[go: up one dir, main page]

WO1990001625A1 - Rotary combustion chamber with water injection and water cooling for a turbine - Google Patents

Rotary combustion chamber with water injection and water cooling for a turbine Download PDF

Info

Publication number
WO1990001625A1
WO1990001625A1 PCT/CH1989/000138 CH8900138W WO9001625A1 WO 1990001625 A1 WO1990001625 A1 WO 1990001625A1 CH 8900138 W CH8900138 W CH 8900138W WO 9001625 A1 WO9001625 A1 WO 9001625A1
Authority
WO
WIPO (PCT)
Prior art keywords
turbine
combustion chamber
water
steam
compressor
Prior art date
Application number
PCT/CH1989/000138
Other languages
German (de)
French (fr)
Inventor
Max Tobler
Original Assignee
Max Tobler
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Max Tobler filed Critical Max Tobler
Publication of WO1990001625A1 publication Critical patent/WO1990001625A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/30Adding water, steam or other fluids for influencing combustion, e.g. to obtain cleaner exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/14Gas-turbine plants characterised by the use of combustion products as the working fluid characterised by the arrangement of the combustion chamber in the plant
    • F02C3/16Gas-turbine plants characterised by the use of combustion products as the working fluid characterised by the arrangement of the combustion chamber in the plant the combustion chambers being formed at least partly in the turbine rotor or in an other rotating part of the plant

Definitions

  • Rotating combustion chamber with water injection and cooling for a turbine Rotating combustion chamber with water injection and cooling for a turbine.
  • the invention relates to a method for producing a mixture of fuel gases and steam for operating a turbine and a machine for the continuous production of the fuel gas / steam mixture which rotates the entire machine by means of a turbine fixed to the combustion chamber and thus serves as an engine.
  • the main problem with the known gas turbines is that too much work is required for the compressor, since a high excess of air is necessary for the gas turbine process in order to reduce the temperature of the fuel gases, so that in particular the material of the turbine blades is not overheated.
  • This problem of the excessively high combustion gas temperature can only be solved to a limited extent by using heat-resistant material, as a result of which the efficiency of the gas turbine can be improved because of the lower excess air number that can be achieved.
  • the evaporation of the water from the water ring takes place without any problems, since the hotter water, which has a lower density, moves inwards to the free surface of the water ring, from where the steam reaches the open combustion chamber for mixing with the fuel gases.
  • the water, which has a lower temperature is centrifuged against the inner wall of the housing shell (15) and thereby pressurized, which causes an increase in the water boiling temperature. This process involves an open cooling process thanks to the very high cooling capacity of the water, water consumption remains within limits.
  • FIG. 1 A machine which can be used to carry out the method described in claim 1 is shown in FIG.
  • the fuel gas / steam mixture passes centrifugally through the guide vanes into the radial turbine (3) and rotates the turbine together with the combustion chamber.
  • the guide vane device (5) can be made axially displaceable, so that a bypass is created. This bypass is particularly important if the fuel gas / steam mixture is passed into another turbine after leaving the turbine, or is used as a thrust or as a process medium. With this bypass it is possible to drive optimally even in partial load operation.
  • An increase in the pressure of the compressed air is achieved if the radial compressor is preceded by a single or multi-stage axial compressor which also rotates in the hollow shaft with the housing.
  • the claim 7 relates to the compressor side, whereby to increase the pressure in the combustion chamber not an increased amount of work is required by the compressor, but rather by injecting water through the central and fixed line (13) and subsequent centrifugal ejection into the combustion chamber after passing the orifices (9) help to atomize the water.
  • the resulting droplet wall acts like a liquid wall, which means that a higher pressure in the combustion chamber can be counteracted. If more water gets into the housing shell than is evaporated, the excess water is inevitably returned by means of the feed / collecting pipe (6).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

A process is useful for obtaining a mixture of combustible gases and vapour in a rotary combustion chamber consisting of a shell, the outer circumference of which is surrounded by a water ring. The flame front and the combustible gases issuing from the central annular burner are in contact with the cooling water ring over its entire circumference. The vapour produced mixes with the combustible gases and causes a drop in temperature before the mixture reaches the turbine secured to the shell, resulting in rotation. Cooling is effected mainly by water, rather than excess air, resulting in a high degree of efficiency. A machine for implementing the process comprises a shell (15) which serves as a combustion chamber (2) secured to a compressor (1) and to a turbine (3). Air enters the compressor (1) through the hollow shaft and sucks vapour from the pre-chamber (11, 12). Fuel is admixed (8, 9) in the compressor. The flame touches the water ring of the combustion chamber which serves both as a cooling element and a vapour generator. The machine operates as a motor, and the mixture of combustible gases and vapour can be re-used subsequently as an energy carrier.

Description

Rotierender Brennraum mit Wasserinjection- und Kühlung für eine Turbine. Rotating combustion chamber with water injection and cooling for a turbine.
Beschreibungdescription
Die Erfindung betrifft ein Verfahren zur Herstellung eines Gemisches von Brenngasen und Dampf zum Betrieb einer Turbine sowie eine Maschine zur kontinuierlichen Erzeugung des Brenngase-/Dampfgemisches, welches mittels einer am Brennraum fixierten Turbine die ganze Maschine in Rotation versetzt und somit als Kraftmaschine dient.The invention relates to a method for producing a mixture of fuel gases and steam for operating a turbine and a machine for the continuous production of the fuel gas / steam mixture which rotates the entire machine by means of a turbine fixed to the combustion chamber and thus serves as an engine.
Bei den bekannten Gasturbinen liegt das Hauptübel darin, dass für den Verdichter ein zu grosser Arbeitsaufwand erforderlich ist, da für den Gasturbinenprozess eine hohe Luftüberschusszahl notwendig ist, um die Temperatur der Brenngase herabzusetzen, damit insbesondere das Material der Turbinenschaufeln nicht überhitzt wird. Dieses Problem der zu hohen Brenngastemperatur kann nur beschränkt durch Einsatz hitzebeständigen Materials gelöst werden, wodurch wegen der erreichbaren niedrigeren Luftüberschusszahl der Wirkungsgrad der Gasturbine verbessert werden kann. Dieses Problem der zu hohen Brenngastemperatur soll nun nicht über hitzebeständigeres und damit teures Material angegangen werden, sondern mit einem 'Verfahren, welches durch kontinuierliches Zuführen von Wasser während der Verbrennung ein gleichzeitiges Verdampfen von Wasser er¬ laubt, so dass das eingebrachte Wasser im flüssigen Zustand vorwiegend der Materialkühlung und nachher als Dampf der Kühlung der Brenngase dient. Bei diesem Verfahrensablauf erfordert das Zuführen von Wasser einen geringen Arbeits¬ aufwand, wohingegen der entstandene Dampf zu einer Leistungssteigerung auf der Turbinenseite führt. Es wird also im Vergleich zu den üblichen Gasturbinen eine wesent¬ liche Verbesserung des Wirkungsgrades erreicht, indem nun anstelle von Luft das Wasser als Kühlmittel dient, welches nach Erfüllung des Kühlzweckes in Form von Dampf als Energieträger zusammen mit den Brenngasen der Turbine zugeleitet wird.The main problem with the known gas turbines is that too much work is required for the compressor, since a high excess of air is necessary for the gas turbine process in order to reduce the temperature of the fuel gases, so that in particular the material of the turbine blades is not overheated. This problem of the excessively high combustion gas temperature can only be solved to a limited extent by using heat-resistant material, as a result of which the efficiency of the gas turbine can be improved because of the lower excess air number that can be achieved. This problem of the excessively high combustion gas temperature is now not to be addressed by means of more heat-resistant and therefore expensive material, but rather by means of a process which, by continuously supplying water during the combustion, permits simultaneous evaporation of water, so that the water introduced is in the liquid state mainly used to cool the material and then as steam to cool the fuel gases. In this process sequence, the supply of water requires little work, whereas the steam produced leads to an increase in performance on the turbine side. In comparison to the usual gas turbines, a significant improvement in the efficiency is achieved in that instead of air, the water now serves as a coolant, which, after the cooling purpose has been fulfilled, is supplied in the form of steam as an energy carrier together with the fuel gases to the turbine.
Dies wird erfindungsgemäss gelöst, indem der Brennraum (2) zusammen mit dem Verdichter-/Turbinenteil (1,3) rotiert. In dem als Gehäuseschale ausgebildetem Brennraum (2) be- findet sich ein mitdrehender Wasserring, auf den die Flammen- und Brenngasefront zentrifugiert wird. Insbe¬ sondere durch die Kühlung des Materials mittels diesem Wasserring tritt kontinuierlich Dampf in die Brenngase, wodurch diese gekühlt, der Dampf aber überhitzt wird. Dieses Brenngase-/Dampfgemisch gelangt nun zur Turbine und setzt die ganze Maschine zusammen mit dem Brennraum in Rotation. Mit diesem Verfahren der Herstellung eines Gemisches zum Betrieb einer Turbine wird also erreicht, dass ein sehr hohes Wärmegefälle des Wassers zur Kühlung ausgenützt wird, wobei schliesslich der überhitzte Dampf zusätzlich als Energieträger dient. Die Verdampfung des Wassers aus dem Wasserring erfolgt problemlos, da sich das eine geringere Dichte aufweisende heissere Wasser nach innen, zur freien Oberfläche des Wasserringes bewegt, von wo der Dampf in den offenen Brennraum zur Vermischung mit den Brenngasen gelangt. Das eine niedrigere Tempera¬ tur aufweisende Wasser wird an die Innenwand der Gehäuse- schale (15) zentrifugiert und dadurch unter Druck gesetzt, was eine Erhöhung der Wassersiedetemperatur bewirkt. Bei diesem Verfahren eines offenen Kühlprozesses wird dank der sehr hohen Kühlleistung des Wassers der Wasser¬ verbrauch im Rahmen bleiben.This is solved according to the invention by rotating the combustion chamber (2) together with the compressor / turbine part (1,3). In the combustion chamber (2), which is designed as a housing shell, there is a rotating water ring onto which the flame and fuel gas front is centrifuged. In particular, due to the cooling of the material by means of this water ring, steam continuously enters the fuel gases, which cools them, but the steam is overheated. This fuel gas / steam mixture now reaches the turbine and rotates the entire machine together with the combustion chamber. With this method of producing a mixture for operating a turbine, it is achieved that a very high heat gradient of the water is used for cooling, the superheated steam ultimately also serving as an energy source. The evaporation of the water from the water ring takes place without any problems, since the hotter water, which has a lower density, moves inwards to the free surface of the water ring, from where the steam reaches the open combustion chamber for mixing with the fuel gases. The water, which has a lower temperature, is centrifuged against the inner wall of the housing shell (15) and thereby pressurized, which causes an increase in the water boiling temperature. This process involves an open cooling process thanks to the very high cooling capacity of the water, water consumption remains within limits.
Eine zum Ausführen des in Anspruch 1 umschriebenen Ver¬ fahrens verwendbare Maschine zeigt die Figur 1 nach An-A machine which can be used to carry out the method described in claim 1 is shown in FIG.
5 spruch 2. Der Radialverdichter (1), die Turbine (3) und die Gehäuseschale (15) mit dem zum Verdichter und der Turbine offenen Brennraum (2) bilden als Rotationskörper eine Einheit, welche auf konventionelle Art gelagert werden kann (4). Der fixierte und zentrierte Leitschaufel-5 saying 2. The radial compressor (1), the turbine (3) and the housing shell (15) with the combustion chamber (2) open to the compressor and the turbine form a unit as a rotating body which can be stored in a conventional manner (4). The fixed and centered guide vane
10 apparat der Turbine (5) trennt zugleich den Brennraum (2) vom nach aussen offenen Wasserzuführ- und Wasserent¬ nahmeraum (7). Diese Trennung erfolgt durch eine dünne Scheibe am äusseren Umfang, welche in den rotierenden Wasserring hineintaucht. Mittels einem zum Beispiel bei10 apparatus of the turbine (5) at the same time separates the combustion chamber (2) from the water supply and water removal space (7), which is open to the outside. This separation takes place through a thin disc on the outer circumference, which dips into the rotating water ring. For example with a
15 Zentrifugen eingesetzten Schälrohres oder ähnlich dem bei einer Schälpumpe verwendeten Fangrohres (6) wird das Wasser zur Bildung des Wasserringes einer bestimmten Tiefe zugeführt und bei den sich im Brennraum zwangsläufig bil¬ denden Aenderungen der Wasserringtiefe wegen den Druck-15 centrifuges used peeling tube or similar to the collecting tube (6) used in a peeling pump, the water is fed to form the water ring to a certain depth and in the inevitably occurring changes in the combustion ring depth due to the pressure
20 und Drehzahlschwankungen auch wieder teilweise weggeführt, falls sich deswegen die Tiefe des Wasserringes im Brenn¬ raum (2) verringert. Diese hier vorgesehene mechanische Regelung des Wasserringes kann aber auch durch Wasserstands- meider erfolgen. Der Brennstoff wird mittels einer zentra-20 and speed fluctuations are also partially carried away again if the depth of the water ring in the combustion chamber (2) is therefore reduced. This mechanical regulation of the water ring provided here can also be carried out by water level avoiders. The fuel is
25 len, fixierten Leitung (8) in einen Hohlraum auf der Rück¬ seite des Radialverdichters (1) zugeführt und durch Oeff- nungen (9) in die verdichtete Luft hineinzentrifugiert. Das Luft-/Brennstoffgemisch wird nach Passieren von Schlit¬ zen (14) im äusseren Umfang des Verdichters oder einen25 len, fixed line (8) into a cavity on the back of the radial compressor (1) and centrifuged through openings (9) into the compressed air. The air / fuel mixture is after passing slits (14) in the outer circumference of the compressor or a
30 offenen Spalt in den Brennraum zentrifugiert, wo die Zün¬ dung auf konventionelle Art erfolgt. Die Flammenfront und die Brenngase treffen vorerst auf den kühlen Wasser¬ ring auf, was unter anderem eine reduzierte Bildung von Stickoxiden bewirkt. Um die Lagerseite (4) nicht einer hohen Erwärmung auszusetzen und zusätzlich vermehrt Dampf zur Kühlung zu erhalten, wird durch die in den Wasser¬ ring tauchende und mitrotierende Schottscheibe (10) ein nach aussen abgeschlossener Vorraum (11) des Brennraumes geschaffen- Die an den Oeffnungen (12) vorbeiströmende, verdichtete Luft saugt den Dampf aus dem Vorraum ab und bewirkt zudem, dass dort ein geringerer Druck als im Brennraum entsteht, was zu einer Erhöhung der Verdampfung sowie einem tieferen Wasserring im Vorraum (11) als im Brennraum (2) und damit einer erhöhten Kühlleistung des Wassers führt. Das Brenngase-/Dampfgemisch gelangt zentri¬ petal über die Leitschaufeln in die Radialturbine (3) und setzt die Turbine zusammen mit dem Brennraum in Rota¬ tion. Zur Regelung der Drehzahl und damit auch des Druckes der verdichteten Luft kann die Leitschaufelvorrichtung (5) axial verschiebbar gestaltet werden, so dass ein Bypass entsteht. Dieser Bypass ist insbesondere von Be¬ deutung, wenn das Brenngase-/Dampfgemisch nach dem Ver¬ lassen der Turbine in eine andere Turbine geleitet, als Schub oder als Prozessmedium verwendet wird. Mit diesem Bypass ist es möglich, auch im Teillastbetrieb optimal zu fahren. Eine Steigerung des Druckes der verdichteten Luft wird erreicht, wenn dem Radialverdichter ein ein- oder mehrstufiger Axialverdichter vorgeschaltet wird, welcher in der Hohlwelle ebenfalls mit dem Gehäuse rotiert.30 open gap centrifuged into the combustion chamber, where the ignition takes place in a conventional manner. The flame front and the combustion gases initially strike the cool water ring, which among other things causes a reduced formation of nitrogen oxides. Not one around the bearing side (4) Exposing to high heating and additionally receiving more steam for cooling, an antechamber (11) of the combustion chamber which is closed to the outside is created by the partition disk (10) which rotates and rotates in the water ring. The compressed air flowing past the openings (12) sucks the steam out of the anteroom and also causes a lower pressure there than in the combustion chamber, which leads to an increase in evaporation and a deeper water ring in the anteroom (11) than in the combustion chamber (2) and thus an increased cooling capacity of the water . The fuel gas / steam mixture passes centrifugally through the guide vanes into the radial turbine (3) and rotates the turbine together with the combustion chamber. To regulate the speed and thus also the pressure of the compressed air, the guide vane device (5) can be made axially displaceable, so that a bypass is created. This bypass is particularly important if the fuel gas / steam mixture is passed into another turbine after leaving the turbine, or is used as a thrust or as a process medium. With this bypass it is possible to drive optimally even in partial load operation. An increase in the pressure of the compressed air is achieved if the radial compressor is preceded by a single or multi-stage axial compressor which also rotates in the hollow shaft with the housing.
Diese Turbine im rotierenden Brennraum ist nun sowohl hinsichtlich der Herstellungskosten, der Betriebssicher¬ heit und der Wirtschaftlichkeit günstig ausgelegt. Auch sind für den Brennraum und den Turbinenteil keine besonders hohen Anforderungen bezüglich der Hitzebeständigkeit des Materials erforderlich. Das gleiche gilt bezüglich der Qualität des verwendeten Brennstoffes, wobei die Verbrennung im gekühlten Brennraum zu einer Minimierung von Schadstoffen führt. Die Ansprüche 3 - 7 sind abhängig vom unabhängigen Patent¬ anspruch 2, wobei die Unteransprüche 3 bis 6 verschiedene bekannte Anordnungen der Turbine betreffen, also die abgegebene Leistung der Gas-/Dampfturbine im rotierenden Brennraum mit Wasserkühlung.This turbine in the rotating combustion chamber is now designed to be inexpensive both in terms of production costs, operational reliability and economy. Also, the combustion chamber and the turbine part do not have to meet particularly high requirements with regard to the heat resistance of the material. The same applies to the quality of the fuel used, with combustion in the cooled combustion chamber minimizing pollutants. Claims 3-7 are dependent on independent patent claim 2, subclaims 3 to 6 relate to various known arrangements of the turbine, that is to say the output of the gas / steam turbine in the rotating combustion chamber with water cooling.
Der Anspruch 7 bezieht sich auf die Verdichterseite, wobei zur Druckerhöhung in den Brennraum nicht eine vermehrte Arbeitsleistung durch den Verdichter abverlangt wird, sondern durch Einspritzung von Wasser durch die zentrale und fixierte Leitung (13) und anschliessendem zentrifu¬ galem Ausschleudern in den Brennraum nach Passieren der Oeffnungen (9) die Zerstäubung des Wassers zu Hilfe genom¬ men wird. Die dabei entstehende Tröpfchenwand wirkt ähnlich einer Flüssigkeitswand, wodurch einem höheren Druck im Brennraum entgegengewirkt werden kann. Sollte dabei mehr Wasser in die Gehäuseschale gelangen als verdampft wird, erfolgt zwangsläufig eine Rückführung des überschüssigen Wassers mittels dem Zuführ-/Fangrohr (6). The claim 7 relates to the compressor side, whereby to increase the pressure in the combustion chamber not an increased amount of work is required by the compressor, but rather by injecting water through the central and fixed line (13) and subsequent centrifugal ejection into the combustion chamber after passing the orifices (9) help to atomize the water. The resulting droplet wall acts like a liquid wall, which means that a higher pressure in the combustion chamber can be counteracted. If more water gets into the housing shell than is evaporated, the excess water is inevitably returned by means of the feed / collecting pipe (6).

Claims

Patentansprüche Claims
1. Verfahren zur Herstellung eines Gemisches von Brenngasen und Dampf zum Betrieb einer Turbine, dadurch gekennzeichnet, dass die Gehäuseschale mit dem Brennraum als Einheit zu¬ sammen mit dem Verdichter und der Turbine rotiert, wobei sich in der Gehäuseschale ein mitdrehender Wasserring befindet, auf dessen Oberfläche die Flammenfront und die Brenngase zentrifugal auftreffen, wobei insbesondere durch die Materialkühlung mittels dem Wasserring Dampf gebildet wird, welcher seinerseits die Temperatur der Brenngase herabsetzt und wobei das so entstandene Gemisch von Brenn¬ gasen und Dampf zur Turbine gelangt, wodurch die ganze Gehäuseschale mit dem integrierten Verdichter und der Turbine in Rotation versetzt wird.1. A method for producing a mixture of fuel gases and steam for operating a turbine, characterized in that the housing shell rotates with the combustion chamber as a unit together with the compressor and the turbine, a rotating water ring being located in the housing shell on the latter Impact the surface of the flame front and the fuel gases centrifugally, steam being formed in particular by the material cooling by means of the water ring, which in turn lowers the temperature of the fuel gases and the mixture of fuel gases and steam thus obtained reaches the turbine, as a result of which the entire housing shell with the integrated compressor and the turbine is rotated.
2. Maschine zum Ausführen des Verfahrens nach Anspruch 1, dadurch gekennzeichnet, dass der Verdichter (1) und die Turbine zusammen mit der sie umgebenden Gehäuseschale (15), welche als Brennraum dient (2), rotiert, wobei der Leitschaufelapparat der Turbine (5) fixiert ist und seine Scheibe am äusseren Durchmesser in den in der Ge- häuseschale befindlichen, mitrotierenden Wasserring taucht, wodurch der Brennraum (2) vom nach aussen offenen Wasser¬ zuführraum (7) abgetrennt wird, so dass sich im Brennraum (2) ein Ueberdruck bilden kann, wobei in dem zum Verdichter und der Turbine offenen Brennraum das Brenngas-/Dampfgemisch zentripetal durch den fixierten Leitschaufelapparat in die Radialturbine gelangt, wodurch die ganze Maschine in Drehung versetzt wird und wobei im Brennraum, auf der Verdichterseite, wo sich die Lagerung des Drehkörpers befindet, eine Schottscheibe (10) angebracht ist, welche ebenfalls mitrotiert und dabei in den Wasserring tauchend einen Vorraum schafft (11), dadurch die Wärmewirkung auf auf die Lager reduziert und eine erhöhte Kühlleistung ermöglicht, indem die an den Oeffnungen (12) vorbeiströ¬ mende, verdichtete Luft wegen der entstehenden Sogwirkung im Vorraum (11) einen im Vergleich zum Brennraum niedri- geren Druck schafft, was zu einer erhöhten Verdampfung und einem tieferen Wasserring im Vorraum (11) führt und wobei durch axiales Verschieben des Leitschaufelapparates (5) ein Bypass geschaffen werden kann, so dass die Dreh¬ zahl geregelt werden kann und wobei sich die wegen Dreh- zahl- und Druckänderungen bewirkten Schwankungen der Tiefe des Wasserrringes im Brennraum (2) durch das Zuführ-/ Fangrohr (6) ausgeglichen werden kann, da sich jeweils auch die Wassermenge ändert und wobei dann das aus dem fixierten Leitschaufelapparat (5) zentral austretende Brenngas-/Dampfgemisch bei einem Restdruck einer Turbine zugeführt oder als Schub verwendet werden oder als Prozess- medium dienen kann.2. Machine for carrying out the method according to claim 1, characterized in that the compressor (1) and the turbine rotate together with the surrounding housing shell (15), which serves as a combustion chamber (2), the guide vane apparatus of the turbine (5 ) is fixed and its outer diameter is immersed in the co-rotating water ring located in the housing shell, whereby the combustion chamber (2) is separated from the water supply chamber (7) which is open to the outside, so that the combustion chamber (2) Overpressure can form, whereby in the combustion chamber open to the compressor and the turbine the fuel gas / steam mixture passes centripetal through the fixed guide vane apparatus into the radial turbine, whereby the whole machine is set in rotation and in the combustion chamber, on the compressor side, where the storage is of the rotating body, a partition disk (10) is attached, which also rotates and thereby creates a vestibule by diving into the water ring (11), thereby the heat effect reduced to the bearings and enables an increased cooling capacity in that the compressed air flowing past the openings (12) creates a lower pressure than the combustion chamber due to the suction effect in the antechamber (11), which leads to increased evaporation and leads to a deeper water ring in the anteroom (11) and a bypass can be created by axially displacing the guide vane apparatus (5) so that the speed can be regulated and the fluctuations in the depth of the pressure caused by speed and pressure changes The water ring in the combustion chamber (2) can be compensated for by the feed / collecting pipe (6), since the amount of water also changes and the fuel gas / steam mixture emerging centrally from the fixed guide vane apparatus (5) is then fed to a turbine at a residual pressure or can be used as a thrust or as a process medium.
3. Wassergekühlte Gas-/Dampfturbine mit rotierendem Brenn¬ raum nach Anspruch 2, aber ohne Leitschaufeln.3. Water-cooled gas / steam turbine with a rotating combustion chamber according to claim 2, but without guide vanes.
4. Wassergekühlte Gas-/Dampfturbine mit rotierendem Brenn¬ raum nach den Ansprüchen 2 und 3, aber mit Diagonalturbine.4. Water-cooled gas / steam turbine with a rotating combustion chamber according to claims 2 and 3, but with a diagonal turbine.
5. Wassergekühlte Gas-/Dampfturbine mit rotierendem Brenn¬ raum nach den Ansprüchen 2 und 3, aber mit Zentripetal¬ turbine.5. Water-cooled gas / steam turbine with rotating combustion chamber according to claims 2 and 3, but with Zentripetal¬ turbine.
6. Wassergekühlte Gas-/Dampfturbine mit rotierendem Brenn¬ raum mit gegenläufigem Turbinenrad anstelle des fixierten Leitschaufelapparates.6. Water-cooled gas / steam turbine with rotating combustion chamber with counter-rotating turbine wheel instead of the fixed vane apparatus.
7. Wassergekühlte Gas-/Dampfturbine mit rotierendem Brenn¬ raum nach den Ansprüchen 2 bis 6 mit Wassereinspritzung in die verdichtete Luft (13,9) zur Drucksteigerung und zusätzlichen Kühlung. 7. Water-cooled gas / steam turbine with rotating combustion chamber according to claims 2 to 6 with water injection into the compressed air (13.9) to increase pressure and additional cooling.
PCT/CH1989/000138 1988-08-01 1989-07-20 Rotary combustion chamber with water injection and water cooling for a turbine WO1990001625A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH288688 1988-08-01
CH2886/88-7 1988-08-01

Publications (1)

Publication Number Publication Date
WO1990001625A1 true WO1990001625A1 (en) 1990-02-22

Family

ID=4243811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH1989/000138 WO1990001625A1 (en) 1988-08-01 1989-07-20 Rotary combustion chamber with water injection and water cooling for a turbine

Country Status (2)

Country Link
EP (1) EP0383862A1 (en)
WO (1) WO1990001625A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5709076A (en) * 1992-09-14 1998-01-20 Lawlor; Shawn P. Method and apparatus for power generation using rotating ramjet which compresses inlet air and expands exhaust gas against stationary peripheral wall
WO1998007984A1 (en) * 1996-08-23 1998-02-26 Dragoljub Perunicic Motor propulsion unit having improved efficiency
US6298653B1 (en) 1996-12-16 2001-10-09 Ramgen Power Systems, Inc. Ramjet engine for power generation
US6347507B1 (en) 1992-09-14 2002-02-19 Ramgen Power Systems, Inc. Method and apparatus for power generation using rotating ramjets
US6446425B1 (en) 1998-06-17 2002-09-10 Ramgen Power Systems, Inc. Ramjet engine for power generation
NL1022803C2 (en) * 2003-02-28 2004-08-31 Micro Turbine Technology B V Micro reaction turbine with integrated combustion chamber and rotor.

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1594147A (en) * 1968-12-05 1970-06-01
GB1524259A (en) * 1976-11-12 1978-09-06 Lewis V D Turbines
GB2017222A (en) * 1978-03-20 1979-10-03 Chair R S De Gas Turbine Unit
GB2040359A (en) * 1979-01-15 1980-08-28 Simon J M Turbomachine
US4646515A (en) * 1986-01-10 1987-03-03 Guirguis Raafat H Two-phase engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1594147A (en) * 1968-12-05 1970-06-01
GB1524259A (en) * 1976-11-12 1978-09-06 Lewis V D Turbines
GB2017222A (en) * 1978-03-20 1979-10-03 Chair R S De Gas Turbine Unit
GB2040359A (en) * 1979-01-15 1980-08-28 Simon J M Turbomachine
US4646515A (en) * 1986-01-10 1987-03-03 Guirguis Raafat H Two-phase engine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5709076A (en) * 1992-09-14 1998-01-20 Lawlor; Shawn P. Method and apparatus for power generation using rotating ramjet which compresses inlet air and expands exhaust gas against stationary peripheral wall
US6347507B1 (en) 1992-09-14 2002-02-19 Ramgen Power Systems, Inc. Method and apparatus for power generation using rotating ramjets
US6510683B1 (en) * 1992-09-14 2003-01-28 Ramgen Power Systems, Inc. Apparatus for power generation with low drag rotor and ramjet assembly
WO1998007984A1 (en) * 1996-08-23 1998-02-26 Dragoljub Perunicic Motor propulsion unit having improved efficiency
US6298653B1 (en) 1996-12-16 2001-10-09 Ramgen Power Systems, Inc. Ramjet engine for power generation
US6334299B1 (en) 1996-12-16 2002-01-01 Ramgen Power Systems, Inc. Ramjet engine for power generation
US6434924B1 (en) 1996-12-16 2002-08-20 Ramgen Power Systems, Inc. Ramjet engine for power generation
US6446425B1 (en) 1998-06-17 2002-09-10 Ramgen Power Systems, Inc. Ramjet engine for power generation
NL1022803C2 (en) * 2003-02-28 2004-08-31 Micro Turbine Technology B V Micro reaction turbine with integrated combustion chamber and rotor.

Also Published As

Publication number Publication date
EP0383862A1 (en) 1990-08-29

Similar Documents

Publication Publication Date Title
DE60038012T2 (en) ROCKET MOTOR
CA1159264A (en) Multi-stage, wet steam turbine
DE102007007177B4 (en) Method and apparatus for cooling gas turbine rotor blades
US4441322A (en) Multi-stage, wet steam turbine
DE60124137T2 (en) SUCCESSIVE DOUBLE COOLING OF COMBUSTION TURBINE
EP1700009B1 (en) Method for operating a turbomachine, and corresponding turbomachine
DE19600679A1 (en) Thrust engine for aircraft with compound cycle
DE2147537A1 (en) Cooling device for the ends of turbine blades with air expansion
DE1142505B (en) Drive for the hub blower vertical take off and landing aircraft
DE3116923C2 (en)
DE3614157A1 (en) GAS TURBINE ENGINE
DE1601616A1 (en) Internal combustion engine
WO1990001625A1 (en) Rotary combustion chamber with water injection and water cooling for a turbine
EP1784557B1 (en) Fluid injection in a gas turbine during a cooling down period
EP0109957A1 (en) Explosion turbine
DE1133184B (en) Gas turbine engine with coaxially arranged and counter-rotating runners of a centripetal compressor and a centrifugal turbine and with a combustion chamber
EP1636461B1 (en) Turbomachine, in particular gas turbine
DE69736166T2 (en) Fuel atomization in a gas turbine by means of pre-cooled cooling air
DE3202358A1 (en) Tapered-ring vortex chamber for extreme acceleration of the vortex medium
DE10042314A1 (en) Gas turbine arrangement has fuel cell provided between compressor and turbine
DE1218218B (en) Deflagration gas turbine
AT117243B (en) Process for generating usable kinetic energy by converting thermal energy and device for its implementation.
DE4121995A1 (en) Aircraft turbo-propulsion unit - uses second and third stages of turbine to drive rotors of tangential fan
DE895208C (en) Process for increasing the utilization of natural gas sources and equipment for carrying out the process
DE477345C (en) Internal combustion turbine with auxiliary fluid

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1989907654

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1989907654

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1989907654

Country of ref document: EP