WO1986005789A1 - Carbohydrate derivatives and compositions thereof for therapeutic or diagnostic use, and methods for their use - Google Patents
Carbohydrate derivatives and compositions thereof for therapeutic or diagnostic use, and methods for their use Download PDFInfo
- Publication number
- WO1986005789A1 WO1986005789A1 PCT/SE1986/000131 SE8600131W WO8605789A1 WO 1986005789 A1 WO1986005789 A1 WO 1986005789A1 SE 8600131 W SE8600131 W SE 8600131W WO 8605789 A1 WO8605789 A1 WO 8605789A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hydrogen
- compound according
- bacteria
- compound
- independently
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 29
- 238000000034 method Methods 0.000 title claims abstract description 26
- 230000001225 therapeutic effect Effects 0.000 title claims abstract description 11
- 150000001719 carbohydrate derivatives Chemical class 0.000 title description 2
- 150000001875 compounds Chemical class 0.000 claims abstract description 59
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 39
- 239000001257 hydrogen Substances 0.000 claims abstract description 39
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims abstract description 16
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 14
- 125000002252 acyl group Chemical group 0.000 claims abstract description 8
- 150000001412 amines Chemical class 0.000 claims abstract description 5
- 150000003950 cyclic amides Chemical class 0.000 claims abstract description 5
- 239000000178 monomer Substances 0.000 claims abstract description 3
- 241000894006 Bacteria Species 0.000 claims description 43
- 241000124008 Mammalia Species 0.000 claims description 14
- 150000002431 hydrogen Chemical class 0.000 claims description 14
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 claims description 10
- 125000004044 trifluoroacetyl group Chemical group FC(C(=O)*)(F)F 0.000 claims description 10
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 9
- 238000011282 treatment Methods 0.000 claims description 7
- 125000001153 fluoro group Chemical group F* 0.000 claims description 6
- 238000000746 purification Methods 0.000 claims description 6
- 230000003993 interaction Effects 0.000 claims description 5
- 239000003937 drug carrier Substances 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 244000052616 bacterial pathogen Species 0.000 claims description 3
- 239000012620 biological material Substances 0.000 claims description 3
- 125000001309 chloro group Chemical group Cl* 0.000 claims description 3
- 238000011002 quantification Methods 0.000 claims description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 2
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 claims 2
- 229910052736 halogen Inorganic materials 0.000 claims 2
- 150000002367 halogens Chemical class 0.000 claims 2
- 150000002482 oligosaccharides Chemical class 0.000 description 34
- 229920001542 oligosaccharide Polymers 0.000 description 29
- 210000004027 cell Anatomy 0.000 description 28
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 18
- 241000282414 Homo sapiens Species 0.000 description 11
- 241001494479 Pecora Species 0.000 description 11
- 230000005764 inhibitory process Effects 0.000 description 11
- 230000035931 haemagglutination Effects 0.000 description 10
- 230000008569 process Effects 0.000 description 10
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 8
- 210000003743 erythrocyte Anatomy 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 8
- 239000000725 suspension Substances 0.000 description 8
- 241000191940 Staphylococcus Species 0.000 description 7
- QAEDZJGFFMLHHQ-UHFFFAOYSA-N trifluoroacetic anhydride Chemical compound FC(F)(F)C(=O)OC(=O)C(F)(F)F QAEDZJGFFMLHHQ-UHFFFAOYSA-N 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 6
- 230000001580 bacterial effect Effects 0.000 description 6
- 210000002919 epithelial cell Anatomy 0.000 description 6
- 210000000822 natural killer cell Anatomy 0.000 description 6
- 210000000056 organ Anatomy 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 5
- 150000001720 carbohydrates Chemical class 0.000 description 5
- 239000000470 constituent Substances 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 239000011541 reaction mixture Substances 0.000 description 5
- 241001465754 Metazoa Species 0.000 description 4
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 4
- 241001147691 Staphylococcus saprophyticus Species 0.000 description 4
- 239000013543 active substance Substances 0.000 description 4
- 229910021529 ammonia Inorganic materials 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 208000015181 infectious disease Diseases 0.000 description 4
- 239000003112 inhibitor Substances 0.000 description 4
- 230000002401 inhibitory effect Effects 0.000 description 4
- 210000004698 lymphocyte Anatomy 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 235000000346 sugar Nutrition 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 230000002485 urinary effect Effects 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 241000283973 Oryctolagus cuniculus Species 0.000 description 3
- 239000012980 RPMI-1640 medium Substances 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 239000012043 crude product Substances 0.000 description 3
- 230000001472 cytotoxic effect Effects 0.000 description 3
- 239000012636 effector Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 239000000825 pharmaceutical preparation Substances 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 230000008685 targeting Effects 0.000 description 3
- 208000019206 urinary tract infection Diseases 0.000 description 3
- 0 *OC(C(CO)OC(CO)*1)[C@]1O Chemical compound *OC(C(CO)OC(CO)*1)[C@]1O 0.000 description 2
- 238000002965 ELISA Methods 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 241000295644 Staphylococcaceae Species 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- 150000008064 anhydrides Chemical class 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 231100000433 cytotoxic Toxicity 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- -1 dimethylsulphinyl sodium Chemical compound 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 210000003494 hepatocyte Anatomy 0.000 description 2
- 210000004408 hybridoma Anatomy 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 210000004379 membrane Anatomy 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 230000011987 methylation Effects 0.000 description 2
- 238000007069 methylation reaction Methods 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 230000010807 negative regulation of binding Effects 0.000 description 2
- 210000005259 peripheral blood Anatomy 0.000 description 2
- 239000011886 peripheral blood Substances 0.000 description 2
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 210000002700 urine Anatomy 0.000 description 2
- AIJZHZABXNACMO-SLPGGIOYSA-N 2,2,2-trifluoro-n-[(2r,3r,4s,5r)-3,4,5,6-tetrahydroxy-1-oxohexan-2-yl]acetamide Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](C=O)NC(=O)C(F)(F)F AIJZHZABXNACMO-SLPGGIOYSA-N 0.000 description 1
- HVCOBJNICQPDBP-UHFFFAOYSA-N 3-[3-[3,5-dihydroxy-6-methyl-4-(3,4,5-trihydroxy-6-methyloxan-2-yl)oxyoxan-2-yl]oxydecanoyloxy]decanoic acid;hydrate Chemical compound O.OC1C(OC(CC(=O)OC(CCCCCCC)CC(O)=O)CCCCCCC)OC(C)C(O)C1OC1C(O)C(O)C(O)C(C)O1 HVCOBJNICQPDBP-UHFFFAOYSA-N 0.000 description 1
- GUPXYSSGJWIURR-UHFFFAOYSA-N 3-octoxypropane-1,2-diol Chemical compound CCCCCCCCOCC(O)CO GUPXYSSGJWIURR-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 229920000945 Amylopectin Polymers 0.000 description 1
- 208000035143 Bacterial infection Diseases 0.000 description 1
- 241000588832 Bordetella pertussis Species 0.000 description 1
- 229920002101 Chitin Polymers 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- 239000005714 Chitosan hydrochloride Substances 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 241000186031 Corynebacteriaceae Species 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 206010011224 Cough Diseases 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- FZHXIRIBWMQPQF-UHFFFAOYSA-N Glc-NH2 Natural products O=CC(N)C(O)C(O)C(O)CO FZHXIRIBWMQPQF-UHFFFAOYSA-N 0.000 description 1
- 229930186217 Glycolipid Natural products 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 125000003686 N-acetyl-D-glucosaminyl group Chemical group C(C)(=O)N[C@H]1C(O[C@@H]([C@H]([C@@H]1O)O)CO)* 0.000 description 1
- OVRNDRQMDRJTHS-FMDGEEDCSA-N N-acetyl-beta-D-glucosamine Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O OVRNDRQMDRJTHS-FMDGEEDCSA-N 0.000 description 1
- MBLBDJOUHNCFQT-LXGUWJNJSA-N N-acetylglucosamine Natural products CC(=O)N[C@@H](C=O)[C@@H](O)[C@H](O)[C@H](O)CO MBLBDJOUHNCFQT-LXGUWJNJSA-N 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- 229920005654 Sephadex Polymers 0.000 description 1
- 239000012507 Sephadex™ Substances 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- DPKHZNPWBDQZCN-UHFFFAOYSA-N acridine orange free base Chemical compound C1=CC(N(C)C)=CC2=NC3=CC(N(C)C)=CC=C3C=C21 DPKHZNPWBDQZCN-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000004520 agglutination Effects 0.000 description 1
- FZHXIRIBWMQPQF-SLPGGIOYSA-N aldehydo-D-glucosamine Chemical compound O=C[C@H](N)[C@@H](O)[C@H](O)[C@H](O)CO FZHXIRIBWMQPQF-SLPGGIOYSA-N 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 208000022362 bacterial infectious disease Diseases 0.000 description 1
- DZBUGLKDJFMEHC-UHFFFAOYSA-N benzoquinolinylidene Natural products C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 1
- MSWZFWKMSRAUBD-UHFFFAOYSA-N beta-D-galactosamine Natural products NC1C(O)OC(CO)C(O)C1O MSWZFWKMSRAUBD-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000022534 cell killing Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 230000001461 cytolytic effect Effects 0.000 description 1
- 238000006705 deacetalization reaction Methods 0.000 description 1
- 238000003381 deacetylation reaction Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 235000013681 dietary sucrose Nutrition 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000008298 dragée Substances 0.000 description 1
- 239000006196 drop Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 210000000981 epithelium Anatomy 0.000 description 1
- 210000003617 erythrocyte membrane Anatomy 0.000 description 1
- 238000005227 gel permeation chromatography Methods 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 230000001492 haemagglutinating effect Effects 0.000 description 1
- 235000020256 human milk Nutrition 0.000 description 1
- 210000004251 human milk Anatomy 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 230000000521 hyperimmunizing effect Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- INQOMBQAUSQDDS-UHFFFAOYSA-N iodomethane Chemical compound IC INQOMBQAUSQDDS-UHFFFAOYSA-N 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 208000032839 leukemia Diseases 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 210000005229 liver cell Anatomy 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Substances [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 208000004396 mastitis Diseases 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 235000013622 meat product Nutrition 0.000 description 1
- XELZGAJCZANUQH-UHFFFAOYSA-N methyl 1-acetylthieno[3,2-c]pyrazole-5-carboxylate Chemical compound CC(=O)N1N=CC2=C1C=C(C(=O)OC)S2 XELZGAJCZANUQH-UHFFFAOYSA-N 0.000 description 1
- XJRBAMWJDBPFIM-UHFFFAOYSA-N methyl vinyl ether Chemical compound COC=C XJRBAMWJDBPFIM-UHFFFAOYSA-N 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 210000004400 mucous membrane Anatomy 0.000 description 1
- 201000000050 myeloid neoplasm Diseases 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 235000012015 potatoes Nutrition 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 239000012264 purified product Substances 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000013207 serial dilution Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 235000010356 sorbitol Nutrition 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 229960004793 sucrose Drugs 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 1
- 239000012137 tryptone Substances 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 238000010626 work up procedure Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H21/00—Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/56—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H3/00—Compounds containing only hydrogen atoms and saccharide radicals having only carbon, hydrogen, and oxygen atoms
- C07H3/06—Oligosaccharides, i.e. having three to five saccharide radicals attached to each other by glycosidic linkages
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B37/00—Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
- C08B37/0006—Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
- C08B37/0024—Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Glucans; (beta-1,3)-D-Glucans, e.g. paramylon, coriolan, sclerotan, pachyman, callose, scleroglucan, schizophyllan, laminaran, lentinan or curdlan; (beta-1,6)-D-Glucans, e.g. pustulan; (beta-1,4)-D-Glucans; (beta-1,3)(beta-1,4)-D-Glucans, e.g. lichenan; Derivatives thereof
- C08B37/0027—2-Acetamido-2-deoxy-beta-glucans; Derivatives thereof
Definitions
- Carbohydrate derivatives and compositions thereof for therapeutic or diagnostic use and methods for their use.
- the present invention relates to compounds which are useful for therapeutic treatment of infections as well as profylaxis and diagnosis in connection herewith.
- the invention moreover covers a process for targeting of molecules to different organs of mammals including man.
- the technique according to the invention is applicable to microorganisms of different kinds causing diseases, particularly pathogenic bacteria, such as cocci, preferably Grampositive, e.g. streptococci, pneumococci and staphylococci.
- the invention relates to applications directed to staphylococci, such as Staphylococcus saprophvticus, and bacteria of the species Bordetella pertussis causing hooping cough.
- the compositions according to the invention have the ability of inhibiting the activity of so called natural killer cells (NK-cells).
- NK-cells natural killer cells
- the technique according to the invention relating to targeting is applicable to cells and organs of mammals including man.
- microorganism used in the present disclosure is intended to cover bacteria, viruses, animal and plant cells.
- Staphylococcus saprophvticus is a bacterium which is frequent cause to urinary tract infections (UTI) mainly in younger women and older men. The bacterium is present on the skin of different animals and is a frequent contaminant on meat products. Staphylococcus saprophvticus has also been connected with mastitis.
- glycoconjugates are absorbed by cells or organs due to the fact that cell membranes contain receptors of a proteinatious character. These receptors can be specific for carbohydrate structures of the glycoconjugates and these glycoconjugates can specifically be directed to certain cells or organs.
- the present invention has for its purpose to provide a composition or substance having the ability of replacing the normal receptor function in vivo and in vitro in relation to pathogenic bacteria inclined to cause infections in human beings and animals.
- Another object of the invention is to provide such composition or compound that can be used for the removal of bacteria from butcher products, contaminated surfaces, for example skin and buildings.
- Yet another object of the invention is to provide a composition or compound that can be used in diagnosis of bacteria.
- Still a further object of the invention is to provide a composition or substance that can be used for visualization of cells or organs.
- the invention moreover provides a process for targeting of molecules to different cells or organs.
- the invention is particularly applicable to receptor structures for Staphylococcus saprophvticus. NK-cells and li-vercells, but it should be observed that the invention is not limited to these particular cells. Through studies and experiments it has been found that the receptor for Staphylococcus saprophvticus. NK-cells and livercells can be replaced with compositions containing a compound having the formula:
- R 1 and R 2 independently are hydrogen, lower alkyl, acyl or together form a cyclic amide or amine; wherein R 3 and R 4 independently are hydrogen, alkyl, an organic residue; and wherein n is ⁇ 2, the individual monomer residues of the compound (I) being independent of each other as to structure.
- R 1 is hydrogen and R 2 has the formula:
- R 5 , R 6 and R 7 are suitably all fluoro or chloro, particularly fluoro.
- R 1 is hydrogen and R 2 is acyl, particularly acetyl or trifluoroacetyl.
- R 3 and R 4 may suitably independently be hydrogen or lower alkyl.
- n is 2 or more and n is preferably 2-100, particularly 2-20 and especially 2-10. Lower homologues are preferred in that n is preferably 2-6 and particularly 2.
- the same conditions apply as given above in connection with compounds of formula I.
- R 1 is hydrogen and R 2 is acetyl or trifluoroacetyl at least one of substituents R 2 is trifluoroacetyl.
- the expression "lower” used in the present disclosure relates to a group containing 1-6 carbon atoms, particularly 1-4 carbon atoms and especially 1 or 2 carbon atoms.
- substituent R 4 this may be of any type as long as it does not negatively affect the conditions in relation to the application of the invention.
- Preferred values of R 4 are hydrogen, lower alkyl or a macromolecular carrier covalently bound to the carbohydrate residue, optionally via a coupling arm.
- a macromolecular carrier there may be used a synthetically or naturally occurring polypeptide, polysaccharide, other polymer or particle. This is conventional in the art, see for example references 8-12, the contents of which are incorporated herein by reference.
- the coup ling arm between the carbohydrate residue and the macromolecular carrier can be any of the following:
- n' can vary between 1 and 15.
- the haemagglutination reaction of sheep erythrocytes caused by S . saprophyticus is probably due to interaction between a membrane structure at the surface of the bacterium and receptors on the surface of the sheep erythrocytes containing compound I above.
- the adhesion of S . saprophvticus to periurithral cells is probably due to interaction between a membrane structure at the surface of a bacterium and receptors of the surface of the epithelial cells containing the above-mentioned compound I.
- the invention is not bound by any of these theories.
- the active substance constituted by the compound of formula I can be used as such or in combination with a pharmaceutically acceptable carrier.
- a composition for therapeutic treatment of mammals including man said composition containing a compound I according to the definition above in combination with such pharmaceutically acceptable carrier.
- the active substances according to the present invention can be formulated for use in human or veterinary medicine for therapeutic, profylactic or diagnostic uses.
- the active constituents are normally administered orally or rectally or by injection in the form of a pharmaceutical preparation containing the active constituents in combination with a pharmaceutically acceptable carrier, which may be solid, semisolid or liquid, or as a capsule, and such compositions constitute a further aspect of the invention.
- a pharmaceutically acceptable carrier which may be solid, semisolid or liquid, or as a capsule, and such compositions constitute a further aspect of the invention.
- the compounds may also be used as such without carrier and in a form of an aqueous solution for injection.
- pharmaceutical preparations there may be mentioned tablets, drops, solutions and suppositories.
- the active substance usually constitutes from 0.05 to 99% by weight of the preparation, for example from 0.1 to 50% for preparations intended for oral administration.
- the active constituents can be admixed with a solid pulverulent or other carrier, for example lactose, saccharose, sorbitol, mannitol, starch, such as potatoe starch, corn starch, amylopectin, a cellulose derivative or gelatin and may also include lubricants, such as magnesium or calcium stearate, or polyethylene glycol waxes compressed to form tablets or cause for dragees.
- a solid pulverulent or other carrier for example lactose, saccharose, sorbitol, mannitol, starch, such as potatoe starch, corn starch, amylopectin, a cellulose derivative or gelatin and may also include lubricants, such as magnesium or calcium stearate, or polyethylene glycol waxes compressed to form tablets or cause for dragees.
- Liquid preparations for oral application can be in the form of elixires, syrups or suspensions, for example solutions containing from 0.1 to 20% by weight of active substance, sugar and a mixture of ethanol, water, glycerol, propylene, glycol and optionally other additives of a conventional character.
- the dose by which the active constituents are administered may vary within wide limits and depend on different factors, such as the severity of the disorder, the age and the weight of the patient and can be individually adjusted. As a conceivable range for the quantity of active constituents that may be administered per day there may be mentioned from 0.1 to 2000 mg or from 1 mg to 2000 mg.
- the present invention has also for an object to provide a method for therapeutic treatment of mammals including man, and in this treatment a therapeutically active amount of a substance or a composition in accordance with the invention is administered.
- the present invention also includes a process for identification or quantification of the compound I or residues of native biological material from mammals including man.
- antibodies are used the generation of which has been induced by the compound I as defined above.
- the invention furthermore includes a process for the purification of acceptor structures of bacteria, and in this purification the affinity between compound I and the acceptor structures of the bacteria is utilized.
- the invention covers a process for performing desinfection on surfaces, a compound I being applied on to the surface and then removed with bacteria adhering thereto.
- Chitosan hydrochloride was prepared from chitin by alkaline N-deacetylation according to Barker et al. (Ref.2). Chitosan was partially hydrolyzed using aqueous hydrochloric acid and their N-acetylated (Ref. 2). N-acetylated oligosaccharides were separated using gel chromatography (Saphadex G15) and hplc (C-18 column, CH 3 CN/H 2 O system). The following oligosaccharides were isolated and characterized:
- the purity of the oligosaccharides I-VII was checked by hplc.
- the oligosaccharides gave expected p.m.r. spectra (500 Mhz . Bruker) and correct sugar and methylation analyses (Refs. 3,4) in accordance with structure.
- oligosaccharides were prepared using trifluoroacetolysis (Refs. 5,6) from the oligosaccharides I-VIII according to the following general technique.
- the oligosaccharides (I-VIII) (100 mg) were treated with trifluoroacetic acid/trifluoracetic anhydride (TFA/TFAA) (1:100; v/v; 20 ml) at 100°C for 48 hours. After cooling the reaction mixture was evaporated to dryness. The residue was dissolved in methanol (20 ml) and the resulting solution was evaporated to dryness. The residue was dissolved in globial acetic acid (10 ml) and water (10 ml) was added. The mixture was heated at 100°C for 4 hours and evaporated to dryness. The crude product was gel chr ⁇ matographed on Sephadex G15 (2x100 cm) using water as eluant.
- TFA/TFAA trifluoroacetic acid/trifluoracetic anhydride
- Shifts are given relative to acetone (2.225 ppm. 20°C) for H 1 and relative to external TFA (-78.500 ppm, 20°C).
- the oligosaccharide (I-II) (100 mg) was treated with TFA/TFAA (1:100, v/v, 20 ml) at 100°C for 30 min. After work-up (see above) the product was purified by hplc (C-18 column, CH 3 CN/H 2 O) . Typical yield of purified product was 40 mg. The purity and identity of the products was corraborated by p.m.r. and F 19 n.m.r.
- the oligosaccharide (XVII-XVIII) (50 mg) was dissolved in 1M ammonia in methanol/water (1:4, v/v) and was left at 20°C for 18 h. The reaction mixture was evaporated to dryness. The yield was 80% .
- XIX and XX was treated with different anhydrides in pyridine to substitute all hydrocyl and aminogroups.
- the O- and N-acylated compounds were de-O-acylated with ammonia in methanol/water.
- the oligosaccharide (XIX-XX) (50 mg) was treated with (RCO) 2 O (10-fold excess) in pyridine (20 ml) at 100°C for 2h. The reaction mixture was evaporated to dryness. The residue was treated with 1M ammonia in methanol/water (3:1, v/v) for 18h arid the reaction mixture was evaporated to dryness. The crude product was purified using hplc (C-18 column, CH 3 CN/H 2 O) .
- XXV ⁇ -D-GNAcp-(1-4)-D-GNPHT
- microtitre plates (Limbo Sc. Comp. Inc. ) were used. 25 ⁇ l of bacterial suspension were titrated in PBS by two-step titre steps, 25 ⁇ l of 1% erythrocyte suspension being then added. The haemagglutination titre was determined after incubation of the plates for 2-4 hours in room temperature.
- RPMI 1640 Flow Ltd
- Oligosaccharides which were tested for their ability of preventing adhesion of S.saprophyticus to urinary epithelial cells were dissolved in RPMI 1640 to a concentration of 5 mg/ml.
- 1 ml of the oligosaccharide solution was incubated with 0.1 ml bacterial suspension at 37°C for 30 minutes.
- Urinary epithelial cells were incubated with the bacterial suspension incubated in advance as described above with oligosaccharide solution for 45 minutes at 37°C.
- As a control there was used a bacterial suspension preincubated with 1 ml RPMI 1640.
- Incubated samples were filtrated through a 12 ⁇ filter and washed 3 times with PBS.
- the filter was pressed against microscope slides for a few seconds, the slides being then fixed in methanol for 10 minutes.
- the slides were dried in air and coloured with acridine orange for 2 minutes.
- the slides were washed, dried in air and studied in fluorescence microscope. The number of bacteria per cell was counted. In each experiment 50 cells were counted.
- Example 4 Preparation of compositions containing the structural element in at least bivalent state and covalently linked to a macromolecular carrier.
- composition was made starting from oligosaccharides having a free reducing end.
- the reactions used are well known and, therefore, they are only diagrammatically illustrated (in the scheme SR represents the structural element without the sugar residue constituting the reducing terminal, and MB represents a macromolecular carrier).
- compositions containing the structural element according to the invention in at least bivalent association without covalent bond.
- a glycolipid containing the said structural element is linked by a hydrophobic interaction to lipophilic (hydrophobic) gels, polymers or particles, for example octylsepharose, plastics and latex surfaces.
- a Manufacture of monoclonal antibodies by hybridoma technique.
- Balb/c-mice are immunized with a composition according to the invention.
- the spleen from hyper immunized animals is harvested and a cell suspension is prepared by mechanical comminution of the tissue. After gradient centrifugation to obtain a pure cell preparation the cells are fused by means of polyethylene glycol (PEG, average molecular weight 1500) with established B-myeloma cell lines from Balb/c-mice according to known technique.
- PEG polyethylene glycol
- the cells After cloning the hybridoma cells generating the antibody sought, the cells are propagated on a large scale, the culture medium supernatants being harvested and the antibodies thereof being purified in a conventional manner.
- ELISA enzyme-linked immunosorbent assay
- Mammals are immunized with an oligosaccharide protein or polymer composition according to the invention.
- Antibodies are isolated from the hyperimmune serum of the mammal and purified in accordance with conventional techniques.
- Example 7 Diagnostic test for identification of bacteria having acceptor structures showing specificity towards the structural element according to the invention.
- Bacteria are incubated with sheep erythrocytes to agglutinate same.
- bacteria are incubated with sheep erythrocytes together with the structural element according to the invention at such concentration as to totally inhibit haemagglutination.
- Haemagglutination and inhibition of haemagglutination is performed according to Example 1. Positive haemagglutination of sheep erythoryctes and complete inhibition of haemagglutination after addition of oligosaccharide verifies the fact that the bacteria possess acceptor structure.
- b Bacteria are incubated with sheep erythrocytes to agglutinate same.
- bacteria are incubated with sheep erythrocytes together with the structural element according to the invention at such concentration as to totally inhibit haemagglutination.
- Haemagglutination and inhibition of haemagglutination is performed according to
- Bacteria are incubated with a composition wherein the said structural element is covalently or by other association in multivalent form linked to a particular matrix according to Example 3 or 4. Incubation is carried out on microscope slides for 10-15 minutes, the preparation being then studied in a microscope. If the bacteria posses acceptor structure the particles are covered by bacteria. Where the reaction is negative the particles are free from bacteria. c. Bacteria are mixed with a composition according to claim 4 or 5 on microscope slides positive reaction resulting in agglutination of particles covered with the said structural element.
- Example 8 Purification of bacteria or acceptor structures a.
- a composition according to Example 3 or 4 above is arranged in the form of a column.
- a mixture of bacteria is then passed through the column, bacteria possessing acceptor structures being maintained by interaction with the receptor structures of the column.
- the column can be eluted with buffer containing a receptor-active structural element according to the invention and this results in elusion of bacteria having acceptor structures in a pure form.
- the acceptor structure can be obtained in a pure form.
- Bacteria or acceptor structures can be used for the manufacture of vaccines or for determination of antibody in for example body fluids, such as blood, urine or mother's milk.
- composition for use for desinfection Composition for use for desinfection
- a 0.1% by weight aqueous solution of the compounds I or XV is prepared and applied by using a cotton pad on a surface infected by S.saprophvticus. The solution results in effective removal of the bacterium from the surface.
- Lymphocytes isolated from peripheral blood drained from normal donors have the ability of exerting a cytotoxic, i.e. cell killing activity against certain types of cells in culture.
- a cytotoxic i.e. cell killing activity against certain types of cells in culture.
- K-562 a human leukemia cell line called K-562 as a target cell for such cytolytic activity.
- K-562 cells intracellularly labelled with radioactive chromium are incubated with effector cells (lymphocytes) for 4 hours at 37°C.
- the cytotoxic effect is measured as the quantity of isotope released in relation to remaining isotope in the target cells.
- the assays were carried out in capped polystyren tubes (12x75 mm) at 4°C . To each tube was added 3x10 6 rabbit hepatocytes in modified Dulbecco's Eagle's medium and 1x10 -10 M 125 I-asialofetuin and different concentrations of oligosaccharide in a total volume of 1 ml. The tubes were rotated slowly at 4°C for 4h, after which time duplicate samples (200 ⁇ l) were taken, transferred into 400 ⁇ l centrifuge tubes containing 150 ⁇ l of silicone/mineral oil (4:1, v/v) and centrifuged for 10s in an Eppendorf centrifuge. The cell pellet at the bottom of the tube was counted for radioactivity in a Packard-counter. The 50% inhibition value was determined from the observed inhibition curve and the values are shown in Table 3. Table 3
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Medicinal Chemistry (AREA)
- Biotechnology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Polymers & Plastics (AREA)
- Epidemiology (AREA)
- Pharmacology & Pharmacy (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Saccharide Compounds (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
A compound for therapeutic or diagnostic use, characterized by having formula (I): wherein R1 and R2 independently are hydrogen, lower alkyl, acyl or together form a cyclic amide or amine; wherein R3 and R4 independently are hydrogen, alkyl, an organic residue; and wherein n is >=2, the individual monomer residues of the compound (I) being independ of each other as to structure; a composition containing such compound, methods for use of the compound and the composition, respectively.
Description
"Carbohydrate derivatives and compositions thereof for therapeutic or diagnostic use, and methods for their use".
The present invention relates to compounds which are useful for therapeutic treatment of infections as well as profylaxis and diagnosis in connection herewith. The invention moreover covers a process for targeting of molecules to different organs of mammals including man.
The technique according to the invention is applicable to microorganisms of different kinds causing diseases, particularly pathogenic bacteria, such as cocci, preferably Grampositive, e.g. streptococci, pneumococci and staphylococci. In particular, the invention relates to applications directed to staphylococci, such as Staphylococcus saprophvticus, and bacteria of the species Bordetella pertussis causing hooping cough. Moreover, the compositions according to the invention have the ability of inhibiting the activity of so called natural killer cells (NK-cells). The technique according to the invention relating to targeting is applicable to cells and organs of mammals including man.
The expression "microorganism" used in the present disclosure is intended to cover bacteria, viruses, animal and plant cells.
A large number of bacterial infections arise by bacterial attack on mucous membranes. In the initial stage of the course of infection it is essential to the bacteria to have the capability of binding to epithelial cells. The infectious ability of bacteria is often directly related to the ability of the bacteria to adhere to epithelial cells. Staphylococcus saprophvticus is a bacterium which is frequent cause to urinary tract infections (UTI) mainly in younger women and older men. The bacterium is present on the skin of different animals and is a frequent contaminant on meat products. Staphylococcus saprophvticus has also been connected with mastitis. Studies have shown that adhesion of Staphylococcus saprophvticus tp periurethral cells is caused by a carbohydrate component and that the same carbohydrate component is found in erythrocyte membranes of sheep. This
also explains the fact why Staphylococcus saprophvticus agglutinates sheep erythrocytes.
Many glycoconjugates are absorbed by cells or organs due to the fact that cell membranes contain receptors of a proteinatious character. These receptors can be specific for carbohydrate structures of the glycoconjugates and these glycoconjugates can specifically be directed to certain cells or organs.
The present invention has for its purpose to provide a composition or substance having the ability of replacing the normal receptor function in vivo and in vitro in relation to pathogenic bacteria inclined to cause infections in human beings and animals.
Another object of the invention is to provide such composition or compound that can be used for the removal of bacteria from butcher products, contaminated surfaces, for example skin and buildings.
Yet another object of the invention is to provide a composition or compound that can be used in diagnosis of bacteria.
A further object of the invention is to provide a composition or compound that can form the basis for a process for therapeutic or prophylactic treatment of mammals including man. Still another object of the invention is to provide a process for identification and/or quantification of receptor structures in biological material from mammals including man. Another object of the invention is to provide a process for isolation and purification of bacteria or receptor structures of bacteria.
Still a further object of the invention is to provide a composition or substance that can be used for visualization of cells or organs. The invention moreover provides a process for targeting of molecules to different cells or organs. The invention is particularly applicable to receptor structures for Staphylococcus saprophvticus. NK-cells and li-vercells, but it should be observed that the invention is not limited to these particular cells.
Through studies and experiments it has been found that the receptor for Staphylococcus saprophvticus. NK-cells and livercells can be replaced with compositions containing a compound having the formula:
wherein R1 and R2 independently are hydrogen, lower alkyl, acyl or together form a cyclic amide or amine; wherein R3 and R4 independently are hydrogen, alkyl, an organic residue; and wherein n is ≥ 2, the individual monomer residues of the compound (I) being independent of each other as to structure. In certain preferred compounds of the formula I R1 is hydrogen and R2 has the formula:
R5 , R6 and R7 are suitably all fluoro or chloro, particularly fluoro.
It is preferred in formula I that R1 is hydrogen and R2 is acyl, particularly acetyl or trifluoroacetyl. R3 and R4 may suitably independently be hydrogen or lower alkyl.
In connection to the definition of the compounds of formula I above it is stated that n is 2 or more and n is preferably 2-100, particularly 2-20 and especially 2-10. Lower homologues are preferred in that n is preferably 2-6 and particularly 2.
Within the scope of the general formula I as stated above new as well as known compounds are found. According to
a further aspect of the present invention there is provided also new compounds of formula II:
wherein R1 and R2 independently are hydrogen, alkyl, acyl or together form a cyclic amide or amine; wherein R3 and R4 independently are hydrogen, alkyl, an organic residue, and wherein n is ≥ 2, with the proviso that when n is 2-4 R3 is hydrogen and R4 is methyl then R1 is different from hydrogen if R2 is acetyl or trifluoroacetyl; and when n ≥ 2 , R3 = R4 = hydrogen then R1 and R2 are different from hydrogen and when R1 is hydrogen then R2 is different from acetyl. With regard to the variables for these new compounds and preferred embodiments the same conditions apply as given above in connection with compounds of formula I. It may be added that when R1 is hydrogen and R2 is acetyl or trifluoroacetyl at least one of substituents R2 is trifluoroacetyl. The expression "lower" used in the present disclosure relates to a group containing 1-6 carbon atoms, particularly 1-4 carbon atoms and especially 1 or 2 carbon atoms.
In regard to substituent R4 this may be of any type as long as it does not negatively affect the conditions in relation to the application of the invention. Preferred values of R4 are hydrogen, lower alkyl or a macromolecular carrier covalently bound to the carbohydrate residue, optionally via a coupling arm. As a macromolecular carrier there may be used a synthetically or naturally occurring polypeptide, polysaccharide, other polymer or particle. This is conventional in the art, see for example references 8-12, the contents of which are incorporated herein by reference. When present the coup
ling arm between the carbohydrate residue and the macromolecular carrier can be any of the following:
In the above examples n' can vary between 1 and 15. The haemagglutination reaction of sheep erythrocytes caused by S . saprophyticus is probably due to interaction between a membrane structure at the surface of the bacterium and receptors on the surface of the sheep erythrocytes containing compound I above. The adhesion of S . saprophvticus to periurithral cells is probably due to interaction between a membrane structure at the surface of a bacterium and receptors of the surface of the epithelial cells containing the above-mentioned compound I. However, the invention is not bound by any of these theories.
The active substance constituted by the compound of formula I can be used as such or in combination with a pharmaceutically acceptable carrier. According to another aspect of the invention there is thus provided also a composition for therapeutic treatment of mammals including man, said composition containing a compound I according to the definition above in combination with such pharmaceutically acceptable carrier.
The active substances according to the present invention can be formulated for use in human or veterinary medicine for therapeutic, profylactic or diagnostic uses. In clinical practice the active constituents are normally administered orally or rectally or by injection in the form of a pharmaceutical preparation containing the active constituents in combination with a pharmaceutically acceptable carrier, which may be solid, semisolid or liquid, or as a capsule, and such compositions constitute a further aspect of the invention. The compounds may also be used as such without
carrier and in a form of an aqueous solution for injection. As examples of pharmaceutical preparations there may be mentioned tablets, drops, solutions and suppositories. The active substance usually constitutes from 0.05 to 99% by weight of the preparation, for example from 0.1 to 50% for preparations intended for oral administration.
To manufacture pharmaceutical preparations in the form of dose units for oral application containing a compound according to the invention the active constituents can be admixed with a solid pulverulent or other carrier, for example lactose, saccharose, sorbitol, mannitol, starch, such as potatoe starch, corn starch, amylopectin, a cellulose derivative or gelatin and may also include lubricants, such as magnesium or calcium stearate, or polyethylene glycol waxes compressed to form tablets or cause for dragees.
By using several layers of the active drug separated by slowly dissolving layers tablets of delayed release are obtained.
Liquid preparations for oral application can be in the form of elixires, syrups or suspensions, for example solutions containing from 0.1 to 20% by weight of active substance, sugar and a mixture of ethanol, water, glycerol, propylene, glycol and optionally other additives of a conventional character. The dose by which the active constituents are administered may vary within wide limits and depend on different factors, such as the severity of the disorder, the age and the weight of the patient and can be individually adjusted. As a conceivable range for the quantity of active constituents that may be administered per day there may be mentioned from 0.1 to 2000 mg or from 1 mg to 2000 mg.
The present invention has also for an object to provide a method for therapeutic treatment of mammals including man, and in this treatment a therapeutically active amount of a substance or a composition in accordance with the invention is administered.
The present invention also includes a process for identification or quantification of the compound I or residues of
native biological material from mammals including man. In this process antibodies are used the generation of which has been induced by the compound I as defined above.
The invention furthermore includes a process for the purification of acceptor structures of bacteria, and in this purification the affinity between compound I and the acceptor structures of the bacteria is utilized.
Furthermore, the invention covers a process for performing desinfection on surfaces, a compound I being applied on to the surface and then removed with bacteria adhering thereto.
The invention will in the following be described by non-limiting examples.
Example 1
Synthesis of compounds β-D-GNAcp-<1-4>-[β-D-GNAcp-(l-4)-]n-D-GNAc (I-VIII)
Chitosan hydrochloride was prepared from chitin by alkaline N-deacetylation according to Barker et al. (Ref.2). Chitosan was partially hydrolyzed using aqueous hydrochloric acid and their N-acetylated (Ref. 2). N-acetylated oligosaccharides were separated using gel chromatography (Saphadex G15) and hplc (C-18 column, CH3CN/H2O system). The following oligosaccharides were isolated and characterized:
β-D-GNA-cp-(1-4)-D-GNAc I β-D-GNAcp-(1-4)-β-D-GNAcp-(1-4)-D-GNAc II β-D-GNAcp-(1-4)- [β-D-GNAcp-(1-4)-]2-D-GNAc III B-D-GNAcp-(1-4)- [β-D-GNAcp-(1-4)-] 3-D-GNAc IV β-D-GNAcp-(1-4)- [β-D-GNAcp-(1-4)-]4-D-GNAc V β-D-GNAcp-(1-4)- [β-D-GNAcp-(1-4)-]5-D-GNAc VI β-D-GNAcp-(1-4)- [β-D-GNAcp-(1-4)-]6-D-GNAc VII β-D-GNAcp-(1-4)- [β-D-GNAcp-(1-4)-]≥7-D-GNAc VIII
The purity of the oligosaccharides I-VII was checked by hplc. The oligosaccharides gave expected p.m.r. spectra (500 Mhz .
Bruker) and correct sugar and methylation analyses (Refs. 3,4) in accordance with structure.
β-D-GNTFp-(1-4)- [β-D-GNTFp-(1-4)-]n-D-GNTF (IX-XVI)
These oligosaccharides were prepared using trifluoroacetolysis (Refs. 5,6) from the oligosaccharides I-VIII according to the following general technique.
The oligosaccharides (I-VIII) (100 mg) were treated with trifluoroacetic acid/trifluoracetic anhydride (TFA/TFAA) (1:100; v/v; 20 ml) at 100°C for 48 hours. After cooling the reaction mixture was evaporated to dryness. The residue was dissolved in methanol (20 ml) and the resulting solution was evaporated to dryness. The residue was dissolved in globial acetic acid (10 ml) and water (10 ml) was added. The mixture was heated at 100°C for 4 hours and evaporated to dryness. The crude product was gel chrόmatographed on Sephadex G15 (2x100 cm) using water as eluant. Fractions containing oligosaccharide were pooled and lyophilized. The product was further purified using hplc (C-18 column, CH3CN/H2O) . Typical yield of N-trifluoroacetylated oligosaccharide was 50 mg.
Analysis of IX-XVI was performed using p.m.r. and F19 n.m.r. as well as sugar and methylation analyses.
Some pertinent p.m.r. and F19 n.m.r. data are given below for compound IX.
β -D-GNTFp-(1-4)-GNTF
B A p.m.r. proton δ(ppm) J(Hz) Multiples
HA1α 5.263 2.6 d
HA1β 4.796 8.2 m (virtually)
HA1α 4.723 8.6 d
HB1β 4.713 8.6 d
F19 n.m.r. Fluorine 6(ppm) J(Hz) Multiples
ACF3α -77.640 - S
ACF3β -78.665 - S
B A
BCF3 α -78.463 - S
BCF3 β -78.517 - S
Shifts are given relative to acetone (2.225 ppm. 20°C) for H1 and relative to external TFA (-78.500 ppm, 20°C).
β-D-GNAcp-(1-4)-[β-D-GNAcp-(1-4)-]0-1-D-GNTF (XVII-XVIII)
Short time trifluoroacetolysis of oligosaccharides I and II using TFA/TFAA 1:100 (v/v) at 100°C gave a good yield of XVII-XVIII.
The oligosaccharide (I-II) (100 mg) was treated with TFA/TFAA (1:100, v/v, 20 ml) at 100°C for 30 min. After work-up (see above) the product was purified by hplc (C-18 column, CH3CN/H2O) . Typical yield of purified product was 40 mg. The purity and identity of the products was corraborated by p.m.r. and F19 n.m.r.
Some pertinent p.m.r. and F19 n.m.r. data are given below for compare XVII.
3-D-GNAcp-(1-4)-GNTF
B A p.m.r proton δ (ppm) J(Hz) Multiple
HA1α 5.264 3.6 d
HA1β 4.804 8.1 m (virtually)
HB1α 4.561 8.6 d
HB1β 4.593 8.2 d
HBCH3 2.072 - S F19 n.m.r. fluorine δ(ppm) J(Hz) Multiple
A-CF3α -77.624 - S A-CF3β -78.667 - S
β-D-GNAcp-(1-4)-[β-D-GNAcp-(1-4)-]0-1 D-GNH2 (XIX-XX)
Treatment of XVII and XVIII with 1M ammonia in methanol/water for 18h resulted in quantitative
N-detrifluoroacetylation.
The oligosaccharide (XVII-XVIII) (50 mg) was dissolved in 1M ammonia in methanol/water (1:4, v/v) and was left at 20°C for 18 h. The reaction mixture was evaporated to dryness. The yield was 80% .
The purity and identity was verified by p.m.r.
XIX and XX was treated with different anhydrides in pyridine to substitute all hydrocyl and aminogroups. The O- and N-acylated compounds were de-O-acylated with ammonia in methanol/water.
The oligosaccharide (XIX-XX) (50 mg) was treated with (RCO)2O (10-fold excess) in pyridine (20 ml) at 100°C for 2h. The reaction mixture was evaporated to dryness. The residue was treated with 1M ammonia in methanol/water (3:1, v/v) for 18h arid the reaction mixture was evaporated to dryness. The crude product was purified using hplc (C-18 column, CH3CN/H2O) .
Starting material anhydride product
XIX (CCl3CO)2O XXI
XX " XXII
XIX (CH3CH2CO)2O XXIII
XX " XXIV
β-D-GNAcp-(1-4)-D-GNPHT (XXV) The phtalamide derivative was prepared according to the method of Baker et al. (Ref.7). In this manner XXV was obtained from XIX.
β-D-GN(Me)Acp-(1-4)-[β-D-GN(Me)Acp(1-4)-]0-1-D-GN(Me)Ac (XXVI-XXVII)
I and II (100 mg) was treated with methylvinylether (25 ml) at 15°C together with p-toluenesulphonic acid for 2 h.
'BSTITUTE S SHtI ?rs»»-p-
The reaction mixture was then passed through a Sephadex LH20 column (5x50 cm) and fractions containing oligosaccharide were pooled and concenrated to dryness. The acetalized oligosaccharide was methylated using dimethylsulphinyl sodium and methyl iodide. Deacetalization of the product was achieved using 50% aqueous acetic acid (100°C for 1 h) . The crude product was purified by hplc (C-18 column, CH3CN/H2O as eluant). The purity and identity was demonstrated by p.m.r.
Example 2
Inhibition of haemagglutination of sheep ervthorcvtes with Staphylococcus saprophyticus bv the addition of oligosaccharides
In the tests the bacteria S.saprophyticius strains, both isolated from urine from patients having urinary tract infection, were used. The bacteria were cultivated in tryptone broth over night, pelletized by means of centrifugation and washed twice with PBS, pH 7.2. Haemagglutination was performed using erythrocytes from sheep obtained from sheep blood and washed twice with 0.85% saline.
In the haemagglutination-indication experiments microtitre plates (Limbo Sc. Comp. Inc. ) were used. 25μl of bacterial suspension were titrated in PBS by two-step titre steps, 25μl of 1% erythrocyte suspension being then added. The haemagglutination titre was determined after incubation of the plates for 2-4 hours in room temperature.
In the inhibition experiments serial dilutions of the relevant inhibitor (50μl/well) and 25μl of bacterial suspension diluted to contain 2 HU haemagglutinating unite of bacteria were used. The plates were incubated for 30 minutes at 37°C, 25μl of the erythrocyte suspension being then added to each well.
The results are presented in Table 1.
Table 1
Inhibition of haemagglutination between sheep erythoryctes and S.saprophyticus bacteria (Mc 2 and Mc 194).
Inhibitor Minimum inhibitory cone μg/ml
I 200
II 200
III 200
IV 175
V 175
VI 175
VII 150
IX 75
X 75
XI 60
XII 75
XIII 50
XIV 50
XV 50
XVI 50
XVII 100
XVIII 125
XIX 125
XX 150
XXI 600
XXII 700
XXIII 100
XXIV 75
XXV 75
XXVI 300
XXVII 400
Example 3
Inhibition of adherence of S,saprophyticus to urinary epithelial cells by the addition of oligosaccharides.
Cells from urinary epithelium were suspended in cell cultivation medium RPMI 1640 (Flow Ltd) to a concentration of 109 bacteria/ml. Oligosaccharides which were tested for their ability of preventing adhesion of S.saprophyticus to urinary epithelial cells were dissolved in RPMI 1640 to a concentration of 5 mg/ml. In the experiments 1 ml of the oligosaccharide solution was incubated with 0.1 ml bacterial suspension at 37°C for 30 minutes. Urinary epithelial cells were incubated with the bacterial suspension incubated in advance as described above with oligosaccharide solution for 45 minutes at 37°C. As a control there was used a bacterial suspension preincubated with 1 ml RPMI 1640.
Incubated samples were filtrated through a 12μ filter and washed 3 times with PBS. The filter was pressed against microscope slides for a few seconds, the slides being then fixed in methanol for 10 minutes. The slides were dried in air and coloured with acridine orange for 2 minutes. The slides were washed, dried in air and studied in fluorescence microscope. The number of bacteria per cell was counted. In each experiment 50 cells were counted.
In these tests it was found that I, XVII and IX reduced the number of adhering bacteria by more than 95%, whereas lactose did not reduce the number of adhering bacteria in comparison with the control test without oligosaccharides.
Example 4 Preparation of compositions containing the structural element in at least bivalent state and covalently linked to a macromolecular carrier.
The composition was made starting from oligosaccharides having a free reducing end. The reactions used are well known and, therefore, they are only diagrammatically illustrated (in the scheme SR represents the structural element without the sugar residue constituting the reducing terminal, and MB represents a macromolecular carrier).
Preparations of compositions containing the structural element according to the invention in at least bivalent association without covalent bond. A glycolipid containing the said structural element is linked by a hydrophobic interaction to lipophilic (hydrophobic) gels, polymers or particles, for example octylsepharose, plastics and latex surfaces.
Example 6
Preparation of antibodies having specificity against the said structural element. a. Manufacture of monoclonal antibodies by hybridoma technique. I. Balb/c-mice are immunized with a composition according to the invention. The spleen from hyper immunized animals is harvested and a cell suspension is prepared by mechanical comminution of the tissue. After gradient centrifugation to obtain a pure cell preparation the cells are fused by means of polyethylene glycol (PEG, average molecular weight 1500) with established B-myeloma cell lines from Balb/c-mice according to known technique. After cloning the hybridoma cells generating the antibody sought, the cells are propagated on a large scale, the culture medium supernatants being harvested and the antibodies thereof being purified in a conventional manner. For identification of antibody generating clones there is used so-called enzyme-linked immunosorbent assay (ELISA).
II. Mammals are immunized with an oligosaccharide protein or polymer composition according to the invention. Antibodies are isolated from the hyperimmune serum of the mammal and purified in accordance with conventional techniques.
Example 7 Diagnostic test for identification of bacteria having acceptor structures showing specificity towards the structural element according to the invention.
a. Bacteria are incubated with sheep erythrocytes to agglutinate same. In a parallel test bacteria are incubated with sheep erythrocytes together with the structural element according to the invention at such concentration as to totally inhibit haemagglutination. Haemagglutination and inhibition of haemagglutination is performed according to Example 1. Positive haemagglutination of sheep erythoryctes and complete inhibition of haemagglutination after addition of oligosaccharide verifies the fact that the bacteria possess acceptor structure. b. Bacteria are incubated with a composition wherein the said structural element is covalently or by other association in multivalent form linked to a particular matrix according to Example 3 or 4. Incubation is carried out on microscope slides for 10-15 minutes, the preparation being then studied in a microscope. If the bacteria posses acceptor structure the particles are covered by bacteria. Where the reaction is negative the particles are free from bacteria. c. Bacteria are mixed with a composition according to claim 4 or 5 on microscope slides positive reaction resulting in agglutination of particles covered with the said structural element.
Example 8 Purification of bacteria or acceptor structures a. A composition according to Example 3 or 4 above is arranged in the form of a column. A mixture of bacteria is then passed through the column, bacteria possessing acceptor structures being maintained by interaction with the receptor structures of the column. After rinsing the column can be eluted with buffer containing a receptor-active structural element according to the invention and this results in elusion of bacteria having acceptor structures in a pure form. b. By a process fully analogous with a. the acceptor structure can be obtained in a pure form.
Bacteria or acceptor structures can be used for the
manufacture of vaccines or for determination of antibody in for example body fluids, such as blood, urine or mother's milk.
Example 9
Composition for use for desinfection
By desinfection there is meant herein primarily removal of bacteria from a surface, for example a wound.
A 0.1% by weight aqueous solution of the compounds I or XV is prepared and applied by using a cotton pad on a surface infected by S.saprophvticus. The solution results in effective removal of the bacterium from the surface.
Example 10 Inhibition of NK-cells activity using oligosaccharides
Lymphocytes isolated from peripheral blood drained from normal donors have the ability of exerting a cytotoxic, i.e. cell killing activity against certain types of cells in culture. In the instant example there is used a human leukemia cell line called K-562 as a target cell for such cytolytic activity.
Method : K-562 cells intracellularly labelled with radioactive chromium are incubated with effector cells (lymphocytes) for 4 hours at 37°C. The cytotoxic effect is measured as the quantity of isotope released in relation to remaining isotope in the target cells. For details, see
Malmström, P., Jönsson, A. and Sjögren, H.O. "Countercurrent distribution of lymphocytes from human peripheral blood in an aqueous two-phase system. II. Separation into subsets of lymphocytes with distinctive functions". Cell Immunol. 53:51-64, 1980. For studying inhibiting substances effector cells (6x106 cells/ml) are preincubated with the respective oligosaccharides diluted in cultivating medium for half an hour at 37°C . After washing with centrifugat ion the effector cells are transferred directly to the target cells. The results obtained are presented in Table 2 below..
Table 2
Inhibition of specific cytotoxic activity of NK-cells.
Inhibitor Minimum inhibitory cone, μg/ml. I 3000
V 3000
IX 2000
XV 1500
XVII 2000 XVIII 2500
XX 4000
XXI 1500
XXII 1500
XXIII 1500 XXV 1500
XXVI 4000
Example 11
Inhibition of binding of 125-I-asialofetuin to rabbit heoatoevtes uaing oligosaccharides.
The assays were carried out in capped polystyren tubes (12x75 mm) at 4°C . To each tube was added 3x106 rabbit hepatocytes in modified Dulbecco's Eagle's medium and 1x10-10M 125I-asialofetuin and different concentrations of oligosaccharide in a total volume of 1 ml. The tubes were rotated slowly at 4°C for 4h, after which time duplicate samples (200 μl) were taken, transferred into 400 μl centrifuge tubes containing 150 μl of silicone/mineral oil (4:1, v/v) and centrifuged for 10s in an Eppendorf centrifuge. The cell pellet at the bottom of the tube was counted for radioactivity in a Packard-counter. The 50% inhibition value was determined from the observed inhibition curve and the values are shown in Table 3.
Table 3
Inhibition of binding of 125I-asialofetuin to rabbit hepatocytes at 4°C by different oligosaccharides.
Inhibitor Minimum cone. for 50% inhibition mM
I 1.2
V 0.8
IX 0.4
XV 0.2 XVII 0.5
XVIII 0.6
XX 1.9
XXI 0.2
In the instant disclosure the following abbreviations have been used:
Abbreviations
GNAcp 2-acetamido-2-deoxy-D-glucopyranosyl
GNAc 2-acetamido-2-deoxy-D-glucose GNTFp 2-deoxy-2-trifluoracetamido-D-glucopyranosyl
GNTF 2-deoxy-2-trifluoracetamido-D-glucose
GNH2 2-amino-2-deoxy-D-glucose
GNPHT 2-deoxy-2-N-phtalimido-D-glucose
GN(Me)Ac 2-(N-methyl)-acetamido-2-deoxy-D-glucose GN(Me)Acp 2- (N-methyl)-acetamido-2-decxy-D- glucopyranosyl
References
1. Gibbons, R.J. and Hoυte. Ann.Rev. Microbiol.29 (1975)19
2. Barker, S.A., Foster, A.B., Stacey, M. and Webber, J.M. J.Cheat.Soc. (1958) 2218
3. Sawardeker, J.S., Sloneker and Jeanes, A.R. Anal.Chem. 12 (1965) 1602
4. Björndal, H., Hellerquist, C.G., Lindberg, B. and Svensson, S. Angew.Chem. Int.Ed. 9 (1970) 610
5. Nilsson, B. and Svensson, S. Carbohyd.Res. 62 (1978) 377
6. Nilsson, B. and Svensson, S. Carbohyd.Res. 69 (1979) 292
7. Baker, B.R., Joseph, J.D., Schaub, R.F. and Williams, J.M. J.Org.Chem 19(1954) 1786
8. Svensson, S.B. and A.A. Lindberg (1979) J. Immunol.Meth. 25, 323.
9. Zopf, D. et al (1978) Immunol.Meth.enzymol.L, part C, 163.
10. Lönngren, J. et al (1976) Arch.Biochem.Biophys. 175, 661.
11. Gray, G.R. (1978). In Meth. enzymol.L., part C, 155.
12. McBroom, C.R., Samanen, C.H., Goldstein, I.J. In:Methods in Enzymology, Vol. 28B, ed. V. Ginsburg, p. 212. Academic Press, New York (1972).
Claims
1. A compound for therapeutic or diagnostic use, characterized by having the formula (I):
wherein R1 and R2 independently are hydrogen, lower alkyl, acyl or together form a cyclic amide or amine; wherein R3 and R4 independently are hydrogen, alkyl, an organic residue; and wherein n is ≥2, the individual monomer residues of the compound (I) being independent of each other as to structure.
2. A compound according to claim 1, wherein R1 is hydrogen and R2 has the formula:
3. A compound according to claim 2, wherein R5 , R6 and R7 all are fluoro br chloro.
4. A compound according to claim 3, wherein R5 , R6 and R7 all are fluoro.
5. A compound according to any preceding claim, characterized thereby that R1 is hydrogen and R2 is acyl.
6. A compound according to claim 5, characterized thereby that R2 is acetyl or trifluoroacetyl.
7. A compound according to any preceding claim, characterized thereby that R3 and R4 independently are hydrogen or (C1-C6)alkyl.
8. A compound according to any preceding claim, characterized thereby that n is 2-100, preferably 2-10.
9. A compound according to any preceding claim, characterized thereby that R1 is hydrogen, R2 is acetyl, R3 = R4 = hydrogen and n is 2-6.
10. A compound having the formula (I):
wherein R1 and R2 independently are hydrogen, alkyl, acyl or together form a cyclic amide or amine; wherein R3 and R4 independently are hydrogen, alkyl, an organic residue, and wherein n is ≥2 , with the proviso that when n is 2-4 R3 is hydrogen and R4 is methyl then R1 is different from hydrogen if R2 is acetyl or trifluoroacetyl; and when n ≥ 2 , R3 = R4 = hydrogen then R1 and R2 are different from hydrogen and when R1 is hydrogen then R2 is different from acetyl; and when R1 is hydrogen, R2 is trifluoroacetyl and n is 3 then one of R3 and R4 is different from hydrogen.
11. A compound according to claim 10, wherein R1 is hydrogen and R2 has the formula:
12. A compound according to claim 11, wherein R5 , R6 and R7 all are fluoro or chloro.
13. A compound according to claim 3, wherein R5, R6 and R7 all are fluoro.
14. A compound according to any of claims 10-13, characterized thereby that R1 is hydrogen and R2 is acyl.
15. A compound according to claim 14, characterized thereby that R2 is acetyl or trifluoroacetyl.
16. A compound according to any of claims 10-15, characterized thereby that R3 and R4 independently are hydrogen or (C1-C6)alkyl.
17. A compound according to any of claims 10-16, characterized thereby that n is 2-100, preferably 2-10.
18. A compound according to any of claims 10-17, characterized thereby that R3 and R4 both are hydrogen and n is 2-6.
19. A compound according to claim 18, characterized thereby that n is 2.
20. A compound according to claim 10, characterized thereby that R1 is hydrogen, R2 is acetyl or trifluoroacetyl, at least one R2 being trifluoroacetyl, and n is 2-6.
21. A compound according to claim 20, characterized thereby that n is 2.
22. A composition for therapeutic treatment of mammals including man, characterized by a compound according to any preceding claim in combination with a pharmaceutically acceptable carrier.
23. A method for therapeutic treatment of mammals including man, characterized by administering to the mammal a therapeutically ef f ect ive amount of a compound according to any of c laims 1-21 or a composition according to claim 22.
24. A method for determining the presence of pathogenic bacteria in a sample taken from a mammal including man, characterized by determining the grade of interaction between the bacteria of the sample and the compound according to any of claims 1-21.
25. A method for identification or quantification of said structure element in native biological material from mammals including man, characterized by using antibodies, the production of which being induced by the compound according to any of claims 1-21.
26. A method for purification of acceptor structures in bacteria, characterized thereby that in this purification the affinity between the compound according to claims 1-21 and the acceptor structures of the bacteria is utilized.
27. A method for the removal of bacteria from surfaces, characterized thereby that a compound according to any of claims 1-21 is applied on the surface of the compound then being removed with bacteria adhering thereto.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE8501613A SE8501613D0 (en) | 1985-04-01 | 1985-04-01 | ASSOCIATIONS FOR THERAPEUTIC OR DIAGNOSTIC APPLICATION WITHOUT PROCEDURES FOR THERAPEUTIC TREATMENT |
SE8501613-7 | 1985-04-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1986005789A1 true WO1986005789A1 (en) | 1986-10-09 |
Family
ID=20359733
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/SE1986/000131 WO1986005789A1 (en) | 1985-04-01 | 1986-03-25 | Carbohydrate derivatives and compositions thereof for therapeutic or diagnostic use, and methods for their use |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0217912A1 (en) |
AU (1) | AU5668286A (en) |
SE (1) | SE8501613D0 (en) |
WO (1) | WO1986005789A1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2640628A1 (en) * | 1988-12-16 | 1990-06-22 | Commissariat Energie Atomique | beta -(1->6) Bonded oligosaccharides, in particular 2-acetamido-2-deoxy-glucoses or -galactoses and their preparation. |
WO1990011069A1 (en) * | 1989-03-20 | 1990-10-04 | Parfums Christian Dior | Process for the preparation of a ligand-receptor complex |
FR2663636A1 (en) * | 1990-06-26 | 1991-12-27 | Centre Nat Rech Scient | METHOD FOR FUNCTIONALIZING AN OLIGONUCLEOTIDE |
WO1992011015A1 (en) * | 1990-12-21 | 1992-07-09 | Microcarb Inc. | Use of host cell phospholipids for inhibiting microbial colonization |
WO1993002709A1 (en) * | 1991-07-31 | 1993-02-18 | Microcarb Inc. | Receptor conjugates for targeting drugs and other agents |
EP0535668A1 (en) * | 1991-10-04 | 1993-04-07 | Nihon Medi-Physics Co., Ltd. | Imaging agent for diagnosis |
DE10221055A1 (en) * | 2002-05-10 | 2003-11-27 | Hemoteq Gmbh | New aminated oligo- or polysaccharide derivatives obtained from heparin, chitosan or chitin, useful for producing hemocompatible coatings on medicinal products, especially stents |
US8784862B2 (en) | 2002-05-09 | 2014-07-22 | Hemoteq Ag | Compounds and method for coating surfaces in a hemocompatible manner |
US9290515B2 (en) | 2011-10-04 | 2016-03-22 | Shionogi & Co., Ltd | Cephem derivative having catechol group |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU582758B2 (en) * | 1984-06-28 | 1989-04-13 | Mect Corporation | Sialic acid derivatives, galactose derivatives and method for producing the same |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3155575A (en) * | 1960-12-16 | 1964-11-03 | Warner Lambert Pharmaceutical | Composition for inhibiting pepsin activity and method of preparing same |
US3632754A (en) * | 1968-02-12 | 1972-01-04 | Lescarden Ltd | Use of chitin for promoting wound healing |
US3911116A (en) * | 1970-04-13 | 1975-10-07 | Leslie L Balassa | Process for promoting wound healing with chitin derivatives |
US3914413A (en) * | 1971-02-10 | 1975-10-21 | Leslie L Balassa | Process for facilitating wound healing with N-acetylated partially depolymerized chitin materials |
EP0089938A1 (en) * | 1982-03-22 | 1983-09-28 | BioCarp AB | Compositions for therapeutic or diagnostic use containing oligosaccharides |
EP0098252A2 (en) * | 1982-06-23 | 1984-01-11 | Biocarb Ab | New and novel glycosides, glycoconjugates and processes for their preparation |
EP0126043A1 (en) * | 1983-03-23 | 1984-11-21 | ANDERSSON, Bengt | Carbohydrate derivatives and compositions thereof for therapeutic or diagnostic use |
EP0149163A2 (en) * | 1983-12-27 | 1985-07-24 | BEHRINGWERKE Aktiengesellschaft | Use of oligosaccharides for the chemotherapy of the chemoprophylaxy of malaria |
EP0150466A2 (en) * | 1984-01-27 | 1985-08-07 | Boehringer Ingelheim International GmbH | Antibodies against the glycan chain of peptidoglycans, procedure and reagents for their preparation, and methods for their quantitative determination |
-
1985
- 1985-04-01 SE SE8501613A patent/SE8501613D0/en unknown
-
1986
- 1986-03-25 EP EP86902540A patent/EP0217912A1/en not_active Withdrawn
- 1986-03-25 WO PCT/SE1986/000131 patent/WO1986005789A1/en unknown
- 1986-03-25 AU AU56682/86A patent/AU5668286A/en not_active Abandoned
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3155575A (en) * | 1960-12-16 | 1964-11-03 | Warner Lambert Pharmaceutical | Composition for inhibiting pepsin activity and method of preparing same |
US3632754A (en) * | 1968-02-12 | 1972-01-04 | Lescarden Ltd | Use of chitin for promoting wound healing |
US3911116A (en) * | 1970-04-13 | 1975-10-07 | Leslie L Balassa | Process for promoting wound healing with chitin derivatives |
US3914413A (en) * | 1971-02-10 | 1975-10-21 | Leslie L Balassa | Process for facilitating wound healing with N-acetylated partially depolymerized chitin materials |
EP0089938A1 (en) * | 1982-03-22 | 1983-09-28 | BioCarp AB | Compositions for therapeutic or diagnostic use containing oligosaccharides |
EP0098252A2 (en) * | 1982-06-23 | 1984-01-11 | Biocarb Ab | New and novel glycosides, glycoconjugates and processes for their preparation |
EP0126043A1 (en) * | 1983-03-23 | 1984-11-21 | ANDERSSON, Bengt | Carbohydrate derivatives and compositions thereof for therapeutic or diagnostic use |
EP0149163A2 (en) * | 1983-12-27 | 1985-07-24 | BEHRINGWERKE Aktiengesellschaft | Use of oligosaccharides for the chemotherapy of the chemoprophylaxy of malaria |
EP0150466A2 (en) * | 1984-01-27 | 1985-08-07 | Boehringer Ingelheim International GmbH | Antibodies against the glycan chain of peptidoglycans, procedure and reagents for their preparation, and methods for their quantitative determination |
Non-Patent Citations (16)
Title |
---|
BIOCHEMISTRY, vol. 11, no. 9, 1972, pages 1639 - 1643 * |
BRANDENBERG GREG ET AL.: "Chitosan: A new topical hemostatic agent for diffuse capillary bleeding in brain tissue", NEUROSURGERY, vol. 15, no. 1, 1984, pages 9 - 13 * |
CHEMICAL ABSTRACTS, vol. 100, 1984, Columbus, Ohio, US; abstract no. 31241S * |
CHEMICAL ABSTRACTS, vol. 100, 1984, Columbus, Ohio, US; abstract no. 31937Y * |
CHEMICAL ABSTRACTS, vol. 103, 1985, Columbus, Ohio, US; abstract no. 3617J * |
CHEMICAL ABSTRACTS, vol. 77, 1972, Columbus, Ohio, US; abstract no. 2327A * |
CHEMICAL ABSTRACTS, vol. 89, 1978, Columbus, Ohio, US; abstract no. 38296B * |
CHEMICAL ABSTRACTS, vol. 94, 1981, Columbus, Ohio, US; abstract no. 63483W * |
FEBS LETT., vol. 120, no. 1, 1980, pages 29 - 32 * |
FEBS LETT., vol. 156, no. 2, 1983, pages 298 - 302 * |
FEBS LETT., vol. 88, no. 2, 1978, pages 176 - 180 * |
HOWARD R.J. ET AL.: "Studies on the role of red blood cell glycoproteins as receptors for invasion by plasmodium farciparum merozoites", MOLECULAR AND BIOCHEMICAL PARASITOLOGY, vol. 6, 1982, AMSTERDAM, pages 303 - 315 * |
INFECT. IMMUN., vol. 42, no. 3, 1983, pages 930 - 935 * |
INFECT. IMMUN., vol. 48, no. 3, 1985, pages 720 - 728 * |
KO SUZUKI ET AL.: "Enhancing effects of N-acetyl-chito-oligosaccharides on the active oxygen-generating and microbicidal activities of perotoneal exudate cells in mice", CHEMICAL & PHARMACEUTICAL BULLETIN, vol. 33, no. 2, February 1985 (1985-02-01), TOKYO, pages 886 - 888 * |
NILSSON BO, SVENSSON SIGFRID: "A new method for degradation of the protein part of glycoproteins: Isolation of the carbohydrate chains of asialofetuin", CARBOHYDRATE RESEARCH, vol. 72, 1979, AMSTERDAM, pages 183 - 190 * |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2640628A1 (en) * | 1988-12-16 | 1990-06-22 | Commissariat Energie Atomique | beta -(1->6) Bonded oligosaccharides, in particular 2-acetamido-2-deoxy-glucoses or -galactoses and their preparation. |
WO1990011069A1 (en) * | 1989-03-20 | 1990-10-04 | Parfums Christian Dior | Process for the preparation of a ligand-receptor complex |
FR2645741A1 (en) * | 1989-03-20 | 1990-10-19 | Dior Christian Parfums | METHOD FOR FIXING A PRODUCT ON THE MEMBRANE OF A KERATINOCYTE BY MEANS OF A LIGAND-RECEPTOR BOND, PROCESS FOR PREPARING SUCH A PRODUCT, OBTAINED PRODUCT, COSMETIC OR PHARMACEUTICAL COMPOSITION CONTAINING THE SAME, AND PROCESS FOR PREPARING THE SAME |
US5286629A (en) * | 1989-03-20 | 1994-02-15 | Parfums Christian Dior | Method of binding a product to the membrane of a keratinocyte by means of a ligand-receptor bond, method of preparing such a product, product obtained, cosmetic or pharmaceutical composition in which it is present and its method of preparation |
FR2663636A1 (en) * | 1990-06-26 | 1991-12-27 | Centre Nat Rech Scient | METHOD FOR FUNCTIONALIZING AN OLIGONUCLEOTIDE |
WO1992000315A1 (en) * | 1990-06-26 | 1992-01-09 | Centre National De La Recherche Scientifique (Cnrs) | Oligonucleotide functionalization method |
WO1992011015A1 (en) * | 1990-12-21 | 1992-07-09 | Microcarb Inc. | Use of host cell phospholipids for inhibiting microbial colonization |
WO1993002709A1 (en) * | 1991-07-31 | 1993-02-18 | Microcarb Inc. | Receptor conjugates for targeting drugs and other agents |
US5271924A (en) * | 1991-10-04 | 1993-12-21 | Nihon Medi-Physics Co., Ltd. | Low molecular weight polysaccharide complexes for nuclear magnetic resonance imaging |
EP0535668A1 (en) * | 1991-10-04 | 1993-04-07 | Nihon Medi-Physics Co., Ltd. | Imaging agent for diagnosis |
US5352431A (en) * | 1991-10-04 | 1994-10-04 | Nihon Medi-Physics Co., Ltd. | Low molecular weight polysaccharide complexes for X-ray imaging |
US5422095A (en) * | 1991-10-04 | 1995-06-06 | Nihon Medi-Physics Co., Ltd. | Low molecular weight polysaccharide complexes for radiation diagnosis |
US8784862B2 (en) | 2002-05-09 | 2014-07-22 | Hemoteq Ag | Compounds and method for coating surfaces in a hemocompatible manner |
DE10221055A1 (en) * | 2002-05-10 | 2003-11-27 | Hemoteq Gmbh | New aminated oligo- or polysaccharide derivatives obtained from heparin, chitosan or chitin, useful for producing hemocompatible coatings on medicinal products, especially stents |
DE10221055B4 (en) * | 2002-05-10 | 2007-10-25 | Hemoteq Ag | Compounds for hemocompatible coating of surfaces, process for their preparation and their use |
US9290515B2 (en) | 2011-10-04 | 2016-03-22 | Shionogi & Co., Ltd | Cephem derivative having catechol group |
Also Published As
Publication number | Publication date |
---|---|
SE8501613D0 (en) | 1985-04-01 |
EP0217912A1 (en) | 1987-04-15 |
AU5668286A (en) | 1986-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4665060A (en) | Therapeutic treatment employing oligosaccharides | |
FI71432C (en) | DIAGNOSTIC COMPOSITION WITH REGARD TO THE SAMPLING OF MEDICINAL PRODUCTS | |
Schauer | Sialic acids as antigenic determinants of complex carbohydrates | |
Cundell et al. | Receptor specificity of adherence of Streptococcus pneumoniae to human type-II pneumocytes and vascular endothelial cells in vitro | |
EP0207984B1 (en) | Antiviral agents | |
Mayer et al. | Chemistry and biology of the enterobacterial common antigen (ECA) | |
Allison et al. | Effects of endotoxin on macrophages and other lymphoreticular cells | |
Koga et al. | Acute joint inflammation in mice after systemic injection of the cell wall, its peptidoglycan, and chemically defined peptidoglycan subunits from various bacteria | |
Chow et al. | The purification of the antibodies in type I anti-pneumococcus serum, and the chemical nature of the type-specific precipitin reaction | |
CA2197336A1 (en) | Sialic acid/fucose based medicaments | |
Shnyra et al. | Scavenger receptor pathway for lipopolysaccharide binding to Kupffer and endothelial liver cells in vitro | |
Venkateswaran et al. | Type variation of strains of Streptococcus pneumoniae in capsular serogroup 15 | |
WO1986005789A1 (en) | Carbohydrate derivatives and compositions thereof for therapeutic or diagnostic use, and methods for their use | |
Johannsen et al. | Somnogenic, pyrogenic, and hematologic effects of bacterial peptidoglycan | |
EP0089940A1 (en) | Compositions for therapeutic or diagnostic use containing oligosaccharides | |
JPH04502153A (en) | Adhesion of Mycoplasma pneumoniae and Mycoplasma hominus to sulfatide | |
EP0089939A1 (en) | Compositions for therapeutic or diagnostic use containing oligosaccharides | |
JP2566913B2 (en) | Method for producing antibacterial composition and glycopeptide | |
GB2223579A (en) | Verocytotoxin Receptor Array | |
EP0553113A1 (en) | Adhesion receptors for pathogenic or opportunistic microorganisms | |
Wagner | Interaction of wheat-germ agglutinin with streptococci and streptococcal cell wall polymers | |
WO1986004064A1 (en) | A compound and a composition for therapeutic or diagnostic use and the use of such compound and composition for therapeutic treatment and isolation of shigatoxine | |
Carruthers et al. | Inhibition by polyanions of adherence by Kanagawa-positive Vibrio parahaemolyticus: a physicochemical effect | |
Uhlenbruck et al. | On the specificity of lectins with a broad agglutination spectrum: V. Further investigations on the tumor-characteristic agglutinin from wheat germ lipase | |
Lasfargues et al. | Analysis of the lipopolysaccharide-induced cytostatic activity of macrophages, by the use of synthetic models |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU CH DE DK FI GB JP LU NL NO SE US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE FR GB IT LU NL SE |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |