing in rotation said operating shaft around its own axis between operative angular positions.
15. The wheel according to the claim 14, wherein said actuator element comprises a coupling body associated with said operating shaft and connectable to a control wire.
16. The wheel according to the claim 14, wherein said actuator element comprises a motorized body.
17. The wheel according to claim 1, wherein said electric motor comprises
a statoric element associated with said fixed structure, and
a rotoric element associated with said circle element,
wherein said statoric element and said rotoric element are substantially ring-shaped and arranged substantially around said motion transmission means.
US14/004,915 2011-03-16 2012-03-12 Wheel for pedal-assisted bikes Active US9108495B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
IT000061A ITMO20110061A1 (en) 2011-03-16 2011-03-16 WHEEL FOR ASSISTED RIDING BICYCLES
ITMO2011A000061 2011-03-16
ITMO2011A0061 2011-03-16
PCT/IB2012/000455 WO2012123800A1 (en) 2011-03-16 2012-03-12 Wheel for pedal-assisted bikes

Publications (2)

Publication Number Publication Date
US20140008964A1 US20140008964A1 (en) 2014-01-09
US9108495B2 true US9108495B2 (en) 2015-08-18

Family

ID=43977221

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/004,915 Active US9108495B2 (en) 2011-03-16 2012-03-12 Wheel for pedal-assisted bikes

Country Status (5)

Country Link
US (1) US9108495B2 (en)
EP (1) EP2686230B1 (en)
ES (1) ES2617479T3 (en)
IT (1) ITMO20110061A1 (en)
WO (1) WO2012123800A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150210350A1 (en) * 2009-12-04 2015-07-30 Massachusetts Institute Of Technology Wheel spoking systems and methods of manufacturing and installing wheel spokes
US20160272278A1 (en) * 2015-03-20 2016-09-22 Yamaha Hatsudoki Kabushiki Kaisha Sensor assembly and drive unit for bicycle and bicycle
US9636992B2 (en) 2014-04-04 2017-05-02 Superpedestrian, Inc. Modular systems package for an electrically motorized vehicle
USD813778S1 (en) 2014-11-21 2018-03-27 Superpedestrian, Inc. Multi speed motorized wheel hub
US10005317B2 (en) 2014-04-04 2018-06-26 Superpedestrian, Inc. Devices and methods of thermal management for a motorized wheel
USD830264S1 (en) 2014-11-21 2018-10-09 Superpedestrian, Inc. Single speed motorized wheel hub
US20190112002A1 (en) * 2016-07-08 2019-04-18 H&E Co., Ltd Battery-integrated driver of electric bicycle
US10308065B2 (en) 2014-04-04 2019-06-04 Superpedestrian, Inc. Devices and methods for connecting a spoke to a hub
US10896474B2 (en) 2014-11-24 2021-01-19 Superpedestrian, Inc. Security for an electrically motorized vehicle

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10065451B2 (en) * 2015-03-06 2018-09-04 Donghyun PARK Driving wheel for vehicles
WO2018052876A1 (en) 2016-09-13 2018-03-22 Nucleus Scientific, Inc. Multi-bar linkage electric drive system
KR101809516B1 (en) 2016-12-26 2017-12-18 계양전기 주식회사 All-in-one hub type module with easy assembling spoke for electric bicycle and wheel of electric bicycle comprising the same
IT201900020994A1 (en) 2019-11-12 2021-05-12 C R D Centro Ricerche Ducati Trento S R L WHEEL FOR ELECTRIC BICYCLES
IT201900021003A1 (en) 2019-11-12 2021-05-12 C R D Centro Ricerche Ducati Trento S R L WHEEL FOR ELECTRIC BICYCLES

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4952196A (en) * 1987-10-21 1990-08-28 Autra-Bike Co., Inc. Variable diameter sprocket assembly
US5440945A (en) * 1993-04-19 1995-08-15 Penn; Jay P. Hardgeared infinitely variable transmission
US6072717A (en) * 1998-09-04 2000-06-06 Hewlett Packard Stabilized magnetic memory cell
DE20020613U1 (en) 2000-11-15 2001-03-08 diro Konstruktion GmbH & Co. KG, 38471 Rühen Freewheel for a manual transmission
JP2003095180A (en) 2001-09-21 2003-04-03 Sanyo Electric Co Ltd Electrically assisted bicycle
US6725733B1 (en) * 2003-06-06 2004-04-27 Murray F. Feller Torque balance flow meter
FR2873090A1 (en) 2004-07-16 2006-01-20 Inivi T Sarl Wheel hub for bicycle, has pedaling assistance device with motor connected to body flange and reducer having splined crown gear which has flange in which recess is arranged to form cylindrical housing for receiving speed shifting unit
US20080234090A1 (en) * 2007-03-21 2008-09-25 Karlheinz Nicolai Multiple gear transmission with magnetic control
US7624656B2 (en) * 2004-04-01 2009-12-01 Bhsci Llc Continuously variable transmission
WO2010068101A1 (en) 2008-12-08 2010-06-17 Dti Advanced Technologies B.V. Transmission unit for a bicycle
WO2010091323A1 (en) 2009-02-06 2010-08-12 Juan Bautista Belon Smart electrical wheel for electrical bikes
US8636095B2 (en) * 2010-02-18 2014-01-28 Ntn Corporation Electric power-assisted bicycle

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4952196A (en) * 1987-10-21 1990-08-28 Autra-Bike Co., Inc. Variable diameter sprocket assembly
US5440945A (en) * 1993-04-19 1995-08-15 Penn; Jay P. Hardgeared infinitely variable transmission
US6072717A (en) * 1998-09-04 2000-06-06 Hewlett Packard Stabilized magnetic memory cell
DE20020613U1 (en) 2000-11-15 2001-03-08 diro Konstruktion GmbH & Co. KG, 38471 Rühen Freewheel for a manual transmission
JP2003095180A (en) 2001-09-21 2003-04-03 Sanyo Electric Co Ltd Electrically assisted bicycle
US6725733B1 (en) * 2003-06-06 2004-04-27 Murray F. Feller Torque balance flow meter
US7624656B2 (en) * 2004-04-01 2009-12-01 Bhsci Llc Continuously variable transmission
FR2873090A1 (en) 2004-07-16 2006-01-20 Inivi T Sarl Wheel hub for bicycle, has pedaling assistance device with motor connected to body flange and reducer having splined crown gear which has flange in which recess is arranged to form cylindrical housing for receiving speed shifting unit
US20080234090A1 (en) * 2007-03-21 2008-09-25 Karlheinz Nicolai Multiple gear transmission with magnetic control
WO2010068101A1 (en) 2008-12-08 2010-06-17 Dti Advanced Technologies B.V. Transmission unit for a bicycle
WO2010091323A1 (en) 2009-02-06 2010-08-12 Juan Bautista Belon Smart electrical wheel for electrical bikes
US8636095B2 (en) * 2010-02-18 2014-01-28 Ntn Corporation Electric power-assisted bicycle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
International Search Report dated Jul. 5, 2012, corresponding to PCT/IB2012/000455.

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9944349B2 (en) * 2009-12-04 2018-04-17 Massachusetts Institute Of Technology Wheel spoking systems and methods of manufacturing and installing wheel spokes
US20150210350A1 (en) * 2009-12-04 2015-07-30 Massachusetts Institute Of Technology Wheel spoking systems and methods of manufacturing and installing wheel spokes
US10259311B2 (en) 2014-04-04 2019-04-16 Superpedestrian, Inc. Systems and methods for diagnostics and response of an electrically motorized vehicle
US10543741B2 (en) 2014-04-04 2020-01-28 Superpedestrian, Inc. Systems and methods for utilizing geographic positioning data for operation of an electrically motorized vehicle
US9669700B2 (en) 2014-04-04 2017-06-06 Superpedestrian, Inc. Systems and methods for physical fitness using an electrically motorized vehicle
US9669699B2 (en) 2014-04-04 2017-06-06 Superpedestrian, Inc. Data collection and aggregation with an electrically motorized vehicle
US9701190B2 (en) 2014-04-04 2017-07-11 Superpedestrian, Inc. User interface for an electrically motorized vehicle
US11091024B2 (en) 2014-04-04 2021-08-17 Superpedestrian, Inc. Systems for the aggregation of data with an electrically motorized vehicle
US9738151B2 (en) 2014-04-04 2017-08-22 Superpedestrian, Inc. Safety features for an electrically motorized vehicle
US9815363B2 (en) 2014-04-04 2017-11-14 Superpedestrian, Inc. Operation of an electrically motorized vehicle
US9878608B2 (en) 2014-04-04 2018-01-30 Superpedestrian, Inc. Management of a fleet of electrically motorized vehicles
US9902252B2 (en) 2014-04-04 2018-02-27 Superpedestrian, Inc. Systems, methods and devices for traversing elevation changes using electrically motorized vehicles
US9944167B2 (en) 2014-04-04 2018-04-17 Superpedestrian, Inc. Electrically motorized wheel
US9931924B2 (en) 2014-04-04 2018-04-03 Superpedestrian, Inc. Mode selection of an electrically motorized vehicle
US9636993B2 (en) 2014-04-04 2017-05-02 Superpedestrian, Inc. Systems, methods and devices for the physical rehabiliation using an electrically motorized vehicle
US9937783B2 (en) 2014-04-04 2018-04-10 Superpedestrian, Inc. Devices for supporting accessory devices on an electrically motorized vehicle
US10166856B2 (en) 2014-04-04 2019-01-01 Superpedestrian, Inc. Systems, methods, and devices for assessment of an operator of an electrically motorized vehicle
US10005317B2 (en) 2014-04-04 2018-06-26 Superpedestrian, Inc. Devices and methods of thermal management for a motorized wheel
US10308065B2 (en) 2014-04-04 2019-06-04 Superpedestrian, Inc. Devices and methods for connecting a spoke to a hub
US10106026B2 (en) 2014-04-04 2018-10-23 Superpedestrian, Inc. User interface for an electrically motorized vehicle
US9636992B2 (en) 2014-04-04 2017-05-02 Superpedestrian, Inc. Modular systems package for an electrically motorized vehicle
USD830264S1 (en) 2014-11-21 2018-10-09 Superpedestrian, Inc. Single speed motorized wheel hub
USD813778S1 (en) 2014-11-21 2018-03-27 Superpedestrian, Inc. Multi speed motorized wheel hub
US10896474B2 (en) 2014-11-24 2021-01-19 Superpedestrian, Inc. Security for an electrically motorized vehicle
US20160272278A1 (en) * 2015-03-20 2016-09-22 Yamaha Hatsudoki Kabushiki Kaisha Sensor assembly and drive unit for bicycle and bicycle
US9701363B2 (en) * 2015-03-20 2017-07-11 Yamaha Hatsudoki Kabushiki Kaisha Sensor assembly and drive unit for bicycle and bicycle
US20190112002A1 (en) * 2016-07-08 2019-04-18 H&E Co., Ltd Battery-integrated driver of electric bicycle
US10800485B2 (en) * 2016-07-08 2020-10-13 H&E Co., Ltd Battery-integrated driver of electric bicycle

Also Published As

Publication number Publication date
US20140008964A1 (en) 2014-01-09
ITMO20110061A1 (en) 2012-09-17
EP2686230B1 (en) 2016-12-21
ES2617479T3 (en) 2017-06-19
WO2012123800A1 (en) 2012-09-20
EP2686230A1 (en) 2014-01-22

Similar Documents

Publication Publication Date Title
US9108495B2 (en) Wheel for pedal-assisted bikes
EP2686232B1 (en) Wheel for pedal-assisted bikes
EP2686229B1 (en) Wheel for pedal-assisted bikes
US9994284B2 (en) Bicycle assist unit
TWI635021B (en) Bicycle drive assembly and bicycle with drive assembly
US11440346B2 (en) Hub assembly and drive train
EP2988987B1 (en) Wheel for pedal-assisted bikes
EP3290322A1 (en) Wheel hubs and power wheels containing the same
KR20160074765A (en) Hub motor structure
WO2017180443A1 (en) Integrated electric bicycle drive system
EP3216686A1 (en) Power wheel and bicycles containing the same
CN107000809A (en) Bicycle drive unit
US10858059B2 (en) Combined torque, direction, and cadence sensing system for electric bicycles
EP2818393B1 (en) Electric hub device and electric bicycle
CN115303404A (en) Bicycle Propulsion System for Electric Bicycle Converter
CN113993776B (en) Electric gear motor assembly for a bicycle
CN101941501B (en) Electric force assisting vehicle drive wheel hub
KR20120133428A (en) Bicycle motor having transmission function with two motors
EP3480104B1 (en) Crank drive motor for electric bicycle with automatic gear shifting
KR20110048657A (en) Hybrid bicycle
KR20160015754A (en) Driving transmission unit of eletricity bike
JP2018122701A (en) Power transmission mechanism for bicycle

Legal Events

Date Code Title Description
AS Assignment

Owner name: C.R.D. CENTRO RICERCHE DUCATI TRENTO S.R.L., ITALY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZANFEI, ADRIANO;GIORGI, FABIO;REEL/FRAME:031273/0233

Effective date: 20130902

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8