WO1991019761A1 - Composition pour dispositifs dynamiques - Google Patents
Composition pour dispositifs dynamiques Download PDFInfo
- Publication number
- WO1991019761A1 WO1991019761A1 PCT/US1991/004049 US9104049W WO9119761A1 WO 1991019761 A1 WO1991019761 A1 WO 1991019761A1 US 9104049 W US9104049 W US 9104049W WO 9119761 A1 WO9119761 A1 WO 9119761A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- dynamic means
- composition
- para
- vulcanized
- halogen
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 92
- 229920001577 copolymer Polymers 0.000 claims abstract description 68
- 229910052736 halogen Inorganic materials 0.000 claims abstract description 27
- 150000002367 halogens Chemical class 0.000 claims abstract description 27
- 239000006229 carbon black Substances 0.000 claims abstract description 23
- 239000004014 plasticizer Substances 0.000 claims abstract description 19
- 239000003921 oil Substances 0.000 claims description 20
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 claims description 18
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 claims description 18
- 229910052794 bromium Inorganic materials 0.000 claims description 18
- 239000003795 chemical substances by application Substances 0.000 claims description 18
- 239000000945 filler Substances 0.000 claims description 15
- 239000000654 additive Substances 0.000 claims description 13
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical group CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 claims description 11
- 230000000996 additive effect Effects 0.000 claims description 10
- 238000010058 rubber compounding Methods 0.000 claims description 10
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims description 8
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 claims description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 6
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 6
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 4
- 239000006096 absorbing agent Substances 0.000 claims description 4
- 239000003963 antioxidant agent Substances 0.000 claims description 4
- 229910000019 calcium carbonate Inorganic materials 0.000 claims description 4
- 239000000460 chlorine Substances 0.000 claims description 4
- 229910052801 chlorine Inorganic materials 0.000 claims description 4
- 239000003381 stabilizer Substances 0.000 claims description 4
- 239000004927 clay Substances 0.000 claims description 3
- 229910052570 clay Inorganic materials 0.000 claims description 3
- 239000000049 pigment Substances 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- 239000000725 suspension Substances 0.000 claims description 3
- 239000004408 titanium dioxide Substances 0.000 claims description 3
- 239000011787 zinc oxide Substances 0.000 claims description 3
- 239000010690 paraffinic oil Substances 0.000 claims 2
- 238000009472 formulation Methods 0.000 description 21
- 150000003254 radicals Chemical class 0.000 description 12
- 229920001971 elastomer Polymers 0.000 description 11
- -1 iodine. it is Chemical compound 0.000 description 11
- 239000005060 rubber Substances 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 10
- 230000026030 halogenation Effects 0.000 description 10
- 238000005658 halogenation reaction Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- 238000002156 mixing Methods 0.000 description 10
- 229920000642 polymer Polymers 0.000 description 10
- 238000006116 polymerization reaction Methods 0.000 description 10
- 239000003999 initiator Substances 0.000 description 9
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 9
- 239000003085 diluting agent Substances 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 7
- 238000009826 distribution Methods 0.000 description 7
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 6
- 230000032683 aging Effects 0.000 description 6
- 238000005893 bromination reaction Methods 0.000 description 6
- 239000003054 catalyst Substances 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 238000013016 damping Methods 0.000 description 5
- 229930195733 hydrocarbon Natural products 0.000 description 5
- 150000002430 hydrocarbons Chemical class 0.000 description 5
- 239000000178 monomer Substances 0.000 description 5
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 238000007086 side reaction Methods 0.000 description 5
- 239000002002 slurry Substances 0.000 description 5
- 238000004073 vulcanization Methods 0.000 description 5
- 239000004215 Carbon black (E152) Substances 0.000 description 4
- 125000001246 bromo group Chemical group Br* 0.000 description 4
- 239000003518 caustics Substances 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 238000004132 cross linking Methods 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 230000036316 preload Effects 0.000 description 4
- 230000000717 retained effect Effects 0.000 description 4
- 230000035939 shock Effects 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Natural products C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 230000031709 bromination Effects 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007334 copolymerization reaction Methods 0.000 description 3
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 229930195729 fatty acid Natural products 0.000 description 3
- 150000004665 fatty acids Chemical class 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 239000004322 Butylated hydroxytoluene Substances 0.000 description 2
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 2
- 241001441571 Hiodontidae Species 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 241000063973 Mattia Species 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 235000021355 Stearic acid Nutrition 0.000 description 2
- 238000007792 addition Methods 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 229920005557 bromobutyl Polymers 0.000 description 2
- 229920005549 butyl rubber Polymers 0.000 description 2
- 235000010354 butylated hydroxytoluene Nutrition 0.000 description 2
- NEHMKBQYUWJMIP-UHFFFAOYSA-N chloromethane Chemical compound ClC NEHMKBQYUWJMIP-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000006356 dehydrogenation reaction Methods 0.000 description 2
- 125000000664 diazo group Chemical group [N-]=[N+]=[*] 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- UAIZDWNSWGTKFZ-UHFFFAOYSA-L ethylaluminum(2+);dichloride Chemical compound CC[Al](Cl)Cl UAIZDWNSWGTKFZ-UHFFFAOYSA-L 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- 229920005555 halobutyl Polymers 0.000 description 2
- 239000011968 lewis acid catalyst Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000006386 neutralization reaction Methods 0.000 description 2
- 150000002825 nitriles Chemical class 0.000 description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 2
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 229920001568 phenolic resin Polymers 0.000 description 2
- 239000005011 phenolic resin Substances 0.000 description 2
- 239000010734 process oil Substances 0.000 description 2
- 239000012763 reinforcing filler Substances 0.000 description 2
- 239000008117 stearic acid Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- OKIRBHVFJGXOIS-UHFFFAOYSA-N 1,2-di(propan-2-yl)benzene Chemical compound CC(C)C1=CC=CC=C1C(C)C OKIRBHVFJGXOIS-UHFFFAOYSA-N 0.000 description 1
- YHMYGUUIMTVXNW-UHFFFAOYSA-N 1,3-dihydrobenzimidazole-2-thione Chemical compound C1=CC=C2NC(S)=NC2=C1 YHMYGUUIMTVXNW-UHFFFAOYSA-N 0.000 description 1
- OWRCNXZUPFZXOS-UHFFFAOYSA-N 1,3-diphenylguanidine Chemical compound C=1C=CC=CC=1NC(=N)NC1=CC=CC=C1 OWRCNXZUPFZXOS-UHFFFAOYSA-N 0.000 description 1
- UFFVWIGGYXLXPC-UHFFFAOYSA-N 1-[2-(2,5-dioxopyrrol-1-yl)phenyl]pyrrole-2,5-dione Chemical compound O=C1C=CC(=O)N1C1=CC=CC=C1N1C(=O)C=CC1=O UFFVWIGGYXLXPC-UHFFFAOYSA-N 0.000 description 1
- COXCGWKSEPPDAA-UHFFFAOYSA-N 2,4-dimethylpentanenitrile Chemical compound CC(C)CC(C)C#N COXCGWKSEPPDAA-UHFFFAOYSA-N 0.000 description 1
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 description 1
- CDAWCLOXVUBKRW-UHFFFAOYSA-N 2-aminophenol Chemical class NC1=CC=CC=C1O CDAWCLOXVUBKRW-UHFFFAOYSA-N 0.000 description 1
- ZNSYJEVQJBFRPX-UHFFFAOYSA-N 2-benzyl-1,1-bis(sulfanylidene)-1,3-thiazole Chemical compound S=S1(=S)C=CN=C1CC1=CC=CC=C1 ZNSYJEVQJBFRPX-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 1
- PDQAZBWRQCGBEV-UHFFFAOYSA-N Ethylenethiourea Chemical compound S=C1NCCN1 PDQAZBWRQCGBEV-UHFFFAOYSA-N 0.000 description 1
- 238000005727 Friedel-Crafts reaction Methods 0.000 description 1
- NHTMVDHEPJAVLT-UHFFFAOYSA-N Isooctane Chemical compound CC(C)CC(C)(C)C NHTMVDHEPJAVLT-UHFFFAOYSA-N 0.000 description 1
- 239000004594 Masterbatch (MB) Substances 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- MUMGGOZAMZWBJJ-DYKIIFRCSA-N Testostosterone Chemical compound O=C1CC[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 MUMGGOZAMZWBJJ-DYKIIFRCSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 125000001743 benzylic group Chemical group 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 229940095259 butylated hydroxytoluene Drugs 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000012668 chain scission Methods 0.000 description 1
- 239000006231 channel black Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- NEHMKBQYUWJMIP-NJFSPNSNSA-N chloro(114C)methane Chemical compound [14CH3]Cl NEHMKBQYUWJMIP-NJFSPNSNSA-N 0.000 description 1
- 229920005556 chlorobutyl Polymers 0.000 description 1
- 239000007859 condensation product Substances 0.000 description 1
- 238000010227 cup method (microbiological evaluation) Methods 0.000 description 1
- AFZSMODLJJCVPP-UHFFFAOYSA-N dibenzothiazol-2-yl disulfide Chemical compound C1=CC=C2SC(SSC=3SC4=CC=CC=C4N=3)=NC2=C1 AFZSMODLJJCVPP-UHFFFAOYSA-N 0.000 description 1
- 125000000950 dibromo group Chemical group Br* 0.000 description 1
- YNLAOSYQHBDIKW-UHFFFAOYSA-M diethylaluminium chloride Chemical compound CC[Al](Cl)CC YNLAOSYQHBDIKW-UHFFFAOYSA-M 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- JVSWJIKNEAIKJW-UHFFFAOYSA-N dimethyl-hexane Natural products CCCCCC(C)C JVSWJIKNEAIKJW-UHFFFAOYSA-N 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 239000012990 dithiocarbamate Substances 0.000 description 1
- 150000004659 dithiocarbamates Chemical class 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920001198 elastomeric copolymer Polymers 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 239000006232 furnace black Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 125000004968 halobutyl group Chemical group 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 125000001475 halogen functional group Chemical group 0.000 description 1
- 230000002140 halogenating effect Effects 0.000 description 1
- 150000005826 halohydrocarbons Chemical class 0.000 description 1
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 1
- 239000012456 homogeneous solution Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 125000000687 hydroquinonyl group Chemical class C1(O)=C(C=C(O)C=C1)* 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000006233 lamp black Substances 0.000 description 1
- HTUMBQDCCIXGCV-UHFFFAOYSA-N lead oxide Chemical compound [O-2].[Pb+2] HTUMBQDCCIXGCV-UHFFFAOYSA-N 0.000 description 1
- YEXPOXQUZXUXJW-UHFFFAOYSA-N lead(II) oxide Inorganic materials [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- OFHMODDLBXETIK-UHFFFAOYSA-N methyl 2,3-dichloropropanoate Chemical compound COC(=O)C(Cl)CCl OFHMODDLBXETIK-UHFFFAOYSA-N 0.000 description 1
- 229940050176 methyl chloride Drugs 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 239000012766 organic filler Substances 0.000 description 1
- 150000001451 organic peroxides Chemical class 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 150000005375 primary alkyl halides Chemical class 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000010057 rubber processing Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 150000005376 secondary alkyl halides Chemical class 0.000 description 1
- 238000010517 secondary reaction Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 239000006234 thermal black Substances 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 150000003585 thioureas Chemical class 0.000 description 1
- KUAZQDVKQLNFPE-UHFFFAOYSA-N thiram Chemical compound CN(C)C(=S)SSC(=S)N(C)C KUAZQDVKQLNFPE-UHFFFAOYSA-N 0.000 description 1
- 229960002447 thiram Drugs 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F1/00—Springs
- F16F1/36—Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
- F16F1/3605—Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers characterised by their material
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K13/00—Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
- C08K13/02—Organic and inorganic ingredients
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/0008—Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
- C08K5/0025—Crosslinking or vulcanising agents; including accelerators
Definitions
- the present invention relates to a composition suitable for use in devices used to control vibrations, particularly in automobiles; and dynamic means comprising the composition.
- isobutylene type rubbers such as butyl rubber and halogenated butyl rubber to produce elast meric devices, (e.g. dynamic means) , such as automotive parts to isolate vibrations and noise from passengers or to control or isolate vibrations from other automotive parts.
- elast meric devices e.g. dynamic means
- automotive parts to isolate vibrations and noise from passengers or to control or isolate vibrations from other automotive parts.
- the good impact resistance of such isobutylene-type rubbers due to their high hysteresis is well known.
- dynamic means is used herein to denote means used to isolate or control vibrations and/or noise, such as elastomeric devices used in automobiles, for example, exhaust hangers; automotive mountings, e.g. body mounts; bushings used to transmit forces between metal structural parts; shock absorbers; automotive suspension bumpers, and the like, such as, for example, not only good impact resistance but also improved heat aging resistance.
- dynamic means that are made from a composition comprising certain halogen- containing copolymers of a C 4 to C 7 isomonoolefin and a para-alkylstyrene have improved properties, such as, for example, not only good vibration and impact absorption but also improved heat aging resistance.
- a dynamic means composition comprising: (1) a h a 1 o g en - c on t a i n i ng copolymer of a C 4 to C 7 isomonoolefin and a para-alkylstyrene, (2) carbon black; (3) a plasticizer oil; and (4) a curing agent.
- a vulcanized dynamic means at least a portion thereof being made of a composition comprising: (1) a h a 1 o g en - c o n t a i n i ng copolymer of a C 4 to C 7 isomonoolefin and a para-alkylstyrene, (2) carbon black; and (3) a plasticizer oil.
- the dynamic means composition of the present invention comprises a halogen-containing copolymer of a C 4 to C 7 isomonoolefin and a para-alkylstyrene, carbon black, a plasticizer oil and a curing agent with or without curing agent accelerators.
- the composition may comprise fillers other than the carbon black and rubber compounding additives.
- Suitable halogen-containing copolymers of a C 4 to C 7 isomonoolefin and a para-alkylstyrene for use as a component of the present dynamic means composition comprise at least 0.5 weight percent of the para-alkylstyrene moiety.
- the para-alkylstyrene moiety may range from about 0.5 weight percent to about 20 weight percent, preferably from about 2 to about 20 weight percent, more preferably from about 5 to about 20 weight percent of the copolymer.
- the halogen content of the copolymers may range from above zero to about 7.5 weight percent.
- the halogen content of the copolymer is at least 0.4 mole percent, more preferably at least about 0.5 mole percent.
- the halogen may be bromine, chlorine, and mixtures thereof.
- the halogen is bromine.
- the major portion of the halogen is chemically bound to the para-alky 1 group, that is, the halogen-containing copolymer comprises para-halo alkyl groups.
- copolymers of the isomonoolefin and para-alkylstyrene useful to prepare the halogen-containing copolymers suitable as component of the dynamic means composition of the present invention include copolymers of isomonoolefin having from 4 to 7 carbon atoms and a para-alkylstyrene, such as those described in European patent application 89305395.9 filed May 26, 1989, (Publication No. 0344021 published November 29, 1989).
- the preferred isomonoolefin comprises isobutylene.
- the preferred para-alkylstyrene comprises para-methylstyrene.
- Suitable copolymers of an isomonoolefin and a para-alkylstyrene include copolymers having a number average molecular weight (fl n ) of at least about 25,000, preferably at least about 30,000, more preferably at least about 100,000.
- the copolymers also, preferably, have a ratio of weight average molecular weight (ft w ) to number average molecular weight ( fl n ) , i . e. , f! w /fl n of less than about 6, preferably less than about 4, more preferably less than about 2.5, most preferably less than about 2.
- the brominated copolymer of the isoolefin and para-alkylstyrene by the polymerization of these particular monomers under certain specific polymerization conditions now permit one to produce copolymers which comprise the direct reaction product (that is, in their as-polymerized form) , and which have unexpectedly homogeneous uniform compositional distributions.
- the copolymers suitable for the practice of the present invention can be produced.
- These copolymers as determined by gel permeation chromatography (GPC) demonstrate narrow molecular weight distributions and substantially homogeneous compositional distributions, or compositional uniformity over the entire range of compositions thereof.
- At least about 95 weight percent of the copolymer product has a para-alkylstyrene content within about 10 wt. percent, and preferably within about 7 wt. percent, of the average para-alkylstyrene content for the overall composition, and preferably at least about 97 wt. percent of the copolymer product has a para-alkylstyrene content within about 10 wt. percent and preferably within about 7 wt. percent, of the average para-alkylstyrene content for the overall composition.
- This substantially homogeneous compositional uniformity thus particularly relates to the intercompositional distribution.
- halogen-containing copolymers useful in the practice of the present invention have a substantially homogeneous compositional distribution and include the para-alkylstyrene moiety represented by the formula: H
- R and R 1 are independently selected from the group consisting of hydrogen, alkyl preferably having from 1 to 5 carbon atoms, primary alkyl halides, secondary alkyl halides preferably having from 1 to 5 carbon atoms, and mixtures thereof and X is selected from the group consisting of bromine, chlorine and mixtures thereof, such as those disclosed in European patent application 8930595.9 filed May 26, 1989, (Publication No. 0344021 published November 29, 1989).
- the polymerization is carried out continuously in a typical continuous polymerization process using a baffled tank-type reactor fitted with an efficient agitation means, such as a turbo mixer or propeller, and draft tube, external cooling jacket and internal cooling coils or other means of removing the heat of polymerization, inlet pipes for monomers, catalysts and diluents, temperature sensing means and an effluent overflow to a holding drum or quench tank.
- the reactor is purged of air and moisture and charged with dry, purified solvent or a mixture of solvent prior to introducing monomers and catalysts.
- Reactors which are typically used in butyl rubber polymerization are generally suitable for use in a polymerization reaction to produce the desired para-alkyl- styrene copolymers suitable for use in the process of the present invention.
- the polymerization temperature may range from about minus 35 * C to about minus 100 "C, preferably from about minus 40 to about minus 80 'C.
- the processes for producing the copolymers can be carried out in the form of a slurry of polymer formed in the diluents employed, or as a homogeneous solution process.
- the use of a slurry process is, however, preferred, since in that case, lower viscosity mixtures are produced in the reactor and slurry concentration of up to 40 wt. percent of polymer are possible.
- the copolymers of isomonoolefins and para-alkyl ⁇ styrene may be produced by admixing the isomonoolefin and the para-alkylstyrene in a copolymerization reactor under copolymerization conditions in the presence of a diluent and a Lewis acid catalyst.
- Typical examples of the diluents which may be used alone or in a mixture include propane, butane, pentane, cyclopentane, hexane, toluene, heptane, isooctane, etc., and various halohydrocarbon solvents which are particularly advantageous herein, including methylene, chloride, chloroform, carbon tetrachloride, methyl chloride, with methyl chloride being particularly preferred.
- impurities from the polymerization reactor, namely, impurities which, if present, will result in co plexing with the catalyst or copolymerization with the isomonoolefins or the para-alkylstyrene, which in turn will prevent one from producing the para-alkylstyrene copolymer product useful in the practice of the present invention.
- impurities include the catalyst poisoning material, moisture and other copolymerizable monomers, such as, for example, metal-alkylstyrenes and the like. These impurities should be kept out of the system.
- the para-alkylstyrene be at least 95.0 wt. percent pure, preferably 97.5 wt. percent pure, most preferably 99.5 wt. percent pure and that the isomonoolefin be at least 99.5 wt. percent pure, preferably at least 99.8 wt. percent pure and that the diluents employed be at least 99 vt. percent pure, and preferably at least 99.8 wt. percent pure.
- the most preferred Lewis acid catalysts are ethyl aluminum dichloride and preferably mixtures of ethyl aluminum dichloride with diethyl aluminum chloride.
- the amount of such catalysts employed will depend on the desired molecular weight and the desired molecular weight distribution of the copolymer being produced, but will generally range from about 20 ppm to 1 wt. percent and preferably from about 0.001 to 0.2 wt. percent, based upon the total amount of monomer to be polymerized.
- Halogenation of the polymer can be carried out in the bulk phase (e.g., melt phase) or either in solution or in a finely dispersed slurry.
- Bulk halogenation can be effected in an extruder, or other internal mixer, suitably modified to provide adequate mixing and for handling the halogen and corrosive by-products of the reaction.
- the details of such bulk halogenation processes are set forth in U.S. Patent No. 4,548,995, which is hereby incorporated by reference.
- Suitable solvents for solution halogenation include the low boiling hydrocarbons (C 4 to C 7 ) and halogenated hydrocarbons. Since the high boiling point para-methylstyrene makes its removal by conventional distillation impractical, and since it is difficult to completely avoid solvent halogenation, it is very important where solution or slurry halogenation is to be used that the diluent and halogehation conditions be chosen to avoid diluent halogenation, and that residual para-methylstyrene has been reduced to an acceptable level.
- radical bromination of the enchained para-methyl styryl moiety in the useful copolymers for the practice of this invention can be made highly specific with almost exclusive substitution occurring on the para-methyl group, to yield the desired benzyl ic bromine functionality.
- the high specificity of the bromination reaction can thus be maintained over a broad range of reaction conditions, provided, however, that factors which would promote the ionic reaction route are avoided (i.e., polar diluents, Friedel-Crafts catalysts, etc. ) .
- solutions of the suitable para-methylstyrene/isobutylene copolymers in hydrocarbon solvents such as pentane, hexane or heptane can be selectively brominated using light, heat, or selected radical initiators (according to conditions, i.e., a particular radical initiator must be selected which has an appropriate half -life for the particular temperature conditions being utilized, with generally longer half-lives preferred at warmer hydrogenation temperatures) as promoters of radical halogenation, to yield almost exclusively the desired benzylic bromine functionality, via substitution on the para-methyl group, and without appreciable chain scission and/or cross-linking.
- selected radical initiators accordinging to conditions, i.e., a particular radical initiator must be selected which has an appropriate half -life for the particular temperature conditions being utilized, with generally longer half-lives preferred at warmer hydrogenation temperatures
- This reaction can be initiated by formation of a bromine atom, either photochemical ly or thermally (with or without the use of sensitizers) , or the radical initiator used can be one which preferentially reacts with a bromine molecule rather than one which reacts indiscriminately with bromine atoms, or with the solvent or polymer (i.e., via hydrogen abstraction) .
- the sensitizers referred to are those photochemical sensitizers which will themselves absorb lower energy photons and disassociate, thus causing, in turn, disassociation of the bromine, including materials such as iodine.
- an initiator which has a half life of between about 0.5 and 2500 minutes under the desired reaction conditions, more preferably about 10 to 300 minutes.
- the amount of initiator employed will usually vary between 0.02 and 1 percent by weight on the copolymer, preferably between about 0.02 and 0.3 percent.
- the preferred initiators are bis azo compounds, such as azo bis isobutyronitrile (AIBN) , azo bis (2,4 dimethyl valero) nitrile, azo bis (2 methyl butyro) nitrile, and the like.
- radical initiators can also be used, but it is preferred to use a radical initiator which is relatively, poor at hydrogen abstraction, so that it reacts preferentially with the bromine molecules to form bromine atoms rather than with the copolymer or solvent to form alkyl radicals. In those cases, there would then tend to be resultant copolymer molecular weight loss, and promotion of undesirable side reactions, such as cross-linking.
- the radical bromination reaction of the copolymers of para-methylstyrene and isobutylene is highly selective, and almost exclusively produces the desired benzylic bromine functionality.
- any desired amount of benzylic bromine functionality- in the monobromo form can be introduced into the above stated copolymers, up to about 60 mole percent of the para-methylstyrene content. It is desirable that the termination reactions be minimized during bromination, so that long, rapid radical chain reactions occur, and so that many benzylic bromines are introduced for each initiation, with a minimum of the side reactions resulting from termination.
- HBr Since one mole of HBr is produced for each mole of bromine reacted with or substituted on the enchained para-methylstyryl moiety, it is also desirable to neutralize or otherwise remove this HBr during the reaction, or at least during polymer recovery in order to prevent it from becoming involved in or catalyzing undesirable side reactions.
- neutralization and removal can be accomplished with a post-reaction caustic wash, generally using a molar excess of caustic on the HBr.
- neutralization can be accomplished by having a particulate base (which is relatively non-reactive with bromine) such as calcium carbonate powder present in dispersed form during the bromination reaction to absorb the HBr as it is produced. Removal of the HBr can also be accomplished by stripping with an inert gas (e.g., N 2 ) preferably at elevated temperatures.
- an inert gas e.g., N 2
- halogenation to produce a copolymer useful in the present invention is preferably accomplished by halogenating an isobutylene-para-methylstyrene copolymer using bromine in a normal alkane (e.g., hexane or heptane) solution utilizing a bis azo initiator, e.g., AIBN or VAZO 52: 2,2 , -azobis(2,4-dimethylpentane nitrile), at about 55 to 80*C, for a time period ranging from about 4.5 to about 30 minutes, followed by a caustic quench.
- the recovered polymer is washed in basic water wash and water/isopropanol washes, recovered, stabilized and dried.
- the dynamic means composition of the present invention also comprises carbon black, a plasticizer oil, and a curing agent.
- the composition may, optionally, comprise a component selected from the group consisting of a filler other than carbon black, a rubber compounding additive and mixtures thereof.
- the carbon black may be derived from any source. Suitable carbon black includes channel black, furnace black, thermal black, acetylene black, lamp black and the like. Preferably at least one portion of the carbon black has an average mean particle diameter under 35 nm, such as grades N 330 and N 339 (ASTM D-3849) .
- Suitable plasticizer oils include hydrocarbon plasticizer oils such as paraffinic or naphthenic petroleum oils.
- the preferred plasticizer oil is a paraffinic petroleum oil.
- Suitable hydrocarbon plasticizer oils include oils having the following general characteristics: Property Preferred
- the dynamic means composition of the present invention may comprise a component selected from the group consisting of a filler (other than carbon black) , a rubber compounding additive and mixtures thereof.
- the filler and/or additive may be any conventional filler and/or additive generally used with rubber.
- the optional other filler may be a non-reinforcing filler, a reinforcing filler, an organic filler, and an inorganic filler.
- Suitable fillers, other than carbon black include calcium carbonate, clay, silica, talc, titanium dioxide and mixtures thereof.
- Suitable rubber compounding additives include antioxidants, stabilizers, non-plasticizer rubber processing oils, pigments and mixtures thereof.
- the non-plasticizer rubber process oils may be paraffinic or naphthenic process oils.
- Suitable antioxidants include hindered phenols, amino phenols, hydroquinones , alkyldia ines, amine condensation products and the like.
- the preferred additions are fatty acids, low molecular weight polyethylene, waxes and mixtures thereof.
- a preferred fatty acid is stearic acid. Mixtures of other fatty acid can be used with the stearic acid.
- the dynamic means composition of the present invention also comprises a curing agent.
- Suitable curing agents include peroxide cures, sulfur cures, sulfur * donor cures, and non-sulfur cures.
- the curing agent may be zinc oxide.
- curing agent accelerators may be used such as dithiocarbamates, thiurams, thioureas, and mixtures thereof, zinc oxide-free cures may also be used such as, for example, litharge, 2-mercaptoimidazoline, and diphenyl guanidine; 2-mercaptobenzimidazole, and N,N'-phenylene- bismaleimide.
- Organic peroxide may be used as curing agents, such as, for example, dicumyl peroxide, benzoyl peroxide, , o '-Bis(tertiary butyl peroxy) diisopropyl benzene, and the like.
- the curing agent may be a resin cure such as, phenolic resins, brominated phenolic resins, urethane resin, etc.
- Suitable curing agents include resin cures such as those described in U.S. Patent 3,287,440 and U.S. Patent 4,059,651, the teachings of which are hereby incorporated by reference.
- the dynamic means composition of the present invention may comprise the halogen-containing copolymer of a C 4 to C 7 isomonoolefin and a para-alkylstyrene in an amount ranging from about 40 to 80, preferably from about 55 to about 65 weight percent, the carbon black in an amount ranging from about 10 to about 30, preferably from about 20 to about 25 weight percent; the plasticizer oil in an amount ranging from above 0 to about 20, preferably from about 7 to about 13 weight percent; the total amount of other fillers and additives in an amount ranging from above 0 to about 10, preferably from about 3 to about 5 weight percent; and the curing agent in an amount ranging from about 1 to 5, preferably from about 1 to 2 weight percent, all said percentages being based on the weight of the total composition.
- the dynamic means composition of the present invention may be vulcanized by subjecting it to heat according to any conventional vulcanization process. Typically, the vulcanization is conducted at a temperature ranging from about 100'C to about 250*C, preferably from about 150'C to about 200"C, for a time period ranging from about 1 to about 150 minutes.
- the composition of the present invention may be used in producing dynamic means (i.e.,devices or parts) used to isolate or decrease the effect of vibrations. it is particularly suitable for use in the production of elastomeric mountings for control of vibration, for example' automotive body mounts; automotive exhaust hangers; dynamic absorbers (e.g., shock absorbers); bushings; automotive suspension bumpers, and the like.
- Suitable dynamic means compositions may be prepared by using conventional mixing techniques including, e.g., kneading, roller milling, extruder mixing, internal mixing (such as with a Banbury* mixer) , etc.
- the sequence of mixing and temperatures employed are well known to the skilled rubber compounder, the objective being the dispersion of fillers, activators and curatives in the polymer matrix without excessive heat buildup.
- a useful mixing procedure utilizes a Banbury mixer in which the copolymer rubber, carbon black and plasticizer are added and the composition . mixed for the desired time or to a particular temperature to achieve adequate dispersion of the ingredients.
- the rubber and a portion of the carbon black (e.g., one-third to two-thirds) is mixed for a short time (e.g., about 1 to 3 minutes) followed by the remainder of the carbon black and oil. Mixing is continued for about 5 to 10 minutes at high rotor speed during which time the mixed compound reaches a temperature of about 140*C.
- the compound is mixed in a second step on a rubber mill during which the curing agent, e.g. zinc oxide and accelerator or curing resin are thoroughly and uniformly dispersed at relatively low temperature, e.g., about 80 to about 105'C.
- the curing agent e.g. zinc oxide and accelerator or curing resin
- relatively low temperature e.g., about 80 to about 105'C.
- vulcanization be effected at temperatures of about 140 to about 185"C and for periods of about 10 to about 60 minutes. Curing time will be affected by the thickness of the article to be molded and the concentration and type of curing agent as well as halogen and unsaturation content of the halogenated copolymer.
- the vulcanization parameters can readily be established with a few experiments utilizing e.g., a laboratory characterization device well known in the art, the Monsanto Oscillating Disc Cure Rheometer (described in detail in American Society for Testing and Materials, Standard ASTM D 2084. The following examples are presented to illustrate the invention.
- Copolymer T was Exxon Bromobutyl rubber grade 2244 (Exxon
- Copolymer Z was Exxon Bromobutyl rubber grade 2233 (Exxon
- Copolymer Y was a brominated i sobuty 1 ene-para methylstyrene .
- Copolymer X was Exxon chlorobutyl grade 1068 (Exxon
- BHT means butylated hydroxytoluene
- TMTDS means tetramethyl thiuram disulfide
- DPTHS dipentamethylene thiuram hexasulfide
- MBTS means benzyl thiazole disulfide
- Formulation D of the present invention had a desirable combination of lower hardness and higher tensile strength than comparative formulations A, B, and C.
- Formulation D had equivalent or higher tear strength, significantly lover compression set and significantly better retention of tensile strength and elongation, after air oven aging, especially at a temperatures of 150'C.
- Table III shows that the properties of Formulation D were achieved while maintaining dynamic properties generally equivalent to those of formulations A, B, and C, both with respect to elastic spring rate and loss tangent, and regardless of changes of test temperature or frequency.
- Formulation D exhibited better mold flow characteristics than comparative formulationsof equivalent or lower Mooney Viscosity. Furthermore, Formulation D exhibited significantly better flex life when aged samples were tested on a De Mattia Flexometer. This suggests that a formulation in accordance with the present invention would be expected to provide enhanced flex fatigue when used in automotive dynamic means intended to control vibration, shock and noise.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1019920703229A KR930701528A (ko) | 1990-06-15 | 1991-06-06 | 동력학적 장치용 조성물 |
| BR919106543A BR9106543A (pt) | 1990-06-15 | 1991-06-06 | Composicao para meios dinamicos,e,meios dinamicos vulcanizados |
| JP91510884A JPH05507952A (ja) | 1990-06-15 | 1991-06-06 | 動的手段組成物 |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US53886690A | 1990-06-15 | 1990-06-15 | |
| US538,866 | 1990-06-15 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO1991019761A1 true WO1991019761A1 (fr) | 1991-12-26 |
Family
ID=24148757
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US1991/004049 WO1991019761A1 (fr) | 1990-06-15 | 1991-06-06 | Composition pour dispositifs dynamiques |
Country Status (6)
| Country | Link |
|---|---|
| EP (1) | EP0533746A1 (fr) |
| JP (1) | JPH05507952A (fr) |
| KR (1) | KR930701528A (fr) |
| BR (1) | BR9106543A (fr) |
| CA (1) | CA2085106A1 (fr) |
| WO (1) | WO1991019761A1 (fr) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1992011295A1 (fr) * | 1990-12-20 | 1992-07-09 | Exxon Chemical Patents Inc. | Copolymeres butyles durcissables par ultraviolets et/ou faisceau electronique pour revetements |
| WO1996040800A1 (fr) * | 1995-06-07 | 1996-12-19 | Exxon Chemical Patents Inc. | Compositions durcissables au peroxyde et aux rayonnements, contenant des copolymeres d'isobutylene a fonctionalite acrylate |
| US5904220A (en) * | 1995-08-15 | 1999-05-18 | Exxon Chemical Patents, Inc. | Motor or engine mount from mixtures of elastomers and halogenated polymers |
| US6624235B1 (en) | 1997-12-15 | 2003-09-23 | Exxonmobil Chemical Patents Inc. | Transparent and colorable elastomeric compositions |
| US6624220B1 (en) | 1997-12-15 | 2003-09-23 | Exxonmobil Chemical Patents Inc. | Transparent and colorable elastomeric compositions |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6548585B1 (en) * | 1998-04-14 | 2003-04-15 | The Yokohama Rubber Co., Ltd. | Rubber composition for hose production, hose, and process for producing refrigerant hose |
| JP6817041B2 (ja) * | 2016-11-24 | 2021-01-20 | Eneos株式会社 | 導電性熱可塑性エラストマー組成物 |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0296332A2 (fr) * | 1987-06-23 | 1988-12-28 | Polysar Limited | Compositions à base d'élastomère halobutyle |
| EP0344021A2 (fr) * | 1988-05-27 | 1989-11-29 | Exxon Chemical Patents Inc. | Copolymères de para-alkylstyrène et d'isooléfines |
-
1991
- 1991-06-06 BR BR919106543A patent/BR9106543A/pt not_active Application Discontinuation
- 1991-06-06 KR KR1019920703229A patent/KR930701528A/ko not_active Withdrawn
- 1991-06-06 WO PCT/US1991/004049 patent/WO1991019761A1/fr not_active Application Discontinuation
- 1991-06-06 JP JP91510884A patent/JPH05507952A/ja active Pending
- 1991-06-06 CA CA002085106A patent/CA2085106A1/fr not_active Abandoned
- 1991-06-06 EP EP91910832A patent/EP0533746A1/fr not_active Withdrawn
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0296332A2 (fr) * | 1987-06-23 | 1988-12-28 | Polysar Limited | Compositions à base d'élastomère halobutyle |
| EP0344021A2 (fr) * | 1988-05-27 | 1989-11-29 | Exxon Chemical Patents Inc. | Copolymères de para-alkylstyrène et d'isooléfines |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1992011295A1 (fr) * | 1990-12-20 | 1992-07-09 | Exxon Chemical Patents Inc. | Copolymeres butyles durcissables par ultraviolets et/ou faisceau electronique pour revetements |
| WO1996040800A1 (fr) * | 1995-06-07 | 1996-12-19 | Exxon Chemical Patents Inc. | Compositions durcissables au peroxyde et aux rayonnements, contenant des copolymeres d'isobutylene a fonctionalite acrylate |
| US5904220A (en) * | 1995-08-15 | 1999-05-18 | Exxon Chemical Patents, Inc. | Motor or engine mount from mixtures of elastomers and halogenated polymers |
| US6197885B1 (en) | 1995-08-15 | 2001-03-06 | Exxon Chemical Patents, Inc. | Vibration dampening and/or isolation vulcanizate having high temperature stability |
| US6624235B1 (en) | 1997-12-15 | 2003-09-23 | Exxonmobil Chemical Patents Inc. | Transparent and colorable elastomeric compositions |
| US6624220B1 (en) | 1997-12-15 | 2003-09-23 | Exxonmobil Chemical Patents Inc. | Transparent and colorable elastomeric compositions |
Also Published As
| Publication number | Publication date |
|---|---|
| CA2085106A1 (fr) | 1991-12-16 |
| EP0533746A1 (fr) | 1993-03-31 |
| BR9106543A (pt) | 1993-05-25 |
| JPH05507952A (ja) | 1993-11-11 |
| KR930701528A (ko) | 1993-06-12 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5063268A (en) | Composition for tire treads (E-235) | |
| US5333662A (en) | Tire innerliner composition | |
| US6028144A (en) | Composition for the carcass | |
| EP0539513B1 (fr) | Composition pour garniture interieure de pneu | |
| US5532312A (en) | Tire sidewall composition | |
| EP0582586B1 (fr) | Composition pour elements de cuisson en moule | |
| EP0981581A1 (fr) | Composition pour flancs de pneus et autres structures en caoutchouc | |
| WO1992016587A2 (fr) | Composition pour elements de cuisson en moule | |
| US5246778A (en) | Hose composition | |
| JP2557304B2 (ja) | タイヤのサイドウォール用組成物 | |
| US20030220437A1 (en) | Rubber composition for tire treads | |
| US5376438A (en) | Multilayer tire sidewall | |
| WO1991019761A1 (fr) | Composition pour dispositifs dynamiques | |
| EP0650414A1 (fr) | Composition amelioree pour le flanc d'un pneu | |
| CA2082822C (fr) | Tuyau souple | |
| USH1922H (en) | Coating composition | |
| MXPA99010163A (en) | Composition for tire sidewalls and other rubber constructions |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): BR CA JP KR |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2085106 Country of ref document: CA |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 1991910832 Country of ref document: EP |
|
| WWP | Wipo information: published in national office |
Ref document number: 1991910832 Country of ref document: EP |
|
| WWW | Wipo information: withdrawn in national office |
Ref document number: 1991910832 Country of ref document: EP |