WO1991011208A1 - Ballon intra-aortique courbe a membrane de ballon gonflee non pliante - Google Patents
Ballon intra-aortique courbe a membrane de ballon gonflee non pliante Download PDFInfo
- Publication number
- WO1991011208A1 WO1991011208A1 PCT/US1991/000687 US9100687W WO9111208A1 WO 1991011208 A1 WO1991011208 A1 WO 1991011208A1 US 9100687 W US9100687 W US 9100687W WO 9111208 A1 WO9111208 A1 WO 9111208A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- balloon
- membrane
- catheter
- support means
- diameter
- Prior art date
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 58
- 238000005086 pumping Methods 0.000 claims abstract description 12
- 210000000709 aorta Anatomy 0.000 claims description 14
- 239000012530 fluid Substances 0.000 claims description 14
- 238000003780 insertion Methods 0.000 claims description 14
- 230000037431 insertion Effects 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 14
- 230000000747 cardiac effect Effects 0.000 claims description 10
- 230000007423 decrease Effects 0.000 claims description 7
- 238000012544 monitoring process Methods 0.000 claims description 5
- 239000007787 solid Substances 0.000 claims description 3
- 239000013536 elastomeric material Substances 0.000 claims 2
- 210000002376 aorta thoracic Anatomy 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 abstract description 3
- 239000000463 material Substances 0.000 description 7
- 210000001367 artery Anatomy 0.000 description 5
- 229920002635 polyurethane Polymers 0.000 description 5
- 239000004814 polyurethane Substances 0.000 description 5
- 238000001125 extrusion Methods 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000011796 hollow space material Substances 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- CWEFIMQKSZFZNY-UHFFFAOYSA-N pentyl 2-[4-[[4-[4-[[4-[[4-(pentoxycarbonylamino)phenyl]methyl]phenyl]carbamoyloxy]butoxycarbonylamino]phenyl]methyl]phenyl]acetate Chemical compound C1=CC(CC(=O)OCCCCC)=CC=C1CC(C=C1)=CC=C1NC(=O)OCCCCOC(=O)NC(C=C1)=CC=C1CC1=CC=C(NC(=O)OCCCCC)C=C1 CWEFIMQKSZFZNY-UHFFFAOYSA-N 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/80—Constructional details other than related to driving
- A61M60/841—Constructional details other than related to driving of balloon pumps for circulatory assistance
- A61M60/843—Balloon aspects, e.g. shapes or materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/10—Location thereof with respect to the patient's body
- A61M60/122—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
- A61M60/126—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
- A61M60/135—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel inside a blood vessel, e.g. using grafting
- A61M60/139—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel inside a blood vessel, e.g. using grafting inside the aorta, e.g. intra-aortic balloon pumps
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/20—Type thereof
- A61M60/295—Balloon pumps for circulatory assistance
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/80—Constructional details other than related to driving
- A61M60/855—Constructional details other than related to driving of implantable pumps or pumping devices
- A61M60/865—Devices for guiding or inserting pumps or pumping devices into the patient's body
- A61M60/867—Devices for guiding or inserting pumps or pumping devices into the patient's body using position detection during deployment, e.g. for blood pumps mounted on and driven through a catheter
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/32—General characteristics of the apparatus with radio-opaque indicia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/20—Type thereof
- A61M60/247—Positive displacement blood pumps
- A61M60/253—Positive displacement blood pumps including a displacement member directly acting on the blood
- A61M60/268—Positive displacement blood pumps including a displacement member directly acting on the blood the displacement member being flexible, e.g. membranes, diaphragms or bladders
- A61M60/274—Positive displacement blood pumps including a displacement member directly acting on the blood the displacement member being flexible, e.g. membranes, diaphragms or bladders the inlet and outlet being the same, e.g. para-aortic counter-pulsation blood pumps
Definitions
- the present invention relates to devices such as intra aortic balloon pumps (IABPs) wherein an inflatable envelope or balloon mounted on the end of a long catheter is inserted through a blood vessel to a position in the aorta where it is operated to supplement the cardiac pumping action.
- IABPs intra aortic balloon pumps
- a manifold or handle is mounted to provide a separate fluid connection to each of an inner and an outer tube, which extend for a length of one-half to one meter from the handle.
- a balloon is mounted to be inflated by the outer tube, while the inner tube extends through the balloon to provide a lumen for sampling or administering fluids on the far (cardiac) side of the balloon.
- Various balloon shapes are known.
- Insertion of the balloon to a site in the aorta is accomplished by first compacting the uninflated balloon, by folding, wrapping, twisting or the like, and then inserting the compacted balloon assembly through an artery using a guide wire and/or sheath to guide it past irregularities or branches in the artery. Care must be taken during insertion to avoid trauma or perforation, particularly when the balloon is passing branches or curves of the artery.
- Balloons have also been designed with a curved shape to better enable the balloon to follow a curved arterial passage or to permit the balloon to remain stably positioned in a curved arterial section during pumping.
- An example of such a balloon is described in U.S. Patent Application Serial No. 257,752 filed October 14, 1988.
- IAB intra aortic balloons
- a pressure differential along the length of the balloon develops.
- the cardiac (forward) end of the balloon is exposed to a higher pressure than the opposite (tail) end of the balloon.
- This pressure differential may cause an undesirable folding in the tail end of the balloon.
- the folding of the balloon reduces the lifetime and reliability of the device as it adds stress to the balloon membrane and could eventually lead to premature failure. It would be advantageous to provide an IAB which would exhibit a relatively long operational life. It is thus an object of the invention to provide a reliable insertable arterial balloon assembly adapted to be positioned in a curved arterial passage.
- a further object of the invention is to provide a balloon reliable in actual use, which may also be easily compacted and prepared for insertion into the body.
- the invention provides a curved intra aortic balloon, the membrane of which is maintained under slight tension in the inflated condition.
- the tensioning of the balloon membrane has been found to prevent, or significantly minimize, the tendency of the balloon to form folds in its tail end (i.e., the end exposed to lower pressure and typically distal to the heart) while in the inflated condition.
- the balloon constructed of a polymeric membrane, has a longitudinal axis which may be straight, but preferably is slightly curvilinear.
- the maximum diameter of the balloon along the short axis lies in a plane transverse to the long axis of the balloon and is positioned intermediate the ends of the balloon.
- the diameter of the balloon tapers from the area of greatest diameter toward each end of the balloon with the plane of maximum diameter closer to the tail end than to the front end.
- a catheter for supplying a fluid or gas to control the inflation of the balloon is attached to the end distal to the heart (tail end) of the balloon. At this tail end the balloon tapers to approximately the diameter of the catheter.
- a member which serves to provide support and a curvilinear shape to the inflated balloon, is disposed within and extends from the catheter into the balloon where it terminates at the tip of the balloon which is proximal to the heart.
- this member is a second, or interior, pressure monitoring lumen (PML) which also provides a pressure and/or fluid monitoring function, as well as a fluid administration function.
- the PML is adjacent to and in contact with the outer curve of the balloon membrane while the balloon is inflated.
- the second lumen preferably is equal in length to the outer curve of the balloon wall. It has been found that by making the member of a length which is at least equal to that of the outer curve of the balloon wall, tension is imparted to the entire balloon membrane. This tension prevents, or substantially minimizes, the tendency of the inflated balloon to form folds during pumping. Most preferably, the portion of the outer wall upon which the second lumen resides is of a thickness slightly greater than the remainder of the balloon membrane. In another embodiment of the invention, the portion of the second lumen disposed within the balloon need not initially be of a length equal to that of the outer curve of the balloon wall. Instead, tension may be imparted to the membrane of the inflated balloon by extending the second lumen forward toward the cardiac end of the balloon. The forward displacement of the second lumen applies tension to the balloon membrane to eliminate the presence of excess membrane in the tail end which would lead to the formation tail folds.
- the invention also provides a method of folding the balloon in which a compact structure, easily inserted into an artery, is formed.
- Figure 1 is a perspective view of an inflated catheter balloon of the invention positioned within the ascending aorta.
- Figure 2 is a generally plan view of an intra aortic balloon device according to the present invention with the balloon in the deflated position.
- Figure 3 is a sectional view along lines 3-3 of the balloon illustrated in Figure 2.
- Figure 4 is a perspective view of a deflated intra aortic balloon pump according to another embodiment of the invention in which a member disposed within the balloon is laterally displaceable.
- Figures 5A through 5E are schematic views illustrating the method of folding a balloon according to the present invention.
- Figure 6A is a sectional view of an intra aortic balloon of the present invention.
- Figure 6B is a detail view of a portion of Figure 6A.
- Figure 7A is a sectional view of an intra aortic balloon of the present invention.
- Figure 7B is a detail view of a portion of Figure 7A.
- Intra aortic balloon pumps “IABPs” and their method of operation are now well known in the art.
- the balloon component of IABPs may be substantially linear or may be curved. Curved balloon structures are disclosed in U.S. Patent Application Serial Nos.
- the balloon dimensions change as a function of transmembrane pressure.
- the balloon is designed to operate under positive transmembrane pressure, which is partially a function of the diameter of a vessel which it is to occlude.
- positive transmembrane pressure is partially a function of the diameter of a vessel which it is to occlude.
- the higher the transmembrane pressure the greater the balloon diameter and volume should be.
- positive transmembrane pressure exists, there is less likelihood of folding of the balloon membrane. Often balloon folding can be eliminated by controlling the internal pressure and diameter of the balloon.
- Figure 1 generally illustrates the application of an intra aortic balloon (IAB) device 10 of the present invention in which a catheter balloon 12 having an inflatable balloon membrane is positioned in an inflated condition within the ascending aorta 14.
- IAB intra aortic balloon
- the IAB device of the present invention comprises an inflation catheter 16 connected between a catheter balloon 12 on one end and a handle 18 on the other end.
- the handle 18 serves as a fluid manifold for connection to a pulsed source of inflation fluid via port 28.
- the catheter 16 has disposed therein a member (or inner lumen) 22 which extends from handle 18 to the tip 24 of the balloon which is proximal to the heart.
- the inner lumen 22 preferably is a hollow pressure monitoring lumen (PML) which connects a pressure monitoring and fluid sampling port 26 at the proximal end 24 of the balloon 12 with a second port 20 on handle 18.
- PML hollow pressure monitoring lumen
- member 22 serves to monitor pressure and fluids on the cardiac side of the balloon as well as to provide support and curvature to the balloon.
- lumen 22 may simply be a support member constructed of a hollow or solid material.
- the inflation catheter 16 and lumen 22 may be constructed and joined in virtually any manner known 0 in the art.
- Figures 6A and 6B illustrate a preferred embodiment in which a bushing 17 is disposed at an end of inflation catheter 16, forward of vents 19.
- the bushing 17 fits securely within the terminal end of catheter 16 and surrounds lumen 22. 5
- This construction is advantageous as bushing 17 prevents relative movement, such as rotational movement, between inflation catheter 16 and lumen 22.
- the diameter of catheter 16 may be reduced toward a terminal 0 portion of the catheter, preferably at approximately location 21 where the end of the balloon 23 envelopes catheter 16.
- the terminal end 65 of catheter 16 decreases in diameter until its inside diameter is substantially equal to the outside diameter of lumen 30 22.
- the tapered end 65 of catheter 16 may have a cap element 67 inserted thereon.
- the cap element 67 preferably is made of a radiopaque material such as steel.
- the balloon end 30 of the IAB device 10 is cylindroidal in shape and is formed with an intrinsic curvature such that both the balloon 12 and the adjacent terminal portion 32 of inflation catheter 16 are curved.
- a separate stiffening member 34 is adapted to fit within the inflation catheter 16 and lumen 22 for straightening the curved end of the device 10 during the initial stages of balloon insertion.
- the stiffening member 34 fits within a central port, e.g., port 20, and may be extended through the inner lumen 22 and/or inflation catheter 16 to the balloon tip 24.
- Knob 36 mounted to the end of member 34, locks to a mating fitting on handle 18 by a bayonet mount, locking Luner fitting, or the like, 29 to secure the member in position.
- the balloon 12 is cylindroidal, having a curved, generally elongate structure.
- the balloon In the inflated condition, shown in Figure 1, the balloon has maximum diameter transverse to its longitudinal axis at a plane 38, somewhat behind the midpoint of the balloon along the balloon's longitudinal axis. From its end 24 proximal to the heart, the inflated balloon increases in diameter to its maximum diameter 38. The diameter of the balloon then decreases from point 38 to the distal end 40 of the balloon. The balloon at distal end 40 tapers such that the end of inflating catheter 16 fits within and is secured to the balloon. When the balloon is inflated, its largest diameter is sufficient to occlude the aorta.
- the wall thickness of the balloon membrane 13 typically is approximately 3-5 mils, however, the membrane may feature reinforced areas of increased thickness which may be from about 1.2 to 1.6 times thicker than the remainder of the wall.
- tail folding is a phenomenon which results in the occurrence of indentations in which portions of the balloon membrane in the distal (tail) end 40 of the balloon 12 buckle and extend into the balloon interior. Tail folding tends to weaken the balloon and may result in membrane failure after extended use. It is believed that this phenomenon is due to a combination of the shape of the balloon membrane coupled with the pressure gradient between the proximal 24 and distal 40 ends of the balloon. According to the invention, tail folding is eliminated, or greatly reduced, by placing the entire balloon membrane under tension.
- the inner lumen 22 preferably has a terminal section 48 disposed within balloon 12.
- Terminal section 48 is substantially equal in length to the outer curve 50 of the balloon wall.
- the equal lengths of the balloon wall and terminal section 48 of lumen 22 results in the application of tension to the balloon membrane.
- the terminal section 48 deforms to fit within the balloon and to match the curvature of the balloon, thus causing it to contact the outer curve 50 of the balloon wall throughout its length.
- the tension applied to the balloon membrane eliminates the availability of excess material in the tail end of the balloon which otherwise may form tail folds.
- the membrane wall at outer curve 50 has a thickness slightly greater than the thickness of the remaining portions of the wall.
- the thickness of wall at the outer curve 50 is 1.2 to 1.6 times greater than the wall thickness of the remaining areas of the balloon membrane.
- the balloon length, from tip to tail preferably is approximately 100mm.
- tension may be applied selectively to the balloon membrane by advancing the lumen 22 so as to increase the effective length of the terminal section 48 of lumen 22 which is disposed within balloon 12. In doing so, the lumen 22 will press against the proximal tip 24 of the balloon, causing the balloon membrane to be stretched and thus eliminate the availability of the excess membrane which could form tail folds. Sufficient tension may be applied to the balloon membrane to eliminate tail folding by extending the lumen 22 within the balloon by an amount sufficient to bring the lumen 22 into contact with the interior wall 51 of the balloon.
- lumen 22 preferably is a hollow lumen used to monitor pressure and to sample fluids on the cardiac side of the balloon.
- lumen 22 may be a solid or hollow member which simply provides support and assists in maintaining balloon curvature.
- lumen 22 may be manufactured of a polymeric material, such as polyurethane, by known extrusion techniques.
- Exemplary polyurethane materials from which lumen 22 may be manufactured include those sold by Dow Chemical Company under the trade name "Isoplast
- member 22 may consist of a spiral wound wire tube or the like.
- Catheter 16, like lumen (or member) 22, may also be formed of similar polyurethane materials, using known extrusion techniques.
- the balloon typically is manufactured by dip coating a mandrel with a polymeric material such as polyurethane.
- polyurethanes include “Texin”, available from Mobay Chemical company; "Avcothene - 51", available from Kontron Cardiovascular, Inc. "Angioflex” available from Abiomed, Inc., and “Biomer” available from Ethicon, Inc.
- the volumetric compliance of the balloon membrane is about 5 to 15 cc/lOOmm Hg transmembrane pressure.
- the preferred diameter compliance of the balloon membrane ranges from about 2 - 5 mm/lOOmm Hg transmembrane pressure.
- the balloon is formed in an inflated shape in a three dimensional condition on a mandrel.
- the balloon is formed upon a thin, flat die so that it is manufactured in a substantially two-dimensional condition.
- it is heat-formed to produce at its terminal end a radius of curvature of about 2 to 5 centimeters in a region of tubing extending over a distance of about 10 to 20 centimeters from the end of the catheter.
- Lumen 22 similarly is subjected to a heat-forming process to attain a similar degree of curvature. Virtually any technique may be utilized to attain similar degrees of curvature for catheter 16 and lumen 22.
- the lumen 22 may be placed inside, or along side, the catheter 16, and the two tubes may then be aligned in a jig such that the curvature of lumen 22 matches that of the terminal end of catheter 16. With the tubes held in this alignment, the balloon and handle may then be mounted at opposed ends of the assembly. Suitable assembly techniques for attaching the balloon are well known and include solvent bonding, RF welding, heat welding and adhesive or other bonding. During assembly, radio opaque markers are placed at the end of the catheter and at the end of lumen 22, in a manner known in the art. This permits fluoroscopic visualization of the balloon and its direction of curvature during insertion.
- Stiffening member 34 may be constructed of nineteen gauge regular wall stainless steel tube stock. This material provides adequate stiffness and resistance to lateral bending so that member 34 may overcome the curvature of the inflation catheter and lumen 22. While a solid metal rod, preferably a wire under one millimeter in diameter, could also be used, the steel tubing is preferred because it may be placed over a guide wire to facilitate insertion of the balloon assembly in a blood vessel.
- Figures 5A through 5E illustrate another aspect of the invention which permits more compact wrapping of the balloon 12 and facilitates ease of insertion of the balloon 12 into an artery.
- the balloon 12 and the terminal end of the catheter 32 assume a curved profile, and lumen 22 resides on the outer curve 50 of the balloon membrane as in the embodiment illustrated in Figures 1 through 3.
- the balloon 12 illustrated in Figure 5A is in the deflated condition and the balloon membrane hangs down from and is supported by lumen 22.
- the balloon of Figure 5A is prepared for wrapping and insertion by first inserting a stiffening member 34 through the lumen 22 such that it extends to the tip 24 of the balloon. As shown in Figure 5B, this step results in a straightening (and stretching) of the terminal end 32 of the inflation catheter 16 and of the balloon 12. At the same time, lumen 22 is drawn away from the outer curve 50 of the balloon membrane 13.
- the lumen 22 is manually moved to the center of the balloon and the balloon is fully evacuated, causing lumen 22 to be pressed between the two opposed walls of the membrane 13 and thus held in place.
- the balloon membrane 13 is completely flat and the lumen 22 is positioned at a central portion of the balloon 12.
- the balloon has left 52 and right 54 segments which fold over lumen 22.
- the balloon may be wrapped around the lumen 22 by wrapping both the left 52 and right 54 segments of the balloon 12 around the lumen 22 in the same direction in a generally spiral configuration as illustrated in Figure 5E. This procedure yields a compact, easily insertable IABP device.
- stiffening member 34 Although it is preferable to insert the stiffening member 34 through lumen 22 while wrapping the balloon, it is also possible to wrap a balloon by inserting a stiffening member into the interior of the balloon, alongside lumen 22. Also, it is possible to utilize a stiffening member having a diameter greater than that of the lumen and to insert the stiffening member such that it surrounds all or part of the lumen.
Landscapes
- Health & Medical Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Engineering & Computer Science (AREA)
- Cardiology (AREA)
- Biomedical Technology (AREA)
- Veterinary Medicine (AREA)
- Mechanical Engineering (AREA)
- Anesthesiology (AREA)
- Public Health (AREA)
- Hematology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Vascular Medicine (AREA)
- Physics & Mathematics (AREA)
- Geometry (AREA)
- Transplantation (AREA)
- External Artificial Organs (AREA)
Abstract
Un dispositif de pompage de ballon intra-aortique comprend un ballon de pompage (12), un cathéter de gonflage connecté (16), un élément de support (22) disposé à l'intérieur du cathéter (16) et s'étendant jusque dans le ballon (12). La membrane du ballon de l'invention résiste à la formation de plis dans la membrane, dans la partie arrière (40) du ballon. On croit que cette caractéristique de la membrane du ballon résulte de l'addition de tension à la membrane du ballon. On peut appliquer une tension à la membrane en assurant que la partie de l'élément de support (22) disposée à l'intérieur du ballon (12) est égale à la longueur de la courbe extérieure de la paroi du ballon, de sorte qu'elle demeure sur une courbe extérieure de la paroi. Selon un autre mode de réalisation, on peut appliquer une tension en prolongeant l'élément de support (22) à l'intérieur du ballon.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US47452990A | 1990-02-01 | 1990-02-01 | |
US474,529 | 1990-02-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1991011208A1 true WO1991011208A1 (fr) | 1991-08-08 |
Family
ID=23883908
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1991/000687 WO1991011208A1 (fr) | 1990-02-01 | 1991-01-31 | Ballon intra-aortique courbe a membrane de ballon gonflee non pliante |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO1991011208A1 (fr) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0836501A4 (fr) * | 1995-06-07 | 1999-08-25 | Heartport Inc | Systeme endovasculaire d'arret du coeur |
WO2014052368A1 (fr) * | 2012-09-28 | 2014-04-03 | Ninepoint Medical, Inc. | Dispositif de mise sous tension mécanique |
EP3503939A4 (fr) * | 2016-08-24 | 2020-03-18 | Nupulsecv, Inc. | Ensemble de pompe à sang et son procédé d'utilisation. |
US12156978B2 (en) | 2019-05-17 | 2024-12-03 | Nupulsecv, Inc. | Intravascularly delivered blood pumps and associated devices, systems, and methods |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2037166A (en) * | 1978-11-15 | 1980-07-09 | Datascope Corp | Elongatable balloon catheter |
DE2915089A1 (de) * | 1978-03-06 | 1980-10-30 | Datascope Corp | Ballonkatheder |
EP0047465A1 (fr) * | 1980-09-10 | 1982-03-17 | Kontron Incorporated | Cathéter à ballon sous-cutané |
US4327709A (en) * | 1978-03-06 | 1982-05-04 | Datascope Corp. | Apparatus and method for the percutaneous introduction of intra-aortic balloons into the human body |
US4576142A (en) * | 1982-11-19 | 1986-03-18 | Peter Schiff | Percutaneous intra-aortic balloon and method for using same |
EP0194338A2 (fr) * | 1985-03-14 | 1986-09-17 | Shelhigh, Inc. | Méthode et dispositif de l'assistance intra-aortique |
EP0277369A2 (fr) * | 1987-01-06 | 1988-08-10 | Advanced Cardiovascular Systems, Inc. | Cathéter dilatateur à ballon coudé |
-
1991
- 1991-01-31 WO PCT/US1991/000687 patent/WO1991011208A1/fr unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2915089A1 (de) * | 1978-03-06 | 1980-10-30 | Datascope Corp | Ballonkatheder |
US4327709A (en) * | 1978-03-06 | 1982-05-04 | Datascope Corp. | Apparatus and method for the percutaneous introduction of intra-aortic balloons into the human body |
GB2037166A (en) * | 1978-11-15 | 1980-07-09 | Datascope Corp | Elongatable balloon catheter |
EP0047465A1 (fr) * | 1980-09-10 | 1982-03-17 | Kontron Incorporated | Cathéter à ballon sous-cutané |
US4576142A (en) * | 1982-11-19 | 1986-03-18 | Peter Schiff | Percutaneous intra-aortic balloon and method for using same |
EP0194338A2 (fr) * | 1985-03-14 | 1986-09-17 | Shelhigh, Inc. | Méthode et dispositif de l'assistance intra-aortique |
EP0277369A2 (fr) * | 1987-01-06 | 1988-08-10 | Advanced Cardiovascular Systems, Inc. | Cathéter dilatateur à ballon coudé |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6913600B2 (en) | 1991-07-16 | 2005-07-05 | Heartport, Inc. | Endovascular system for arresting the heart |
EP0836501A4 (fr) * | 1995-06-07 | 1999-08-25 | Heartport Inc | Systeme endovasculaire d'arret du coeur |
WO2014052368A1 (fr) * | 2012-09-28 | 2014-04-03 | Ninepoint Medical, Inc. | Dispositif de mise sous tension mécanique |
EP3503939A4 (fr) * | 2016-08-24 | 2020-03-18 | Nupulsecv, Inc. | Ensemble de pompe à sang et son procédé d'utilisation. |
US11684768B2 (en) | 2016-08-24 | 2023-06-27 | Nupulsecv, Inc. | Blood pump assembly and method of use thereof |
US12156978B2 (en) | 2019-05-17 | 2024-12-03 | Nupulsecv, Inc. | Intravascularly delivered blood pumps and associated devices, systems, and methods |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5116305A (en) | Curved intra aortic balloon with non-folding inflated balloon membrane | |
US4943275A (en) | Insertable balloon with curved support | |
US5456665A (en) | Intra-aortic balloon catheter | |
US5209727A (en) | Guide wire with integral angioplasty balloon | |
EP1545686B1 (fr) | Sonde a ballonnet intra-aortique comportant un tube interieur pliable de diametre variable | |
EP0707865A1 (fr) | Cathéter avec canal pour un fil de guidage | |
US5711754A (en) | Intra-aortic balloon catheter | |
US5470314A (en) | Perfusion balloon catheter with differential compliance | |
EP0357562B1 (fr) | Cathéter de dilatation | |
EP0611582A2 (fr) | Cathéter intra-aortique à ballonet, sur le guide, à un seul lumen | |
EP0194338A2 (fr) | Méthode et dispositif de l'assistance intra-aortique | |
EP0363203A2 (fr) | Ballonnet d'assistance cardiaque et procédé d'insertion | |
EP1683541A2 (fr) | Cathéter à ballon utilisable pour positioner un stent dans une partie courbe d'un vaisseau sanguin | |
US20030032974A1 (en) | Reduced size intra-aortic balloon catheter | |
JPH11262529A (ja) | バルーンカテーテル | |
WO2000027461A1 (fr) | Sonde a ballonnet intra-aortique ayant une membrane moulee par soufflage etirable ultrafine | |
EP0351734A1 (fr) | Cathéter à ballonnet | |
EP1736184B1 (fr) | Catheter a ballon | |
WO1991011208A1 (fr) | Ballon intra-aortique courbe a membrane de ballon gonflee non pliante | |
US20060178731A1 (en) | Apparatus for aiding the flow of blood through patient's circulatory system | |
US6497678B2 (en) | Intra-aortic balloon catheter having a variable diameter inner tube | |
CN218485007U (zh) | 局部抗弯折导管组件及主动脉内球囊泵 | |
US20020138093A1 (en) | Intra-aortic balloon catheter having a gas lumen insert | |
US20250127516A1 (en) | Multi-lumen catheter | |
JP4492182B2 (ja) | 大動脈内バルーンカテーテル |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CA JP |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE |
|
NENP | Non-entry into the national phase |
Ref country code: CA |