US9455581B2 - Safety-critical smart battery management system with the capability of charging single battery cells and discharging battery pack - Google Patents
Safety-critical smart battery management system with the capability of charging single battery cells and discharging battery pack Download PDFInfo
- Publication number
- US9455581B2 US9455581B2 US14/458,267 US201414458267A US9455581B2 US 9455581 B2 US9455581 B2 US 9455581B2 US 201414458267 A US201414458267 A US 201414458267A US 9455581 B2 US9455581 B2 US 9455581B2
- Authority
- US
- United States
- Prior art keywords
- battery
- charging
- discharging
- cells
- smart
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 238000007599 discharging Methods 0.000 title claims abstract description 184
- 238000012544 monitoring process Methods 0.000 claims description 49
- 238000005259 measurement Methods 0.000 claims description 30
- 230000015654 memory Effects 0.000 claims description 23
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 5
- 239000002131 composite material Substances 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 239000010949 copper Substances 0.000 claims description 5
- 238000003466 welding Methods 0.000 claims 1
- 230000001737 promoting effect Effects 0.000 abstract description 11
- 238000004880 explosion Methods 0.000 abstract description 5
- 230000007246 mechanism Effects 0.000 abstract description 3
- 230000002035 prolonged effect Effects 0.000 abstract description 3
- 230000002411 adverse Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 28
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 8
- 229910052744 lithium Inorganic materials 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 230000008901 benefit Effects 0.000 description 6
- 230000033228 biological regulation Effects 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 230000032683 aging Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000004224 protection Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 230000009471 action Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000002360 explosive Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000011076 safety test Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- H02J7/0026—
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/4207—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/502—Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
- H01M50/519—Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising printed circuit boards [PCB]
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
- H02J7/0031—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
- H02J7/0032—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits disconnection of loads if battery is not under charge, e.g. in vehicle if engine is not running
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0047—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
-
- H01M2/202—
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0013—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
-
- H02J7/0021—
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y02T10/7055—
Definitions
- the present invention relates to a battery management system, and particularly to a safety-critical smart battery management system with the capability of charging single battery cells and discharging battery pack.
- Batteries have been widely employed in green electronics, recycle energy source, electric vehicles, mobile electronic/electric products and power supplies industries.
- a high volume lithium battery contains inflammable and explosive chemical components, some fire catching and thus explosion cases have arisen due to it unstable structure. This safety regulations associated with the battery has drawn respects from the industry and government.
- FIG. 1 is a schematic diagram of an embodiment of a prior art battery pack.
- a battery pack 10 is formed by separate battery group 20 connected in series, in which two adjacent cells, or termed as a battery cell, are connected through a connection sheet 14 , i.e. a positive electrode 12 of a battery and a negative electrode 13 of another battery are connected through a connection sheet 14 .
- Connection pins ( 15 , 16 ) of the positive and negative electrodes are connected to a load to discharge, while connected to a charger to charge.
- the lithium cell has a voltage ranged between 3.3V to 3.6V, while a lithium battery pack having a plurality of lithium cells connected in series has a voltage ranged between 30V to 45V.
- a direct current (DC) voltage of up to 450V is required, i.e. over ten lithium cell is required.
- the ability for the smart battery management has to be possessed, to promote an efficiency and stability of charging and discharging.
- the load or electronic product under operation may work stably without being interfered and the battery may be promoted with its high charging efficiency and prolonged with it lifetime.
- the separate cells may have the inconsistency issue in their voltage, electric amount and internal resistance.
- the individual cells in parallel may charge and discharges mutually.
- the charging/discharging mechanism may not have the single charging function (each battery cell is charged singly), since the cells in the battery cell has form the battery cell through the connection sheet 14 welded electrically (through an in-series or in-parallel fashion). In the course of charging, the cells having been electrically welded may not be separately charged.
- the load or electronic product is under a shut-down state or in an improper use state, i.e. encounters a safety issue
- the prior art battery system still has a connection with the load or electronic product, the battery cells are caused to self discharge and thus cause an explosion, which successively affects the lifetime of the cells and the safety and reliability of the battery system.
- FIG. 2 is a schematic diagram of a prior art battery management system with a unified charging and discharging capability and a programmable battery management module thereof.
- a universal loop 25 is employed to change a connection relationship between the cells 26 a - 26 d and, the charging module 27 and the discharging module 28 , so that some cells in the battery module 26 are caused to discharge while the other cells charge simultaneously, which further prolongs a lifetime of the battery module 26 .
- the universal loop 25 is implemented by an electronic switch.
- the electronic switch under use has to have a larger high-voltage, a high-current, and a heat enduring features.
- the control unit 29 may have an abruptly increased design complexity. Therefore, since the electronic switch has its upper limit for such features, the above manner still cannot effectively solve the poor charging efficiency and battery lifetime issues.
- the present invention discloses a safety-critical smart battery management system with the capability of charging single battery cells and discharging battery pack.
- each of the plurality of cells may be singly charged, and the cells may be measured with its characteristics and conditions.
- the advantage of single cell charging may be achieved, thereby further improving a charging efficiency of the smart battery pack, prolonging a cell lifetime, and satisfying UL safety regulations.
- the smart battery discharging module is employed to discharge the smart battery pack, so that the conditions of the cells may be monitored and measured to obtain a better discharging use rate, thereby promoting the overall energy source efficiency of the smart battery pack.
- the smart battery discharging module may automatically disconnect a connection, so as to avoid from a self charging and discharging of the battery cells and successively fire catching and an explosion.
- the safety-critical smart battery management system with the capability of charging single battery cells and discharging battery pack is a such system charging a single battery core and discharging the smart battery pack (the plurality of cells).
- the charging efficiency of the smart battery charging module is increased, the lifetime of the cells is prolonged, and the system is enable to further satisfy the UL regulations.
- the overall energy source of the smart battery pack is promoted.
- the high safety of the system originates from the automatic separation function between the smart battery discharging module and the load or electronic product.
- the present invention provides a safety-critical smart battery management system with the capability of charging single battery cells and discharging battery pack comprising a smart battery pack, comprising a battery group, comprising a plurality of cells, exempting from any electrical connection thereamong; a battery connection module, simultaneously arranged at a first side and a second side or one of the first and second sides, and having a plurality of pins exempting from a conduction to one another and electrically connected to a positive electrode and a negative electrode; and a monitoring control unit, monitoring and measuring a charging and discharging state and characteristics of the plurality of cells in the battery group; a smart battery charging module, comprising a battery charging connection module, electrically connected to or disconnected to the plurality of pins of the battery connection module through a plugging manner, and enabling the plurality of cells in the battery group to connect to one another in series-parallel when electrically connected to the plurality of pins of the battery connection module; and a smart battery charging control unit,
- the safety-critical smart battery management system with the capability of charging single battery cells and discharging battery pack comprises a smart battery pack, comprising a battery group, comprising a plurality of cells, exempting from any electrical connection thereamong; a battery connection module, simultaneously arranged above or below the battery group to electrically connect the battery; and a monitoring control unit, monitoring and measuring a charging and discharging state and characteristics of the plurality of cells in the battery group; a monitoring control unit, monitoring and measuring a charging and discharging state and characteristics of the plurality of cells in the battery group; a smart battery charging module, comprising a battery charging connection module, electrically connected to or disconnected to the plurality of pins of the battery connection module through a plugging manner, and enabling the plurality of cells in the battery group to connect to one another in series-parallel when electrically connected to the plurality of pins of the battery connection module; and a smart battery charging control unit, electrically connected to the battery charging connection module, and charging each single one of the plurality of
- each one of the plurality of cells in the battery group may be singly charged to increase a charging efficiency of the smart cells and prolong a lifetime of the cells.
- the smart battery pack (the plurality of cells) is caused to discharge to promote an overall energy efficiency of the smart battery pack.
- each of the plurality of cells is jointly or separately connected to a monitoring/measurement device, to monitor and measure the charging and discharging state and characteristics of each of the plurality of cells in the battery group, to further promote an energy charging and discharging efficiency. Since each of the smart battery pack includes the memory for storing data therein, it may be used in any smart battery charging module to save a cost required by the chargers.
- a battery balance action may be simplified or omitted, which benefits a compliance with UL safety regulations.
- the smart battery discharging module and the smart battery pack are connected to discharge.
- its connection points are the contacts of the smart battery pack for external connection, but not directly welded onto the cells through a connection sheet used in the prior art (as shown in FIG. 1 ). Therefore, the battery core in the battery group may have a promoted recycle value.
- the battery connection module, the battery charging connection module, and the smart battery discharging module may be implementation in a PCB having a suitable form and material, making the possibility of automatic manufacturing of the battery cell, and further promoting a production efficiency and reducing a manufacturing cost.
- the smart battery discharging module is electrically connected or disconnected to the smart battery pack in a hot plugging manner.
- the smart battery pack is separated with the smart battery discharging module in a mechanical or electrical manner, enabling each of the plurality of cells in the battery group to have no any connection, so as to avoid the battery cell to self charge and discharge to catch a fire and thus explode, thereby reinforcing a safety of the cells.
- FIG. 1 is a schematic diagram of an embodiment of a prior art battery cell
- FIG. 2 is a schematic diagram of a prior art battery management system with a unified charging and discharging capability and a programmable battery management module thereof;
- FIG. 3 is a schematic diagram of a circuit block embodiment of a safety-critical smart battery management system with the capability of charging single battery cells and discharging battery pack according to the present invention
- FIG. 4 is a schematic diagram of an embodied aspect of the safety-critical smart battery management system with the capability of charging single battery cells and discharging battery pack according to the present invention
- FIG. 5 is a schematic diagram of another embodied aspect of the safety-critical smart battery management system with the capability of charging single battery cells and discharging battery pack according to the present invention
- FIG. 6 is a schematic diagram of yet another embodied aspect of the safety-critical smart battery management system with the capability of charging single battery cells and discharging battery pack according to the present invention
- FIG. 7 is a schematic diagram of still another embodied aspect of the safety-critical smart battery management system with the capability of charging single battery cells and discharging battery pack according to the present invention
- FIG. 8 is a schematic diagram of an embodied aspect of a replacement use of a smart battery discharging module with the safety-critical smart battery management system with the capability of charging single battery cells and discharging battery pack according to the present invention
- FIG. 9 is a schematic diagram of another circuit block embodiment of the safety-critical smart battery management system with the capability of charging single battery cells and discharging battery pack according to the present invention.
- FIG. 10 is a schematic diagram of an embodied aspect of a battery group of the safety-critical smart battery management system with the capability of charging single battery cells and discharging battery pack according to the present invention
- FIG. 11 is a schematic diagram of another embodied aspect of the battery group of the safety-critical smart battery management system with the capability of charging single battery cells and discharging battery pack according to the present invention
- FIG. 12 is a schematic diagram of another embodied aspect of the smart battery charging module of the safety-critical smart battery management system with the capability of charging single battery cells and discharging battery pack according to the present invention
- FIG. 13 is a schematic diagram of yet another embodied aspect of the smart battery discharging module of the safety-critical smart battery management system with the capability of charging single battery cells and discharging battery pack according to the present invention.
- FIG. 14 is a schematic diagram of still another embodied aspect of the smart battery charging module and the smart battery discharging module of the safety-critical smart battery management system with the capability of charging single battery cells and discharging battery pack according to the present invention.
- the smart battery management system 100 includes a smart battery pack 30 , a smart battery discharging module 130 and a smart battery charging module 230 .
- the smart battery pack 30 may be disposed in the smart battery discharging module 130 and the smart battery charging module 230 through a plugging manner.
- the smart battery pack 30 includes a battery group 20 , a battery connection module 40 and a monitoring control unit 60 .
- the battery group 20 at least includes two cells without any electric connection among the cells.
- the positive and negative electrodes may be disposed at two sides, an upper and lower sides schematically shown in FIG. 1 , and at the same side.
- the description is stated based on the battery core architecture shown in FIG. 1 .
- the battery connection module 40 On the battery connection module 40 , a side is called the battery connection module face A 41 , and the other side is called the battery connection module face B 42 .
- the battery connection module 40 may be implemented by using a pair of first printed circuit boards (PCBs) having a plurality of connection heads. This pair of first PCBs has two portions: the battery connection module face A 41 and the battery connection module face B 42 , which are electrically connected with the cells.
- PCBs printed circuit boards
- the battery connection module 40 may provide a plurality of contacts, so that each of the cells is connected to a monitoring/measurement device 61 of the monitoring control unit 60 , respectively, so that a charging/discharging state and characteristics of each of the plurality of cells in the battery group 20 may be monitored and measured.
- the smart battery discharging module 130 includes the smart battery discharging module face A 181 and the smart battery discharging module face B 182 , which are electrically connected to the battery connection module face A 41 and the battery connection module face B 42 .
- the smart battery charging module 230 it comprises the battery charging connection module 280 and the smart battery charging control unit 290 .
- the battery charging connection module 280 is electrically connected to the battery connection module face A 41 and the battery connection module face B 42 .
- the battery charging connection module 280 may be implemented by using a pair of first printed circuit boards (PCBs) having a plurality of connection heads.
- This pair of first PCBs has two portions: the battery charging connection module face A 281 and the battery charging connection module face B 282 , which are electrically connected with the battery connection module face A 41 and the battery connection module face B 42 through a plugging manner, so that the cells of the battery group 20 are connected in series-parallel.
- the smart battery pack 30 comprises a battery group 20 composed of a plurality of cells 11 , a battery connection module 40 , a monitoring control unit 60 .
- the battery connection module 40 may be implemented by a PCB with a suitable form and material, such as a copper baseboard, a soft PCB, and a soft and hard composite baseboard.
- the PCB has a plurality of connection pins ( 48 , 49 ) not conducting to one another, and each of the connection pins ( 48 , 49 ) has two ends, each may be a connection head ( 46 , 47 ), which may be called as contacts as well.
- a connection head 46 is added, respectively, to form the battery connection module face A 41 .
- positions corresponding to each of the plurality of cells 11 is added with a connection head 47 , to from the battery connection module face B 42 .
- the connection head ( 46 , 47 ) may have other possible forms.
- the other end of the connection head of the connection pins ( 48 , 49 ) may be implemented by a magnetic connection head and disposed at an edge side of the PCB.
- the battery connection module face A 41 and the battery connection module face B 42 are connected to the battery group 20 , respectively, and may be electrically connected to the battery charging connection module 280 or the smart battery discharging module 130 through a plugging manner.
- Each pair of connection heads is connected to the battery connection module face A 41 and the battery connection module face B 42 are connected to two pins ( 62 , 63 ) of a monitoring/measurement device 61 , respectively. It may also possible to share a common monitoring/measurement device 61 for a plurality of pairs of connection heads.
- the monitoring/measurement device 61 of the monitoring control unit 60 may also be partially or entirely moved to the connection pins ( 48 , 49 ) of the PCB near the battery connection module face A 41 and the battery connection module face B 42 , so as to reduce a signal interference to enhance a measurement accuracy.
- a partiality or entirety of the monitoring/measurement device 61 moves to near the connection head, it may be possible to use jointly uses one of such monitoring/measurement device 61 .
- the battery connection module face A 41 may also be added with one or more memories, such as the memory 52 .
- the memory 52 is connected to the control circuit 65 via its connection pins 54 and the connection pins 66 of the control circuit, so that the control circuit may control the memory 52 .
- the battery connection module face B 42 may be added with one or more memories, such as the memory 53 .
- the memory 53 is connected to the control circuit 65 through the connection pins 55 and the connection pins 67 of the control circuit, so as to control the memory 53 by the control circuit 65 .
- the battery connection module 42 may be added with the memories at its two sides concurrently, so as to record the identification and characteristics specification, the monitoring and measurement data during the charging and discharging period, and conditions for reaching the optimal charging and discharging state of the cells, and the like, to form the smart battery pack 30 .
- the data stored in the memory ( 52 , 53 ) of the smart battery pack 30 provides an efficient discharging and charging action for the smart battery discharging module 130 and smart battery charging module 230 .
- any smart battery charging module 230 may be used to be charged. That is, a smart battery charging module 230 may be used jointly with one or more smart battery pack 30 , to save the requirement of chargers.
- FIG. 5 a schematic diagram of another embodied aspect of the safety-critical smart battery management system with the capability of charging single battery cells and discharging battery pack according to the present invention is shown.
- the smart battery discharging module face A 181 and the smart battery discharging module face B 182 connect to a smart battery pack 30 .
- the smart battery discharging module face A 181 includes the connection pins ( 186 , 187 ) of a plurality of discharging module and routings connected in series-parallel.
- the smart battery discharging module face A 181 may be implemented by a PCB, and includes all connection pins ( 186 , 187 ) and connection routings 188 .
- connection sheet 14 is used to connect the adjacent cells 14 , for achieving the same purpose of the connection sheet 14 .
- face B of the smart battery discharging module includes a plurality of connection pins ( 186 , 187 ) of the discharging module and routings 188 connected in series-parallel.
- the smart battery discharging module 130 has a similar discharging function as compared to the prior art battery pack. However, when the smart battery discharging module 130 is combined with the smart battery pack 30 , it has intelligence and function of monitoring and measurement, thereby promoting an overall energy source efficiency of the smart battery pack 30 .
- the smart battery discharging module 130 may be implemented with a PCB with a suitable form and material, enhancing a possibility of automatic production of the battery assembly, thereby further promoting a production efficiency and reducing a manufacturing cost.
- the same smart battery pack 30 may be used repeatedly with different loads or electronic products, as long as the connected smart battery discharging module 130 have different routings 188 .
- the routings on the connection pins ( 186 , 187 ) of the discharging module may be electrically welded or controlled by a switch. In the case of switch control, this smart battery discharging module 130 has the characteristics of on-line re-assembly to produce different currents/voltages for the load or electronic product.
- FIG. 6 a schematic diagram of yet another embodied aspect of the safety-critical smart battery management system with the capability of charging single battery cells and discharging battery pack according to the present invention is shown therein.
- the battery charging connection module face A 281 and the battery charging connection module face B 282 are connected to a smart battery pack 30 .
- the battery charging connection module face A 281 may be implemented by a PCB, on which connection heads ( 286 , 287 ) and connection wires are included, so that the connection heads ( 286 , 287 ) is connected to the smart battery chargers ( 288 , 289 ) to charge a cell singly.
- the battery charging connection module face B 282 may also be implemented in the same manner. That is, each pair of connection heads ( 286 , 287 ) at the battery charging connection module face A 281 and the battery charging connection module face B 282 is connected to two ends of the smart battery chargers ( 288 , 289 ), respectively. It may also be possible to share a common smart battery charger ( 288 , 289 ) for a plurality pairs of connection heads. In implementation, a partiality or entirety of the smart battery chargers ( 288 , 289 ) may also be moved to the connection head of the PCB near the battery charging connection module face A 281 or the battery charging connection module face B 282 , so as to reduce a connection wire resistance issue and thus increase a charging efficiency. When a partiality or entirety of the smart battery chargers ( 288 , 289 ) moves to near the connection head, it may also be possible to share a common smart battery charger ( 288 , 289 ) for a plurality pairs of connection heads.
- FIG. 7 a schematic diagram of still another embodied aspect of the safety-critical smart battery management system with the capability of charging single battery cells and discharging battery pack according to the present invention is shown therein.
- the smart battery pack 30 are connected to the smart battery discharging module 130 to discharge.
- the smart battery discharging module 130 disconnects a connection between the smart battery pack 30 and the smart battery discharging module 130 in a mechanical or electric manner, so that the battery cell may be avoided from a self charging and discharging and thus a fire catching and explosion, promoting a safety and reliability of the battery module.
- FIG. 8 a schematic diagram of an embodied aspect of a replacement use of a smart battery discharging module with the safety-critical smart battery management system with the capability of charging single battery cells and discharging battery pack according to the present invention is shown therein.
- the smart battery charging module 230 individually charges each of the cells 11 in the battery group 20 to a full length
- the smart battery pack 30 may be drawn out from the smart battery charging module 230 , and the smart battery discharging module 130 is inserted to discharge.
- the smart battery pack 30 when the smart battery pack 30 requires to be charged, the smart battery pack 30 may be drawn out from the smart battery discharging module 130 , and the battery charging connection module 280 of the smart battery charging module 230 is inserted, so as to charge singly the cells 11 at the same time.
- an inverse procedure is performed.
- the smart battery charging module 230 charges singly each of the cells 11 in the smart battery pack 30 to a full length, the smart battery pack 30 are electrically disconnected from the battery charging connection module 280 , and the smart battery discharging module 130 is inserted to discharge.
- This simple architecture may promote a manufacturing efficiency and reduce a cost.
- the monitoring control unit 60 is used to detect and predict a state of the individual battery cells 11 , and thus enabling a proper protection measurement to be set forth according thereto.
- a measurement device and various sensors are used to detect a current, a voltage, and a temperature of the individual cells 11 , which are then recorded in at least one memory ( 52 , 53 ).
- the measured data are used to calculate a battery residual, a discharging power, and a charging power, accurately predict a healthy state, an aging state, a charging state, and a work state of the cells 11 , and provide an optimal charging state and a maximum output power.
- the current, voltage and temperature of the individual cells 11 are detected to provide information regarding how to protect the case where an over-discharging and an over-discharging occurs, the case where an over-current and a short-circuit, and the case where an overly high temperature and an overly low temperature, so that the cells 11 are provided with a multiple of protections to promote a reliability of the battery system.
- the monitoring control unit 60 accurately predicts the healthy state, aging state, charging state, and the work state of the cells 11 , so that the smart battery chargers ( 288 , 289 ) are provided with the optimal charging condition.
- the smart battery chargers ( 288 , 289 ) comprise one or more smart battery chargers ( 288 , 289 ) and the smart battery charging control unit 290 .
- the smart battery charging control unit 290 provides a charging control policy for the smart battery chargers ( 288 , 289 ) according to the detected information such as the battery charging state and battery capacity, in which the charging control policy comprises a control for a charging time, and a requirement of a battery charging waveform.
- a good charging control policy may increase the lifetime of the cells.
- FIG. 9 a schematic diagram of another circuit block embodiment of the safety-critical smart battery management system with the capability of charging single battery cells and discharging battery pack according to the present invention is shown therein.
- the smart battery management system 100 a includes a smart battery pack 30 a , a smart battery charging module 400 and a smart battery discharging module 500 .
- the smart battery pack 30 a may be disposed in the smart battery charging module 400 and the smart battery discharging module 500 through a plugging manner.
- the smart battery pack 30 a includes a battery group 20 , a battery connection module 330 and a monitoring control unit 340 .
- the battery group 20 at least includes two cells without any electric connection among the cells.
- the battery connection module 330 is disposed above or below the battery group 20 , in which the upper part is the battery connection module face A 331 , while the lower part is the battery connection module face B 332 .
- the battery connection module 330 uses a pair of first PCBs having a plurality of connection heads. This pair of first PCB has two portions: the battery connection module face A 331 and the battery connection module face B 332 , which are electrically connected with the cells.
- the upper face of the battery group 20 is called as battery group face A 320
- the lower face of the battery group 20 is called the battery group face B 325 .
- the battery connection module 330 may provide a plurality of contacts, so that each of the cells is connected to a monitoring/measurement device, respectively, so that a charging/discharging state and characteristics of each of the plurality of cells in the battery group 20 may be monitored and measured.
- the smart battery charging module 400 includes the battery charging connection module 350 and the smart battery charging control unit 290 .
- the battery charging connection module 350 is a pair of second PCBs having a plurality of connection heads. This second pair of PCBs is the battery charging connection module face A 351 and the battery charging connection module face B 352 , which are electrically connected to the battery connection module face A 331 and the battery connection module face B 332 , so that each of the connection heads is connected to the positive and negative electrodes of each of the batter cores.
- the smart battery discharging module 500 it comprises a battery discharging connection module 360 .
- the battery discharging connection module 360 is electrically connected to the battery discharging connection module face A 361 and the battery discharging connection module face B 362 through the battery discharging connection module face A 361 and the battery discharging connection module face B 362 .
- FIG. 10 a schematic diagram of an embodied aspect of a battery group of the safety-critical smart battery management system with the capability of charging single battery cells and discharging battery pack according to the present invention is shown therein.
- the battery group 20 comprises a plurality of cells 11 , each having no any connection with one another.
- the cells 11 have theirs arrangement associated with theirs discharging application. Some cells 11 face upwards with its positive electrodes, while some other cells 11 with its negative electrodes.
- the middle two cells 11 face upwards with their negative electrodes 13 , and the other cells 11 with their positive electrodes 12 .
- the middle two cells 11 face downwards with their positive electrodes, while the other cells 11 face downwards with their negative electrodes 13 .
- the smart battery pack 30 a comprises a plurality of cells 33 having connection heads, and each of the cells 33 includes a battery core 11 and connection heads ( 31 , 32 ), which may also be called as contacts and may be implemented by a PCB having a suitable form and material, such as a copper baseboard, a soft PCB, or a soft/hard composite board.
- the smart battery pack 30 a includes a battery group 20 , a battery connection module 330 (having the battery connection module face A 331 and the battery connection module face B 332 ) and a monitoring control unit 340 .
- the battery connection module face A 331 and the battery connection module face B 332 are connected to the battery group face A 320 and the battery group face B 325 in the battery group 20 , respectively.
- the PCB may comprises the connection heads (or called as contacts) of the cells and electric connection pins which are wired to an edge of the PCB, so that they may be electrically connected to a monitoring/measurement device 61 at the monitoring control unit 340 .
- Each pair of connection heads at the battery connection module face A 331 and the battery connection module face B 332 are connected to two ends of a monitoring/measurement device 61 , respectively. It may also be possible to share a common monitoring/measurement device 61 for a plurality pairs of connection heads.
- the monitoring/measurement device 61 may also be partially or entirely be moved to the connection heads of the PCB near the battery connection module face A 331 or the battery connection module face B 332 , so as to reduce a signal interference, thereby promoting a measurement accuracy.
- a partiality or entirety of the monitoring/measurement device 61 is moved to near the connection heads, it may also be possible to share a common monitoring/measurement device 61 for a plurality pairs of connection heads.
- one or more memories may also be added at the battery connection module face A 331 , such as the memory 52 , or at the battery connection module face B 332 , such as the memory 53 .
- memories may be simultaneously added at face A and face B, so as to record an identification and characteristics specifications, a monitored/measured data in the course of charging and discharging, conditions for reaching an optimal charging and discharging, etc, thereby forming a smart battery pack 30 a .
- the data stored in the memory ( 52 , 53 ) of the smart battery pack 30 a provides the smart battery charging module 400 and the smart battery discharging module 500 to effectively charge and discharge.
- any smart battery charging module 400 may be used to charge. That is, a smart battery charging module 400 may be used with one or more smart battery pack 30 a , so as to save the requirement of chargers.
- FIG. 12 a schematic diagram of another embodied aspect of the smart battery charging module of the safety-critical smart battery management system with the capability of charging single battery cells and discharging battery pack according to the present invention is shown therein.
- the battery connection module face A 331 and the battery charging connection module face B 352 are connected to a smart battery pack 30 a , to form a smart battery charging module 400 .
- the smart battery charging module 400 has a similar architecture as compared to the smart battery pack 30 a.
- connection head ( 46 , 47 ) is added at the battery charging connection module face A 351 and the battery charging connection module face B 352 , and connected to the connection heads ( 31 , 32 ) at positions corresponding to the battery connection module face A 331 and the battery connection module face B 332 , respectively.
- the battery connection module face A 351 may be a PCB, including connection heads 46 and connection wires, to connect to the smart battery charger 288 of the smart battery charging control unit 290 to charge a single battery.
- the battery charging connection module face B 352 may also be implemented in the same manner.
- each pair of connection heads ( 46 , 47 ) at the battery charging connection module face A 351 and the battery charging connection module face B 352 are connected to two ends of the smart battery charger 288 . It may also be possible to share a common smart battery charger 288 for a plurality of connection heads.
- a partiality or entirety of the smart battery charger 288 may also be moved to the connection head of the PCB near the battery connection module face A 331 or the battery connection module face B 332 , so as to reduce a connection resistance issue, promoting a charging efficiency.
- the smart battery charging control unit 290 not only includes the smart battery charger 288 , but also a control circuit 65 .
- FIG. 13 a schematic diagram of yet another embodied aspect of the smart battery discharging module of the safety-critical smart battery management system with the capability of charging single battery cells and discharging battery pack according to the present invention is shown therein.
- the battery discharging connection module face A 361 and the battery discharging connection module face B 362 are connected to a smart battery pack 30 a , to form a smart battery discharging module 500 .
- connection sheet 14 is used to connect adjacent cells.
- the battery discharging connection module face A 361 and the battery discharging connection module face B 362 are each implemented by three connection sheets 14 .
- the smart battery discharging module 500 has a similar discharging function as compared to the prior art battery cell. However, the smart battery discharging module 500 is combined with the smart battery pack 30 a , possessing a smart monitoring and measurement function, thereby promoting the overall energy source efficiency of the smart battery pack 30 a.
- FIG. 14 a schematic diagram of still another embodied aspect of the smart battery charging module and the smart battery discharging module of the safety-critical smart battery management system with the capability of charging single battery cells and discharging battery pack according to the present invention is shown therein.
- the smart battery charging module 400 charges all the individual cells in the battery group 20 to a full length
- the smart battery pack 30 a may be drawn out from the smart battery charging module 400 , and inserted in to a smart battery discharging module case 501 , so that it becomes that the smart battery discharging module 500 discharges the smart battery pack 30 a .
- the smart battery pack 30 a when the smart battery pack 30 a has to be charged, the smart battery pack 30 a may be drawn out from the smart battery discharging module 500 and inserted into the smart battery charging module case 401 , so that it becomes that the smart battery charging module 400 separately charges singly the individual cells 11 in the smart battery pack 30 a .
- the smart battery charging control unit 290 and the battery charging connection module 350 i.e. the battery charging connection module face A 351 and the battery charging connection module face B 352 , are removed from the smart battery charging module 400 .
- the battery discharging connection module 360 is connected, i.e.
- the battery discharging connection module face A 361 and battery discharging connection module face B 362 to form the smart battery discharging module 500 to let the battery cells therein discharge.
- the smart battery pack 30 a of the smart battery discharging module 500 may be used to form the smart battery discharging module 500 in an inversed process, to charge the individual cells. This simple architecture may promote a manufacturing efficiency and reduce a cost.
- the monitoring control unit 340 is used for detecting and predicting a state of the individual cells 11 , and thus enabling a proper protection measurement to be set forth according thereto, for the purpose of promoting the lifetime and safety of the smart battery pack 30 a .
- a measurement device and various sensors are used to detect a current, a voltage, and a temperature of the individual cells 11 , which are then recorded in at least one memory ( 52 , 53 ).
- the measured data are used to calculate a battery residual, a discharging power, and a charging power, accurately predict a healthy state, an aging state, a charging state, and a work state of the cells, and provide an optimal charging state and a maximum output power.
- the current, voltage and temperature of the individual cells 11 are detected to provide information regarding how to protect the case where an over-discharging and an over-discharging occurs, the case where an over-current and a short-circuit, and the case where an overly high temperature and an overly low temperature, so that the cells 11 are provided with a multiple of protections to promote a reliability of the battery system.
- the monitoring control unit 340 accurately predicts the healthy state, aging state, charging state, and the work state of the cells 11 , so that the smart battery charging control unit 290 is provided with the optimal charging condition.
- the smart battery charging control unit 290 comprises one or more smart battery chargers 288 and the control circuit 65 .
- the control circuit 65 provides a charging control policy for the smart battery chargers 288 according to the detected information such as the battery charging state and battery capacity, in which the charging control policy comprises a control for a charging time, and a requirement of a battery charging waveform.
- a good charging control policy may increase the lifetime of the cells.
- the present invention has the difference as compared to the prior art that each of the cells in the battery group is monitored and measured for its charging and discharging state and characteristics, and the electric connection between the battery connection module and the cells is controlled based on the obtained charging and discharging state and characteristics, so that the cells in the battery group are singly charged or discharged at the same time.
- the automatic disconnection mechanism working between the battery module and the battery discharging module may effectively avoid from a self charging and discharging of the battery pack, which successively catches fire and explodes, promoting the safety of the battery module.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Battery Mounting, Suspending (AREA)
Abstract
Description
Claims (20)
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW102129104A | 2013-08-14 | ||
TW102129104 | 2013-08-14 | ||
TW102129104A TWI509936B (en) | 2013-08-14 | 2013-08-14 | Smart battery management system with the capability of charging single battery cells and discharging battery pack |
TW103125414A TWI535144B (en) | 2014-07-24 | 2014-07-24 | Safety-critical smart battery management system with the capability of charging single battery cells and discharging battery pack |
TW103125414 | 2014-07-24 | ||
TW103125414A | 2014-07-24 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20150048799A1 US20150048799A1 (en) | 2015-02-19 |
US9455581B2 true US9455581B2 (en) | 2016-09-27 |
Family
ID=52466377
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/458,267 Active 2035-05-29 US9455581B2 (en) | 2013-08-14 | 2014-08-13 | Safety-critical smart battery management system with the capability of charging single battery cells and discharging battery pack |
Country Status (1)
Country | Link |
---|---|
US (1) | US9455581B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190131802A1 (en) * | 2017-10-26 | 2019-05-02 | Sunfield Semiconductor, Inc. | Method for management of energy storage systems, and related method of operation for smart energy storage cells |
US11095148B2 (en) * | 2016-05-25 | 2021-08-17 | Milwaukee Electric Tool Corporation | Series-connected battery packs, system and method |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160322839A1 (en) * | 2015-04-29 | 2016-11-03 | American Lithium Energy Corporation | Compact battery pack with distributed battery management system |
CN105098910A (en) * | 2015-08-11 | 2015-11-25 | 郑永春 | Intelligent lithium battery and distributed management system thereof |
CN108988439A (en) * | 2018-08-31 | 2018-12-11 | 国网重庆市电力公司电力科学研究院 | It is a kind of can charge and discharge cell managing device, system and method |
DE102019202163A1 (en) | 2019-02-19 | 2020-08-20 | Audi Ag | Protection device and method for switching off at least one battery cell in a battery system in the event of an electrical short circuit as well as motor vehicle, battery system and battery cell with the protection device |
US11289933B2 (en) * | 2019-05-15 | 2022-03-29 | Ahmad Eivaz | Battery charging enclosure |
FR3112862B1 (en) * | 2020-07-27 | 2022-11-25 | Limatech | Semi-modular storage battery management system |
CN113921919B (en) * | 2021-08-25 | 2024-06-25 | 东风汽车集团股份有限公司 | Battery systems and vehicles |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070210760A1 (en) * | 2006-03-09 | 2007-09-13 | Nissan Motor Co., Ltd. | Battery, assembled battery unit, vehicle equipped with battery, and battery voltage adjusting method |
US20130187616A1 (en) * | 2012-01-20 | 2013-07-25 | Chia-Ming Chuang | Battery Discharge System and Method of Operation thereof |
US20130320930A1 (en) * | 2011-03-25 | 2013-12-05 | Nec Energy Devices, Ltd. | Power storage system and secondary battery control method |
-
2014
- 2014-08-13 US US14/458,267 patent/US9455581B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070210760A1 (en) * | 2006-03-09 | 2007-09-13 | Nissan Motor Co., Ltd. | Battery, assembled battery unit, vehicle equipped with battery, and battery voltage adjusting method |
US20130320930A1 (en) * | 2011-03-25 | 2013-12-05 | Nec Energy Devices, Ltd. | Power storage system and secondary battery control method |
US20130187616A1 (en) * | 2012-01-20 | 2013-07-25 | Chia-Ming Chuang | Battery Discharge System and Method of Operation thereof |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11095148B2 (en) * | 2016-05-25 | 2021-08-17 | Milwaukee Electric Tool Corporation | Series-connected battery packs, system and method |
US11757294B2 (en) | 2016-05-25 | 2023-09-12 | Milwaukee Electric Tool Corporation | Series-connected battery packs, system and method |
US20190131802A1 (en) * | 2017-10-26 | 2019-05-02 | Sunfield Semiconductor, Inc. | Method for management of energy storage systems, and related method of operation for smart energy storage cells |
US10790549B2 (en) * | 2017-10-26 | 2020-09-29 | Sunfield Semiconductor Inc. | Method for management of energy storage systems, and related method of operation for smart energy storage cells |
Also Published As
Publication number | Publication date |
---|---|
US20150048799A1 (en) | 2015-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9455581B2 (en) | Safety-critical smart battery management system with the capability of charging single battery cells and discharging battery pack | |
CN108604715B (en) | Battery pack and charge/discharge control method | |
US8593111B2 (en) | Assembled battery system | |
US8198862B2 (en) | Battery pack with balancing management | |
US20120256598A1 (en) | Battery Pack Detection Circuit | |
USRE50397E1 (en) | Battery pack | |
TW201401626A (en) | New structure battery pack | |
US20170237269A1 (en) | Battery charge-discharge balancing circuit assembly | |
KR20150057732A (en) | Protection apparutus for rechargeable battery | |
US20230402666A1 (en) | Abnormality detection method, abnormality detection device, energy storage apparatus, and computer program | |
EP3771057B1 (en) | Cell protection circuit and electronic device | |
KR20150107032A (en) | Battery pack | |
RU2011129168A (en) | BATTERY POWER BATTERY | |
KR20220130594A (en) | A battery system and a vehicle comprising the battery system | |
US9647257B2 (en) | Battery pack | |
KR102007777B1 (en) | Battery pack system with Integration Mount Fuse apparatus for circuit breaking over-current in Sensing Assembly Structure | |
KR20130042813A (en) | Battery pack system with fuse apparatus for circuit breaking over-current in sensing assembly structure | |
KR20070108758A (en) | Battery pack manufacturing device | |
TWI509936B (en) | Smart battery management system with the capability of charging single battery cells and discharging battery pack | |
EP3683087A1 (en) | Relay with temperature sensors for safety applications according to iso 26262 | |
EP3471172B1 (en) | Disconnectable bus bar for a battery system and battery system including the same | |
CN107139747A (en) | Electric automobile | |
TWI535144B (en) | Safety-critical smart battery management system with the capability of charging single battery cells and discharging battery pack | |
US12315895B2 (en) | Battery having external connector for balance charging and discharging | |
US20250164567A1 (en) | Battery contact failure detecting device and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 4 |
|
AS | Assignment |
Owner name: DENMOS TECHNOLOGY INC., TAIWAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WEY, CHIN-LONG;REEL/FRAME:051361/0100 Effective date: 20160927 Owner name: DENMOS TECHNOLOGY INC., TAIWAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WEY, CHIN-LONG;REEL/FRAME:051362/0037 Effective date: 20191030 |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |