US9849911B2 - Enhanced vehicle lateral control (lane following/lane keeping/lane changing control) for trailering vehicles - Google Patents
Enhanced vehicle lateral control (lane following/lane keeping/lane changing control) for trailering vehicles Download PDFInfo
- Publication number
- US9849911B2 US9849911B2 US15/054,676 US201615054676A US9849911B2 US 9849911 B2 US9849911 B2 US 9849911B2 US 201615054676 A US201615054676 A US 201615054676A US 9849911 B2 US9849911 B2 US 9849911B2
- Authority
- US
- United States
- Prior art keywords
- vehicle
- trailer
- curve
- determining
- lane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W50/08—Interaction between the driver and the control system
- B60W50/14—Means for informing the driver, warning the driver or prompting a driver intervention
- B60W50/16—Tactile feedback to the driver, e.g. vibration or force feedback to the driver on the steering wheel or the accelerator pedal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D15/00—Steering not otherwise provided for
- B62D15/02—Steering position indicators ; Steering position determination; Steering aids
- B62D15/029—Steering assistants using warnings or proposing actions to the driver without influencing the steering system
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/10—Path keeping
- B60W30/12—Lane keeping
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/10—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W50/08—Interaction between the driver and the control system
- B60W50/14—Means for informing the driver, warning the driver or prompting a driver intervention
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D13/00—Steering specially adapted for trailers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D15/00—Steering not otherwise provided for
- B62D15/02—Steering position indicators ; Steering position determination; Steering aids
- B62D15/025—Active steering aids, e.g. helping the driver by actively influencing the steering system after environment evaluation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D15/00—Steering not otherwise provided for
- B62D15/02—Steering position indicators ; Steering position determination; Steering aids
- B62D15/029—Steering assistants using warnings or proposing actions to the driver without influencing the steering system
- B62D15/0295—Steering assistants using warnings or proposing actions to the driver without influencing the steering system by overlaying a vehicle path based on present steering angle over an image without processing that image
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W50/08—Interaction between the driver and the control system
- B60W50/14—Means for informing the driver, warning the driver or prompting a driver intervention
- B60W2050/146—Display means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2540/00—Input parameters relating to occupants
- B60W2540/18—Steering angle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2552/00—Input parameters relating to infrastructure
- B60W2552/30—Road curve radius
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2556/00—Input parameters relating to data
- B60W2556/45—External transmission of data to or from the vehicle
- B60W2556/50—External transmission of data to or from the vehicle of positioning data, e.g. GPS [Global Positioning System] data
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2200/00—Type of vehicle
- B60Y2200/10—Road Vehicles
- B60Y2200/14—Trucks; Load vehicles, Busses
- B60Y2200/147—Trailers, e.g. full trailers or caravans
Definitions
- This invention relates generally to a system and method for providing a warning that a trailer being towed by a vehicle will cross out of a travel lane when traveling through a curve for the current vehicle path prior to the vehicle entering the curve and, more particularly, to a system and method for providing a warning that a trailer being towed by a vehicle will cross out of a travel lane when traveling through a curve for the current vehicle path prior to the vehicle entering the curve, where the system considers the turn radius of the vehicle and the trailer, the width of the lane, the wheel base of the vehicle, the length and width of the trailer and the curvature of the curve.
- U.S. Pat. No. 8,170,739 issued May 1, 2012 to Lee, titled, Path Generation Algorithm for Automated Lane Centering and Lane Changing Control System, assigned to the Assignee of this application and herein incorporated by reference, discloses a system for providing vehicle path generation for automated lane centering and/or lane keeping purposes.
- the system detects lane markings on the roadway, generates a desired vehicle path in the travel lane, and provides automatic steering that maintains the vehicle in the lane.
- the present disclosure describes a system and method for providing a warning that a trailer being towed by a vehicle will cross out of a travel lane when traveling through a curve for the current vehicle path prior to the vehicle entering the curve.
- the method includes determining that the vehicle is approaching the curve, determining a radius of curvature of the curve, determining a lane width of the travel lane, and identifying a length of the trailer.
- the method also includes determining a predicted steering angle of the vehicle necessary to follow the radius of curvature of the curve, determining a turn radius of the vehicle for traveling through the curve using the predicted steering angle, and determining a turn radius of the trailer using the turn radius of the vehicle.
- the method determines whether the trailer will at least partially cross out of the travel lane based on the width of the lane, the width and length of the trailer, the curvature of the curve and the turn radius of the trailer, and warn the driver of the vehicle accordingly. Additionally, the method may provide turning recommendations to the driver once the vehicle has entered the curve based on the current steering angle of the vehicle and a desired steering angle of the vehicle that will maintain the trailer in the travel lane.
- FIG. 1 is an illustration of a vehicle towing a trailer and approaching a curve in a travel lane
- FIG. 2 is an illustration showing the vehicle and the trailer traveling through the curve
- FIG. 3 is a flow chart diagram showing a process for warning a vehicle driver that the trailer may cross out of the lane when traveling through a curve;
- FIG. 4 is a flow chart diagram similar to the flow chart diagram shown in FIG. 3 , and including providing turning recommendations for the driver so that the trailer does not cross out of the travel lane;
- FIG. 5 is an illustration of a vehicle towing a trailer and traveling through a curve along a wide turn radius
- FIG. 6 is an illustration of a vehicle towing a trailer and traveling through a curve along a narrow turn radius
- FIG. 7 is a block diagram of a path prediction system for providing automated vehicle steering
- FIG. 8 is a flow chart diagram showing a process for providing a path for the vehicle to follow for the wide turn radius.
- FIG. 9 is a flow chart diagram showing a process for providing a path for a vehicle to follow for the narrow turn radius.
- FIG. 1 is an illustration 10 showing a vehicle 14 towing a trailer 16 by a hitch 18 and traveling in a travel lane 12 of a roadway.
- the trailer 16 is shown merely for representation purposes in that it can be any vehicle being towed by the vehicle 14 , such as boats, mobile homes, etc.
- the vehicle 14 is approaching a curve 20 in the lane 12 and is following along a travel path 22 at the center of the lane 12 that causes the vehicle 14 to stay within the lane 12 .
- the vehicle 14 includes suitable sensors 24 , such as cameras, radar, lidar, etc., that may be applicable to detect lane markings, objects, the curve 20 , etc., consistent with the discussion herein.
- the vehicle 14 also includes a map database 26 , a display 30 , a GPS unit 34 and a controller 28 .
- the controller 28 is intended to represent all of the various modules, controllers, processors, electronic control units (ECUs), etc. that are necessary to perform and operate the various algorithms and processes discussed herein.
- the map database 26 stores map information at any level of detail that is available, such as the number of travel lanes, travel lane patterns, etc.
- the travel path 22 can be displayed on the display 30 .
- the vehicle 14 and the trailer 16 are shown in phantom in the illustration 10 when traveling around the curve 20 along the path 22 to show that the vehicle 14 may stay within the travel lane 12 , but the trailer 16 may cross out of the lane 12 .
- vehicles and trailers have a variety of sizes and lengths each possibly having a different wheel base l, trailer length, trailer width, hitch length, etc. that define the turn radius of the vehicle 14 and trailer 16 when going around the curve 20 .
- vehicle roadways may have different widths and roadway curves have different radius of curvatures.
- the present invention proposes identifying the predicted path of the vehicle 14 through the curve 20 , whether the vehicle 14 is being autonomously driven, semi-autonomously driven and/or mechanically driven, before the vehicle 14 enters the curve 20 to determine whether the trailer 16 will cross out of the lane 12 , and if so, provide one or more remedial actions.
- the controller 28 determines that the predicted path of the vehicle 14 will cause the trailer 16 to cross out of the lane 12 , then the controller 28 will provide a suitable warning, such as an icon on the display 30 , haptic seat, haptic steering wheel, warning chimes, etc., prior to the vehicle 14 reaching the curve 20 , such as about 5 seconds before.
- the display 30 may illustrate the predicted path of the vehicle 14 and the trailer 16 .
- the controller 28 may not only warn the vehicle driver that the trailer 16 may cross out of the lane 12 , but also may show a path on the display 30 that the vehicle 14 should follow so that the trailer 16 does not cross out of the lane 12 when traveling through the curve 20 so as to provide a desired steering path for the driver.
- the system will cause the vehicle 14 to be steered along a corrected lane following path or lane keeping path to prevent the trailer 16 from crossing out of the lane 12 in the curve 20 .
- FIG. 2 is an illustration 34 showing the vehicle 14 and the trailer 16 traveling through the curve 20 .
- the turn radius R f at the front of the vehicle 14 through the curve 20 can be calculated as:
- the radius of curvature of the curve 20 and the width of the trailer 16 need to be known.
- the radius of curvature of the curve 20 can be obtained from cameras, the map database 26 , information from the GPS unit 32 , or otherwise, and the turn radius R f is obtained by equation (1).
- the controller 28 can determine whether part of the trailer 16 will cross out of the lane 12 in the curve 20 within some predetermined tolerance, such as +/ ⁇ 20 cm.
- the controller 28 can determine using equation (4) that the turn radius R t at a center of the trailer's end is 199.443 m, which is less than the radius of curvature of the curve 20 .
- the controller 28 can then determine that the end of the trailer 16 will cross out of the travel lane 12 , where the controller 28 can then provide a warning to the vehicle driver in advance.
- FIG. 3 is a flow chart diagram 40 showing a process for determining whether to warn the vehicle driver that the trailer 16 will cross out of the lane 12 when traveling through the curve 20 along the current vehicle path as discussed above.
- the algorithm identifies a curve in the roadway at some predetermined time before the vehicle 14 reaches the curve 20 , such as 5 seconds, and also, identifies the radius of the curve 20 and the lane width of the curve 20 at a certain sample time.
- the algorithm identifies the length of the trailer 16 at box 44 and determines the vehicle steering angle ⁇ at box 46 .
- the algorithm calculates the trailer's turn radius R t at box 48 in the manner discussed above.
- the algorithm compares the trailer's turn radius R t with the radius of the curve 20 at box 50 , and then determines whether the trailer 16 will cross out of the lane 12 using the width of the lane 12 and the width of the trailer 16 at decision diamond 52 within the predetermined tolerance. If the trailer 16 will not cross out of the lane 12 at the decision diamond 52 , then the algorithm does not provide a warning and continues to monitor the vehicle path at box 54 , and the algorithm ends at box 56 . If the algorithm determines that the trailer 16 will cross out of the lane 12 at the decision diamond 52 , then the algorithm determines how soon the vehicle 14 will enter the curve 20 at box 58 , and provide the warning at box 60 if the vehicle 14 will enter the curve 20 within some predetermined period of time, such as 5 seconds. The algorithm can also show the predicted trailer path on the display 30 at box 62 before the vehicle 14 enters the curve 20 .
- the algorithm can also provide recommendations for steering, such as display a vehicle path that the vehicle driver can steer along, to prevent the trailer 16 from crossing out of the travel lane 12 .
- the algorithm determines a desired steering angle ⁇ desired that will maintain the trailer 16 within the lane 12 once the vehicle 14 has entered the curve 20 as:
- ⁇ desired 2 ⁇ l 3 ⁇ R f - R t . ( 5 )
- the algorithm compares the desired steering angle ⁇ desired with the current steering angle ⁇ current when the vehicle 14 has entered the curve 20 , and if the desired steering angle ⁇ desired is different than the current steering angle ⁇ current outside of some tolerance, then the algorithm will display a change in the vehicle steering path to allow the driver to steer the vehicle 14 along the desired path to prevent the trailer 16 from crossing out of the lane 12 .
- the vehicle systems can provide audible instructions to provide more or less left or right turning to maintain the desired steering angle ⁇ desired .
- FIG. 4 is a flow chart diagram 70 showing this embodiment of the invention, where like boxes to the flow chart diagram 40 are identified by the same reference number.
- the algorithm will determine whether the vehicle 14 has entered the curve 20 at decision diamond 72 , and if not, return to the box 60 to continue warning the driver. If the vehicle 14 has entered the curve 20 at the decision diamond 72 , then the algorithm calculates the desired steering angle ⁇ desired to maintain the trailer 16 within the travel lane 12 through the curve 20 at box 74 , and then determines whether the difference between the desired steering angle ⁇ desired and the current steering angle ⁇ current is within the tolerance at decision diamond 76 , where the algorithm ends at box 56 if it is.
- the algorithm provides instructions for the driver for a different steering angle at box 78 , and shows the trailer path at the box 62 .
- the vehicle 14 is being driven autonomously or semi-autonomously, where the vehicle is being controlled by determining the desired vehicle path and automatically steering the vehicle 14 along that path.
- the algorithm in order to prevent the trailer 16 from crossing out of the lane 12 along the curve 20 , the algorithm generates a corrected lane following or lane keeping path, if necessary, for the vehicle 14 to be steered along through the curve 20 considering the trailer's turn radius R t , the road curvature ⁇ , i.e., the road radius, the lane width, the trailer length b 2 , the vehicle wheel base l, etc., as discussed above.
- the lane following or lane keeping algorithm may provide two different path planning approaches for navigating through the curve 20 .
- a first turning approach the algorithm calculates a vehicle path that provides a wide turn through the curve 20 , where the turn starts at the beginning of the curve.
- This approach is illustrated in FIG. 5 by illustration 80 showing the vehicle 14 as it enters the curve 20 and in phantom in the curve 20 .
- the vehicle 14 begins its turn from the current path 22 to a wide turn path 82 at the very beginning of the curve 20 identified by a turn start point 84 . Because this is a wider turn through the curve 20 , the turn will end at point 86 before the end of the curve 20 , where the vehicle 14 will begin traveling straight.
- the start turn radius of the vehicle 14 at the point 84 is R f , which is 200 m in the example above
- the end turn radius of the vehicle 14 at the point 86 is
- a second turning approach provides a narrow turn from the path 22 , but having a later turn start while the vehicle 14 is in the curve 20 .
- This approach is illustrated in FIG. 6 by illustration 90 showing the vehicle 14 as it enters the curve 20 and in phantom in the curve 20 .
- the vehicle 14 begins its turn from the current path 22 to a narrow turn path 92 after the beginning of the curve 20 identified by a turn start point 94 . Because this is a narrower turn through the curve 20 , the turn will end at point 96 at the very end of the curve 20 where the vehicle 14 will begin traveling straight.
- the start turn radius of the vehicle 14 at the point 94 is
- FIG. 7 is a schematic block diagram of a system 100 that provides autonomous path control for a vehicle when changing lanes, either on a straight road or a curved road, and lane centering in an autonomous or semi-autonomous vehicle system.
- the discussion below is a general discussion of providing a desired path in an autonomously driven or semi-autonomously driven vehicle as more specifically discussed in the '739 patent.
- the system 100 includes a desired path generation processor 102 that generates a desired steering path for the vehicle 14 .
- the desired steering path is represented as a series of lateral offsets, heading angles and longitudinal distances over a time period that the steering change will take place.
- the system 100 uses measured roadway parameters, such as vehicle lateral offset y r , roadway curvature ⁇ and vehicle yaw angle ⁇ r with respect to the vehicle's centered coordinate system at the path generation processor 102 .
- the fifth order polynomial path generation captures the roadway parameters y r , ⁇ and ⁇ r at the beginning and the end of the path and guarantees the smoothness of the path up to the second order path derivatives.
- the path can be obtained by a few simple algebraic computations using the road geometry measurement, thus it does not require heavy computing power.
- This path information including state variable x d , lateral position y d , and heading angle ⁇ d is provided to a comparator 104 that receives a signal identifying a predicted vehicle path from a path prediction processor 106 , discussed below, and provides an error signal between the desired path and the predicted path.
- the lateral speed v y , the yaw angle ⁇ and the lateral position y r of the vehicle 14 are predicted or estimated over the turn change completion time.
- the roadway lateral position y r and the yaw angle ⁇ r can be predicted at the path prediction processor 106 using a vehicle dynamic model:
- the error signal from the comparator 104 is sent to a lane change controller 108 that provides a steering angle command signal ⁇ cmd for path steering that minimizes the error signal.
- the lane change controller 108 generates a sequence of future steering angle commands ⁇ cmd that minimize the orientation and offset errors between the desired vehicle path and the predicted vehicle path.
- a lateral motion control algorithm in the controller 108 compares the predicted vehicle path to the vehicle's desired path (x d , y d ), and calculates the steering angle command signal ⁇ cmd by minimizing the path difference, where the steering angle command signal ⁇ cmd is obtained by:
- the steering angle command signal ⁇ cmd is sent to a steering system 110 that provides the steering control for a vehicle system 112 .
- the steering system 110 receives the steering angle command signal ⁇ cmd and provides a steering torque command signal ⁇ cmd to achieve the desired steering angle ⁇ desired as commanded.
- various sensors on the vehicle 14 such as a steering angle sensor, speedometer and yaw rate sensor, provide measured signals of the motion of the vehicle 14 . These measured vehicle motion signals are sent from the vehicle system 112 to the desired path generation processor 102 .
- Inertial sensors such as a speedometer, a rate gyro and a steering angle sensor, can be used to measure vehicle states, such as longitudinal speed v x , longitudinal acceleration a x , lateral acceleration a y , yaw rate r and steering angle ⁇ .
- the lateral speed v y is estimated as:
- the vehicle motion information is also provided to a vehicle state estimation processor 114 that provides estimated vehicle state signals, namely, lateral offset y, yaw angle ⁇ , vehicle lateral speed v y and vehicle yaw rate r.
- the vehicle state estimation processor 114 uses a vehicle model to filter the estimated vehicle state signals.
- the state signals are sent to the path prediction processor 106 that predicts the vehicle path for the next few instances in time based on that information as discussed above.
- the path prediction processor 106 estimates the vehicle future path based on the current vehicle speed v x , yaw rate r and steering angle ⁇ .
- the camera signals and the filtered sensor signals from the vehicle system 112 are also provided to a lane mark detection processor 116 that corrects the parameters of the lane markings based on the motion of the vehicle 14 .
- the lane mark detection processor 116 recognizes the lane markings in the roadway and represents them with the parameters of lane curvature, tangential angle and lateral offset, where the output of the lane mark detection processor 116 is the yaw angle ⁇ r , the lateral position y r , the curvature ⁇ of the roadway and a rate of change in the roadway curvature ⁇ of the roadway.
- the position of the lane markings relative to the vehicle 14 is then sent to the desired path generation processor 102 through a roadway estimation processor 120 to provide the desired path generation updating.
- the present invention proposes correcting the desired steering path to prevent the trailer 16 from crossing out of the lane 12 as it travels around the curve 20 .
- the path control algorithm revises the roadway curvature ⁇ and the rate of change in the roadway curvature ⁇ with a new roadway curvature ⁇ new and a new rate of change in roadway curvature ⁇ new in a path correction processor 118 that is then used by the road estimation processor 120 . If no curve is detected, then the roadway curvature ⁇ and the rate of change in the roadway curvature ⁇ pass unchanged through the processor 118 .
- the processor 118 calculates the new roadway curvature ⁇ new and the new rate of change in roadway curvature ⁇ new as:
- the algorithm uses the start point, the end point and the rate of change in the roadway curvature ⁇ new in combination with the path generation operation in the path generation processor 102 for either the wide turn approach or the narrow turn approach, where the algorithm will be previously programmed with one or the other of the wide turn approach or the narrow turn approach.
- the fifth order polynomial of equation (12) is solved with different initial and boundary conditions by first normalizing the polynomial trajectory as:
- initial conditions for the start point 84 are given as:
- FIG. 8 is a flow chart diagram 130 showing a process for calculating the path 82 for the wide turn approach when the vehicle 14 enters the curve 20 as discussed above.
- the algorithm obtains the roadway curvature ⁇ , the lane width, and the necessary measurements from the map database 26 and the forward looking camera on the vehicle 14 .
- the algorithm obtains the length of the trailer 16 at box 134 and obtains the vehicle steering angle ⁇ at box 136 .
- the algorithm then calculates the trailer's turn radius R t at box 138 and determines whether based on the current path of the vehicle 14 the trailer 16 will cross out of the lane 12 in the curve 20 at decision diamond 140 .
- the algorithm will cause the vehicle 14 to continue along its current path at box 142 , and the algorithm will end at box 144 . If the trailer 16 will cross out of the lane 12 for the current vehicle path at the decision diamond 140 , then the algorithm calculates the start turn radius R f of the vehicle 14 at box 146 , calculates the end turn radius
- FIG. 9 is a flow chart diagram 160 showing a process for calculating the path 92 for the narrow turn approach when the vehicle 14 enters the curve 20 , as discussed above, that is the same as the steps in the flow chart diagram 130 , except that the algorithm calculates the turn start point from equation (7) at box 162 instead of the end point of the turn at the box 150 . Further, the start turn radius is
Landscapes
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Automation & Control Theory (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Traffic Control Systems (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
- Steering Control In Accordance With Driving Conditions (AREA)
Abstract
Description
R b=√{square root over (R f 2−(l+a 1)2)}, (2)
R l=√{square root over (R f 2−(l+a 1)2 +b 1 2)}, (3)
R t=√{square root over (R f 2−(l+a 1)2 +b 1 2 −b 2 2)}, (4)
where a1 is the distance between the front wheels and the front bumper of the
which is 200.28 m in the example above, and the turn end point before the end of the
which is 10.55 m before the end of the
which is 200.28 m in the example above, the end turn radius of the
which is 10.55 m after the beginning of the
y r(x)=Ax 2 +Bx+C, 0<x<x range (8)
where xrange represents the range of a forward vision camera on the
y d(t)=a 5 x d 5(t)+a 4 x d 4(t)+a 3 x d 3(t)+a 2 x d 2(t)+a 1 x d 1(t)+a 0. (12)
where Cf and Cr are the concerning stiffnesses of the front wheels and rear wheels of the
and where x=[y φ vy, r]T, zd(k)=[yd φd]T, Q and R are weighting matrices used in the minimization with the system matrices definitions
where r is a measured vehicle yaw rate, {circumflex over (v)}y and {circumflex over (r)} are the estimated lateral speed and the vehicle yaw rate, respectively, and K is a yaw rate observer gain.
and for the narrow turn approach the
where D is a tuning parameter to adjust for driver aggressiveness.
where L is the lane width and ΔT is the time for the
and boundary conditions for the
and where c0, c1, c2 and c3 are measured values from a front camera.
and the boundary conditions for the
of the
at the
Claims (14)
R t=√{square root over (R f 2−(l+α 1)2 +b 1 2 −b 2 2)}
R t=√{square root over (R f 2−(l+a 1)2 +b 1 2 −b b 2)}
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/054,676 US9849911B2 (en) | 2016-02-26 | 2016-02-26 | Enhanced vehicle lateral control (lane following/lane keeping/lane changing control) for trailering vehicles |
CN201710081226.2A CN107128314B (en) | 2016-02-26 | 2017-02-15 | The vehicle lateral control of enhancing for towing vehicle |
DE102017103552.4A DE102017103552B4 (en) | 2016-02-26 | 2017-02-21 | IMPROVED VEHICLE LATERAL GUIDANCE (LANE FOLLOWING/LANE KEEPING/LANE CHANGE CONTROL) FOR TRAILERS |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/054,676 US9849911B2 (en) | 2016-02-26 | 2016-02-26 | Enhanced vehicle lateral control (lane following/lane keeping/lane changing control) for trailering vehicles |
Publications (2)
Publication Number | Publication Date |
---|---|
US20170247054A1 US20170247054A1 (en) | 2017-08-31 |
US9849911B2 true US9849911B2 (en) | 2017-12-26 |
Family
ID=59580382
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/054,676 Active US9849911B2 (en) | 2016-02-26 | 2016-02-26 | Enhanced vehicle lateral control (lane following/lane keeping/lane changing control) for trailering vehicles |
Country Status (3)
Country | Link |
---|---|
US (1) | US9849911B2 (en) |
CN (1) | CN107128314B (en) |
DE (1) | DE102017103552B4 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190375399A1 (en) * | 2018-06-07 | 2019-12-12 | GM Global Technology Operations LLC | Controlling a vehicle based on trailer position |
US11332191B2 (en) | 2019-09-09 | 2022-05-17 | Ford Global Technologies, Llc | Trailer sideswipe avoidance system |
US11605295B2 (en) | 2021-01-19 | 2023-03-14 | Ford Global Technologies, Llc | Active HMI coaching to assist in the retreat from a pending trailer flank contact |
US20230117002A1 (en) * | 2021-10-19 | 2023-04-20 | Hyundai Motor Company | Lane keeping apparatus and method thereof |
US11634071B2 (en) | 2021-01-12 | 2023-04-25 | Ford Global Technologies, Llc | Trailer sideswipe avoidance system |
US12163800B2 (en) | 2021-05-26 | 2024-12-10 | Robert Bosch Gmbh | Turning path guidance system for vehicles |
US12221036B2 (en) | 2022-10-05 | 2025-02-11 | Ford Global Technologies, Llc | Trailer sideswipe avoidance system |
Families Citing this family (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015012362A1 (en) * | 2015-09-19 | 2017-03-23 | GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) | A method of assisting a driver of a motor vehicle combination, computer program product, lane departure warning |
US10379538B1 (en) * | 2017-03-20 | 2019-08-13 | Zoox, Inc. | Trajectory generation using motion primitives |
WO2019037870A1 (en) * | 2017-08-25 | 2019-02-28 | Volvo Truck Corporation | A method for steering an articulated vehicle |
DE102017215316A1 (en) * | 2017-09-01 | 2019-03-07 | Audi Ag | A method of assisting a user in operating a motor vehicle in trailer operation, driver assistance device, and motor vehicle |
JP6768974B2 (en) * | 2017-10-05 | 2020-10-14 | 本田技研工業株式会社 | Vehicle control devices, vehicle control methods, and programs |
SE542273C2 (en) * | 2017-10-16 | 2020-03-31 | Scania Cv Ab | Method and control arrangement for lateral vehicle displacement |
DE102017010867A1 (en) * | 2017-11-24 | 2019-05-29 | Knorr-Bremse Systeme für Nutzfahrzeuge GmbH | Method and device for controlling a brake system of a trailer during cornering |
US10429849B2 (en) * | 2017-12-14 | 2019-10-01 | Baidu Usa Llc | Non-linear reference line optimization method using piecewise quintic polynomial spiral paths for operating autonomous driving vehicles |
CN108153854B (en) * | 2017-12-22 | 2021-08-17 | 东软集团股份有限公司 | Curve classification method, road side unit, vehicle-mounted terminal and electronic equipment |
US10732632B2 (en) * | 2018-01-31 | 2020-08-04 | Baidu Usa Llc | Method for generating a reference line by stitching multiple reference lines together using multiple threads |
JP6954180B2 (en) * | 2018-02-27 | 2021-10-27 | トヨタ自動車株式会社 | Autonomous driving system |
JP2019160156A (en) * | 2018-03-16 | 2019-09-19 | いすゞ自動車株式会社 | Vehicle control apparatus and vehicle control method |
US10671070B2 (en) * | 2018-05-23 | 2020-06-02 | Baidu Usa Llc | PID embedded LQR for autonomous driving vehicles (ADVS) |
CN108871338B (en) * | 2018-06-25 | 2021-01-29 | 驭势科技(北京)有限公司 | Trailer system pose prediction method and device and storage medium |
CN109383374B (en) * | 2018-10-23 | 2022-01-07 | 侯静阳 | Safety early warning braking system for truck |
US11079761B2 (en) * | 2018-12-12 | 2021-08-03 | Ford Global Technologies, Llc | Vehicle path processing |
CN109629470B (en) * | 2018-12-25 | 2021-05-04 | 长安大学 | Active warning type anti-collision guardrail and rear-end collision warning method for two-lane curves in mountainous areas |
JP7210357B2 (en) * | 2019-03-28 | 2023-01-23 | 本田技研工業株式会社 | VEHICLE CONTROL DEVICE, VEHICLE CONTROL METHOD, AND PROGRAM |
DE102019205365A1 (en) * | 2019-04-12 | 2020-10-15 | Volkswagen Aktiengesellschaft | Motor vehicle and collision avoidance method |
KR102634362B1 (en) * | 2019-04-22 | 2024-02-08 | 현대자동차주식회사 | System for awaring a trailer of a vehicle and method therefor |
US11131555B2 (en) * | 2019-05-28 | 2021-09-28 | GM Global Technology Operations LLC | Method and apparatus for optimizing navigation routing for trailering |
DE102019207951B4 (en) * | 2019-05-29 | 2022-06-30 | Volkswagen Aktiengesellschaft | Method for correcting the direction of travel using a driver assistance system in a motor vehicle and a control device therefor |
KR102645060B1 (en) * | 2019-06-12 | 2024-03-11 | 현대자동차주식회사 | Vehicle terminal and method for steering wheel thereof |
JP2021002112A (en) * | 2019-06-20 | 2021-01-07 | 三菱電機株式会社 | Driving support device of motor cycle |
WO2021029041A1 (en) * | 2019-08-14 | 2021-02-18 | Volvo Truck Corporation | Device and method for optimal lane keeping assistance, articulated vehicle, computer program, and computer readable medium storing computer program |
CN112477861B (en) * | 2019-08-20 | 2022-05-24 | 北京图森智途科技有限公司 | Driving control method and device for automatic driving truck and automatic driving truck |
CN111002997A (en) * | 2019-12-06 | 2020-04-14 | 武汉中海庭数据技术有限公司 | Lane departure prompting method and device |
EP3855121A3 (en) * | 2019-12-30 | 2021-10-27 | Waymo LLC | Kinematic model for autonomous truck routing |
CN111267837B (en) * | 2020-03-10 | 2021-05-11 | 东风商用车有限公司 | Curve control method and control system |
CN111645703B (en) * | 2020-06-01 | 2021-12-07 | 北京航迹科技有限公司 | Road condition reminding method and device, electronic equipment and storage medium |
CN112009489B (en) * | 2020-11-02 | 2021-02-02 | 蘑菇车联信息科技有限公司 | Method and device for processing vehicle steering parameters, electronic equipment and storage medium |
DE102020216064B3 (en) | 2020-12-16 | 2022-02-17 | Volkswagen Aktiengesellschaft | Support when driving with a trailer |
CN114643983B (en) * | 2020-12-17 | 2025-08-15 | 深圳引望智能技术有限公司 | Control method and device |
US11634128B2 (en) * | 2021-03-08 | 2023-04-25 | GM Global Technology Operations LLC | Trailer lane departure warning and lane keep assist |
US20220314719A1 (en) * | 2021-04-06 | 2022-10-06 | Ford Global Technologies, Llc | Trailer assistance system with improved contact detection performance from vehicle start or standstill |
KR20230169314A (en) | 2021-05-14 | 2023-12-15 | 가부시키가이샤 아이에이치아이 | Method and device for detecting vehicle loading abnormalities |
CN113343892B (en) * | 2021-06-24 | 2023-04-18 | 东风汽车集团股份有限公司 | Vehicle line-following driving scene extraction method |
US20230139551A1 (en) * | 2021-10-29 | 2023-05-04 | Tusimple, Inc. | Lane bias maneuver for autonomous vehicles to avoid an intruding vehicle |
DE102022114219A1 (en) | 2022-06-07 | 2023-12-07 | Audi Aktiengesellschaft | Method for operating a lane change assistance system and motor vehicle |
EP4375107A1 (en) * | 2022-11-22 | 2024-05-29 | Volvo Truck Corporation | System and method for providing driver assistance |
EP4385857A1 (en) * | 2022-12-16 | 2024-06-19 | Aptiv Technologies Limited | Triggering logic for lane keeping aid using predicted evasive maneuver |
DE102023200641A1 (en) * | 2023-01-26 | 2024-08-01 | Zf Friedrichshafen Ag | Procedure for hairpin bends and control device |
US12257953B2 (en) * | 2023-03-02 | 2025-03-25 | Stoneridge Electronics Ab | Trailer striking area prediction using camera monitoring system |
CN117622124A (en) * | 2023-12-29 | 2024-03-01 | 岚图汽车科技有限公司 | Vehicle curve collision warning method, device, equipment and storage medium |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008043675A1 (en) * | 2008-11-12 | 2010-05-20 | Zf Friedrichshafen Ag | Target-steering angle determining method for multi-part vehicle combination used as e.g. tractor-trailer combination, involves determining target-steering angle based on momentary driving speed of combination and effective length |
US20100191421A1 (en) | 2007-08-15 | 2010-07-29 | Jonas Nilsson | Operating method and system for supporting lane keeping of a vehicle |
US8073594B2 (en) | 2007-06-27 | 2011-12-06 | GM Global Technology Operations LLC | Trailer articulation angle estimation |
US8170739B2 (en) | 2008-06-20 | 2012-05-01 | GM Global Technology Operations LLC | Path generation algorithm for automated lane centering and lane changing control system |
US8190330B2 (en) | 2009-03-06 | 2012-05-29 | GM Global Technology Operations LLC | Model based predictive control for automated lane centering/changing control systems |
US20130027195A1 (en) * | 2011-07-25 | 2013-01-31 | John Robert Van Wiemeersch | Width calibration of lane departure warning system |
US8428843B2 (en) | 2008-06-20 | 2013-04-23 | GM Global Technology Operations LLC | Method to adaptively control vehicle operation using an autonomic vehicle control system |
US20140176716A1 (en) * | 2011-07-25 | 2014-06-26 | Ford Global Technologies, Llc | Trailer lane departure warning system |
DE102013000199A1 (en) * | 2013-01-08 | 2014-07-10 | Daimler Ag | Method for assisting driver of vehicle-trailer combination during driving along curve, involves detecting lane, and predetermining reference lane for drawing vehicle such that tractrix curve lies within lane or centered at lane |
US9527528B1 (en) * | 2015-09-04 | 2016-12-27 | Continental Automotive Systems, Inc. | Trailer radius indication |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5407764B2 (en) * | 2009-10-30 | 2014-02-05 | トヨタ自動車株式会社 | Driving assistance device |
KR101358329B1 (en) * | 2012-09-03 | 2014-02-04 | 현대모비스 주식회사 | Lane keeping control system and method |
DE102015102889A1 (en) | 2014-03-03 | 2015-09-03 | Ford Global Technologies, Llc | Trailer lane departure warning system |
JP2016007894A (en) * | 2014-06-23 | 2016-01-18 | トヨタ自動車株式会社 | Attention-seeking device and travel control unit |
CN104527638A (en) * | 2014-12-03 | 2015-04-22 | 杭州奥腾电子有限公司 | Curve false-alarm eliminating method and false-alarm eliminating device for active collision avoidance of automobile |
CN105109491B (en) * | 2015-08-05 | 2017-08-04 | 江苏大学 | A vehicle heading prediction device and prediction method based on the longitudinal curvature of a curve |
-
2016
- 2016-02-26 US US15/054,676 patent/US9849911B2/en active Active
-
2017
- 2017-02-15 CN CN201710081226.2A patent/CN107128314B/en active Active
- 2017-02-21 DE DE102017103552.4A patent/DE102017103552B4/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8073594B2 (en) | 2007-06-27 | 2011-12-06 | GM Global Technology Operations LLC | Trailer articulation angle estimation |
US20100191421A1 (en) | 2007-08-15 | 2010-07-29 | Jonas Nilsson | Operating method and system for supporting lane keeping of a vehicle |
US8170739B2 (en) | 2008-06-20 | 2012-05-01 | GM Global Technology Operations LLC | Path generation algorithm for automated lane centering and lane changing control system |
US8428843B2 (en) | 2008-06-20 | 2013-04-23 | GM Global Technology Operations LLC | Method to adaptively control vehicle operation using an autonomic vehicle control system |
DE102008043675A1 (en) * | 2008-11-12 | 2010-05-20 | Zf Friedrichshafen Ag | Target-steering angle determining method for multi-part vehicle combination used as e.g. tractor-trailer combination, involves determining target-steering angle based on momentary driving speed of combination and effective length |
US8190330B2 (en) | 2009-03-06 | 2012-05-29 | GM Global Technology Operations LLC | Model based predictive control for automated lane centering/changing control systems |
US20130027195A1 (en) * | 2011-07-25 | 2013-01-31 | John Robert Van Wiemeersch | Width calibration of lane departure warning system |
US20140176716A1 (en) * | 2011-07-25 | 2014-06-26 | Ford Global Technologies, Llc | Trailer lane departure warning system |
DE102013000199A1 (en) * | 2013-01-08 | 2014-07-10 | Daimler Ag | Method for assisting driver of vehicle-trailer combination during driving along curve, involves detecting lane, and predetermining reference lane for drawing vehicle such that tractrix curve lies within lane or centered at lane |
US9527528B1 (en) * | 2015-09-04 | 2016-12-27 | Continental Automotive Systems, Inc. | Trailer radius indication |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190375399A1 (en) * | 2018-06-07 | 2019-12-12 | GM Global Technology Operations LLC | Controlling a vehicle based on trailer position |
US10926759B2 (en) * | 2018-06-07 | 2021-02-23 | GM Global Technology Operations LLC | Controlling a vehicle based on trailer position |
US11332191B2 (en) | 2019-09-09 | 2022-05-17 | Ford Global Technologies, Llc | Trailer sideswipe avoidance system |
US11634071B2 (en) | 2021-01-12 | 2023-04-25 | Ford Global Technologies, Llc | Trailer sideswipe avoidance system |
US11605295B2 (en) | 2021-01-19 | 2023-03-14 | Ford Global Technologies, Llc | Active HMI coaching to assist in the retreat from a pending trailer flank contact |
US12163800B2 (en) | 2021-05-26 | 2024-12-10 | Robert Bosch Gmbh | Turning path guidance system for vehicles |
US20230117002A1 (en) * | 2021-10-19 | 2023-04-20 | Hyundai Motor Company | Lane keeping apparatus and method thereof |
US12246709B2 (en) * | 2021-10-19 | 2025-03-11 | Hyundai Motor Company | Lane keeping apparatus and method thereof |
US12221036B2 (en) | 2022-10-05 | 2025-02-11 | Ford Global Technologies, Llc | Trailer sideswipe avoidance system |
Also Published As
Publication number | Publication date |
---|---|
DE102017103552B4 (en) | 2023-05-04 |
CN107128314B (en) | 2019-07-16 |
US20170247054A1 (en) | 2017-08-31 |
CN107128314A (en) | 2017-09-05 |
DE102017103552A1 (en) | 2017-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9849911B2 (en) | Enhanced vehicle lateral control (lane following/lane keeping/lane changing control) for trailering vehicles | |
US9849878B2 (en) | System and method for providing a corrected lane following path through a curve for trailering vehicles | |
US9227632B1 (en) | Method of path planning for evasive steering maneuver | |
US9229453B1 (en) | Unified motion planner for autonomous driving vehicle in avoiding the moving obstacle | |
US9457807B2 (en) | Unified motion planning algorithm for autonomous driving vehicle in obstacle avoidance maneuver | |
US9428187B2 (en) | Lane change path planning algorithm for autonomous driving vehicle | |
US10369997B2 (en) | Vehicle traveling control apparatus | |
CN108349532B (en) | System for controlling a steering device of a motor vehicle in the event of an imminent collision with an obstacle | |
US8190330B2 (en) | Model based predictive control for automated lane centering/changing control systems | |
JP6438516B2 (en) | Vehicle travel control device | |
US9150246B2 (en) | Algorithm for steering angle command to torque command conversion | |
US8170739B2 (en) | Path generation algorithm for automated lane centering and lane changing control system | |
CN102963358B (en) | The system and method in collision avoidance motor-driven path is determined when having jerking movement degree to limit | |
US9688308B2 (en) | Pre-alert of LCC's steering torque limit exceed | |
US8428843B2 (en) | Method to adaptively control vehicle operation using an autonomic vehicle control system | |
US9878712B2 (en) | Apparatus and program for assisting drive of vehicle | |
CN105984461A (en) | Travel control apparatus for vehicle | |
CN107640151A (en) | The apparatus and method changed for determining aligner wheel | |
CN108032859A (en) | It is automatic to become channel control method, device and automobile | |
US12037014B2 (en) | Method for determining an avoidance path of a motor vehicle | |
KR20220053024A (en) | A device that predicts and controls the movement of a vehicle | |
US11987251B2 (en) | Adaptive rationalizer for vehicle perception systems toward robust automated driving control |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: GM GLOBAL TECHNOLOGY OPERATIONS LLC, MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LEE, JIN-WOO;LITKOUHI, BAKHTIAR B.;REEL/FRAME:037849/0576 Effective date: 20160226 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |