WO1992000996A1 - Derives d'hormones du lobe pituitaire posterieur - Google Patents
Derives d'hormones du lobe pituitaire posterieur Download PDFInfo
- Publication number
- WO1992000996A1 WO1992000996A1 PCT/SE1991/000477 SE9100477W WO9200996A1 WO 1992000996 A1 WO1992000996 A1 WO 1992000996A1 SE 9100477 W SE9100477 W SE 9100477W WO 9200996 A1 WO9200996 A1 WO 9200996A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- peptide
- thr
- tyr
- mpa
- derivatives
- Prior art date
Links
- 229940088597 hormone Drugs 0.000 title abstract description 8
- 239000005556 hormone Substances 0.000 title abstract description 8
- 210000001883 posterior pituitary gland Anatomy 0.000 title abstract description 8
- OXDZADMCOWPSOC-UHFFFAOYSA-N Argiprestocin Chemical class N1C(=O)C(N)CSSCC(C(=O)N2C(CCC2)C(=O)NC(CCCN=C(N)N)C(=O)NCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(CCC(N)=O)NC(=O)C(C(C)CC)NC(=O)C1CC1=CC=C(O)C=C1 OXDZADMCOWPSOC-UHFFFAOYSA-N 0.000 claims abstract description 25
- 210000004291 uterus Anatomy 0.000 claims abstract description 18
- 239000000203 mixture Substances 0.000 claims abstract description 10
- RMYPEYHEPIZYDJ-SNVBAGLBSA-N (2r)-2-azaniumyl-3-(4-ethoxyphenyl)propanoate Chemical group CCOC1=CC=C(C[C@@H](N)C(O)=O)C=C1 RMYPEYHEPIZYDJ-SNVBAGLBSA-N 0.000 claims abstract description 8
- COLNVLDHVKWLRT-MRVPVSSYSA-N D-phenylalanine Chemical group OC(=O)[C@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-MRVPVSSYSA-N 0.000 claims abstract description 8
- 238000001990 intravenous administration Methods 0.000 claims abstract description 8
- 239000008194 pharmaceutical composition Substances 0.000 claims abstract description 5
- QIVBCDIJIAJPQS-SECBINFHSA-N D-tryptophane Chemical compound C1=CC=C2C(C[C@@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-SECBINFHSA-N 0.000 claims abstract description 4
- 150000008575 L-amino acids Chemical group 0.000 claims abstract description 3
- 125000004029 hydroxymethyl group Chemical group [H]OC([H])([H])* 0.000 claims abstract description 3
- 230000001225 therapeutic effect Effects 0.000 claims abstract description 3
- 230000004118 muscle contraction Effects 0.000 claims abstract 3
- 125000002849 D-tyrosine group Chemical group [H]N([H])[C@@]([H])(C(=O)[*])C([H])([H])C1=C([H])C([H])=C(O[H])C([H])=C1[H] 0.000 claims abstract 2
- 238000000034 method Methods 0.000 claims description 27
- -1 3-mercaptopropionyl residue Chemical group 0.000 claims description 11
- 239000000654 additive Substances 0.000 claims description 4
- 239000004480 active ingredient Substances 0.000 claims description 3
- 239000003085 diluting agent Substances 0.000 claims description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims description 3
- 125000000896 monocarboxylic acid group Chemical group 0.000 claims description 2
- 125000001711 D-phenylalanine group Chemical group [H]N([H])[C@@]([H])(C(=O)[*])C([H])([H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 claims 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 87
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 36
- 230000000694 effects Effects 0.000 description 28
- 102000004196 processed proteins & peptides Human genes 0.000 description 28
- 239000000556 agonist Substances 0.000 description 19
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 18
- 238000002360 preparation method Methods 0.000 description 17
- 238000003786 synthesis reaction Methods 0.000 description 16
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 15
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 15
- 230000015572 biosynthetic process Effects 0.000 description 15
- 239000011347 resin Substances 0.000 description 14
- 229920005989 resin Polymers 0.000 description 14
- OBMZMSLWNNWEJA-XNCRXQDQSA-N C1=CC=2C(C[C@@H]3NC(=O)[C@@H](NC(=O)[C@H](NC(=O)N(CC#CCN(CCCC[C@H](NC(=O)[C@@H](CC4=CC=CC=C4)NC3=O)C(=O)N)CC=C)NC(=O)[C@@H](N)C)CC3=CNC4=C3C=CC=C4)C)=CNC=2C=C1 Chemical compound C1=CC=2C(C[C@@H]3NC(=O)[C@@H](NC(=O)[C@H](NC(=O)N(CC#CCN(CCCC[C@H](NC(=O)[C@@H](CC4=CC=CC=C4)NC3=O)C(=O)N)CC=C)NC(=O)[C@@H](N)C)CC3=CNC4=C3C=CC=C4)C)=CNC=2C=C1 OBMZMSLWNNWEJA-XNCRXQDQSA-N 0.000 description 13
- 102400000050 Oxytocin Human genes 0.000 description 13
- 101800000989 Oxytocin Proteins 0.000 description 13
- XNOPRXBHLZRZKH-UHFFFAOYSA-N Oxytocin Natural products N1C(=O)C(N)CSSCC(C(=O)N2C(CCC2)C(=O)NC(CC(C)C)C(=O)NCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(CCC(N)=O)NC(=O)C(C(C)CC)NC(=O)C1CC1=CC=C(O)C=C1 XNOPRXBHLZRZKH-UHFFFAOYSA-N 0.000 description 13
- 101710176384 Peptide 1 Proteins 0.000 description 13
- XNOPRXBHLZRZKH-DSZYJQQASA-N oxytocin Chemical compound C([C@H]1C(=O)N[C@H](C(N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CSSC[C@H](N)C(=O)N1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(C)C)C(=O)NCC(N)=O)=O)[C@@H](C)CC)C1=CC=C(O)C=C1 XNOPRXBHLZRZKH-DSZYJQQASA-N 0.000 description 13
- 229960001723 oxytocin Drugs 0.000 description 13
- 239000000243 solution Substances 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 12
- 241000700159 Rattus Species 0.000 description 11
- 230000008602 contraction Effects 0.000 description 11
- 238000004128 high performance liquid chromatography Methods 0.000 description 11
- 235000001014 amino acid Nutrition 0.000 description 10
- 229940024606 amino acid Drugs 0.000 description 10
- 150000001413 amino acids Chemical class 0.000 description 10
- 239000005557 antagonist Substances 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- 230000003042 antagnostic effect Effects 0.000 description 9
- 238000001727 in vivo Methods 0.000 description 9
- 230000005764 inhibitory process Effects 0.000 description 9
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 7
- 230000008878 coupling Effects 0.000 description 7
- 238000010168 coupling process Methods 0.000 description 7
- 238000005859 coupling reaction Methods 0.000 description 7
- 230000002401 inhibitory effect Effects 0.000 description 7
- 239000013558 reference substance Substances 0.000 description 7
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 6
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 6
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 6
- 210000001519 tissue Anatomy 0.000 description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 5
- 238000013019 agitation Methods 0.000 description 5
- 150000003862 amino acid derivatives Chemical class 0.000 description 5
- 239000012071 phase Substances 0.000 description 5
- 102000005962 receptors Human genes 0.000 description 5
- 108020003175 receptors Proteins 0.000 description 5
- 239000007790 solid phase Substances 0.000 description 5
- 125000003088 (fluoren-9-ylmethoxy)carbonyl group Chemical group 0.000 description 4
- XBPCUCUWBYBCDP-UHFFFAOYSA-N Dicyclohexylamine Chemical class C1CCCCC1NC1CCCCC1 XBPCUCUWBYBCDP-UHFFFAOYSA-N 0.000 description 4
- QOSSAOTZNIDXMA-UHFFFAOYSA-N Dicylcohexylcarbodiimide Chemical compound C1CCCCC1N=C=NC1CCCCC1 QOSSAOTZNIDXMA-UHFFFAOYSA-N 0.000 description 4
- 230000037396 body weight Effects 0.000 description 4
- 239000000706 filtrate Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- WMSUFWLPZLCIHP-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 9h-fluoren-9-ylmethyl carbonate Chemical compound C12=CC=CC=C2C2=CC=CC=C2C1COC(=O)ON1C(=O)CCC1=O WMSUFWLPZLCIHP-UHFFFAOYSA-N 0.000 description 3
- 244000025254 Cannabis sativa Species 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 230000001270 agonistic effect Effects 0.000 description 3
- 125000001584 benzyloxycarbonyl group Chemical group C(=O)(OCC1=CC=CC=C1)* 0.000 description 3
- 210000004899 c-terminal region Anatomy 0.000 description 3
- NPZTUJOABDZTLV-UHFFFAOYSA-N hydroxybenzotriazole Substances O=C1C=CC=C2NNN=C12 NPZTUJOABDZTLV-UHFFFAOYSA-N 0.000 description 3
- 239000003112 inhibitor Substances 0.000 description 3
- 239000000543 intermediate Substances 0.000 description 3
- 230000000968 intestinal effect Effects 0.000 description 3
- 210000000936 intestine Anatomy 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 3
- 210000000754 myometrium Anatomy 0.000 description 3
- 230000002035 prolonged effect Effects 0.000 description 3
- 229910052938 sodium sulfate Inorganic materials 0.000 description 3
- 235000011152 sodium sulphate Nutrition 0.000 description 3
- ADFXKUOMJKEIND-UHFFFAOYSA-N 1,3-dicyclohexylurea Chemical compound C1CCCCC1NC(=O)NC1CCCCC1 ADFXKUOMJKEIND-UHFFFAOYSA-N 0.000 description 2
- CQBLOHXKGUNWRV-SFHVURJKSA-N 1-o-(9h-fluoren-9-ylmethyl) 2-o-(2,3,4,5,6-pentafluorophenyl) (2s)-pyrrolidine-1,2-dicarboxylate Chemical compound FC1=C(F)C(F)=C(F)C(F)=C1OC(=O)[C@H]1N(C(=O)OCC2C3=CC=CC=C3C3=CC=CC=C32)CCC1 CQBLOHXKGUNWRV-SFHVURJKSA-N 0.000 description 2
- XBNGYFFABRKICK-UHFFFAOYSA-N 2,3,4,5,6-pentafluorophenol Chemical compound OC1=C(F)C(F)=C(F)C(F)=C1F XBNGYFFABRKICK-UHFFFAOYSA-N 0.000 description 2
- DKIDEFUBRARXTE-UHFFFAOYSA-N 3-mercaptopropanoic acid Chemical compound OC(=O)CCS DKIDEFUBRARXTE-UHFFFAOYSA-N 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- 125000002698 D-tryptophano group Chemical group C(=O)(O)[C@@H](CC1=CNC2=CC=CC=C12)N* 0.000 description 2
- OUYCCCASQSFEME-MRVPVSSYSA-N D-tyrosine Chemical compound OC(=O)[C@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-MRVPVSSYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 2
- AHLPHDHHMVZTML-UHFFFAOYSA-N Orn-delta-NH2 Natural products NCCCC(N)C(O)=O AHLPHDHHMVZTML-UHFFFAOYSA-N 0.000 description 2
- UTJLXEIPEHZYQJ-UHFFFAOYSA-N Ornithine Natural products OC(=O)C(C)CCCN UTJLXEIPEHZYQJ-UHFFFAOYSA-N 0.000 description 2
- 229940122828 Oxytocin receptor antagonist Drugs 0.000 description 2
- 208000036029 Uterine contractions during pregnancy Diseases 0.000 description 2
- 101800003024 Vasotocin Proteins 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- KBZOIRJILGZLEJ-LGYYRGKSSA-N argipressin Chemical compound C([C@H]1C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CSSC[C@@H](C(N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N1)=O)N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCN=C(N)N)C(=O)NCC(N)=O)C1=CC=CC=C1 KBZOIRJILGZLEJ-LGYYRGKSSA-N 0.000 description 2
- 230000002860 competitive effect Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000001158 estrous effect Effects 0.000 description 2
- ZTVZLYBCZNMWCF-UHFFFAOYSA-N homocystine Chemical compound [O-]C(=O)C([NH3+])CCSSCCC([NH3+])C([O-])=O ZTVZLYBCZNMWCF-UHFFFAOYSA-N 0.000 description 2
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- WXEHBUMAEPOYKP-UHFFFAOYSA-N methylsulfanylethane Chemical compound CCSC WXEHBUMAEPOYKP-UHFFFAOYSA-N 0.000 description 2
- 210000004400 mucous membrane Anatomy 0.000 description 2
- 229960003104 ornithine Drugs 0.000 description 2
- IZUPBVBPLAPZRR-UHFFFAOYSA-N pentachloro-phenol Natural products OC1=C(Cl)C(Cl)=C(Cl)C(Cl)=C1Cl IZUPBVBPLAPZRR-UHFFFAOYSA-N 0.000 description 2
- 230000000144 pharmacologic effect Effects 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 238000012453 sprague-dawley rat model Methods 0.000 description 2
- FYZSBHSHLNJGPS-RZFZLAGVSA-N (2,3,4,5,6-pentafluorophenyl) (2s,3s)-2-(9h-fluoren-9-ylmethoxycarbonylamino)-3-methylpentanoate Chemical compound O=C([C@@H](NC(=O)OCC1C2=CC=CC=C2C2=CC=CC=C21)[C@@H](C)CC)OC1=C(F)C(F)=C(F)C(F)=C1F FYZSBHSHLNJGPS-RZFZLAGVSA-N 0.000 description 1
- VZQHRKZCAZCACO-PYJNHQTQSA-N (2s)-2-[[(2s)-2-[2-[[(2s)-2-[[(2s)-2-amino-5-(diaminomethylideneamino)pentanoyl]amino]propanoyl]amino]prop-2-enoylamino]-3-methylbutanoyl]amino]propanoic acid Chemical compound OC(=O)[C@H](C)NC(=O)[C@H](C(C)C)NC(=O)C(=C)NC(=O)[C@H](C)NC(=O)[C@@H](N)CCCNC(N)=N VZQHRKZCAZCACO-PYJNHQTQSA-N 0.000 description 1
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- JMTMSDXUXJISAY-UHFFFAOYSA-N 2H-benzotriazol-4-ol Chemical group OC1=CC=CC2=C1N=NN2 JMTMSDXUXJISAY-UHFFFAOYSA-N 0.000 description 1
- IDBBFXLHABOKHF-UHFFFAOYSA-N 3-(4-ethylphenyl)-2-[(2-methylpropan-2-yl)oxycarbonylamino]propanoic acid Chemical compound CCC1=CC=C(CC(NC(=O)OC(C)(C)C)C(O)=O)C=C1 IDBBFXLHABOKHF-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 208000005171 Dysmenorrhea Diseases 0.000 description 1
- 230000005526 G1 to G0 transition Effects 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Natural products NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- YZJSUQQZGCHHNQ-UHFFFAOYSA-N Homoglutamine Chemical compound OC(=O)C(N)CCCC(N)=O YZJSUQQZGCHHNQ-UHFFFAOYSA-N 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- AHLPHDHHMVZTML-BYPYZUCNSA-N L-Ornithine Chemical compound NCCC[C@H](N)C(O)=O AHLPHDHHMVZTML-BYPYZUCNSA-N 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 101800005164 Peptide V Proteins 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 206010036600 Premature labour Diseases 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- GXBMIBRIOWHPDT-UHFFFAOYSA-N Vasopressin Natural products N1C(=O)C(CC=2C=C(O)C=CC=2)NC(=O)C(N)CSSCC(C(=O)N2C(CCC2)C(=O)NC(CCCN=C(N)N)C(=O)NCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(CCC(N)=O)NC(=O)C1CC1=CC=CC=C1 GXBMIBRIOWHPDT-UHFFFAOYSA-N 0.000 description 1
- 229940116211 Vasopressin antagonist Drugs 0.000 description 1
- 108010004977 Vasopressins Proteins 0.000 description 1
- 102000002852 Vasopressins Human genes 0.000 description 1
- SORGEQQSQGNZFI-UHFFFAOYSA-N [azido(phenoxy)phosphoryl]oxybenzene Chemical compound C=1C=CC=CC=1OP(=O)(N=[N+]=[N-])OC1=CC=CC=C1 SORGEQQSQGNZFI-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O ammonium group Chemical group [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000002686 anti-diuretic effect Effects 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- MKRTXPORKIRPDG-UHFFFAOYSA-N diphenylphosphoryl azide Chemical compound C=1C=CC=CC=1P(=O)(N=[N+]=[N-])C1=CC=CC=C1 MKRTXPORKIRPDG-UHFFFAOYSA-N 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 210000003238 esophagus Anatomy 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000004992 fast atom bombardment mass spectroscopy Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 230000000302 ischemic effect Effects 0.000 description 1
- 230000006651 lactation Effects 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002632 myometrial effect Effects 0.000 description 1
- 210000003928 nasal cavity Anatomy 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 125000000538 pentafluorophenyl group Chemical group FC1=C(F)C(F)=C(*)C(F)=C1F 0.000 description 1
- 238000010647 peptide synthesis reaction Methods 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 125000006239 protecting group Chemical group 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000006798 ring closing metathesis reaction Methods 0.000 description 1
- IKGXIBQEEMLURG-NVPNHPEKSA-N rutin Chemical compound O[C@@H]1[C@H](O)[C@@H](O)[C@H](C)O[C@H]1OC[C@@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@H](OC=2C(C3=C(O)C=C(O)C=C3OC=2C=2C=C(O)C(O)=CC=2)=O)O1 IKGXIBQEEMLURG-NVPNHPEKSA-N 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 210000000813 small intestine Anatomy 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 235000011149 sulphuric acid Nutrition 0.000 description 1
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 1
- 238000011287 therapeutic dose Methods 0.000 description 1
- IDELNEDBPWKHGK-UHFFFAOYSA-N thiobutabarbital Chemical compound CCC(C)C1(CC)C(=O)NC(=S)NC1=O IDELNEDBPWKHGK-UHFFFAOYSA-N 0.000 description 1
- 230000003191 uterotonic effect Effects 0.000 description 1
- 238000011121 vaginal smear Methods 0.000 description 1
- 229960003726 vasopressin Drugs 0.000 description 1
- 239000003038 vasopressin antagonist Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K7/00—Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
- C07K7/04—Linear peptides containing only normal peptide links
- C07K7/16—Oxytocins; Vasopressins; Related peptides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/02—Drugs for disorders of the urinary system of urine or of the urinary tract, e.g. urine acidifiers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P15/00—Drugs for genital or sexual disorders; Contraceptives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
Definitions
- the present invention relates to derivatives of pituitary posterior lobe hormones, more precisely to new vasotocin derivatives which are competitive oxytocin receptor antagonists and inhibit excessive uterus contractions.
- the new vasotocin derivatives are modified in relation to the vasotocin molecule by having shortened and optionally even modified C-terminal along with alterations in the positions 1, 2 , 4 and optionally 6.
- Oxytocin is a pituitary posterior lobe hormone, and receptors specific for said hormone are found in the body of mammals including humans. The sites of the receptors are hitherto found in the uterus, the lactation ducts and the ovaries. Oxytocin receptor antagonists may thus be used as competitive receptor blockers in case of increased endogenous oxytocin secretion or increased receptor density.
- EP-A-0 182 627 discloses a large number of structurally similar vasopressin analogues, which are said to be basic Vi-Vasopressin antagonists and may be useful in the treatment of hypertension and cardiac ischaemic diseases.
- the compounds of the invention are represented by a general structural formula which has been restricted by a provisio, to delimit the compounds from the compounds of the EP-A-0 182 627.
- the present invention provides new derivatives of pituitary posterior lobe hormones which are vasotocin derivatives having enhanced potency and longer effect duration than our prior vasotocin derivatives disclosed in EP-A-0 112 809.
- Vasotocin derivatives of the invention are comprised by the following formula:
- A Mpa (3-mercaptopropionyl residue; -S-CH2-CH2-CO-) or Hmp (2-hydroxy-3-mercaptopropionyl residue;
- F a L- or D-residue of the fomula NH-(CH2) m -CH-L
- the present invention also comprises pharmaceutical composi ⁇ tions, which include at least one vasotocin derivative according to the invention as an active ingredient in combination with pharmaceutically acceptable additives and/or diluents.
- pharmaceutically acceptable diluent preferably isotonic saline solution may be used.
- other pharmaceutically acceptable additives such can be found in the literature, e.g. the US Pharmacopoeia, and these additives can be chosen in conformity with the specific form of the composition for a specific administration rout.
- a composition of the invention can be in a form which is suitable for intravenous, intranasal or intraintestinal administration.
- a form which is suitable for intraintestinal administration may be a tablet which is taken orally and which preferably is coated with a layer which is at least not completely dissolved in the stomach but primarily in the intestines so that the active ingredient can be resorbed through the intestinal mucous membrane.
- vasotocin derivatives according to the present invention totally lack agonistic effect as well as antidiuretic effect and blood-pressure effect, resulting in that possible clinical side effects are minimized.
- Figure 1 presents antagonistic effect on rat uterus in vivo, following intranasal administration of a reference substance (Peptide 1) and a vasotocin derivative according to the invention (Peptide 2).
- Figure 2 presents antagonistic effect on rat uterus in vivo, following intraintestinal administration of the same peptides as in Figure 1.
- Figure 3 presents antagonistic effect on rat uterus in vivo, following intravenous administration of the same peptides as in Figure 1.
- Figure 4 presents antagonistic effect on rat uterus in vivo, following intravenous administration of a reference substance (Peptide 1) in a dose of 10 -8 mole/kg and a vasotocin derivative according to the invention (Peptide 3) in a dose of 2 x 10 ⁇ 9 mole/kg (i.e. one fifth of the dose of the reference) .
- a reference substance Peptide 1
- a vasotocin derivative according to the invention Peptide 3
- Figure 5 presents antagonistic effect on rat uterus in vivo, following intraintestinal administration of a dose of 8 x 10 ⁇ 6 mole/kg of the same peptides as in Figure 4.
- vasotocin derivatives according to the invention can be prepared —l analogy with processes well known in the peptide field.
- the compounds according to the invention may be prepared in conventional manner by incremental coupling of amino acids to one another in the liquid phase, for instance in accordance with the technique reported by Law, H.B. & Du Vigneaud, V. in the Journal of the American Chemical Society 12 (1960) 4579-4581, Zhuze, A.L., Jost, K., Kasafirek, E. & Rudinger, J. in the Collection of Czechoslovak Chemical Communications 2£, (1964), 2648-2662, and modified by Larsson, L.-E., Lindeberg, G., Melin, P. / Pliska, V. in the Journal of Medicinal Chemistry ___, (1978), 352-356.
- the coupling of the amino acids to one another, whereby so-called peptide bonds are formed may also be carried out by starting with a solid phase (usually a resin) to which the C-terminal of the first amino acid is coupled, whereupon the C-terminal of the next amino acid is coupled to the N-terminal of the first amino acid etc. Finally, the built-up peptide is released from the solid phase.
- a solid phase usually a resin
- the built-up peptide is released from the solid phase.
- peptides disclosed in the following examples were synthesized using the solid phase technique (J. M. Stewart, J.D. Young. Solid Phase Peptide Synthesis, Pierce Chemical Company) .
- the peptides were purified by liquid chromatography (reversed phase).
- the stationary phase was composed of Kromasil®, 13 u, 100 A, C 18 (EKA Nobel, Sweden) and the mobile phase was acetonitrile/water having 0.1 % trifluoroacetic acid. Those fractions containing pure product (HPLC analysis) were pooled, evaporated and the product freeze-dried from water.
- Boc t-butyloxycarbonyl
- FmocONSu 9-fluorenylmethoxycarbonyl-N-hydroxy- succinimide
- D-Phe(p-Et) p-ethyl-D-phenylalanyl
- HOBt hydroxybenzotriazole
- NS-benzyloxycarbonyl ornithine (5.3 g, 20 mole) was suspended in a mixture of water (50 ml) and acetonitrile (100 ml). Diisopropylethylamine (3.4 ml) and Fmoc-ONSu (7.4 g 22 mmole) were added. Following agitation for 2 hours at room temperature, the acetonitrile was distilled off. The residue was acidified with 1 M hydrochloric acid and the product was extracted into ethyl acetate. The ethyl acetate phase was washed with water, dried with sodium sulphate, filtered and evaporated.
- N -tert-butyloxycarbonyl-D,L-p-ethylphenylalanine (A.L. Zhuse, K. Jost, E. Ka ⁇ afirek, J. Rudinger. Collection Czechoslov Chem Commun. Vol 2£, 2648 (1964) (0.88 g, 3 mmole), pentafluorophenol (0.61 g, 3.3 mmole) and dicyclo- hexyl carbodiimide (0.68 g, 3.3 mmole) were dissolved in 6 ml ethyl acetate.
- Homocystine (8.06 g, 30 mmole) was reduced with sodium in liquid ammonia (300 ml). The excess sodium was destroyed with ammonium chloride (the solution was decolourized) and the ammonia was evaporated. The residue was dissolved in water
- the dicyclohexylammonium salt of the derivative II (3.4 g, 5 mmole) was suspended in ethyl acetate and shaken with 0.5 M H2SO4. The phases were separated and the organic phase was washed with water, dried with sodium sulphate, filtered and evaporated. The residue was dissolved in ethyl acetate (10 ml). Pentafluorophenol (1.02 g, 5.5 mmole) and dicyclohexyl carbodiimide (1.13 g, 5.5 mmole) were added. Following agitation at room temperature for 1 hour, the reaction mixture was cooled with ice for 2 hours, whereupon the dicyclohexyl urea was filtered off. The filtrate was concentrated, diluted with hexane and cooled. The product (III) was filtered off and washed with hexane. Yield 2.3 g (70 %). Mp: 58-59°C.
- the peptide was synthesized according to the general description of synthesis by the use of Boc/benzyl methodol ⁇ ogy.
- the tiol groups in cysteine and mercaptopropionic acid were blocked with p-methoxy-benzyl groups.
- Activation of the amino acids was effectuated with DDC/HOBt and the group N ⁇ - Boc was removed with 50 % trifluoroacetic acid in methylene chloride.
- the resin was of methylbenzhydryl type with the loading of 0.7 mmole/g. Resin in an amount of 0.7 g was used in every synthesis.
- the peptide was deblocked and cleaved from the resin with liquid hydrogen fluoride/anisole/ethylmethyl-sulphide in the ratio of 90:5:5. Following the evaporation of the hydrogen fluoride, the resin was suspended in ethyl acetate, filtered and washed with additional ethyl acetate. The resin was triturated with acetic acid in order to yield the peptide. The resin was filtered off and the filtrate diluted with 20 % acetic acid in methanol, so that the peptide concentration became approximately 0.5 mmole/1. This solution was treated with 0.1 M iodine solution in methanol until a faint yellowish brown colour persisted.
- the peptide was synthesized and purified in accordance with the methods used for the peptide in Example 1. Yield: 25 mg. Purity (HPLC): ⁇ 99%.
- the peptide was synthesized in accordance with the general description of synthesis by using Fmoc/t-butyl methodology.
- the resin was of polyamide kiselguhr type (PepSyn KB, loading 0.09 mmole/g) and 2.2 g was used in every synthesis.
- Fmoc- -0rn(Cbz)-0H was coupled to the resin as a symmetric an ⁇ hydride.
- the other amino acid derivatives were coupled as active esters (4 eqv) .
- the following derivatives were used:
- Fmoc-Pro-OPfp derivative III, Fmoc-A ⁇ n-OPfp, Fmoc-Thr(t-Bu)- -ODhbt, Fmoc-Ile-OPfp and Boc-D-Tyr(Et)-OPfp.
- the peptide resin IV was treated with trifluoroacetic acid/methylene chloride/anisole in the ratio of 45:45:10; (2x15 min.) Then, the peptide resin was washed with methylene chloride, 5 % diisopropylethylamine in methylene chloride and methylene chloride. The peptide was then cleaved from the resin with ammonia (100 ml) in methanol (50 ml). The resin was filtered off and the methanol solution was evaporated. The residue was dissolved in a small volume of methanol. The peptide (V) was precipitated with ether. Yield 130 mg.
- the peptide V (100 mg) was cyclized with diphenyl-phosphoryl azide (DPPA, 50 ⁇ l) and K HP0 4 (110 mg) in dimethylformamide (25 ml) at 0°C for 24 hours.
- DPPA diphenyl-phosphoryl azide
- K HP0 4 110 mg
- the protective group of ornithine in the peptide VI was removed with liquid hydrogene fluoride/anisole in the ratio of 10:1.
- the hydrogene fluoride was distributed in ethyl acetate and water.
- the aqueous phase, which contained the peptide 3 was freeze-dried.
- the peptide was purified according to the above method. Yield 38 mg. Purity (HPLC): ⁇ 99%.
- Example 3 For the synthesis, the same method as disclosed in Example 3 was used, with the exception that a racemate was used at the coupling of the amino acid in the position 2 (Boc-D,L-Phe- (p-Et)-OPfp) . Only 1.1 equivalents of Boc-D,L-Phe(p-Et)-OPfp was used in the first coupling, so that neither of the enantiomers would be favoured in the coupling. The period of coupling was increased to 4 hours compared to ordinarily 45 minutes. In the second coupling, 0.8 equivalents of Boc-D,L- Phe(p-Et)-OPfp was used.
- the peptide was synthesized and purified in accordance with the methods used for the peptide in the Example 1, with the exception of D-Tyr(Et) which was replaces by D-Trp in position 2. Yield: 26 mg. Purity (HPLC): ⁇ 99%.
- the peptide was synthesized and purified in accordance with the methods used for the peptide in the Example 2, with the exception of D-Tyr(Et) which was replaced by D-Trp in position
- the peptide was synthesized and purified in accordance with the methods used for the peptide in Example 3, with the exception of D-Tyr(Et) which was replaced by D-Trp in position 2. Yield: 45 mg. Purity: ⁇ 99%.
- the peptide was synthesized and purified in accordance with the methods used for the peptide in Example 1, with the exception of Thr which was replaced by Val in position 4. Yield: 28 mg. Purity (HPLC): ⁇ 99%.
- the compounds according to the invention were investigated with regard to uterotonic potency on isolated rat uterus and myometric tissue from woman, using oxytocin (OT) as agonist.
- OT oxytocin
- the antagonistic properties of the compounds were also evaluated with the aid of this preparation.
- rat uterus in vivo tests using oxytocin as the agonist were carried out, the results being compared to those obtained with a reference substance, Peptide 1; a compound according to EP-A-0 112 809).
- Tissue from the myometrium was obtained at Caesarean sections (from the University Clinic of Lund, Sweden). Tissue pieces from pregnant women were excised from the isthmus part of the uterus. Isometric contractions were measured on isolated tissue (2x2x20 mm), and the recording of the contractions were performed with the aid of a Grass force transduser (F03) and polygraph (P 08) at a resting tension of 10 mN. Krebs-Ringer (1.5 mmole/1) buffer was used as buffer at 37°C. A dose of the agonist (oxytocin) was given to concentration (0.1 j ⁇ mol/1) either alone or 2 minutes after a dose of reference substance the Peptide 1 or the Peptides 2-4 according to the invention.
- F03 Grass force transduser
- P 08 polygraph
- each of the reference and test preparations were administered to the same tissue preparation in a randomized manner, and 4 tissue preparations were tested in parallel.
- the effects on the myometrium was measured by integrating the registration curves during 10 minutes after the addition of the agonist. Inhibition was expressed as per cent of the average effect following administration of agonist only at the beginning and the end of the experiment.
- the per cent inhibition of each inhibitor (the Peptides 2-4) was compared with the reference substance (the Peptide 1) according to a so-called 4-point test (St ⁇ rmer 1968). The results are given in Table 1, Column a.
- Sprague Dawley rats (body weight approximately 250 g) in natural estrous were selected by vaginal smears.
- An ap ⁇ proximately 20 mm long segment was cut from the middle of a uterine horn and mounted in an organ bath containing 10 ml of a modified Locke's solution of the following composition (mM: NaCl 153, KC1 5.63, CaCl 2 0.541, NaHC0 3 5.95 and glucose 2.78).
- the solution was ga ⁇ ed with 5% C0 2 in oxygen at 30°C.
- the uterine contractions were allowed to stabilize for 30 minutes. The contractions were recorded isometrically at a loading of 1.5 g with the aid of a Grass force transduser (Ft.03).
- the antagonistic potency of the analogues were calculated as their pA 2 -values (Rudinger, J. & Krejci, I. Experientia 18, (1962), 585-588).
- pA 2 is a measure of the inhibitory property of the peptide and was defined by Schild (Schild, H.O. British Journal of Pharmacology, 2, (1947), 189-206) as the negative logarithm of the molar concentration of an antagonist which reduces the effect of a dose of agonist to that of half the dose.
- the possible agonistic effects of the antagonists were investigated by adding to the bath containing the uterus preparation a varying amount of peptide, cr -esponding at most to a concentration of 4 nmole/ml. No agonistic effect was observed in any of the cases. The results are shown in Table I, Column b.
- Oxytocin was infused intra ⁇ venously (0.05 ⁇ g/min/100 g body weight).
- the antagonist 0.8-8.0 Hg/100 9 body weight
- the recorded curve was integrated over a 15 minutes period immediately before and after injection of the antagonist.
- the inhibition of the increase in the magnitude of the uterus contractions caused by oxytocin infusion was compared with the inhibition caused by the reference Peptide 1, which was given the value 100.
- Table 1 Column A.
- the dose-effect curve for oxytocin (2*10 ⁇ 4 - 5'10 ⁇ 3 ⁇ mole/kg) was carried out.
- Such an oxytocin dose (2 x) is selected that gives an effect corresponding to an intraluminar contraction pressure of 10-30 mg Hg and that lies on the linear part of the dose-effect curve.
- the effects are measured as the net values of the integrated curve recorded over 15 minutes after injection.
- the effect (eff x) of the agonist for its half dose (x) is calculated. Thereafter at least two doses of antagonist (Peptide 1-4) are injected in combination with the agonist dose (2 x). By interpolating the dose-effect curve for the inhibition, the antagonist dose corresponding to the effect (eff x) of the agonist dose (x), i.e. the I.D. dose, is obtained.
- the results are shown in Table I, Column B.
- Such a dose of the agonist is selected (5*10 ⁇ 4 - 5*10 ⁇ 3 ⁇ mole/kg) that gives an effect (the effect was measured over a 15 minutes period after agonist and antagonist administration, respectively, the contraction curve being integrated) corresponding to approximately 50 % of the maximum effect (ED50).
- a measure of the bioavailability of the peptide is obtained if the inhibitory effect of the intranasal ad ⁇ ministration is compared to the effect after intravenous administratio .
- Oxytocin (OT) is infused intravenously (0.5 ⁇ g/ in/kg) to elicit an agonist effect.
- the antagonist 0.01-0.1 ⁇ g/kg
- the effects of two different doses were investigated. When the effects had ceased the peptide was administered, after a period of 15 minutes, intranasaly in a single dose (0.1-1.0 ⁇ g/kg).
- the peptide was administered in a volume of 10 ⁇ l in isotonic saline solution via a fine tube, the tip of which being 10 mm inside the nasal cavity of the rat. Rinsing of this was performed by perfusion with saline solution (20 ml/h) over 10 minutes via an additional tube, which had been introduced into the esophagus. The results are shown in Figure 1.
- the peptide was administered via a catheter into an approxi- raately 20 cm long segment of the small intestine, which had been ligated from the rest of the intestine by ligatures at both ends of the section of the intestine, and a tube had been fixed to each of these ends for rinsing and peptide administration.
- the rinsing liquid was driven out by air prior to the administration of the peptide, which was effectuated via the distal intestinal tube in 1 ml volume of saline solution per 10 cm intensine. The results are shown in Figures 2 and 5.
- the potency increase up to five times with the Peptides 2-4, 7, 8 and 10, i.e. they can be injected in doses correspondingly lower compared to the corresponding known peptides of full length.
- the duration of the inhibitory effect is unchanged with the Peptide 5, increases at least two times with the Peptides 2 and 7, three times with the Peptide 3 and four times or more with the Peptides 4 and 8.
- the Peptides 3 and 4 which both are ⁇ -Abu 6 derivatives, give, in analogy with what has been previously known from pituitary posterior lobe agonists, a further prolonged effect duration. It is remarkable that the Peptides 3 and 7 additionally give a substantially enhanced inhibitory effect in regard to isolated human myometrium, which indicates an enhanced receptor affinity.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Endocrinology (AREA)
- Urology & Nephrology (AREA)
- Genetics & Genomics (AREA)
- Biophysics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Reproductive Health (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Peptides Or Proteins (AREA)
- Saccharide Compounds (AREA)
- Steroid Compounds (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MC91@@D MC2291A1 (fr) | 1990-07-09 | 1991-07-04 | Derives d'hormones du lobe posterieur de l'hypophyse |
JP91512399A JPH05508849A (ja) | 1990-07-09 | 1991-07-04 | 下垂体後葉ホルモン誘導体 |
FI930013A FI930013A0 (fi) | 1990-07-09 | 1993-01-04 | Hormonderivat av bakre hypofysloben |
CZ939A CZ993A3 (en) | 1990-07-09 | 1993-01-05 | derivatives of neurohypophysis lobe hormones |
NO93930016A NO930016L (no) | 1990-07-09 | 1993-01-05 | Derivater av hypofysens baklapphormoner |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE9002384A SE9002384D0 (sv) | 1990-07-09 | 1990-07-09 | Derivat av baklobshormoner |
SE9002384-7 | 1990-07-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1992000996A1 true WO1992000996A1 (fr) | 1992-01-23 |
Family
ID=20379963
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/SE1991/000477 WO1992000996A1 (fr) | 1990-07-09 | 1991-07-04 | Derives d'hormones du lobe pituitaire posterieur |
Country Status (11)
Country | Link |
---|---|
EP (1) | EP0538367A1 (fr) |
JP (1) | JPH05508849A (fr) |
AU (1) | AU8225191A (fr) |
CA (1) | CA2085603A1 (fr) |
FI (1) | FI930013A0 (fr) |
IE (1) | IE912378A1 (fr) |
IL (1) | IL98737A0 (fr) |
MC (1) | MC2291A1 (fr) |
PL (1) | PL297600A1 (fr) |
SE (1) | SE9002384D0 (fr) |
WO (1) | WO1992000996A1 (fr) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995001368A1 (fr) * | 1993-06-29 | 1995-01-12 | Ferring B.V. | Synthese amelioree de peptides cycliques |
WO1995002609A1 (fr) * | 1993-07-13 | 1995-01-26 | Ferring B.V. | Peptides presentant une activite antagoniste de l'oxytocine |
WO1998023636A1 (fr) * | 1996-11-26 | 1998-06-04 | Ferring B.V. | Analogues d'heptapeptide oxytocine |
US7091314B2 (en) | 2002-02-27 | 2006-08-15 | Ferring Bv | Intermediates and methods for making heptapeptide oxytocin analogues |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0112809A1 (fr) * | 1982-12-21 | 1984-07-04 | Ferring AB | Dérivés de vasotocine |
US4483794A (en) * | 1983-05-10 | 1984-11-20 | Ceskoslovenska Akademie Ved | Analogs of neurohypophysial hormones |
EP0182627A2 (fr) * | 1984-11-21 | 1986-05-28 | Smithkline Beckman Corporation | Antagonistes V1-vasopressine basiques |
EP0182626A2 (fr) * | 1984-11-21 | 1986-05-28 | Smithkline Beckman Corporation | Antagonistes V1-vasopressine |
WO1987002676A1 (fr) * | 1985-10-25 | 1987-05-07 | Gibson-Stephens Neuropharmaceuticals, Inc. | Antagonistes de l'oxytocine a conformation limitee presentant des activites biologiques prolongees |
-
1990
- 1990-07-09 SE SE9002384A patent/SE9002384D0/xx unknown
-
1991
- 1991-07-04 JP JP91512399A patent/JPH05508849A/ja active Pending
- 1991-07-04 CA CA002085603A patent/CA2085603A1/fr not_active Abandoned
- 1991-07-04 IL IL98737A patent/IL98737A0/xx unknown
- 1991-07-04 WO PCT/SE1991/000477 patent/WO1992000996A1/fr not_active Application Discontinuation
- 1991-07-04 AU AU82251/91A patent/AU8225191A/en not_active Abandoned
- 1991-07-04 EP EP91913318A patent/EP0538367A1/fr not_active Withdrawn
- 1991-07-04 PL PL29760091A patent/PL297600A1/xx unknown
- 1991-07-04 MC MC91@@D patent/MC2291A1/fr unknown
- 1991-07-08 IE IE237891A patent/IE912378A1/en unknown
-
1993
- 1993-01-04 FI FI930013A patent/FI930013A0/fi not_active Application Discontinuation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0112809A1 (fr) * | 1982-12-21 | 1984-07-04 | Ferring AB | Dérivés de vasotocine |
US4483794A (en) * | 1983-05-10 | 1984-11-20 | Ceskoslovenska Akademie Ved | Analogs of neurohypophysial hormones |
EP0182627A2 (fr) * | 1984-11-21 | 1986-05-28 | Smithkline Beckman Corporation | Antagonistes V1-vasopressine basiques |
EP0182626A2 (fr) * | 1984-11-21 | 1986-05-28 | Smithkline Beckman Corporation | Antagonistes V1-vasopressine |
WO1987002676A1 (fr) * | 1985-10-25 | 1987-05-07 | Gibson-Stephens Neuropharmaceuticals, Inc. | Antagonistes de l'oxytocine a conformation limitee presentant des activites biologiques prolongees |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995001368A1 (fr) * | 1993-06-29 | 1995-01-12 | Ferring B.V. | Synthese amelioree de peptides cycliques |
US5596078A (en) * | 1993-06-29 | 1997-01-21 | Ferring Ab | Synthesis of cyclic peptides |
US5726287A (en) * | 1993-06-29 | 1998-03-10 | Ferring Ab | Synthesis of cyclic peptides |
WO1995002609A1 (fr) * | 1993-07-13 | 1995-01-26 | Ferring B.V. | Peptides presentant une activite antagoniste de l'oxytocine |
AU676071B2 (en) * | 1993-07-13 | 1997-02-27 | Ferring B.V. | Peptides exhibiting oxytocin antagonistic activity |
WO1998023636A1 (fr) * | 1996-11-26 | 1998-06-04 | Ferring B.V. | Analogues d'heptapeptide oxytocine |
US6143722A (en) * | 1996-11-26 | 2000-11-07 | Ferring, B.V. | Heptapeptide oxytocin analogues |
CZ299532B6 (cs) * | 1996-11-26 | 2008-08-27 | Ferring B.V. | Heptapeptidový analog, farmaceutická kompozice obsahující tento analog, zpusob prípravy heptapeptidového analogu a jeho použití a zpusob prípravy farmaceutické kompozice obsahující tento analog |
US7091314B2 (en) | 2002-02-27 | 2006-08-15 | Ferring Bv | Intermediates and methods for making heptapeptide oxytocin analogues |
US7304181B2 (en) | 2002-02-27 | 2007-12-04 | Ferring Bv | Methods for making intermediates and oxytocin analogues |
US7816489B2 (en) | 2002-02-27 | 2010-10-19 | Ferring B.V. | Methods for making intermediates and oxytocin analogues |
Also Published As
Publication number | Publication date |
---|---|
EP0538367A1 (fr) | 1993-04-28 |
IL98737A0 (en) | 1992-07-15 |
FI930013A7 (fi) | 1993-01-04 |
CA2085603A1 (fr) | 1992-01-10 |
AU8225191A (en) | 1992-02-04 |
PL297600A1 (fr) | 1992-07-13 |
IE912378A1 (en) | 1992-01-15 |
JPH05508849A (ja) | 1993-12-09 |
SE9002384D0 (sv) | 1990-07-09 |
FI930013A0 (fi) | 1993-01-04 |
MC2291A1 (fr) | 1993-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6143722A (en) | Heptapeptide oxytocin analogues | |
EP0112809B1 (fr) | Dérivés de vasotocine | |
US4490364A (en) | CCK Agonists II | |
US4604378A (en) | Basic V1 -vasopressin antagonists | |
EP0269299A2 (fr) | Peptides atriaux | |
CA2022740C (fr) | Antagonistes cycliques de la neurokinine a | |
WO1992000996A1 (fr) | Derives d'hormones du lobe pituitaire posterieur | |
US4684621A (en) | Methods of producing vasodilation or antioxytocic activity | |
US4658015A (en) | Polypeptide intermediates | |
JPS62209096A (ja) | バソプレシン化合物 | |
CA2163114A1 (fr) | Peptides presentant une activite antagoniste pour l'oxytocine | |
CZ993A3 (en) | derivatives of neurohypophysis lobe hormones | |
JPS63303999A (ja) | バソプレシン拮抗剤 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU BB BG BR CA CS FI HU JP KP KR LK MC MG MW NO PL RO SD SU US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE BF BJ CF CG CH CI CM DE DK ES FR GA GB GN GR IT LU ML MR NL SE SN TD TG |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2085603 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1991913318 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 930013 Country of ref document: FI |
|
WWE | Wipo information: entry into national phase |
Ref document number: PV1993-9 Country of ref document: CZ |
|
WWP | Wipo information: published in national office |
Ref document number: 1991913318 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: PV1993-9 Country of ref document: CZ |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1991913318 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: PV1993-9 Country of ref document: CZ |