[go: up one dir, main page]

WO1992001714A1 - Non-a non-b hepatitis virus antigen - Google Patents

Non-a non-b hepatitis virus antigen Download PDF

Info

Publication number
WO1992001714A1
WO1992001714A1 PCT/JP1991/000964 JP9100964W WO9201714A1 WO 1992001714 A1 WO1992001714 A1 WO 1992001714A1 JP 9100964 W JP9100964 W JP 9100964W WO 9201714 A1 WO9201714 A1 WO 9201714A1
Authority
WO
WIPO (PCT)
Prior art keywords
antigen
arg
pro
leu
asp
Prior art date
Application number
PCT/JP1991/000964
Other languages
English (en)
French (fr)
Inventor
Yasuaki Shimizu
Takeshi Imai
Junko Ishida
Emiko Yano
Syuhei Yasuda
Tetsuo Morinaga
Terukatsu Arima
Original Assignee
Yamanouchi Pharmaceutical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamanouchi Pharmaceutical Co., Ltd. filed Critical Yamanouchi Pharmaceutical Co., Ltd.
Publication of WO1992001714A1 publication Critical patent/WO1992001714A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/24011Flaviviridae
    • C12N2770/24211Hepacivirus, e.g. hepatitis C virus, hepatitis G virus
    • C12N2770/24222New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes

Definitions

  • the present invention relates to a novel non-A non-B hepatitis virus antigen.
  • an antigen polypeptide that specifically shows an antigen-antibody reaction with serum of a non-A non-B hepatitis patient, a polynucleotide encoding the antigen polypeptide, and an antigen polypeptide using the polynucleotide
  • a method for detecting and diagnosing a non-A non-B hepatitis virus antibody using the antigen polypeptide is a method for detecting and diagnosing a non-A non-B hepatitis virus antibody using the antigen polypeptide.
  • Non-A, non-B hepatitis is the hepatitis A virus (HAV), hepatitis B virus (HBV), Hepatitis caused by hepatitis hepatitis virus (HDV) or cytomegalovirus (CMV), Epstein-Barr virus (EBV), adenovirus, etc.
  • HAV hepatitis A virus
  • HBV hepatitis B virus
  • HDV hepatitis hepatitis virus
  • CMV cytomegalovirus
  • EBV Epstein-Barr virus
  • adenovirus etc.
  • Epidemiological evidence suggests that there are three types of non-A, non-B hepatitis: Water-borne epidemics prevalent in developing countries, post-transfusion-type transmission via blood, and sporadic (population-acquisition) types found in developed countries.
  • non-A non-B hepatitis means the one caused by the remaining post-ring blood type and sporadic type, excluding this water-borne type.
  • hepatitis C virus HCV
  • HCV hepatitis C virus
  • Both C100 antigen and clone 14 antigen encoded by these genes specifically react with 60-80% of post-transfusion non-A non-B chronic hepatitis sera and sporadic non-A non-B chronic hepatitis sera.
  • HCVcore antigens [Kunitada Shimotono et al., The 38th Annual Meeting of the Japanese Society for Virology, abstract 112; Izumi Saito, et al., Abstract 104; Shizuko Harada et al., 105, 1990 (1990)], including its epitope Peptide fragments CP9, CP10 [Okamoto, H., et al., Japan J. Exp. Med., 60, 223 (1990)] and non-A non-B hepatitis-related antigen GOR derived from cellular genes [K. Akabane et al.
  • HCV diversity HCV is known to be a highly mutated virus, [Enomoto. N., et al., BBRC, 170, 1021 (1990); Shuichi Kaneko et al., Liver, 31 suppl. 213 (1990); Nobuyuki Kato et al., Liver, 31 suppl.
  • the present inventors have 1) an antigen having a high reaction rate to a serum of a non-A non-B hepatitis patient after blood transfusion, 2) an antigen having a high reaction rate to a serum of a patient with sporadic non-A non-B hepatitis, 3) acute Antigens that can also react with the serum of patients with non-A and non-B hepatitis in the early stage (antigens that can detect viral antibodies that appear earlier in infection), and 4) antigens that can detect viral antibodies that are highly correlated with viremia.
  • a novel non-A, non-B hepatitis virus antigen different from the existing antigen was obtained from Japanese human plasma.
  • nucleotide sequence of the gene When the nucleotide sequence of the gene was determined, it was found that the nucleotide sequence at positions 4138 to 4521 and 6757 to 6909 of the previously reported nucleotide sequence of HCV (the nucleotide sequence shown in FIG. 17 of European Patent Application Publication No. 388232). It was shown to be a novel non-A, non-B hepatitis virus antigen with 10% and 22% homology to the corresponding amino acid sequence, respectively, but containing different amino acid sequences. By using these antigens alone or in combination, or in combination with other antigens as appropriate, non-A, non-B hepatitis virus antibodies can be detected with a much higher detection rate than existing HCV antibody measurement kits. Knowing that it is possible, they completed the present invention.
  • the present invention relates to an antigen polypeptide Y19 group, an antigen polypeptide Y22 group or a fragment group thereof, and a composite antigen polypeptide group in which two or more antigens selected from these polypeptide groups are fused.
  • antigen polypeptides A single antigen selected from the group of antigenic polypeptides having an epitope that can be regarded as immunologically identical to the epitope contained in the Y19 group or the Y22 group, or a mixed antigen obtained by mixing two or more antigens Reacts with non-A, non-B hepatitis virus antibodies present in biological samples.
  • the present invention relates to a method for detecting a non-A non-B hepatitis virus antibody, wherein the immunological conjugate formed is measured to confirm the presence of the non-A non-B hepatitis virus antibody in a biological sample. Also, the present invention relates to a non-A non-B hepatitis virus antibody detection kit for performing this detection method. Further, the present invention provides an antigen polypeptide group used for the method and kit for detecting the non-A non-B hepatitis virus antibody, a polynucleotide encoding the polypeptide of the polypeptide group, and The present invention relates to a method for producing a polypeptide contained in the polypeptide group.
  • non-A non-B hepatitis virus antigen polypeptide Y19 group of the present invention is represented by the following general formula (I).
  • non-A non-B hepatitis virus antigen polypeptide Y22 group of the present invention is represented by the following general formula ( ⁇ ).
  • Fragments of the polypeptide Y22 group include groups represented by the following formulas (III) to (VII).
  • a non-A non-Hepatitis B virus antigen polypeptide selected from the group consisting of:
  • the composite antigen polypeptide group is a composite antigen obtained by fusing two or more types of antigens selected from the above-mentioned group of Y19, Y22, and Y22 groups using genetic recombination technology. It is a polypeptide. N which may be mentioned as its typical, for example, under Symbol of Poribe petit de is fused included in Y19 group and Y22 group of (VIII) of the polypeptide (Y22- 19) (VIII)
  • non-A non-B type Representative examples of the hepatitis virus polynucleotide include, for example, the polynucleotide Y19 of the following formula (IX), the polynucleotide Y22 of the formula (X), and the polynucleotide Y22 of the formula (XI). And those represented by the following nucleotide sequence.
  • GCT GTA GCA TAC TAC CGG GGT CTT GAC G TG
  • the present invention relates to a polynucleotide probe for detecting a polynucleotide derived from a non-A non-B hepatitis virus, comprising a continuous sequence derived from the sequence of the complementary strand of the polynucleotide.
  • Invention relating to a polynucleotide probe containing a sequence consisting of 8 bases or more, and reverse transcription-PCR method using a polynucleotide derived from a non-A non-B hepatitis virus (polymerase-chain reaction method)
  • an invention involving a pair of polynucleotide primers containing a sequence having a longer length, and an epitope which can be regarded as immunologically identical to an epitope contained in a polypeptide of the Y19 group or the Y22 group.
  • polynucleotide refers to a polymer of a nucleotide (ribonucleotide or deoxyribonucleotide) having any length.
  • the term also includes both single and double stranded forms.
  • epitope refers to an antigenic determinant of a polypeptide.
  • Epitope can also be formed with three amino acids located within the conformational hormone that is unique to epitope, but generally consists of at least 5 to 10 amino acids.
  • non-A non-B hepatitis-related antigen means an antigen other than the antigen of the present invention and capable of diagnosing non-A non-B hepatitis, and includes both antigens derived from viral genomes and cell genes. For example, C100 antigen, Core antigen, Clone 14 antigen, GOR antigen, etc.)
  • non-A non-B hepatitis virus antigen means a non-A non-B hepatitis-related antigen derived from the virus genome.
  • the “fusion antigen” refers to a non-A non-hepatitis B virus antigen of the present invention, which contains N-terminal and Z- or C-terminal other proteins (eg, ⁇ -gal, Protein A, T7 gene 10, maltose-binding protein, Glutathione S-transferase) or a part or all of them.
  • N-terminal and Z- or C-terminal other proteins eg, ⁇ -gal, Protein A, T7 gene 10, maltose-binding protein, Glutathione S-transferase
  • conventional techniques of molecular biology, microbiology, genetic engineering, and immunology known in the art are employed. Please refer to the following experiment for such a method. Experiment 1: Sambrook ⁇ , Fritsch. E.F., and Maniatis, T. Molecular Cloning 2nd ed .; Cold Spring Harbor (1989)
  • Experiment 2 DNA cloning 1 roll (Glover, DM) IRL Press.
  • Cloning policy for non-A non-B hepatitis virus antigen gene cloning is based on 1) RNA from starting material that is thought to contain the viral genome. 2) Preparation of ⁇ gtll cDNA library, 3) Immunoscreening with serum from patients with non-A and non-B hepatitis.
  • HCV is known to be rich in mutations, but multiple (10 or more) individuals are required to reliably and efficiently clone highly comprehensive antigens (epitopes) that react with any virus antibody.
  • RNA derived from Escherichia coli It is desirable to prepare cDNA based on RNA derived from Escherichia coli and perform immunoscreening on the mixed serum of multiple (10 or more) non-A non-B hepatitis patients. This makes it easier to obtain antigens that react with antibodies shared among non-A, non-B hepatitis patients.
  • HBs antigen-negative, HBV-DNA-negative, human plasma with high ALT (GPT) activity (> 35 IU / L) or non-A non-B hepatitis patient serum is pooled and used as starting material for viral RNA preparation .
  • the virus particles are concentrated and recovered as a precipitate by polyethylene glycol precipitation. Sinking Extraction of RNA from the precipitate is performed by the AGPC method using guanidine * thiosyanate [Chomczynski, P. and Sacchi, N .: Analytical Biochemistry 162, 159 (1987)] and the like.
  • chimpanzee serum infected with non-A, non-B hepatitis virus can be used as a starting material in place of human plasma or serum, but in general, when the virus is passaged in a heterologous animal, a mutation in the virus genome occurs. It is desirable to use human plasma or serum as a starting material when cloning the antigen, as they may occur or sometimes alter the pathogenicity of the virus. Because HCV is transmitted through the blood or in a collective manner, certain virus strains may be endemic in certain areas. Therefore, it is preferable to use virus antigens derived from Japanese for diagnosis in Japan.
  • RNA Preparation of RNA from liver tissue of patients Patients with liver cancer considered to have had infection with non-A, non-B hepatitis in the past can be obtained from liver tissue resected from patients with liver cancer using standard methods [Exp. 1,7]. RNA can be prepared.
  • RNA RNA as type III
  • a double-stranded cDNA is synthesized by the Gubler-Hoffman method [Gene, 25, 263 (1983)] using a random hexamer as a primer.
  • the cDNA is inserted into a gtll phage vector by a conventional method.
  • Agtll is a vector that has been developed and cloned for cloning the gene of an antigen corresponding to a specific antibody [Young, RA and Davis, RW, Proc. Natl. Acad. Sci. USA, 80, 1194 (1983) ), Experiment 2, p49-78] 0 or vectors other than ⁇ gtll such as ZAP, ⁇ ⁇ , pUC19, pUEXl may be used.
  • a recombinant infected with Escherichia coli (eg, strain Y1090); gtll grows under certain conditions according to the growth mechanism of pacteriophage, Along with this, the previously integrated cDNA is also amplified. Proliferated bacteriophages lyse host E. coli under certain conditions and form plaques that are visually recognizable. Since the cDNA inserted into the gtl phage vector is translated as a fusion antigen with ⁇ -galactosidase ( ⁇ -gal), a large number of recombinant antisera raised against specific antigens By screening the body gtll, cDNAs encoding specific antigens can be identified by immunochemical methods.
  • the cDNA library prepared in (3) above is screened with pooled sera derived from non-A non-B hepatitis patients. Specifically, the fusion antigen expressed from the culture dish forming the plaque was transferred to a ditrocellulose membrane, and the pooled serum described above was reacted as a primary antibody, and the peroxidase-labeled goat anti- Human IgG) IgG is reacted as a secondary antibody, and plaques that are positive for color reaction are isolated.
  • nucleotide sequence of the antigen gene of the present invention can be obtained by subjecting the recombinant DNA and the subcloned plasmid DNA to type III by the Sanger method [Sanger, F., et aL. Proc. Natl. Acad. USA., 74,5463 (1977), Experiments 1, 13], and can be determined using a commercially available sequence kit.
  • Polynucleotides containing a continuous sequence of 8 bases or more in length derived from the complementary strand of the non-A non-B hepatitis virus polynucleotide of the present invention hybridize with the virus genome of the present invention, so that serum And useful as a probe for detecting the virus genome in tissues.
  • These polynucleotides can be synthesized by a phosphoramidite method [Hunkapiller, M. et al. Nature 310, 105-111 (1984)] or a commercially available DNA synthesizer (for example, Applied Biosystems (ABI), 380AM DNA synthesizer).
  • non-A non-B hepatitis virus polynucleotide of the present invention can be synthesized by using the polynucleotide as a type II and subjecting it to a double translation method, a random primer labeling method, and the like.
  • the polynucleotide is used for diagnosis, it is used as a labeling probe such as a radioactive probe, a biotin fluorescent probe, and a chemiluminescent probe in a usual manner, but the hybridization method described above is used.
  • the method of labeling, and the method of signal amplification and detection are all known, and can be carried out with reference to, for example, Toyozo Takatachika.
  • the base K columns of the present invention One part or two or more primer pairs for PCR (polymerase-chain-reaction) are created using a part of the primers, and reverse transcription-PCR method [Kawasaki, ES, et al "Proc. Natl. Acad. Sci. USA, 85, 5698 (1988); Garson. JA et al., Lancet, 335, 1419 (1990); Enomoto, N “et al” BBRC, 170, 1021 (1990); Okamoto, H., et al., Japan J. Exp. Med., 60, 215 (1990)] to amplify the target viral genome and then detect it.
  • the antigen polypeptide and the polypeptide constituting the epitope and the fusion antigen polypeptide containing the sequence thereof can be expressed using a commercially available expression vector.
  • a commercially available expression vector for example, for expression in E. coli, pKK233-12, pKK223-3, pPL-lambda, pRIT5, pRIT2T, pMC1871 (Pharmacia), pMAL-c, pMAL-p (New England Biolabs), pEX 1-3 (BM), pGEX (AMRAD) or the like can be used.
  • the antigen polypeptide of the present invention is expressed in Escherichia coli, Met derived from the initiation codon is added to the N-terminus, and the linker and adapter used in constructing the expression vector, as well as the multicloning site, are used. In some cases, about 1 to 20 amino acids derived from the base sequence of the amino acid may be added to the N-terminal of the polypeptide (for example, in the examples of the present specification, the N-terminal of the Y19 antigen is Met-Ala However, Met-Ala-Ala-Ala is added to the N-terminal of the Y22-19 antigen).
  • Expressed recombinant antigen polypeptides and recombinant fusion antigen polypeptides can be purified from lysed cells or medium by protein purification methods known in the art (ultrafiltration, centrifugation, dialysis, ion exchange chromatography). , Hydrophobic chromatography, Gel 'neglect, Electrophoresis, Affinity Purification can be carried out by using chromatography, HPLC or the like; see, for example, Methods in Enzymology, Vol. 182 (Edited by Deutscher, MP), Academic Press (1990).
  • the antigen polypeptide can be prepared by chemical synthesis based on the amino acid sequence determined in the present invention. Preferably, the entire sequence is divided into fragments (10 to 50 residues) that are relatively easy to synthesize, and further divided so that adjacent fragments overlap by about 5 to 10 residues, and synthesized. After baking, it is preferable to use only the fragments containing the epitope alone or in combination.
  • polypeptides containing the amino acid sequence of the antigen polypeptide are chemically synthesized manually by a liquid phase method or a solid phase method, or by an automatic synthesizer (for example, ABI 430A type peptide synthesizer). be able to.
  • Polypeptides synthesized by the solid-phase method according to the t-Boc method or the f-moc method are cut out of the resin using trifluormethanesulfonic acid, hydrogen fluoride, or trifluoroacetic acid.
  • These synthetic peptides can be purified by preparative reversed-phase high-performance liquid chromatography (HPLC) to increase the degree of purification.
  • the non-A, non-B hepatitis virus antigen polypeptide obtained by the present invention can be used to prepare, for example, a biological sample such as blood, plasma, serum, cerebrospinal fluid, and a biological product such as a human immunoglobulin preparation by using Imnoassay. It can be used to detect the presence of non-A, non-B hepatitis virus antibodies contained in E. coli.
  • the antigen polypeptide and the sample are subjected to conditions under which an immunological conjugate (antigen antibody conjugate) can be formed between the antigen polypeptide and the non-A non-B hepatitis virus antibody in the sample. Make contact.
  • any antigen-antibody conjugate is formed, the presence of non-A non-B hepatitis virus antibody in the sample can be detected and measured by appropriate means.
  • detection methods And immunoprecipitation method, agglutination method, Radioimnoassy (RIA), EIA, ELISA. ETijssen, P. Eiji Ishikawa's translation, Enzymimnoattsie, Biochemical Experiment Vol.ll, Tokyo Chemical Dojin (1989)] , CEDIA [Henderson; DR et al., Clin. Chem., 32, 1637 (1986)], and Western blot atsey or binding imnoatsay.
  • the antigen obtained according to the present invention was expressed as a fusion protein with, for example, 3-gal, and the nitrocellulose membrane-produced antigen was immobilized on a solid phase to obtain an antigen.
  • Methods for detecting non-A, non-B hepatitis virus antibodies eg, immunoplaque assay, western plot assay, etc.
  • Examples 11, 12, and 13 show a method for detecting non-A non-B hepatitis virus antibody by ELISA.
  • Example 13 a method was described in which a titer plate was coated with a mixture of Y19, # 22-3 and # 22-16 antigens, and the virus antibody was measured at a high rate.
  • Y19 antigen and ⁇ 22 antigen increase the detection rate by combining Y19 antigen and / or ⁇ 22 antigen with one or more non-A non-B hepatitis-related antigens such as HCVcore antigen, clone 14 antigen, and GOR antigen. It is also possible.
  • a complex antigen with a non-A non-B hepatitis-related antigen polypeptide such as Y19-core, Y19-core.
  • Y19-core Y19-core.
  • Y19-core Y19-core.
  • Y19—Y22—core Y19—Y22-CP9 / CP10-GOR
  • Y19-GOR-core complex antigen with a complex antigen with a non-A non-B hepatitis-related antigen polypeptide
  • FIG. 1 shows a histogram of absorbance distribution in a healthy human sample by the Y19 ELISA method.
  • FIG. 2 shows the absorbance distribution of the serum of a non-A non-B chronic hepatitis patient by the Y19 ELISA method and the C100 ELISA method.
  • FIG. 3 shows the results obtained by examining the reactivity of various synthetic polypeptide fragments containing the sequence of the Y22 antigen of the present invention with pooled sera of non-A and non-B type patients by ELISA.
  • FIG. 4 shows a histogram of absorbance distribution in a healthy human sample by the Y19 + 22 ELISA method.
  • FIG. 5 shows the absorbance distribution of the serum of a non-A non-B chronic hepatitis patient by Y19 + 22 ELISA and C100 ELISA.
  • Example 1 Preparation of plasma-derived RNA
  • RNA from the precipitate was performed according to the AGPC method using guanidine 'thiosineate [Chomczynski. P. and Sacchi.
  • RNA was precipitated again. After centrifugation, the sediment was washed with 75% ethanol and dried. The precipitate was dissolved in 501 sterile distilled water to obtain an RNA solution.
  • Double-stranded cDNA was prepared from RNA using a commercially available cDNA synthesis system, Brass (Amersham, RPN-1256Z). The conversion rate from RNA to single-stranded cDNA was about 2%, and the conversion rate from single-stranded cDNA to double-stranded cDNA was about 100%.
  • the synthesized double-stranded cDNA was subjected to ethanol precipitation, and then dissolved in a 100 1 TE solution (10 mM Tris-CI, pH 8.0, ImM EDTA). Next, using a commercially available cDNA synthesis kit (Pharmacia LKB, 27-9260-01), The reaction was performed.
  • the buffer was exchanged with the 1X T4 ligase solution by passing the cDNA solution through the Sephacryl S-300 span column attached to the kit.
  • an EcoRI adapter addition reaction and a T4 kinase reaction were performed according to the instructions.
  • the peptide that did not bind to the cDNA was removed using a Sephacryl S-300 span column.
  • the cDNA in the eluate was ethanol precipitated with 5 ⁇ g of carrier tRNA. The precipitate was washed with 75% ethanol and air-dried.
  • Example 3 Cloning of non-A non-B hepatitis virus antigen gene
  • the reaction between plaques in the cDNA library (Lot.B) and the primary and secondary antibodies was determined by using a commercially available screen 'Immunsk Cleaning System (Amersham). , RPN 1281Z).
  • the primary antibody used for screening was bull serum from patients with non-A and non-B hepatitis (5 acute hepatitis recovery periods and 5 chronic hepatitis) in E.
  • IgtllY19 Lysogen is named Escherichia coli Y1089 ( ⁇ gtllY19), and the strain has been deposited as follows.
  • Example 5 Determination of the nucleotide sequence of cDNA derived from clone Y19 and the sequence of the antigen polypeptide encoded in the sequence
  • the clone Y19 was propagated by the plate lysate method described in 2.118 of Experiment 1, and then phage DNA was prepared. 5 ⁇ g fur After the DNA was digested with EcoRI, the DNA was purified by phenol extraction and ethanol precipitation. 3 after the g of EcoRI digest was treated alkaline phosphatase, were performed 5 'end labeled with T4 kinase and 7 32 P- ATP. After purifying the DNA fragment by phenol extraction and ethanol precipitation, 5.0% polyacrylamide gel electrophoresis was performed, and the length of the cDNA excised by EcoRI digestion was examined by autoradiography. As a result, the size of the cDNA was found to be about 400 base pairs.
  • a ⁇ 4 ligase reaction was performed with the above-mentioned EcoRI digest and pTZ19 (Pharmacia LKB, 27-4986-01) dephosphorylated after EcoRI digestion.
  • the reaction solution was transfused into Escherichia coli JM109 (Takara Shuzo, 9052), and a plasmid having an insert of about 400 base pairs was isolated from the transformants (designated ⁇ 19-Y19).
  • the nucleotide sequence of the cDNA incorporated into ⁇ 19-Y19 was determined by performing a sequence reaction using a DyeDeoxy Terminator Taq Sequencing Kit (ABI, 401070) and running with a DNA sequencer (ABI.373A).
  • the sequence was determined using both M13 primer M4 (Takara Shuzo, 3832), M13 primer RV (Takara Shuzo, 3830) and synthetic primer E 1 (5'-GGAGACGTCGTTGTTGT-3 '), E2 (5'-GCCTGTCATCAGAGCGT-1 3').
  • the chains were read and determined.
  • synthetic oligonucleotides were prepared using a 380A DNA synthesizer (ABI) and purified according to the attached instructions.
  • the base sequence was determined by directly transforming the phage DNA into a ⁇ type using the primers and the reverse primers (New England Biolabsl218, 1222).
  • the nucleotide sequence encoding the antigen that specifically reacts with the serum of non-A non-B hepatitis patients is shown in Formula (IX)
  • the amino acid sequence of the antigen is shown in Formula (I).
  • the amino acid sequence is obtained by translating the base sequence of formula (IX) from the first position.
  • Example 6 Antigen specificity test of clone Y22
  • a mixture of clone Y22 and negative clones at a ratio of 2: 8 was plated, and non-A non-B chronic chronic hepatitis (previous ring blood) serum (5 blood samples) was applied using the immunoscreening method described above. ), Non-A non-B acute hepatitis patients (no transfusion history) Serum (6 patients), non-A non-B chronic hepatitis patients (no transfusion history) sera (5 patients), normal control serum (26 patients) ), Sera from chronic hepatitis B (9 patients) and sera from acute hepatitis A (2 patients) were examined. Table 2 shows the results. The results showed that clone Y22 specifically reacted only with non-A, non-B hepatitis patient serum.
  • clone Y22 encodes an antigen (epitope) that is immunologically recognized by serum from a non-A non-B hepatitis patient.
  • ⁇ gtll (parent strain) lysogen and recombinant ⁇ gtll Y22 lysogen preparation were described in Experiment 3, p . Performed according to the method.
  • the ⁇ gtllY22 lysogen was named Escherichia coli Y 1089 ( ⁇ gtllY22), and Deposited as follows.
  • Example 7 Determination of nucleotide sequence of cDNA derived from clone Y22 and antigen polypeptide sequence encoded in the sequence
  • the nucleotide sequence was determined according to the method of Example 5. For determination, both strands were read using M13 Primer 1-4 (Takara Shuzo, 3832) and M13 Primer RV (Takara Shuzo, 3830) to determine.
  • a pair of PCR primers was prepared that hybridize to the N-terminal and C-terminal [19- ⁇ : 5 '-1c: 5'-AAAAGCTTGGATCCTTAGCGTTCCCCTGGAGTCACATACCT] 19- ⁇ Primers have BamHI and Ncol sites, and the 19-c primer has stop codons, BamHI and Hindlll sites.
  • Heat treatment 95 minutes, 10 minutes
  • PCR was performed using GeneAmp DNA amplification reagent kit (PERKIN ELMER CETUS, N801-0055) with 40 pmol of each primer for PCR added to the aqueous solution of IgtllY19 phage (94 °). C, 1 minute, 45 ° C. 2 minutes, 72. C, 3 minutes 35 cycles).
  • the reaction mixture was extracted with phenol-X-form, and ethanol was added to the aqueous phase to sediment DNA fragments.
  • the PCR product obtained in (1) was treated with ⁇ 4 kinase by a conventional method, and then ligated using ⁇ 4 ligase.
  • the reaction solution was extracted with a phenol micropore form, and ethanol was added to the aqueous phase to precipitate DNA fragments.
  • the DNA was double-digested with Ncol and Hindlll, and the digest was electrophoresed on 1.2% agarose (SeaKem GTG Agarose: Takara Shuzo, 5160). A band of about 400 base pairs was cut out, and DNA was recovered using SUPREC-01 (Takara Shuzo 9040).
  • the lysate containing 10 zg of protein and a molecular weight marker were electrophoresed on two sets of SDS-PAGE plates 10Z20 (Daiichi Kagaku, 120483). One was stained with CBB by a conventional method, and the other was Western-blotted to a nitrocellulose filter (Schleicher & Schuell, BA85) using an ISS semi-dry electroplotter (Daiichi Kagaku, SS110201). The ditrocellulose filter was reacted with a pool serum of a non-A non-B hepatitis patient according to the method described in Example 3.
  • Peroxidase-labeled goat anti-human (IgG) IgG was used as the secondary antibody.
  • IgG immunoglobulin G
  • Kappel 3201-0081
  • CBB staining a new band, which was not observed in the Kc strain, was detected at a site with a molecular weight of 17,000 in the K19 strain. That is, the K19 strain expressed an antigen (Y19 antigen) that retained reactivity with patient serum.
  • the Y19 antigen was converted to pED3d (Experiment 6, p60-89) using the T7 promoter, pGEMEX-11 (Promega, P2211), and pMAL-c (New England Biolabs, # 800) can be used to express in E. coli cells.
  • Example 9 Expression of Y22-19 complex antigen in E. coli
  • the 22-n primer has a BamHI site and a Pstl site, and the 22-c primer has an Ncol site.
  • the heat-treated (95 ° C, 10 minutes) ⁇ gtllY22 phage aqueous solution 40 pmol of each primer for PCR was added, and PCR was performed using the GeneAmp DNA amplification reagent kit (94 ° C, 1 minute, 45 ° C, 35 cycles of 2 minutes, 72 ° C, 3 minutes).
  • the reaction solution was extracted with phenol / chloroform, and ethanol was added to the aqueous phase to precipitate DNA fragments.
  • the reaction solution was extracted with form of funinol in the mouth, and ethanol was added to the aqueous phase to precipitate DNA fragments.
  • the reaction solution was extracted with phenol Z chloroform, and ethanol was added to the aqueous phase to precipitate fragments.
  • the reaction solution was extracted with phenol Z chloroform, and ethanol was added to the aqueous phase to precipitate the ligated product.
  • the ligated product was subjected to double digestion with Pstl and Hindlll, and the digest was electrophoresed on 1.2% agarose (SeaKem GTG Agarose: Takara Shuzo, 5160). A band of about 550 base pairs was cut out, and DNA was recovered using SUPREC-01 (Takara Shuzo, 9040). Next, this 550 bp DNA fragment was double digested with Pstl and Hindlll to obtain a pKK233-2 expression vector (Pharmacia, 27-5005). Ligation was performed using T4 ligase. Escherichia coli JM109 strain was transformed using this ligation product. A clone containing ⁇ ⁇ 233 ( ⁇ 22-19) with an insert of 550 bases was obtained from the transformants that appeared on the ampicillin plate (JM109 / pKY22-19: hereinafter referred to as strain K2219).
  • the lysate containing 10 / g of protein and the molecular weight marker were electrophoresed on two sets of SDS-PAGE plates 10/20 (Daiichi Shigaku, 120483).
  • color development was observed only at the K2219 strain at a site with a molecular weight of 26,000.
  • CBB staining a new band was detected at a site with a molecular weight of 26,000 in the K2219 strain, which was not observed in the Kc strain. That is, the K2219 strain expressed an antigen (Y22-19 antigen) that retained the reactivity with the patient's serum.
  • the Y22-19 antigen can be expressed using pED3d, pGEMEX-11, pMAL-c, and the like.
  • Example 10 Purification of Y19 antigen from E. coli
  • the precipitate fraction was dissolved in 50 mM Tris-HC1, ⁇ 8.4, ImM EDTA, and 6 M guanidine hydrochloride, and the centrifuged supernatant (200,000 ⁇ g, 30 minutes) was added to the C solution (0.1). M Tris-HC1, pH 8.4, ImM EDTA, 2M Urea). After dialysis, the mixture was centrifuged again, and the supernatant was applied to a Q Sepharose column (30 ml gel volume). The unbound fraction was then applied to an S Sepharose column (30 ml gel volume) and eluted with a 0.0 to 0.5 M salt gradient.
  • the peak fraction eluted at about 0.2M salt concentration was collected, and ammonium sulfate was added to a final concentration of 1M. This solution was then poured onto a Phenyl Sepharose column. The adsorbed fraction eluted with a C solution containing 0.05M ammonium sulfate. The eluted fraction was dialyzed against the C solution and concentrated on a S Sepharose column. About 7 mg of purified Y19 antigen was obtained from 6 L of culture. The purity of the purified protein was estimated to be 98% or more based on the results of SDS-PAGE CBB staining.
  • Example 11 Detection of non-A non-B hepatitis virus antibody by Y19 ELISA
  • a non-A, non-B hepatitis virus antibody (Y19 antibody) in the serum was detected by a Y19 ELISA method (Y19 ELISA method) using the Y19 antigen obtained in Example 10.
  • Coating mouthwash containing Y19 antigen (1 Z g / ml) [0. 1M sodium bicarbonate (PH9.5)] was added at 200 / zl to the immobilized plate (Nunc, 439454) overnight 4. After incubating with C, the solution was removed.
  • Add 250 1 of blocking buffer [PBS (10 mM phosphate buffer, 137 mM sodium chloride, 2.7 mM potassium chloride, pH 7.4), 1% bovine serum albumin (BSA)] to the gel, and add 4% Placed.
  • PBS 10 mM phosphate buffer, 137 mM sodium chloride, 2.7 mM potassium chloride, pH 7.4
  • BSA bovine serum albumin
  • the solution was removed and washed three times with a washing buffer [PBS, 0.05% Tween 20]. 37. To the washed well, add the sample 200 1 diluted 20-fold with the sample diluent [5.5 volumes PBS, 0.5% BSA, 1% Triton X-100]. C, incubated for 1 hour. Next, the gel washed 5 times with the washing buffer was washed with 10,000 labeled antibody solution (peroxidase-labeled goat anti-human (IgG) IgG using a labeled antibody diluent [wash buffer containing 0.5% BSA] in 10,000 buffer). (Diluted 1: 2 solution) at 37 for 1 hour.
  • a washing buffer [PBS, 0.05% Tween 20]. 37.
  • substrate reaction solution [0.4mgr / ml 0-phenylene Renjiamin'ni hydrochloride and 0.01% H 2 0 2 containing phosphoric acid-Kuen acid lOOmM slow ⁇ , PH5. 0] 200 1 was added, and the mixture was incubated at room temperature for 30 minutes in the dark. The reaction was stopped by adding 501 of 4.5 M sulfuric acid, and the absorbance was measured at 492 nm.
  • Specimens obtained from healthy subjects with normal liver function were examined using the Y19 ELISA method described above. The results obtained with these samples are shown in a histogram showing the absorbance distribution (Fig. 1). As can be seen from FIG. 1, all samples showed absorbances between 0.1 and 0.5. The average value of the absorbance of the 27 healthy subjects was 0.274 and the standard deviation was 0.086. All of these samples were included between the mean ⁇ 3-fold standard deviation.
  • the Y19 antigen showed a strong reactivity (mean 1.639, standard deviation 0.206) with all non-A non-B liver disease samples.
  • the C100 antigen did not react with two sera of patients with non-A non-B liver disease (one serum of non-A non-B acute hepatitis patients and one serum of non-A non-B chronic hepatitis patients).
  • Measurement of non-A, non-B hepatitis virus antibodies using the Y19 antigen resulted in a higher detection rate than the C100 antigen.
  • Example 7 Based on the amino acid sequence determined in Example 7 (see formula (II)), the following formulas ( ⁇ ) (VII) and (XII) selected to include a relatively hydrophilic region and Example 7
  • the control polypeptide represented by the formula (II) not containing the amino acid sequence (see formula (II)) determined in the above was synthesized as follows. (III)
  • Polypeptides of the formulas (III) and (XIII) are prepared by using triammonium phenylacetamidomethyl (Pam) resin obtained by force-pulping t-Boc-Lys and t-Boc-Gly, respectively.
  • the removal of the t-Boc group, the activation of t-Boc amino acid to be linked with ⁇ , ⁇ -dicyclohexylcarbodiimide, and the coupling were sequentially repeated to synthesize.
  • t-Boc-Arg ⁇ , N-dicyclohexylcarbodiimide and 1-hydroxybenzotriazole were used in equal amounts.
  • the peptides of the formulas (IV) to (XII) were synthesized in the same manner using a Pam resin obtained by force-pulping t-Boc-Asp as a starting material. However, a mixed solution of trifluoracetic acid: triethylamine: dichloromethane (35: 1: 9) was used to remove the t-Boc group. Each polypeptide was released from the resin with trifluorosulfonic acid methanesulfonic acid according to the method described in the user's manual. The released polypeptide was freeze-dried to obtain a white or pale yellow-white solid.
  • polypeptides were analyzed by high performance liquid chromatography. Using an R— ODS—5 column (4.6 ⁇ X 250 mm, Yamamura Chemical), from solution A (3 ⁇ 40, 0.1% trifluorosulfonic acid) 0% to solution B [acetonitrinol: 0 (70:30) The elution time of the main peaks of the polypeptides of formulas (III) to (VII) and ( ⁇ ) and (XIII) was increased by linear gradient elution of 35% over 100% of 0.1% trifluoroacetic acid. Approximately 26.2 minutes, 30.7 minutes, 29.2 minutes, 33.0 minutes, 29.7 minutes, 28.4 minutes, and 29.1 minutes, respectively.
  • Non-A, non-B hepatitis virus antibodies were detected in the serum using an ELISA method using the synthetic polypeptide as an antigen.
  • Coating buffer [0.1 M sodium bicarbonate (pH 9.5)] containing each synthetic polypeptide (10 g / ml) was added to immobilized plate (Nunc, 439454) in 100/1 ratio. Then 4 overnight. After incubation with C, the solution was removed by suction.
  • Add 250 // 1 blocking buffer [PBS (l OmM Phosphate buffer, 137 mM sodium chloride, 2.7 mM chloride, pH 7.4) and 1% bovine serum albumin] were added, and the mixture was kept at room temperature for 3 hours.
  • the solution was removed and washed three times with a washing buffer (PBS, 0.05% Tween 20).
  • a washing buffer PBS, 0.05% Tween 20
  • bovine serum from a non-A, non-B hepatitis patient diluted 30 times with a washing buffer containing 0.25% BSA or 100/1 bull serum from a healthy person as a control at 4 ° C overnight. Incubated. Then, the gel washed 5 times with the washing buffer was added to a 100/1 secondary antibody solution (a solution of peroxidase-labeled goat anti-human (IgG) IgG diluted 3000-fold with the washing buffer). Treated at room temperature for hours.
  • IgG peroxidase-labeled goat anti-human
  • substrate reaction solution (0.4 mg / ml 0-Fuwenirenjiami Nni hydrochloride and phosphoric acid-Kuen acid buffer l OOmM containing 3 ⁇ 40 2 of 0.01%, pH 5.0 ) 200/1 was added and incubated at room temperature in the dark for 10 minutes. The reaction was stopped by adding 501 of 4.5 M sulfuric acid, and the absorbance was measured at 492 nm.
  • Specimens obtained from healthy subjects with normal liver function were examined using the Y19 + 22 ELISA method described above. The results obtained with these samples are shown in histograms showing the distribution of OD values (Fig. 4). As can be seen in FIG. 4, all samples showed absorbances between 0.1 and 0.4. The average value of the absorbance of the 29 healthy subjects was 0.201, and the standard deviation was 0.072. All of these samples were included between the mean ⁇ 3-fold standard deviation.
  • the Y19 + 22 antigen showed strong reactivity (mean 1.763, standard deviation 0.061) with all non-A non-B liver disease samples.
  • the C100 antigen did not react with two sera of patients with non-A non-B liver disease (one serum of non-A non-B acute hepatitis patients and one serum of non-A non-B chronic hepatitis patients).
  • Measurement of HCV antibody using Y19 + 22 showed a higher detection rate than C100 antibody. That is, it is useful for the detection of non-A non-B hepatitis virus antibodies that could not be detected conventionally.
  • the Y19 + 22 antibody positive rate was 89.3%, and the CP9 + 10 antibody positive rate was 79.5%. ⁇
  • the HCV antibody positive rate was higher in the 19 + 22 ELISA method than in the CP9 + 10 ELISA method.
  • the agreement between the Y19 + 22 antibody measurement and the CP9 + 10 antibody measurement was + Z + 93 cases (76.2%). Some specimens were positive only for Y19 + 22 or only CP9 + 10. The discordant cases were +/- 16 cases (13.1%) and one Z + 4 cases (3.3%).
  • the above results indicate that the Y19 + 22 antigen is useful for specifically detecting serum antibodies of non-A non-B chronic hepatitis patients. In addition, it shows that the detection rate can be further increased by further mixing the CP9 + 10 antigen with the Y19 + 22 antigen.
  • the positive rate of the Y19 + 22 antibody was 73.7%, and the positive rate of the C100 antibody was 68.4%.
  • Y19 + 22 antibody measurement has been shown to be useful in diagnosing non-A non-B cirrhosis. Industrial applicability
  • the antigen polypeptides of the present invention and the method for measuring non-A non-B hepatitis virus antibodies using a mixture or conjugate thereof have a higher detection rate than the conventional antigen-based test method, and the existing antigens have a higher detection rate. It is useful for diagnosing non-A, non-B hepatitis virus-related diseases that could not be diagnosed (acute hepatitis, chronic hepatitis, liver cirrhosis, liver cancer, etc.), and helps determine treatment policies.
  • the antigen polypeptide can supplement non-A non-B hepatitis virus healthy human carriers, which could not be detected with the existing antigen, and is useful for preventing the development of post-ring blood hepatitis.
  • polyclonal antibodies and monoclonal antibodies that can be used for the detection of the virus antigen and the treatment of non-A, non-B hepatitis can be prepared.
  • the antigen polypeptide can be used for production of a vaccine for prevention of virus infection and treatment after infection.
  • the non-A, non-B hepatitis virus polynucleotide of the present invention is useful as a gene for producing the antigen.
  • the presence or absence of the virus genome (particles) can be examined using the nucleotide sequence.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Virology (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

明 細 書
非 A非 B型肝炎ウィルス抗原 技術分野
本発明は、 新規な非 A非 B型肝炎ウィルス抗原に関する。 詳しく は、 非 A非 B型肝炎患者血清と特異的に抗原抗体反応を示す抗原ポ リベプチ ド並びに該抗原ポリべプチドをコ一ドするポリヌクレオチ ド、 該ポリヌクレオチドを用いた該抗原ポリぺプチドの製造法並び に該抗原ポリベプチドを用いた非 A非 B型肝炎ウィルス抗体の検出 法及び診断法に関する。 背景技術
非 A非 B型肝炎とは、 ウィルスにより惹起されると考えられてい るウイルス性肝炎の内、 実体の明らかにされている A型肝炎ウイル ス (HAV)、 B型肝炎ウィルス (HBV)、 D型肝炎ウィルス (HDV)、 あるいは肝細胞にも感染して症状を呈するサイ トメガロウィルス (CMV)、 ェプスタイン ·バーウィルス (EBV)、 アデノウイルス等を病因とす る肝炎を、 ウィルス学的 ·血清学的に除外したものである。 疫学的 証拠によれば非 A非 B型肝炎には次の 3つの型があると示唆されて いる。 即ち開発途上国で流行する水系伝染型、 血液を介して伝播す る輸血後型及び先進国でみられる散発性 (集団獲得) 型である。 水 系伝染型は他の 2つの型とは異なるウィルスに起因し (E型肝炎ウイ ルス)、 近年その遺伝子断片が、 ゲンラボ (Genelabs) 社 (米国) と米国 CDC のグループにより単離された [国際公開第 89/ 12641 号パンフレッ ト (1990) , Reyes, G.R.,et al. Science 247, 1335 ( 1990) ]。 本明細書においては特に断わらない限り " 非 A非 B型肝 炎" とはこの水系伝染型は含めず残りの輪血後型および散発性型に より生じるものを意味する。
厚生省の推計 (厚生省肝炎連絡協議会 昭和 62年度報告、 p5 1988 年) によれば輸血後急性肝炎の 9割以上が、 また散発性急性肝炎の約 5割が非 A非 B型肝炎であると推計されている。 こうして起こった肝 炎の、 およそ半数が慢性肝炎に進み、 10〜20 %は肝硬変へと進行し、 そして更には肝癌へと進んでいくが、 これらの過程にも、 非 A非 B 型肝炎ウィルスの持続感染および Zまたはそれに伴なう慢性炎症が 関与していると考えられている。 従って、 非 A非 B型肝炎ウィルス の予防及び治療法を確立することは医療上の極めて重要な課題であ つたが、 非 A非 B型肝炎ウィルスの同定は長年の努力にも関わらず 困難を極めていた。 1989年に入り 2つのグループがその非 A非 B型 肝炎関連抗原遺伝子の単離を報告した。 一つはカイロン社 (米国) の グループによるものであり [Choo,Q— L. ,et al. Science, 244, 359 ( 1989) ; Kuo, G., et al. Science, 244, 362 ( 1989 ) ; 特表平 2 - 500880号公報; 欧州特許出願公告第 318216号明細書 ( 1989) ; 同第 388232号明細書 (1990) ]、 この遺伝子を有するゥ ィルスを C型肝炎ウィルス (HCV) と命名した。 もう一つは岡山大 学 (現 鹿児島大学) の有馬らのグループによるものである [Arima, T . , et al. Gastroenterologia Japonica 24, 685 ( 1 989 ) ; Arima,T.,et al. Gastroenterologia Japonica 25,218 ( 1990); 欧州特許出願公開第 363025号明細書 (1990) ]。 これらの遺伝子に コードされる C 100抗原およびクローン 14抗原はともに輸血後非 A 非 B型慢性肝炎患者血清および散発性非 A非 B型慢性肝炎患者血清 の 6 - 8割と特異的に反応し、 非 A非 B型慢性肝炎患者の診断に有 用であることが示されたが、 この疾患の特殊性および輸血後肝炎発 症の防止を考えればより正確な診断法の確立が望まれていた。 たと えば、 C 100抗原については該抗体測定キッ トが既に市販されている が、 輸血後非 A非 B型肝炎患者血清の約 7割としか反応しないこと [Kuo, G" et al. Science, 244, 362 ( 1990) ]、 慢性期の非 A 非 B型肝炎患者血清との反応率は高いが急性期の非 A非 B型肝炎患 者血清との反応率は低いこと [Miyamura, T., et al. Proc. Natl. Acad. Sci. U.S.A., 87, 983 (1990) ;西岡久寿弥ら, 内科 64, 1027 (1989)]、 抗体陽転までに平均 4ヶ月を要すること [Atler, H.J.,et al. N.Engl. J. Med.30, 1494 (1989)] および該ウィル ス抗体の存在が必ずしもウィルス血症と一致しないこと [岡本宏明, 肝臓, 31 suppl.40 (1990); 古澤浩司,肝臓, 31 suppl.42 (1990)] 等が知られており、 非 A非 B型肝炎ウィルス抗体の診断法には未だ 多くの解決すべき課題が残されている。 また C100抗原を使用して供 血液のスク リ一二ングを行なった場合でも輸血後非 A非 B型慢性肝 炎の発症率は 50 %前後しか減少しないと考えられている [片山透、 化学と生物, 28, 217 (1990) ; Esteban.J.I. et al.,N Engl J Med.,323,1107 (1990)]。
その後も、 HCVcore抗原 [下遠野邦忠ら、 第 38回日本ウィルス 学会,演題 112番; 斎藤泉ら、 同、 演題 104番; 原田志津子ら、 同、 105番 (1990)]、 そのェピトープを含むペプチド断片 CP9, CP10 [Okamoto,H., et al., Japan J. Exp. Med. ,60, 223 (1990)] および細胞遺伝子由来の非 A非 B型肝炎関連抗原 GOR [赤羽賢浩ら, 基礎と臨床, 24, 7021 (1990)] などが診断に応用されているが、 こ れらを使用した場合も非 A非 B型慢性肝炎患者血清における反応率 は 8割前後であり、 既存の抗原では検出できない非 A非 B型肝炎の 存在が知られている。 こうした既存の抗原で検出できない非 A非 B 型肝炎が存在することの原因が、 1) HCVの多様性に起因するもの 力、 (HCVはきわめて変異に富むウィルスであることが知られている が [Enomoto.N., et al., BBRC, 170, 1021 (1990) ; 金子 周一ら, 肝臓, 31 suppl.213 (1990) ; 加藤宣之ら, 肝臓, 31 suppl. 214 (1990)]、 これらのウィルスが共通のェピトープを有 しているかどうかは定かでない)、 2) 同様の病態を惹起する別のゥ ィルスが存在するためか、 3) 抗体陽転までに時間がかかるためな のか、 4) 検査法の不正確さによるものなのか、 などについては十 分わかっていない。 発明の開示
このように非 A非 B型肝炎に対応した信頼性の高い診断法及び治 療用手段の開発に有用な抗原の同定に関する研究は、 現在もなお十 分には完成されていない。 本発明者らは、 非 A非 B型肝炎の 100 % 確実な診断法、 予防法をめざし従来の抗原よりも有用な抗原の入手 とそれらを用いた抗体測定法の確立をめざした。 即ち本発明者等は、 1 ) 輸血後非 A非 B型肝炎患者血清への反応率の高い抗原、 2) 散発 性非 A非 B型肝炎患者血清への反応率の高い抗原、 3) 急性期の非 A非 B型肝炎患者血清にも反応できる抗原 (より感染早期に出現す るウィルス抗体を検出できる抗原)、 4) ウィルス血症と相関性の強 いウィルス抗体を検出できる抗原、 を発見すべく鋭意研究を重ねた。 その結果、 日本人ヒ ト血漿より既存の抗原とは異なる新規な非 A非 B型肝炎ウィルス抗原を取得した。 その遺伝子の塩基配列を決定した ところ、 従来報告されている HCVの塩基配列 (欧州特許出願公開 第 388232号公報第 17図に示されている塩基配列) の 4138〜4521 番目および 6757〜6909番目に対応するアミノ酸配列と夫々 10 %お よび 22 %のホモロジ一を有するが、 異なるアミノ酸配列を含む新規 な非 A非 B型肝炎ウィルス抗原であることが示された。 そしてこれ らの抗原を単独あるいは組み合わせて、 あるいはさらに他の抗原と 適宜組み合わせて用いることにより、 既存の HCV抗体測定キッ 卜に 比べて一層すぐれた検出率で非 A非 B型肝炎ウィルス抗体を検出で きることを知り本発明を完成した。
すなわち、 本発明は、 抗原ポリぺプチド Y 19群、 抗原ポリぺプチ ド Y22群またはその断片群、 これらのポリペプチド群の中から選ば れる 2種以上の抗原が融合した複合抗原ポリぺプチド群および抗原ポ リベプチド Y 19群または Y22群に含まれるェピトープと免疫学的に 同一とみなしうるェピトープを有する抗原ポリペプチド群の中から 選ばれる単独の抗原又は 2種以上の抗原を混ぜ合わせた混合抗原と生 物学的試料中に存在する非 A非 B型肝炎ウィルス抗体との反応で形 成される免疫学的結合物を測定して、 生物学的試料中の非 A非 B型 肝炎ウィルス抗体の存在を確認する非 A非 B型肝炎ウィルス抗体の 検出方法に関する。 また、 この検出方法を行うための非 A非 B型肝 炎ウィルス抗体検出キッ トに関する。 また、 本発明は、 上記非 A非 B型肝炎ウィルス抗体の検出方法およびキッ トに用いられる抗原ポリ ぺプチ ド群、 該ポリべプチ ド群のポリペプチ ドをコー ドするポリ ヌ ク レオチ ドおよび該ポリべプチ ド群に含まれるポリべプチ ドを製造 する方法に関する。
本発明の非 A非 B型肝炎ウィルス抗原ポリべプチ ド Y 1 9群は、 次 の一般式 (I ) で示される。
(I )
N - X, lie Pro lie Glu Al a lie Lys G ly Gly
Arg His Leu lie Phe Cys His Ser Lys Lys Lys Cys Asp Glu Leu Ala Ala Lys Leu Ser
Ser Leu Gly Val Asn Ala Val A la Tyr Tyr Arg Gly Leu Asp Val Ser lie lie Pro Thr Ser Gly Asp Val Val Val Val Ala Thr Asp Ala Leu Met Thr Gly Tyr Thr Gly Asp Phe Asp Ser Val lie Asp Cys Asn Thr Cys Val
Thr Gin Thr Val Asp Phe Ser Leu Asp Pro Thr Phe Thr lie G lu Thr Thr Thr Val Pro Gin Asp Ala Val Ser Arg Ser Gin Arg Arg Gly Arg Thr Gly Arg Gly Arg Gly Gly lie Tyr Arg Tyr Val Thr Pro Gly Glu Arg
(上記式中、 X,は N末端が水素原子または 1〜20個の任意のァミ ノ 酸を意味する。) また、 本発明の非 A非 B型肝炎ウィルス抗原ポリべプチド Y22群 は、 次の一般式 (Π) で示される。
(II)
N - X2 Leu Asp Ser Phe Asp Pro Leu Arg Ala
Glu Glu Asp Glu Arg Glu Val Ser Val Ala
Ala Glu lie Leu Arg Arg Ser Arg Lys Phe
Pro Ala Ala Leu Pro lie Trp Ala Arg Pro
Asp Tyr Asn Pro Pro Leu Leu Glu Pro Trp Lys Asp
(上記式中、 X2は N末端が水素原子または 1〜20個の任意のァミノ 酸を意味する。) ポリペプチド Y22群の断片群は、 下記式 (III) 〜 (VII) で示さ れる群から選択されたいづれか一つの非 A非 B型肝炎ウィルス抗原 ポリぺプチドである。
(III)
Leu Asp Ser Phe Asp Pro Leu Arg Ala Glu Glu Asp Glu Arg Glu Val Ser Val Ala A la Glu lie Leu Arg Arg Ser Arg Lys
(Y22 - 3抗原) (IV)
Ser Val Ala Ala Glu lie Leu Arg Arg Ser
Arg Lys Phe Pro Ala Ala Leu Pro lie Trp Ala Arg Pro Asp Tyr Asn Pro Pro Leu Leu Glu Pro Trp Lys Asp (Y22 - 7抗原) (V)
Glu lie Leu Arg Arg Ser Arg Lys Phe Pro
Ala Ala Leu Pro lie Trp Ala Arg Pro Asp Tyr Asn Pro Pro Leu Leu Glu Pro Trp Lys Asp (Y22 - 6抗原)
(VI)
Arg Arg Ser Arg Lys Phe Pro Ala Ala Leu Pro lie Trp Ala Arg Pro Asp Tyr Asn Pro Pro Leu Leu Glu Pro Trp Lys Asp
(Y22一 5抗原)
(VII)
Ser Arg Lys Phe Pro Ala Ala Leu Pro He
Trp Ala Arg Pro Asp Tyr Asn Pro Pro Leu Leu Glu Pro Trp Lys Asp
(Y22一 4抗原) また、 複合抗原ポリべプチ ド群は、 上記 Y19群、 Y22群、 Y22群 の断片群の中から選ばれる 2種以上の抗原を遺伝子組み換え技術を用 いて融合した複合抗原ポリべプチ ドである。 その代表的なものとし て、 たとえば Y19群と Y22群に含まれるポリべプチ ドが融合した下 記 (VIII) のポリペプチド (Y22— 19) を挙げることができる n (VIII)
N— X3 Leu Asp Ser Phe Asp Pro Leu Arg Ala
Glu Glu Asp Glu Arg Glu Val Ser Val Ala
Ala Glu lie Leu Arg Arg Ser Arg Lys Phe
Pro Ala Ala Leu Pro lie Trp Ala Arg Pro
Asp Tyr Asn Pro Pro Leu Leu Glu Pro Trp
Lys Asp Y He Pro lie Glu Ala lie Lys
Gly Gly Arg His Leu lie Phe Cys His Ser
Lys Lys Lys Cys Asp Glu Leu Ala Ala Lys
Leu Ser Ser Leu Gly Val Asn Ala Val Ala
Tyr Tyr Arg Gly Leu Asp Val Ser lie lie
Pro Thr Ser Gly Asp Val Val Val Val Ala
Thr Asp Ala Leu Met Thr Gly Tyr Thr Gly
Asp Phe Asp Ser Val lie Asp Cys Asn Thr
Cys Val Thr Gin Thr Val Asp Phe Ser Leu
Asp Pro Thr Phe Thr lie Glu Thr Thr Thr
Val Pro Gin Asp Ala Val Ser Arg Ser Gin
Arg Arg Gly Arg Thr Gly Arg Gly Arg Gly
Gly lie Tyr Arg Tyr Val Thr Pro Gly Glu Arg
(上記式中、 ¾は N末端が水素原子または 1〜20個の任意のァミノ 酸を、 また、 Yは 1〜20個の任意のアミ ノ酸を意味する。) さらに、 非 A非 B型肝炎ウィルスポリヌク レオチ ドの代表的なも のとしては、 たとえば、 次式 (IX) のポリヌクレオチ ド Y 19 、 式 (X) のポリヌクレオチド Y22、 式 (XI) のポリヌク レオチ ド Υ22 一 1 9の塩基配列で示されるものを挙げることができる。
OVO
OVV DDI ODD OVO V1X 3丄:) VOO X30 OVV OVX
丄 VO 033 003 030 丄 ODD DID VOO VOO 02
303 0ェ丄 OVV OOV 03丄 V3V VOO i 丄:) DXV OVO
030 ODD 丄丄 3 0 丄 V丄 3 VVO OOV OVO 丄 Vi OVO
OVO 030 VOO 110 033 OVO Oil X3JL 3V0 0X3
(X)
SI
003 VVO 000 V30 XOV 0丄 3 1Y 1 OOV
DVX VXV 300 OOD VOV 300 OOV XOO 丄 DV OOV
300 VOD 003 OVO DDI ODD DDI 0X0 000 OVO
VVO 333 0X0 30V VOV ODV OVO XIV OOV Oil
VOV 10D OVO Oil OOV 0丄丄 丄 310 VOV OVO 01
OO V 310 101 VOV OVV 丄 3丄 OVO 3XV 0X0 v〇丄
OVO 〇丄丄 OVO 000 OOV 丄 V丄 000 VOV OXV 0X0
丄:) Ό OVO VOV VOO 0X0 11D 11D DID DYD VOO
OOV VOV OOD V丄 V 丄 V 301 DID OVO 丄丄 D XOO
003 OVX OV丄 V03 VXO OO IVV 3丄 3 VOO D丄:)
031 DI DID OVV 000 300 D丄 0 OVO OVO XOX
OVV OVV OVV 00丄 丄 V3 DDI 丄丄 0丄 V 0丄〇 OVO
ODV 000 000 OVV OXV 030 OVO DXV 030 XXV
( XI)
6
W600/l6df/JOd Μ .Ι0/Γ6 O ' (XI)
CTG GAC TCT TTC GAC CCG CTT CGA GCG GAG
GAG GAT GAG AGG GAA GTA TCC GTT GCG GCG
GAG ATC CTG CGA AGA TCC AGG AAG TTC CCC
GCA GCA CTG CCC ATA TGG GCG CGG CCG GAT
TAC AAC CCT CCA CTG TTA GAG CCC TGG AAG
GAC GGT GGC GCC ATG GCT ATT CCC ATC GAG
GCC ATC AAG GGG GGG AGG CAC CTC ATC TTC
TGC CAT TCC AAG AAG AAG TGT GAC GAG CTC
GCC GCG AAG CTG TCG TCC CTC GGA GTC AAT
GCT GTA GCA TAC TAC CGG GGT CTT GAC G TG
TCC ATC ATA CCG ACA AGC GGA GAC GTC GTT
GTT GTG GCA ACA GAC GCT CTG ATG ACA GGC
TAT ACC GGC GAC TTC GAC TCA GTG ATC GAC
TGT AAC ACA TGT GTC ACC CAG ACA GTC GAT
TTC AGC TTG GAC CCT ACA TTC ACC ATT GAG
ACG ACA ACC GTG CCC CAA GAC GCG GTG TCG
CGC TCG CAG CGG CGA GGC AGG ACT GGT AGG
GGC AGA GGG GGC ATA TAC AGG TAT GTG ACT
CCA GGG GAA CGG さらに、 本発明は、 非 A非 B型肝炎ウィルスに由来するポリヌク レオチ ドを検出するためのポリ ヌク レオチ ドプローブであって、 上 記ポリヌクレオチドの相補鎖の配列に由来する連続した 8塩基、 また はそれ以上の長さからなる配列を含むポリ ヌクレオチ ドプローブに 関する発明および非 A非 B型肝炎ウィルスに由来するポリ ヌクレオ チ ドを逆転写一 PCR法 (ポリメラーゼ ·チヱイン · リアクショ ン法) にて検出するためのポリヌクレオチ ドプライマ一対であって、 上記 ポリヌクレオチドの配列およびその相補鎖に由来する連続した 8塩基、 またはそれ以上の長さからなる配列を含むポリ ヌク レオチ ドプライ マー対に関する発明および Y 19群又は Y22群のポリぺプチ ドに含ま れるェピ トープと免疫学的に同一であるとみなし得るェピ トープを 有するポリべプチドに関する発明をも包含するものである。 以下、 本 発明を詳細に説明する。 本願明細書において、 「ポリ ヌクレオチ ド」 とは、 任意の長さを持 つたヌク レオチ ド (リボヌク レオチ ドまたはデォキシリボヌク レオ チド) のポリマーを意味する。 又、 この用語には 1本鎖および 2本鎖 の両方の形態が含まれる。
「ェピトープ」 という用語は、 ポリペプチ ドの抗原決定基を意味す る。 ェピ トープは、 ェピトープに特有のコンホメーンヨ ン内に位置 する 3個のアミノ酸でも形成されうるが、 一般には少なく とも 5〜10 個のァミ ノ酸から成る。
「非 A非 B型肝炎関連抗原」 とは、 本発明の抗原以外の非 A非 B型 肝炎を診断できる抗原を意味し、 ウィルスゲノム由来および細胞遺 伝子由来の双方の抗原が含まれる (たとえば、 C 100抗原、 Core抗 原、 クローン 1 4抗原、 GOR抗原など)
「非 A非 B型肝炎ウィルス抗原」 とは、 非 A非 B型肝炎関連抗原の 内該ウィルスゲノム由来のものを意味する。
「融合抗原」 とは、 本発明の非 A非 B型肝炎ウィルス抗原の N末お よび Zまたは C末に他の蛋白 (たとえば、 ^一 gal, Protein A、 T7 gene 1 0、 マルトース結合蛋白、 グルタチオン S— トランス フェラーゼなど) の一部または全部が融合したものを意味する。 本 発明の実施においては、 特に指示されない限り、 当該分野で公知で ある分子生物学、 微生物学、 遺伝子工学、 および免疫学の従来の手 法が採用される。 このような手法は、 以下の実験書を参照されたい。 実験書 1 : Sambrook丄, Fritsch. E. F . , and Mani atis , T . Molecular Cloning 2nd ed.; Cold Spring Harbor ( 1989) 実験書 2 : DNA cloning 1卷 (Glover, D.M. 編) IRL Press. (1985)
実験書 3 : DNA Cloning 3卷 (Glover, D.M. 編) IRL Press (1987)
実験書 4 : Handbook of experimental immunology, 4th ed. 1〜IV 巻 (Weir, D.M. 編), BlackweU (1986)
実験書 5: Current Protocols in Molecular Biology (Ausubel, F.M. et al., 編) John Wiley & Sons (1988)
実験書 6 : Method in Enzymology 185卷 (Goeddel.D. V. 編) Academic Press (1990)
(1) 非 A非 B型肝炎ウィルス抗原遣伝子のクローニング方針 後述するように、 非 A非 B型肝炎ウィルス抗原遺伝子のクローニ ングは、 1) ウィルスゲノムを含有すると思われる出発材料からの RNA の調製、 2) λ gtllcDNAライブラリーの作成、 3) 非 A非 B型肝炎患者血清によるィムノスクリーニングの 3工程からなる。 HCV は変異に富むことが知られているが、 どのウィルス抗体に対しても 反応するような網羅性の高い抗原 (ェピトープ) を確実かつ効率よ く クローニングするには複数 (10名以上) の個体に由来する RNA をもとに cDNA を作成し、 それを複数 (10名以上) の非 A非 B型 肝炎患者の混合血清でィムノスクリーニングするのが望ましい。 そ れにより、 非 A非 B型肝炎患者間に共有されている抗体に反応する 抗原が得られ易くなる。
(2) ウィルス RNA の調製
a) 患者血液からの RNA の調製
HBs 抗原陰性、 HBV— DNA 陰性、 高 ALT (GPT) 活性値 (> 35IU/L) を示すヒ ト血漿または非 A非 B型肝炎患者血清をプール し、 ウィルス RNA 調製のための出発材料とする。 ウィルス粒子は ポリエチレングリコール沈澱により沈殿物として濃縮 '回収する。 沈 殿物からの RNA の抽出はグァニジン *チオシァネートを用いた AGPC 法 [Chomczynski, P. and Sacchi, N. : Analytical Biochemistry 162, 159 (1987)] 等により行なわれる。
また、 出発材料としてヒ ト血漿また血清の代わりに非 A非 B型肝 炎ウィルスを感染させたチンパンジー血清を用いることもできるが、 一般にウィルスを異種動物で継代した場合にウィルスゲノムに変異 が生じたり、 時にはそのウイルスの病原性が変化したりする場合も あるので、 該抗原をクローニングする場合にはヒ ト血漿また血清を 出発材料にするのが望ましい。 なお、 HCVは血液を介して、 または 集団獲得的に感染するため特定地域には特定のウィルス株が流行し ている可能性がある。 よって、 日本での診断には日本人に由来する ウィルス抗原を用いるのが好ま しい。
b) 患者肝組織からの RNA の調製過去に非 A非 B型肝炎に感 染したことがあると考えられる肝臓がん患者より切除された肝組織 より常法 [実験書 1,7章] により RNA を調製することができる。
(3) cDNA ライブラ リ一の構築
得られた RNA を铸型とし、 ランダムへキサマーをプライマーと して Gubler— Hoffman法 [Gene, 25, 263 (1983)] により 二本鎖 cDNA を合成する。 該 cDNA は常法により ス gtllファー ジベクターに挿入される。 A gtll は特定の抗体に対応する抗原の 遺伝子をクローニングするために開発されたべクターであり公知で ある [Young, R. A. and Davis, R. W., Proc. Natl. Acad. Sci. USA, 80, 1194 (1983)、 実験書 2, p49 - 78]0 また λ gtll 以外に ス ZAP, λ ΖΑΡΙΙ, pUC19, pUEXlなどのベクタ 一を使用してもよい。
(4) 患者血清による cDNA ライブラ リーのィムノ スク リーニン グ
大腸菌 (例えば Y1090 株など) に感染させた組換え体; gtll は、 一定の条件下でパクテリオファージの増殖機構に従って増殖し、 これに伴って、 先に組み込まれた cDNA も増幅される。 増殖した バクテリオファージは一定の条件下で、 宿主大腸菌を溶菌し、 肉眼 —的に認識できるプラークを形成する。 ス gtl lファージベクターに挿 入された cDNA は、 ^一ガラク トシダーゼ (^一 gal) との融合 抗原として翻訳されるため、 特定の抗原に対して生じた特異的な抗 血清で多数の組換え体ス gtllをスクリ一二ングすれば、 特定の抗原 抗原をコードする cDNA を免疫化学的方法によって同定すること ができる。 本発明においては、 上記 (3) で作製した cDNA ライブ ラリ一を、 非 A非 B型肝炎患者由来のプール血清でスクリ一二ング している。 具体的には、 プラークを形成している培養シャーレから 発現された融合抗原を二トロセルロース膜に トランスファーし、 上 述のプール血清を 1 次抗体として反応させ、 これにペルォキシダー ゼ標識ャギ抗 (ヒ ト IgG) IgG 等を 2次抗体として反応させ、 発色 反応陽性となるプラークを単離する。
(5) 塩基 E列の決定
こうして得られた本発明の抗原遺伝子の塩基配列は、 組換え体ス gt l l DNA およびサブクローニング後のプラスミ ド DNA を铸型 にサンガー法 [Sanger, F. ,et aL. Proc.Natl. Acad.Sci. USA. , 74,5463 ( 1977) ,実験書 1, 13章]を応用した市販のシークェンスキ ッ トを用いて決定することが出来る。
(6) 抗原遺伝子の塩基配列を利用した患者血清中の該ウィルスゲノ ムの検出法
本発明の非 A非 B型肝炎ウィルスポリヌクレオチドの相補鎖に由 来する連続した 8塩基またはそれ以上の長さの配列を含むポリヌクレ ォチドは、 本発明のウィルスゲノムとハイプリダイズするので、 血 清や組織中の該ウィルスゲノムの検出に用いるプローブとして有用 である。 これらのポリヌクレオチドはホスホアミダイト法 [Hunkapiller, M. etal. Nature 310, 105 - 1 1 1 ( 1984) ] 等の合成法、 或は 市販の DNA 合成機 (例えば、 アプライ ドバイオシステムズ (ABI) , 380AM DNA 合成機など) を用いて合成する事が出来る。 また、 本発明の非 A非 B型肝炎ウィルスポリ ヌク レオチ ドを铸型にして二 ック トラ ンスレーショ ン法、 ランダムプライマーラベリ ング法など を行い合成することも出来る。 該ポリ ヌク レオチ ドを診断に利用す る際には、 常法により、 放射性プローブ、 ピオチン蛍光プローブ、 及 び化学発光プローブ等の標識プローブとして使用するが、 上述のハ イブリダィゼーショ ン法、 標識法、 およびシグナルの増幅、 検出方 法はいずれも公知であり、 高橘豊三. DNAプローブ, シーエムシー (1990) 等を参照し実施することができる。
これまで非 A非 B型肝炎ウィルスは患者血清中に極微量にしか存 在しない事 (B型肝炎ウィルスの場合の 1/105程度) が知られてい たが、 本発明の塩基 K列の一部を利用して 1対、 または 2対以上の PCR (ポリメラーゼ ·チヱイン · リアクション) 用プライマー対を作成し、 逆転写一 PCR法 [Kawasaki, E. S., et al" Proc. Natl. Acad. Sci. USA, 85, 5698 (1988) ; Garson.J.A. et al., Lancet, 335, 1419 (1990) ; Enomoto, N" et al" BBRC, 170,1021 (1990) ; Okamoto, H., et al., Japan J. Exp. Med., 60, 215 (1990)] を行なうことにより目的のウィルスゲノムを増幅後、 検出する事が出来る。
(7) 非 A非 B型肝炎ウィルス抗原ポリペプチド及び融合抗原ポリべ プチ ドの調製
a) 遺伝子組換え技術を用いた組換え抗原ポリぺプチ ド及び組換 え融合抗原ポリベプチ ドの発現 :
該抗原ポリべプチドおよびそのェピ トープを構成するポリべプチ ドおよびそれらの配列をふくむ融合抗原ポリベプチ ドは市販の発現 ベクターを用いて発現できる。 例えば、 大腸菌での発現には pKK233 一 2, pKK223 - 3, pPL - lambda, pRIT5, pRIT2T, pMC1871 (フアルマシア)、 pMAL— c, pMAL - p (New England Biolabs)、 pEX 1〜3 (BM), pGEX (AMRAD) 等を用いることができる。 さらに実験書 1の 17章; 実験書 3, p59 - 88; 実験書 6,p l 1 - 128 ; Tabor, S. and Richardson, C. C.' Pro Natl. Acad. Sci. USA, 82, 1 074 ( 1985) などを参考に行なうことができる。 本発 明の抗原ポリべプチドを大腸菌で発現した場合に、 N末に開始コ ドン に由来する Metが付加したり、 発現ベクターを構築する際に使用し たリ ンカーやアダプターさらにはマルチクローニングサイ 卜の塩基 配列に由来する 1〜20個ほどのァミノ酸が該ポリぺプチドの N末に 付加することがある (たとえば本明細書の実施例では Y 1 9抗原の N 末には Met— Alaが、 Y22— 19抗原の N末には Met― Ala - Ala — Alaなどが付加している)。 さらに融合抗原として発現した場合に は該抗原ポリペプチドの N末および または C末に 3— gal, Protein A, T7 gene l O, マルトース結合蛋白, グルタチオン S— トランス フエラーゼ等の全部または一部が付加される。 いずれの場合も非 A非 B型患者血清への反応性が本質的に変化しなければ、 基本的に本発明 の非 A非 B型肝炎ウィルス抗原と同一と見なすことができる。 しか しながら、 該抗原に付加した蛋白に反応する抗体がヒ ト血清に含ま れていれば、 偽陽性の原因となるため、 別種の蛋白の付加は最小限 に押さえるのが好ましい。 また酵母での発現は, 実験書 3 , p l 4 1 - 161、 実験書 6,p231— 484、 また、 ほ乳動物細胞を宿主とした場合 の発現方法は実験書 1の 1 6章、 実験書 3, p l 63 - 2 12、 実験書 6 , p485— 598などを参考に実施することが出来る。 また、 バキュロウ ィルスベクターを用いての発現は 前田進 実験医学, 7, 146 ( 1989) ; 松浦善治 実験医学, 8, 281 ( 1990) などを参考に、 または市販の MaxBac (Invitrogen, K822 - 03) を用いて実施することがで きる。
発現した組換え抗原ポリベプチドおよび組換え融合抗原ポリぺプ チドは、 溶解した細胞あるいは培地から当該分野では公知の蛋白精 製の手法 (限外濂過、 遠心分離、 透析、 イオン交換クロマ トグラフ ィー、 疎水クロマトグラフィー、 ゲル'慮過、 電気泳動、 ァフィニテ ィークロマトグラフィー, HPLC等;たとえば Methods in Enzymology 182巻 (Deutscher, M. P. 編) Academic Press ( 1990 ) 等 を参照) を利用することにより精製することができる。
b) ぺプチ ド合成による該抗原ポリぺプチ ドの調製 :
該抗原ポリべプチ ドは、 本発明で決定したァ ミ ノ酸配列をもとに 化学合成を行い調製することができる。 好ましくは、 全配列を合成 が比較的容易な長さの断片 (10〜50残基) に、 しかも隣り合う断片 同士が 5〜 10残基程度重複するよう分割して合成し、 ェピ トープマ ッ ビングを行った後、 ェピ トープを含む断片のみを単独または複数 混合して使用するのがよい。
該抗原ポリべプチ ドのアミ ノ酸配列を含む各種ポリべプチ ドは液 相法あるいは固相法により手動で、 または自動合成装置 (例えば ABI 社の 430A 型ペプチ ド合成機) により化学合成することができる。 t一 Boc法または f 一 moc法に従い固相法により合成したポリぺプ チ ドは樹脂より ト リフルォロメ タンスルホン酸、 フ ッ化水素、 また は ト リフルォロ酢酸などを用いて切り出される。 これらの合成ぺプ チ ドは、 精製度を高めるために、 分取用逆相高性能液体クロマ トグ ラフィ — (HPLC ) によって精製することができる。
(8 ) ィムノアッセィによるウィルス抗体の検出法
本発明によって得られた非 A非 B型肝炎ウィルス抗原ポリベプチ ドは、 ィムノアツセィを用いて、 例えば、 血液、 血漿、 血清、 髄液 などの生物学的試料およびヒ ト免疫グロプリ ン製剤などの生物製剤 に含まれる非 A非 B型肝炎ウィルス抗体の存在を検出するために使 用することができる。 ィムノアッセィでは上記抗原ポリべプチ ドと 試料中の非 A非 B型肝炎ウィルス抗体との間で免疫学的結合物 (抗 原抗体結合物) を形成し得る条件下で該抗原ポリベプチ ドと試料を 接触させる。 抗原抗体結合物がたとえわずかでも形成されるのであ れば、 試料中に非 A非 B型肝炎ウィルス抗体が存在することが分か り、 適当な手段によって検出 · 測定できる。 そのような検出方法と して、 免疫沈緞法、 凝集法、 ラジオィムノアッセィ (RIA) , EIA, ELISA. ETijssen, P. 石川栄治監訳、 ェンザィム ィムノアツセィ、 生化学実験法 Vol.l l、東京化学同人(1989)]、 CEDIA [Henderson; D.R. et al., Clin. Chem., 32, 1637 ( 1986) ] およびゥェ スタンブロッ トアツセィあるいはバインディ ングィムノアツセィな どがある。
本実施例 4、 6では、 本発明により得られた抗原を例えば 3— gal との融合蛋白として発現させ、 ニトロセルロース膜にプロッ トした ものを固相に固定した抗原とし、 EIA法を用いて非 A非 B型肝炎ゥ ィルス抗体を検出する方法 (ィムノプラークアツセィ、 ウェスタン プロッ トアツセィなど) を示した。 また、 本実施例 1 1、 12、 13で は ELISA 法による非 A非 B型肝炎ウィルス抗体の検出法を示した。
(9) 2種以上の抗原を用いた非 A非 B型肝炎の診断法
( 1 ) で述べた様に非 A非 B型肝炎の検出率を高めるためには広く 患者血清と反応する様な網羅性の高い抗原を入手する必要があるが、 もう一つの方法は非 A非 B型肝炎患者血清への反応スぺク トラムの 異なる 2種以上の抗原を組合わせた混合抗原を用いて抗体測定系を作 成することである。 本実施例 13においては Y19、 Υ22— 3および Υ22 一 6抗原を混合したものでタイタープレートをコーティングし該ウイ ルス抗体を高率に測定する方法を示した。 Y 19抗原と Υ22抗原の組 合せ以外にも Y19抗原および または Υ22抗原に前述した HCVcore 抗原、 クローン 14抗原, GOR抗原などの非 A非 B型肝炎関連抗原を 1種類以上混ぜ合わせ検出率を高めることも可能である。
また、 これらの抗原を混合して用いる場合だけでなく、 遺伝子組 換え技術を用いて 2種以上の抗原を融合した複合抗原を作成し診断に 用いることも可能である。 この方法を用いれば、 2種以上の抗原を同 時に合成出来るのみならず各々の抗原を同じ割合でプレー トゃビー ズに固定化する事が可能であり、 キッ 卜の製造およびその品質管理 の上で都合がよい。 抗原を融合する場合には融合に伴いそれぞれの ェピトープの機能が損なわれないよう抗原間に適当なスぺーサー配 列 (実施例 9では Gly Gly Ala Met Alaをスぺーサ一に用いて いる) を付加する必要がある。 実施例 9では Y22— 19複合抗原を発 現させた例が示されているが、 それ以外にも非 A非 B型肝炎関連抗 原ポリペプチドとの複合抗原、 たとえば Y 19— core、 Y 19—クロー ン 14、 Y 19— Y22—クローン 14、 Y 19— Y22— core、 Y 19— Y22 - CP9/CP 10 - GOR 、 Y 19 - GOR - core 等の複合抗原を作 成することができる。 図面の簡単な説明
第 1図は、 Y 19 ELISA 法による健常人検体における吸光度分布 ヒス トグラムを示す。
第 2図は、 非 A非 B型慢性肝炎患者血清における Y 19 ELISA法 と C 100 ELISA法による吸光度分布を示す。
第 3図は、 本発明の Y22抗原の配列を含む各種の合成ポリべプチ ド断片と非 A非 B型患者プール血清との反応性を ELISA法で調べ た結果を示す。
第 4図は、 Y 19 + 22 ELISA 法による健常人検体における吸光 度分布ヒス トグラムを示す。
第 5図は、 非 A非 B型慢性肝炎患者血清における Y19 + 22 ELISA 法と C 100 ELISA法による吸光度分布を示す。 発明を実施するための最良の形態
以下に実施例をあげて、 本発明を更に具体的に説明するが、 これ らは本発明の範囲を制限するものではない。 実施例 1 : 血漿由来 RNA の調整
ALT 活性値が異常高値 (> 70ΐυ/Ί) で HBs 抗原および HBV 一 DNA が陰性を示す凍結血漿 2000 ml を室温で融解したのち、 5000rpm (日立, RPR9— 2 ローター), 20 分 4° C で遠心しフ イブリンを除去した。 上清に 80g のポリエチレングリコール 4000 を加え溶解した。 30 分間氷冷したのち同じ条件で遠心し、 沈澱物を 回収した。 沈澱物からの RNA の抽出は、 グァニジン 'チオシァネ一 トを用いた AGPC法 [Chomczynski.P.and Sacchi.N.: Analytical Biochemistry, 162, 156 (1987)] に準じて行なった。 すなわち 沈殿物を 2倍量 (沈殿物 lg を 1mlと換算) の 6D溶液 (6M グ ァニジン . チオシァネー ト, 25mM クェン酸ナ ト リ ウム,ρΗ7·0, 0.5 % サルコシール, 0.1M 2—メルカプトエタノール) に溶解後、 0.1 容量の 2Μ 醉酸ナトリウム (ρΗ4.0) を加え、 次に等容量の フエノールと 0.2 容量のク口口ホルム : イソアミルアルコール混液 (49 : 1) を加え懸濁した。 15分間氷冷後、 遠心し上層を分取し、 等 量の 2—プロパノールを加え、 RNA を沈濺させた。 遠心後、 沈澱 物を 0.5ml の 4D溶液 ( 4M グァニジン ·チオシァネート, 25mM クェン酸ナトリウム pH7.0, 0.5%サルコシール, 0.1M 2—メル カプトエタノール) で溶解後、 2倍容量のエタノールを添加し、 再度 RNA を沈濺させた。 遠心後沈緞物を 75% エタノールで洗浄し、 乾燥させた。 沈澱物を、 50 1の滅菌蒸留水に溶解し、 RNA 溶液 とした。 実施例 2 : cDNA ライブラリーの作成
10 1 の RNA 溶液を出発材料に cDNA 合成を行った。 RNA から 2本鎖 cDNAの作成は、 市販の cDNA 合成システム · ブラ ス (アマシャム, RPN— 1256Z) を用いて行った。 RNA から 1 本鎖 cDNA の変換率は 約 2%、 1本鎖 cDNA から 2本鎖 cDNA への変換率は約 100 %であった。 合成した 2本鎖 cDNA は、 エタ ノール沈澱を行ったのち 100 1 の TE 溶液 (10mM Tris— CI, pH8.0, ImM EDTA) に溶解した。 次に市販の cDNA 合 成キッ ト (フアルマシア LKB, 27 - 9260 - 01) を用いて以下の 反応を行った。 cDNA 溶液をキッ 卜に付属している Sephacryl S - 300 スパンカラムを通すことにより、 1 X T4 リガーゼ溶液にバ ッファー交換を行った。 次に、 説明書に準じ EcoRI アダプターの 付加反応と T4キナーゼ反応を行った。 cDNA に結合しなかったァ グプタ一は、 Sephacryl S— 300 スパンカラムを用いて除去した。 溶出液中の cDNA は、 5 μ g のキャ リアー tRNA とともにエタ ノール沈澱を行った。 沈澱物は 75% エタノールで洗浄したのち風 乾した。
次に市販の cDNA クローニングシステム i gtll *アダプター 法 (アマシャム, RPN 1280) を用いて以下の反応を行った。 沈澱 物に 5 1 の滅菌蒸留水、 4 1 (2 a g) の ス gtll EcoRI アーム、 1 1 の LZK バッファーを加えて溶解したのち、 1 1 (2.5U) の T4リガーゼを加え、 15°C で一晚放置した。 次に、 GIGAPACK
Gold λ DNA ケージングキッ ト (Stratagene, 200216) を用いて上記反応物 (組み換え; I gtll DNA が含まれる) の in vitro °ッケージング反応を行い、 cDNA ライブラ リー (Lot. B) を作成した。 実施例 3 : 非 A非 B型肝炎ウィルス抗原遺伝子のクローニング cDNA ライブラリー (Lot.B) 中のプラークと 1次抗体および 2次 抗体との反応は、 市販のス スク リーン ' ィムノスク リーニン グシステム (アマシャム, RPN 1281Z) の方法に準じて行った。 スク リ一二ングに使用した 1次抗体は、 非 A非 B型肝炎患者のブー ル血清 (5名の急性肝炎回復期と 5名の慢性肝炎) を大腸菌ライゼ一 ト (バイオ ' ラッ ド, 17— 3205) で吸収 (2mg ライゼー ト Zml 血清) 後、 溶液 A (lOmM Tris - CI ,pH7.5, 150mM NaCl, 2 % (W/V) BSA) で 20倍希釈したものである。 2次抗体に は、 パーォキシダーゼ標識ャギ抗ヒ ト (IgG) IgG (カッペル, 3201 一 0081) を 溶液 Aで 500 倍希釈して使用した。 発色反応は市販 のラムダ · リフ ト検出キッ ト GAR - HRP (バイオ ' ラッ ド, 17— 3556) を用いて行った。 約 500, 000個のプラークより 10ケの陽性 プラーク (ニ トロセルロースフィルター上で青紫色に発色) を単離 した。 その中より比较的シグナルの強いクローン 2種を分離し (Y19 および Y22と命名) 以下の解析を続けた。
実施例 4: クローン Y19の抗原特異性試験
(1) ィムノプラークアツセィ
Y19クローンと陰性クローン (;i gt 11 親株) を 2 : 8 の割合 で混合したものをプレーティ ングし、 上述のィムノスク リーニング の方法を用いて、 非 A非 B型慢性肝炎患者 (輸血歴有) 血清 (5名)、 非 A非 B型急性肝炎患者 (輸血歴無) 血清 (6名)、 非 A非 B型慢性 肝炎患者 (輸血歴無) 血清 (5名)、 正常人コントロール血清 (26名)、 B型慢性肝炎患者血清 (9名)、 A型急性肝炎患者血清 (2名) との 反応性を調べた。 結果を表 1にに示す。
表 1
Figure imgf000024_0001
その結果、 クローン Y19は、 非 A非 B型肝炎患者血清とのみ特異 的に反応することが示された。 すなわち、 クローン Y19は非 A非 B 型肝炎患者由来の血清により免疫学的に認識される抗原 (ェピトー プ) をコードしていることが確認された。 また、 この抗原は急性期 の非 A非 B型肝炎患者血清とも高率に反応することが示唆された。 (2) ウェスタンブロッ トアツセィ
λ gtll (親株) 溶原菌及び組換え体 ;i gtllY19 溶原菌の調製、 及び 3— galおよび /3 - gal融合抗原ポリベプチ ドの発現方法は実 験書 3, p76の方法に準じて行った。 ;i gtllY19 溶原菌はェシエ リ チア コ リ Y1089 ( λ gtllY19) と命名し、 本株をつぎの通り寄 託している。
(ィ) 寄託機関の名称 · あて名
名 称 : 通商産業省工業技術院微生物工業技術研究所 あて名 : 曰本国茨城県つくば市東一丁目 1番 3号
(郵便番号 305)
(口) 寄託曰 (原寄託日) 平成 2年 7月 16曰
(ハ) 受託番号 微ェ研 条寄第 3454号 (FERM BP - 3454) 発現誘導後、 溶原菌を超音破枠し、 破砕液の蛋白濃度を Protein Assay (バイオ · ラッ ド, 500— 0001) を用いて測定した。 各破砕 液より 5 z g 相当の蛋白量を SDS— PAG プレー ト 4ノ 20 (第一 化学, 120476)にかけ、泳動後セミ ドライエレクトロプロッター(Intergrated Separation Systems : ISS) を用いてウェスタンブロ ッ トを行 なった。 1次抗体には、 表 1記載の各種血清を使用し、 実施例 3記載 のィムノスク リ一二ングの方法を用いて) S— galおよび /3 - gal融 合抗原に対する各種血清の反応性を調べた。 その結果、 /3— gal融 合抗原ポリペプチド (約 lOOKd) と非 A非 B型肝炎患者血清との組 合せにおいてのみ呈色反応が認められ (陽性率は表 1の結果と同じ) 該抗原ポリぺプチ ドの抗原特異性が確認された。 実施例 5 : クローン Y19由来の cDNA の塩基配列および該配列 内にコー ドされる抗原ポリぺプチ ド配列の決定
クローン Y19を実験書 1の 2.118 記載のプレー トライゼー ト法 により增殖させたのちファージ DNA を調製した。 5 μ g のファー ジ D NA を EcoRI 消化した後、 フヱノール抽出およびエタノー ル沈澱により精製した。 3 g の EcoRI 消化物をアルカリホスフ ァターゼ処理した後、 T4キナーゼと 732P— ATP を用いて 5 ' 末 端ラベルを行った。 フヱノール抽出とエタノール沈殿により D NA 断片を精製した後、 5.0 % ポリアクリルァミ ドゲル電気泳動を行い オートラジォグラフィ一により EcoRI 消化により切り出された cDNA の長さを調べた。 その結果 cDNA のサイズは約 400 塩基対であ ることが判った。 次に前述の EcoRI 消化物と EcoRI 消化後脱リ ン酸化した pTZ 19 (フアルマシア LKB, 27 - 4986 - 01 ) とで Τ4リガ一ゼ反応を行った。 反応液を大腸菌 JM 109 (宝酒造, 9052) にトランスフ クシヨンし、 形質転換株の中から約 400 塩基対の インサー トをもつプラスミ ドを単離した (ρΤΖ 19— Y 19と命名)。 ρΤΖ19— Y 19 に組み込まれた cDNA の塩基配列は、 DyeDeoxy Terminator Taq Sequencing Kit (ABI, 401070 ) を用い てシークェンス反応を行い、 DNA シークェンサ一 (ABI.373A型) で泳動して決定した。 配列は M 13 プライマー M4 (宝酒造, 3832)、 M 13 プライマー RV (宝酒造, 3830) および合成プライマー E 1 (5'一 GGAGACGTCGTTGTTGT— 3'), E2 (5'— GCCTGTCATCAGAGCGT 一 3 ' ) を用いて両方鎖を読み、 決定した。 また合成オリゴヌクレオ チドの作製は、 380A 型 DNA 合成機 (ABI) により行ない、 付 属の説明書に従って精製した。
また、 組換え A gt l l 上での cDNA の向きを確認するため ス gtl l EcoRI部位プライマー正向、逆向 (New England Biolabsl218, 1222) を用いてファージ DNA を直接鍀型にして塩基配列決定を 行った。 これらの結果に基づき、 非 A非 B型肝炎患者血清に特異的 に反応する抗原をコードする塩基配列を式 (IX) に示すように、 ま た抗原のアミノ酸配列を式 (I) に示す様に決定した。 なお、 ァミノ 酸配列は式 (IX ) の塩基配列を 1番目から翻訳したものである。 実施例 6 : クローン Y22の抗原特異性試験
( 1 ) ィムノプラークアツセィ
クロ—ン Y22と陰性クローンを 2 : 8 の割合で混合したものをプ レーティ ングし、 上述のィムノスク リーニングの方法を用いて、 非 A非 B型慢性肝炎患者 (輪血歴有) 血清 (5名)、 非 A非 B型急性肝 炎患者 (輸血歴無) 血清 (6名)、 非 A非 B型慢性肝炎患者 (輸血歴 無) 血清 (5名)、 正常人コン トロール血清 (26名)、 B型慢性肝炎 患者血清 (9名)、 A型急性肝炎患者血清 (2名) との反応性を調べ た。 結果を表 2に示す。 その結果、 クローン Y22は、 非 A非 B型肝 炎患者血清とのみ特異的に反応することが示された。
表 2
Figure imgf000027_0001
すなわちクローン Y22は非 A非 B型肝炎患者由来の血清により免 疫学的に認識される抗原 (ェピ トープ) をコー ドしていることが確 認された。
(2 ) ウェスタンプロッ トアツセィ
λ gtll (親株) 溶原菌及び組換え体 λ gtllY22溶原菌の調製、 上 記溶原菌の培養及び^ 一 galおよび 3 - gal融合抗原ポリベプチ ド の発現誘導は実験書 3, P76の方法に準じて行った。 λ gtllY22溶原 菌はェシヱリチア コリ Y 1089 ( λ gtllY22 ) と命名し、 本株を つぎの通り寄託した。
(ィ) 寄託機関の名称 · あて名
名 称: 通商産業省工業技術院微生物工業技術研究所 あて名 : 日本国茨城県つくば市東一丁目 1番 3号 (郵便番 号 305)
(口) 寄託曰 (原寄託曰) 平成 2年 7月 16曰
(ハ) 受託番号 微ェ研 条寄第 3453号 (FERM BP— 3453) 発現誘導後、 溶原菌を超音波破碎し、 破砕液の蛋白濃度を Protein Assay を用いて測定した。 各破砕液より 5 // g 相当の蛋白量を SDS一 PAGE にかけ、 泳動後セミ ドライエレク トロプロッター (Integated Separation Systems) を用いてニトロセルロース (Sehlicher & Schuell, BA85) ウェスタンブロッ トをおこなつ た。 1次抗体には、 表 2記載の各種血清を使用し、 実施例 3記載のィ ムノスクリーニングの方法を用いて iS— gal、 — gal融合抗原に対 する各種血清の反応性を調べた。 その結果、 ^一 gal融合抗原ポリ ペプチド (約 l OOKd) と非 A非 B型肝炎患者血清との組合せにお いてのみ呈色反応が認められ (陽性率は表 2の結果と同じ) 該抗原ポ リぺプチ ドの抗原特異性が確認された。 実施例 7 : クローン Y22由来の cDNA の塩基配列および該配列 内にコードされる抗原ポリぺプチド配列の決定
クローン Y22の cDNA 領域を実施例 5の方法に準じて pTZ 19 にサブクローニングした後 (ρΤΖ 19— Υ22 )、 実施例 5の方法に 準じて塩基配列を決定した。 決定には M 13 プライマ一 Μ4 (宝 酒造, 3832) および M 13 プライマー RV (宝酒造, 3830 ) を用 いて両方鎖を読み、 決定した。
また、 組換え; I gtl l 上での cDNA の方向性は EcoRI 部位プライマー正向、 逆向 (New England Biolabs, 1218, 1222) を用いて; l gt l l Y22 ファージ DNA を直接铸型に用いて塩基配列 決定を行ない決定した。 これらの結果に基づき、 非 A非 B型肝炎患 者血清に特異的に反応する抗原をコー ドする塩基配列を式 (X) に示 すように、 また抗原のアミ ノ酸配列を式 (Π) に示す様に決定した。 実施例 8: Y19抗原の大腸菌での発現
(1) Y19抗原をコー ドする DNA 断片の調製
決定した Y 19抗原の塩基配列をもとに N末側と C末側にハイプリ ダイズする 1対の PCRプライマーを作成した [19一 η : 5' — 一 c: 5' - AAAAGCTTGGATCCTTAGCGTTCCCCTGGAGTCACATACCT] 19— ηプライマーには BamHI 部位, Ncol 部位がまた 19— cプ ライマーには終止コ ドン、 BamHI 部位、 Hindlll 部位が付加して ある。 加熱処理 (95で, 10分) した; I gtllY19ファージ水溶液に 各 40pmolの PCR用プライマーを加え GeneAmp DNA 増幅試 薬キッ ト (PERKIN ELMER CETUS, N801 - 0055) を用い て PCRをおこなった (94°C ,1分、 45° C.2分、 72。C ,3分を 35 サイクル)。 反応液をフ Xノール Zクロ口ホルム抽出し、 水相にエタ ノールを加え DNA 断片を沈港させた。
(2) pK2一 Y19の作成
(1) で得た PCR産物を常法により Τ4キナーゼ処理しつぎに Τ4リ ガーゼを用いて連結した。 反応液をフヱノール Ζクロ口ホルムで抽 出し、 水相にエタノールを加え DNA 断片を沈澱させた。 次に DNA を Ncol と Hindlll で 2重消化し、 消化物を 1.2% ァガロー ス (SeaKem GTG Agarose: 宝酒造, 5160) で電気泳動行な つた。 約 400 塩基対のバン ドを切り出し、 SUPREC— 01 (宝酒 造.9040) を用いて DNA の回収を行なった。 次に、 この 400 塩 基対の DNA 断片を Ncol と Hindlllで 2重消化した pKK233 - 2 発現ベクター (フアルマシア, 27— 5005— 01) へ Τ4リガ一 ゼを用いて連結した。 この連結物を用い常法により大腸菌 JM109株 を形質転換した。 アンピシリンプレー 卜に出現した形質転換体の中 から 400 塩基の挿入断片を持つ pKK233 (pK2 - Y 19) を含む クローンを得た (JM 109/pk2— Y 19 :以下 K 19株と呼ぶ)。 ま た、 コントロール用に pKK233— 2 を含むクローンも作製した (JM109 /pKK233 : 以下 Kc株と呼ぶ)。
(3) 大腸菌での Y 19抗原の発現
(2) で得た K 19株および Kc株を 2xYT培地 (50ug/ml Amp 含有) で培養 (37 °C、 160rpm) し OD600が約 1.0 に達したと き IPTGを終濃度 0.5mM になるように添加した。 その後 4時間培 養を継続した後、 遠心分離にて集菌した。 次に、 集菌した菌をそれ ぞれ OD600 20/ml になるように L溶液 (50mM Tris— HC1, pH8.0, 2mM EDTA, l OOmM NaCl) に懸濁後、 超音波破砕し た。 破碎液中の蛋白濃度は、 Protein Assay を用いて測定した。 おのおの 10 z g 相当の蛋白を含む破碎液と分子量マーカーを 2組 の SDS— PAGE プレー ト 10Z20 (第一化学, 120483) で電気 泳動した。 1枚は常法により CBB染色し他方は ISSセミ ドライエレ ク トロプロッタ一 (第一化学, SS 1 10201 ) を用いてニトロセルロー スフィルター (Schleicher & Schuell, BA85) にウェスタンブ ロッ トした。 二トロセルロースフィルターは実施例 3記載の方法に準 じて非 A 非 B 型肝炎患者プール血清と反応させた。 2次抗体にパー ォキシダーゼ標識ャギ抗ヒ ト (IgG) IgG (カッペル, 3201— 0081 ) を用いた。 その結果、 ウェスタンブロッ トでは、 K 19株にのみ分子 量 17,000 の部位に発色が認められた。 また、 CBB染色において、 K 19株には分子量 17,000 の部位に Kc株には認められないあらた なバンドが検出された。 すなわち、 K 19株には患者血清との反応性 を保持した抗原 (Y 19抗原) が発現された。
また、 類似した方法を用いて、 Y 19抗原を T7 プロモーターを利 用した pED3d (実験書 6、 p60 一 89)、 pGEMEX 一 1 (プロメガ, P221 1 ) および tac プロモーターを利用した pMAL — c (New England Biolabs, # 800) などを用いて大腸菌菌体内に発現す ることができる。 実施例 9 : Y22一 19複合抗原の大腸菌での発現
(1) Y22抗原をコー ドする DNA 断片の調製
決定した Y22抗原の塩基配列をもとに N末側と C末側にハイプリ ダイ ズする 1対の PCRプライマーを作成した [22 — n : 5' -
22 - c: 5' - AGCCATGGCGCCACCGTCCTTCCAGGGCTCTAACAGTGG] 22— nプライマーには BamHI 部位, Pstl 部位がまた 22— cプ ライマーには Ncol 部位が付加してある。 加熱処理 (95°C,10分) した λ gtllY22ファージ水溶液に各 40pmol の PCR用プライマー を加え GeneAmp DNA 増幅試薬キッ 卜を用いて PCRをおこなつ た (94°C,1分、 45°C, 2分、 72°C, 3分を 35サイクル)。 反応液を フヱノール クロロホルムで抽出し、 水相にエタノールを加え DNA 断片を沈澱させた。
(2) pKY22一 19の作成
(1) で得た PCR産物を Ncol 消化後その反応液をフニノールノ クロ口ホルム抽出し、 水相にエタノールを加え DNA断片を沈緞させ た。 同様に実施例 8 (1) で得た PCR産物を Ncol 消化後その反応 液をフヱノール Zクロロホルム抽出し、 水相にエタノールを加え断 片を沈殿させた。 次に両者を T4リガーゼにより連結した後、 反応液 をフヱノール Zクロロホルムで抽出し、 水相にエタノールを加え連 結物を沈鎩させた。 つぎに連結物を Pstl と Hindlll で 2重消化 行った後、 消化物を 1.2 % ァガロース (SeaKem GTG Agarose: 宝酒造, 5160) で電気泳動を行った。 約 550 塩基対のバンドを切り 出し、 SUPREC— 01 (宝酒造, 9040) を用いて DNAの回収を行な つた。 次に、 この 550塩基対の DNA断片を Pstl と Hindlll で 2重消化した pKK233— 2 発現ベクター (フアルマシア, 27— 5005 一 0 1 ) へ T4リガーゼを用いて連結した。 この連結物を用い大腸菌 JM 109株を形質転換した。 アンピシリ ンプレー卜に出現した形質転 換体の中から 550 塩基の挿入断片を持つ ρΚΚ233 (ρΚΥ22 - 19) を含むクローンを得た (JM 109/pKY22— 19 :以下 K2219株と 呼ぶ)。
(3 ) 大腸菌での Υ22— 19複合抗原の発現
(2) で得た K2219株および実施例 8 (2) で得た Kc株を 2χΥΤ培 地 (50ug/ml Amp含有) で培養 (37 ° C、 160rpm) し OD600 が約 1.0 に達したとき IPTGを終濃度 0.5mM になるように添加 した。 その後 4時間培養を継続した後, 遠心分離にて集菌した。 次に、 集めた菌をそれぞれ OD600 20/ml になるように L溶液 (50mMTris 一 HC1, pH8.0, 2mM EDTA, l OOmM NaCl) に懸濁後、 超音 波破砕した。 破砕液中の蛋白濃度は、 Protein Assay を用いて測 定した。 おのおの 10 / g 相当の蛋白を含む破砕液と分子量マーカ一 を 2組の SDS— PAGEプレート 10/20 (第一ィヒ学, 120483) で電 気泳動した。 1枚は常法により CBB染色し, 他方は実施例 8 (3) と 同様にウェスタンブロッ トを行い非 A非 B型肝炎患者プール血清と 反応させた。 その結果、 ウェスタンブロッ トでは、 K22 19株にのみ 分子量 26 , 000 の部位に発色が認められた。 また、 CBB染色にお いて、 K2219株には分子量 26,000 の部位に Kc株には認められな いあらたなバンドが検出された。 すなわち、 K2219株には患者血清 との反応性を保持した抗原 (Y22— 19抗原) が発現された。
また、類似した方法を用いて、 Y22— 19抗原を pED3d、 pGEMEX 一 1 および pMAL— c などを用いて発現することができる。 実施例 10 :大腸菌からの Y 19抗原の精製
実施例 8で作成した Y 19抗原遺伝子を含んだ発現ベクターで形質 転換された大腸菌を 6 L培養した。 IPTGは OD600 1 .0 のときに 終濃度 ImM になるように添加し、 その後 20時間後に集菌した。 菌 体は OD600 10/ml になるようリゾチーム含有 (l mg/ml) L溶 液に懸濁し、 次に凍結融解を 2回行なった。 融解物を超音波処理し、 破碎液を遠心分離 (9000xg, 10分) にかけ沈澱画分を集めた。 沈殺 画分は再度 L溶液 (リゾチーム含まず) に懸濁後、 遠心分離にて沈 澱画分を集めた。 この操作を 2回繰り返したのち沈澱画分を 50mM Tris - HC1, ρΗ8· 4、 I mM EDTA、 6M グァニジン塩酸に溶解 し、 その遠心上清 (200,000xg, 30分) を C溶液 (0. 1 M Tris - HC1, pH8.4, I mM EDTA, 2M Urea) に透析した。 透析後、 再 度遠心を行いその上清を Q Sepharose カラム (30mlゲル体積) に注いだ。 非結合画分を次に S Sepharose カラム (30mlゲル体 積) に注いだ後、 0.0から 0.5Mの食塩勾配にて溶出を行なった。 お よそ 0.2M食塩濃度で溶出されるピーク画分を集め、 終濃度 1 Mにな るように硫安を加えた。 次に、 この溶液を Phenyl Sepharose カラムに注いだ。 吸着画分は 0.05M硫安を含む C溶液で溶出した。 溶出画分は C溶液に透析後、 S Sepharoseカラムにて濃縮した。 6L の培養から約 7mgの精製 Y19抗原が得られた。 精製蛋白の純度は SDS 一 PAGEの CBB染色の結果から 98 %以上と推定された。 また、 精 製蛋白 1 gを SDS— PAGE 後ウェスタンブロッ トしたものを実 施例 3記載の方法に準じて非 A非 B型肝炎患者プール血清および正 常人プール血清と反応させた。 その結果、 精製蛋白には、 正常人ブー ル血清と反応するような大腸菌由来の蛋白の混入は認められなかつ た。 また、 非 A非 B型肝炎患者プール血清と反応させた場合には、 分 子量約 17, 000 バン ドのみが発色した。 実施例 1 1 :非 A非 B型肝炎ウィルス抗体の Y 19ELISA 法による 検出
実施例 10で得た Y19抗原を用いた Y 19 ELISA 法 (Y 19 ELISA 法) により血清中の非 A非 B型肝炎ウィルス抗体 (Y 19抗体) を検 出した。 Y 19抗原 (1 Z g/ml) を含有するコーティ ング緩銜液 [0. 1M 炭酸水素ナトリウム (PH9.5)] を 200 /z lずつをィムノプレー ト (ヌンク、 439454) のゥヱルに添加し、 一夜 4 。Cでィンキュベ一 卜した後、 溶液を除去した。 ゥヱルに 250 1のブロッキング緩衝 液 [PBS (lOmMリン酸緩衝液、 137mM塩化ナトリウム、 2.7mM 塩化カリウム、 pH7.4)、 1 %牛血清アルブミ ン (BSA)] を添加し、 —夜 4 °Cに置いた。 溶液を除去し、 洗浄緩衝液 [PBS、 0.05%Tween 20] で 3回洗浄した。 洗浄したゥエルに、 検体希釈液 [5.5 倍量 PBS 、 0.5%BSA、 1 %トリ トン X— 100] にて 20倍に希釈した検体 200 1を添加し、 37。C、 1時間ィンキュベートした。 次いで、 洗浄緩衝 液で 5回洗浄したゥヱルを、 200 1の標識抗体溶液 (ペルォキシ ダーゼ標識ャギ抗ヒ ト (IgG) IgGを標識抗体希釈液 [0.5 % BSA を含む洗浄緩衝液] で 1万倍に希釈した溶液) で、 37でで 1時間処 理した。 洗浄緩衝液で 5 回洗浄した後、 基質反応溶液 [0.4mgr/ml の 0—フエ二レンジアミンニ塩酸塩と 0.01 %の H202を含有する lOOmM のリン酸 · クェン酸緩銜液、 PH5.0] 200 1を添加し、 暗所にて室 温で 30分間インキュベー トした。 反応は 50 1 の 4.5M硫酸を加 えて停止させ、 492nmで吸光度を測定した。
(1) 健常人血清による反応性
肝機能の正常な健常人 (27名) から得た検体を、上述の Y19 ELISA 法を用いて検討した。 これらの検体によって得られた結果を、 吸光 度の分布を示すヒストグラムで示す (第 1図)。 第 1図から明かなよ うに、 全検体が 0.1 から 0.5 の間の吸光度を示した。 健常人 27名 の吸光度の平均値は 0.274 で標準偏差値は 0.086 であった。 これ らの検体はすべて平均値 ± 3倍標準偏差値の間に含まれた。
(2) 肝疾患別患者血清における反応性
上述の Y19 ELISA 法を用いて、 非 A非 B型急性肝炎患者 (輸 血歴無) 血清 (6名)、 非 A非 B型慢性肝炎患者 (輸血歴無) 血清 (5 名)、 非 A非 B型慢性肝炎血清 (輪血歴有) 血清 (5名) を検討した。 その結果を C100抗体との陽性検体数の比較で表 3に示す。 なお、 C100 抗体は市販されている HCV抗体 ELISAテス ト (ォーソダイァグノ ステクス) を用いて測定した。 表 3
Figure imgf000035_0001
表 3から明かなように、 Y19抗原は、 非 A非 B型肝疾患全検体に 強い反応性 (平均値 1.639、 標準偏差値 0.206) を示した。 C100 抗原は、 非 A非 B型肝疾患患者血清 2例 (非 A非 B型急性肝炎患者 血清 1例、 非 A非 B型慢性肝炎患者血清 1例) と反応を示さなかつ た。 Y19抗原を用いた非 A非 B型肝炎ウィルス抗体の測定は、 C100 抗原よりも検出率が高かった。
(3) 非 A非 B型慢性肝炎患者血清における Y19抗体測定
上述の Y19 ELISA 法を用いて、 さらに非 A非 B型慢性肝炎患 者血清 122例の予備臨床研究を行った。 結果を、 C100抗体と比較す るかたちでグラフに示す (第 2図)。 第 2図から明かなように、 C100 抗体活性の吸光度が低い (吸光度 0.5 以下) にもかかわらず、 Y19 抗体活性の吸光度が高い (吸光度 1.0 以上) 検体がかなり存在する ことが分かる。 一方、 C100抗体の吸光度が高く、 Y19抗体活性の 吸光度が低い検体は、 わずかに 2例であった。 このことは、 Y19抗 原が C100抗原よりも非 A非 B型肝炎患者の診断に有用であること を示している。 実施例 12:合成ポリべプチドを用いた、 非 A非 B型肝炎ウィルス 抗体の ELISA 法による検出
( 1 ) ポリペプチドの合成
実施例 7で決定されたアミノ酸配列 (式 (II) 参照) に基づいて、 比較的親水性の高い領域を含むように選ばれた下記式 (ΙΠ) (VII) および (XII) および実施例 7で決定されたアミノ酸配列 (式 (II ) 参照) を含まない式 (ΧΠΙ) で示される対照用のポリペプチドは、 次 のようにして合成した。 (III)
Leu Asp Ser Phe Asp Pro Leu Arg Ala Glu
Glu Asp Glu Arg Glu Val Ser Val A la Ala
Glu lie Leu Arg Arg Ser Arg Lys
(Y22 - 3抗原)
(IV)
Ser Val Ala Ala Glu lie Leu Arg Arg Ser
Arg Lys Phe Pro Ala Ala Leu Pro lie Trp
Ala Arg Pro Asp Tyr Asn Pro Pro Leu Leu
Glu Pro Trp Lys Asp (Y22 - 7抗原)
(V)
Glu lie Leu Arg Arg Ser Arg Lys Phe Pro
Ala Ala Leu Pro lie Trp Ala Arg Pro Asp
Tyr Asn Pro Pro Leu Leu Glu Pro Trp Lys
Asp (Y22 - 6抗原) (VI)
Arg Arg Ser Arg Lys Phe Pro Ala Ala Leu
Pro lie Trp Ala Arg Pro Asp Tyr Asn Pro
Pro Leu Leu Glu Pro Trp Lys Asp
(Y22— 5抗原)
(VII)
Ser Arg Lys Phe Pro Ala Ala Leu Pro lie
Trp Ala Arg Pro Asp Tyr Asn Pro Pro Leu Leu Glu Pro Trp Lys Asp (Y22 - 4抗原)
(XII)
Ala Arg Pro Asp Tyr Asn Pro Pro Leu Leu Glu Pro Trp Lys Asp
(XIII)
Ala Asn Gly Val Gin Leu Arg Asp Asn Gin
Leu Val Val Thr Ser Glu Gly Leu Tyr Leu lie Tyr Ser Gin Val Leu Ser Lys Gly Gin
Gly アプライ ド · バイオシステムズ社のぺプチ ド合成機 430A型を用 いて、 同社市販の試薬、 溶媒類を使用し、 同機の標準的な運転プロ グラムに従って固相法により合成した。 用いた t一 Bocア ミ ノ酸は 全て L型で保護基は Argの場合は Mts (メシチレンスルフォニル基)、 Asp、 Gluの場合は OBzl (ベンジルエステル)、 Lysの場合は C1— Z (p—クロ口べンジルォキシカルボニル基)、 Serの場合は Bzl (0 —ベンジル基)、 Tyrの場合は Br— Z (ブロモーべンジルォキシ カルボニル基) であり、 その他の t— Bocアミ ノ酸は無保護のもの ¾用いた。 式 (III) 及び式 (XIII) のポリペプチ ドは、 それぞれ t一 Boc— Lys、 t— Boc― Glyを力ップリ ングした Pam (フェニルァセ トァ ミ ドメチル) 樹脂を初発物質として用い、 ト リフルォロ詐酸による t一 Boc基の除去と、 連結されるべき t— Bocアミ ノ酸の Ν, Ν—ジ シクロへキシルカルボジイ ミ ドによる活性化およびカツプリ ングを 順次繰り返し、 合成した。 ただし、 t一 Boc— Argの活性化には Ν, N—ジシクロへキシルカルボジイ ミ ドと 1—ヒ ドロキシベンゾ卜 リア ゾールを等量用いた。 式 (IV) ないし式 (XII) のペプチ ドは、 t一 Boc一 Aspを力ップリ ングした P am樹脂を初発物質として同様に 合成した。 ただし、 t一 Boc基の除去には ト リフルォロ酢酸: ト リエ チルァミ ン : ジクロロメタン (35 : 1 : 9) 混液を用いた。 各ポリぺ プチ ドはユーザーズマニュアルに記載の方法に従い、 ト リフルォ口 メタンスルホン酸によって樹脂より遊離させた。 遊離したポリぺプ チ ドを凍結乾燥し、 白色ないし淡黄白色の固形物を得た。
これらのポリべプチ ドを、 高速液体クロマ トグラフィにより分析 した。 R— ODS— 5カラム (4.6 ø X 250mm、 山村化学) を用い、 A液 (¾0、 0. 1 % トリフルォロ醉酸) 0 %から、 B液 [ァセ トニ ト リノレ: 0 (70 : 30)、 0. 1 % ト リフルォロ酢酸] 100 %の 35分に わたるリニアグラジェント溶出により、 式 (III) から式 (VII) お よび (ΧΠ)、 (XIII) のポリペプチ ドのメインピークの溶出時間は、 それぞれ、 約 26.2分、 30.7分、 29.2分、 33.0分、 29.7分、 28.4 分、 29. 1分であった。
b) 非 A非 B型肝炎ウィルス抗体の ELISA法による検出
合成ポリぺプチドを抗原とした ELISA法を用いて、 血清中の非 A 非 B型肝炎型ウィルス抗体を検出した。 各合成ポリペプチ ド (10 g/ml ) を含有するコーティ ング緩衝液 [0. 1 M 炭酸水素ナ ト リウ ム (pH9.5) ] を 100 / 1 ずつィムノプレー ト (ヌンク、 439454) のゥヱルに添加し、 一夜 4 。Cでインキュベー トした後、 溶液を吸引 除去した。 ゥヱルに 250 // 1のブロッキング緩衝液 [PBS ( l OmM リン酸緩衝液、 137mM塩化ナトリウム、 2.7mM塩化力リゥム、 pH7. 4)、 1 %牛血清アルブミ ン] を添加し、 3時間室温に置いた。 溶液を 除去し、 洗浄緩衝液 (PBS、 0.05 % Tween 20) で 3回洗浄した。 洗浄したゥニルに、 0.25 %の BSAを含む洗浄緩衝液で 30倍に希釈 した非 A非 B型肝炎患者のブール血清または対照として健常人のブー ル血清 100 / 1を添加し、 一夜 4 °Cでインキュベートした。 次いで、 洗浄緩衝液で 5回洗浄したゥ ルを、 100 / 1の 2次抗体溶液 (ペル ォキシダーゼ標識ャギ抗ヒ ト (IgG) IgGを洗浄緩衝液で 3000倍に 希釈した溶液) で、 3時間室温で処理した。 洗浄緩衢液で 5回洗浄し た後、 基質反応溶液 (0.4mg/mlの 0—フヱニレンジアミ ンニ塩酸 塩と 0.01 %の¾02を含有する l OOmMのリン酸 · クェン酸緩衝液、 PH5.0) 200 / 1を添加し、 暗所にて室温で 10分間インキュベート した。 反応は 50 1の 4.5M硫酸を加えて停止させ、 492nmで吸光 度を測定した。
非 A非 B型肝炎患者のプール血清と健常人のプール血清を用いて、 実施例 7で決定されたポリべプチドのァミノ酸配列由来のポリべプチ ド式 (III) 〜 (VII) および (XII) の反応性と、 実施例 7で決定さ れたアミノ酸配列を含まないポリペプチド式 (XIII) の反応性を比 較した。 結果を、 吸光度で表した棒グラフに示す (第 3図)。 第 3図 から分かるように、 式 (XII) の合成ペプチドは、 非 A非 B型肝炎患 者血清のプール血清と比較的低い反応性を示したものの、 式 (III) 〜 (VII) の合成ペプチドはいずれも、 健常人のプール血清に比べて、 非 A非 B型肝炎患者のプール血清に対して有意に高い (p < 0.001 , n = 3) 反応性を示した。 一方、 対照として用いた式 (XIII) の合成 ペプチドは、 非 A非 B型肝炎患者血清のプール血清と反応しなかつ た。 このことは、 式 (III) 〜 (XII) の合成ポリペプチドが非 A非 B型肝炎患者血清抗体を特異的に検出するのに有用であることを示し ている。 また、 式 (III) と、 式 (ΧΠ) のポリべプチドとは、 式 (Π) で示される抗原べプチドの異なる領域のァミノ酸配列であることか ら、 本発明に於て決定された式 (Π) で示される抗原ポリペプチドに は、 少なく とも 2つのェピトープが存在していると思われる。 実施例 13 : 非 A非 B型肝炎ウィルス抗体の Y19 + 22 ELISA 法による検出
大腸菌にて発現させ、 イオン交換クロマトグラフ等により精製さ れたポリペプチド (Y19抗原) と合成ポリペプチド (Y22— 3抗原、 Y22— 6抗原) 2種を混合した 3種混合抗原による ELISA 法 (Y19 + 22 ELISA法) を用いて、 血清または血漿中の非 A非 B型肝炎ゥ ィルス抗体を検出した。
(1) Y19 + 22 ELISAの測定法
Y19抗原 (1 ^ gZml)、 Y22— 3抗原 (1 / gZml)、 Y22一 6 抗原 (10 // gXml) を含有するコーティ ング緩銜液 [0.1M 炭酸 水素ナトリウム (pH9.5)] を 200 /zlずつィムノプレート (ヌンク、 439454) のゥエルに添加し、 一夜 4 °Cでインキュベートした後、 溶 液を除去した。 ゥヱルに 250〃 1のブロッキング緩衝液 [PBS (lOmM リン酸緩衝液、 137mM塩化ナトリウム、 2.7mM塩化力リゥム、 pH7. 4)、 1 %牛血清アルブミ ン (BSA)] を添加し、 一夜 4 °Cに置いた。 以下、 実施例 11記載の方法に準じて 2次抗体と反応させた後、 同様 に発色を行い 50 / 1 の 4.5M硫酸を加えて反応を停止させ、 492nm で吸光度を測定した。
(2) 健常人血清による反応性
肝機能の正常な健常人 (29名) から得た検体を、 上述の Y19 + 22 ELISA法を用いて検討した。 これらの検体によって得られた結果を、 OD値の分布を示すヒス 卜グラムで示す (第 4図)。 第 4図からわか るように、 全検体が 0.1 から 0.4 の間の吸光度を示した。 健常人 29 名の吸光度の平均値は 0.201 で標準偏差値は 0.072 であった。 こ れらの検体はすべて平均値 ± 3倍標準偏差値の間に含まれた。
(3) 肝疾患別患者血清における反応性 上述の Y19 + 22 ELISA法を用いて、 非 A非 B型急性肝炎患者 (輸血歴無) 血清 (6名)、 非 A非 B型慢性肝炎患者 (輪血歴無) 血 清 (5名)、 非 A非 B型慢性肝炎血清 (輸血歴有) 血清 (5名)、 B型 慢性肝炎患者血清 (5名) を検討した。 その結果を C100抗体との陽 性検体数の比較で示す (表 4)。 Y19 + 22 ELISA法の cut off値 を 492nm吸光度 0.5とした。 この値は、 実施例 13 (2) で測定した 健常人の吸光度平均値を 4.15倍標準偏差値上回っている。
表 4
Figure imgf000041_0001
表 4から明かなように、 Y19 + 22抗原は、 非 A非 B型肝疾患全検 体に強い反応性 (平均値 1.763、 標準偏差値 0.061) を示した。 C100 抗原は、 非 A非 B型肝疾患患者血清 2例 (非 A非 B型急性肝炎患者 血清 1例、 非 A非 B型慢性肝炎患者血清 1例) と反応を示さなかつ た。 Y19 + 22を用いた HCV抗体の測定は、 C100抗体よりも検出 率が高かった。 すなわち従来では検出不可能であった非 A非 B型肝 炎ウィルス抗体の検出に有用である。
(4) 非 A非 B型慢性肝炎患者血清における Y19 + 22抗体の測定 上述の Y19 + 22 ELISA法を用いて、 さらに非 A非 B型慢性肝 炎患者血清 122 例の予備臨床研究を行った。 結果を C100抗体と比 較するたかたちでグラフにて示す (第 5図)。 第 5図から明かなよう に、 C100抗体活性の吸光度が低い (吸光度 0.5 以下) にもかかわ らず、 Y19 + 22抗体活性の吸光度が高い (吸光度 1.0 以上) 検体 がかなり存在することが分かる。 一方、 C 100抗体の吸光度が高く、 Y 19 + 22抗体活性の吸光度が低い検体は、 わずかに 3例であった。 このことは、 Y 19 + 22抗原が非 A非 B型肝炎ウィルス抗体を特異的 に検出するのに有効であることを示している。
(5 ) Y 19 + 22抗体測定 ELISA法とコア抗体測定 ELISA法の 較
a) コア抗原 (CP— 9、 CP - 10 ) のポリぺプチ ド合成
HCVコア領域のェピトープを含むと思われる CP— 9と CP— 10 [岡 本宏明 肝臓 31 suppl. 40 1990、 H.Okamoto et.al. Japan J. Exp. Med., 60. 223 ( 1990) ] を実施例 12の方法に準じて合 成した。
CP - 9
Arg Arg Gly Pro Arg Leu Gly Val Arg Ala
Thr Arg Lys Thr Ser Glu Arg Ser Gin Pro
Arg Gly Arg Arg Gin Pro lie Pro Lys Val
Arg Arg Pro Glu Gly Arg
CP一 10
Pro Lys Pro Gin Arg Lys Thr Lys Arg Asn
Thr Asn Arg Arg Pro Gin Asp Val Lys 上記の 2種のポリペプチドのメインピークの溶出時間は、 それぞれ 約 20.0分、 16.7分であった。
b) CP9 + 10 ELISAの測定法
CP - 9 ( 1 μ g/ml) と CP— 10 (5 β g/ml) を含有するコ一 ティ ング緩衝液をィムノプレー トに添加する。 後の操作は、 実施例 13 ( 1 ) と同様に行った。
c) 非 A非 B型慢性肝炎患者血清における Y 19 + 22抗体測定と CP9 + 10抗体測定の比較
さらに非 A非 B型慢性肝炎患者血清 122例の CP9 + 10抗体測定 を、 上述の CP9+ 10 ELISA法を用いて行った。 Y19 + 22抗体測 定結果は、 実施例 13 (4) にて行ったものである。 その結果を、 表 5に示す。 表 5
Figure imgf000043_0001
Y19 + 22抗体陽性率は、 89.3%であり、 CP9 + 10抗体陽性率は 79.5%でぁった。 丫19 + 22 ELISA法の方が CP9 + 10 ELISA 法より HCV抗体陽性率が高かった。 Y19 + 22抗体測定と CP9+ 10 抗体測定の一致例は、 +Z+93例、 (76.2%) であった。 Y19 + 22 のみまたは CP9 + 10のみ陽性であった検体も存在した。 その不一致 例は、 +/ - 16例 (13.1 %)、 一 Z+4例 (3.3 %) であった。 以 上の結果は、 Y19 + 22抗原が、 非 A非 B型慢性肝炎患者血清抗体を 特異的に検出するのに有用であることを示している。 また、 Y19 + 22抗原に更に CP9 + 10抗原を混合すれば、 さらに検出率が上がる ことを示している。
実施例 14 非 A非 B型肝硬変患者血清における Y19 + 22抗体測 定
実施例 13 (1) の Y19 + 22 ELISA法を用いて非 A非 B型肝硬 変血清 (38例) の予備臨床研究を行った。 結果を C100抗体と合わ せて表 6に示す。 表 6
Figure imgf000044_0001
Y 19 + 22抗体陽性率は 73.7 %、 また、 C 100抗体陽性率は 68.4 %であった。 Y 19 + 22抗体測定は、 非 A非 B型肝硬変疾患を診断す る上で有用であることを示している。 産業上の利用可能性
本発明の抗原ポリぺプチドおよびそれらを混合または複合して用 ちいる非 A非 B型肝炎ウィルス抗体の測定法は、 従来の抗原を利用 した検査法よりも検出率が高く、 既存の抗原では診断できなかった 非 A非 B型肝炎ウィルス関連疾患 (急性肝炎、 慢性肝炎、 肝硬変、 肝 癌等の疾患) の診断に有用であり、 治療方針の決定等に役立つ。 ま た、 該抗原ポリぺプチドは既存の抗原では検出できなかった非 A非 B型肝炎ウィルスの健常人キヤリァ一の補足が可能であり、 輪血後肝 炎の発症防止に役立つ。 また、 該抗原ポリペプチドを用いて、 該ゥ ィルス抗原の検出及び非 A非 B型肝炎の治療に利用し得るポリクロー ナル抗体及びモノクローナル抗体を作成することが出来る。 また、 該 抗原ポリベプチドはウィルスの感染予防及び感染後の治療のための ワクチンの製造に利用できる。 本発明の非 A非 B型肝炎ウィルスポ リヌクレオチ ドは、 該抗原を製造するための遺伝子として有用であ る。 また、 その塩基配列を利用してウィルスゲノム (粒子) の有無 を調べることが出来る。

Claims

請 求 の 範 囲
1 . 抗原ポリペプチド Y 19群、 抗原ポリべプチド Y22群またはその 断片群、 これらのポリべプチド群の中から選ばれる 2種以上の抗原が 融合した複合抗原ポリベプチド群および抗原ポリベプチド Y 19群ま たは Y22群に含まれる抗原ポリベプチドのェピトープと免疫学的に 同一とみなしうるェピトープを有する抗原ポリペプチド群の中から 選ばれる単独の抗原又は 2種以上の抗原を混ぜ合わせた混合抗原と生 物学的試料中に存在する非 A非 B型肝炎ウィルス抗体との反応で形 成される免疫学的結合物を測定して、 生物学的試料中の非 A非 B型 肝炎ウィルス抗体の存在を確認する非 A非 B型肝炎ウィルス抗体の 検出方法
2. 請求の範囲 1記載の単独の抗原または 2種以上の抗原を混ぜ合わ せた混合抗原に、 さらに非 A非 B型肝炎関連抗原ポリべプチ ドを混 ぜ合わせた混合抗原または、 抗原ポリペプチド Y 19群、 抗原ポリべ プチド Y22群またはその断片群の中から選ばれる 1種または 2種以 上の抗原と非 A非 B型肝炎関連抗原ポリベプチドを融合した複合抗 原ポリぺプチドと生物学的試料中に存在する非 A非 B型肝炎ウィル ス抗体との反応で形成される免疫学的結合物を測定して、 生物学的 試料中の非 A非 B型肝炎ウィルス抗体の存在を確認する非 A非 B型 肝炎ウィルス抗体の検出方法
3. 免疫学的結合物を測定する方法が ELISA法であることを特徴と する請求の範囲 1または 2記載の検出方法
4. 抗原ポリぺプチド Y 1 9群および Zまたは抗原ポリぺプチド Y22 群の抗体の存在を分析するためのキッ トであって、 適当な容器内に、 抗原ポリべプチド Y 19群、 抗原ポリべプチド Y22群またはその断片 群、 これらのポリぺブチド群の中から選ばれる 2種以上の抗原が融合 した複合抗原ポリべプチド群および抗原ポリべプチド Y 1 9群または Y22群に含まれる抗原ポリべプチドのェピトープと免疫学的に同一 とみなしうるェピトープを有する抗原ポリぺプチド群の中から選ば れる単独の抗原又は 2種以上の抗原を混ぜ合わせた混合抗原を有する キッ ト
5. 抗原ポリべプチド Y 1 9群および Zまたは抗原ポリべプチド Y 22 群の抗体の存在を分析するためのキッ 卜であって、 適当な容器内に、 請求の範囲 1記載の単独の抗原または 2種以上の抗原を混ぜ合わせた 混合抗原に、 さらに非 A非 B型肝炎関連抗原ポリべプチドを混ぜ合 わせた混合抗原または、 抗原ポリペプチド Y 1 9群、 抗原ポリぺプチ ド Y22群またはその.断片群の中から選ばれる 1種または 2種以上の 抗原と非 A非 B型肝炎関連抗原ポリぺプチドを融合した複合抗原ポ リぺプチドを有するキッ ト
6. 下記ァミノ酸配列で示される非 A非 B型肝炎ウィルス抗原ポリ ぺプチド Y 1 9群
N - Xi lie Pro lie Glu Al a lie Ly s G l y G ly
Arg His Leu lie Phe Cys His Ser Lys Lys Lys Cys Asp Glu Leu Ala Ala Lys Leu Ser Ser Leu Gly Val Asn Ala Val Ala Tyr Tyr Arg Gly Leu Asp Val Ser lie lie Pro Thr Ser G ly Asp Val Val Val Val Ala Thr Asp
Ala Leu Met Thr Gly Tyr Thr Gly Asp Phe Asp Ser Val lie Asp Cys Asn Thr Cys Val Thr Gin Thr Val Asp Phe Ser Leu Asp Pro
Thr Phe Thr lie Glu Thr Thr Thr Val Pro Gin Asp Ala Val Ser Arg Ser Gin Arg Arg Gly Arg Thr Gly Arg Gly Arg Gly Gly lie Tyr Arg Tyr Val Thr Pro Gly Glu Arg (上記式中、 X,は N末端が水素原子または 1〜20個の任意のァミ ノ 酸を意味する。)
7. 下記ァミ ノ酸配列で示される非 A非 B型肝炎ウィルス抗原ポリ ぺプチ ド Y22群
N - X2 Leu Asp Ser Phe Asp Pro Leu Arg Ala
Glu Glu Asp Glu Arg Glu Val Ser Val Ala Ala Glu lie Leu Arg Arg Ser Arg Lys Phe Pro Ala Ala Leu Pro lie Trp Ala Arg Pro Asp Tyr Asn Pro Pro Leu Leu Glu Pro Trp Lys A sp
(上記式中、 X2は N末端が水素原子または 1〜20個の任意のァミ ノ 酸を意味する。)
8. 請求の範囲 7記載のポリべプチ ド Y22群の断片群であって、 下 記ァミ ノ酸配列からなる群から選ばれたいづれか一つの非 A非 B型 肝炎ウィルス抗原ポリべプチ ド
Leu Asp Ser Phe Asp Pro Leu Arg Ala Glu Glu A sp Glu Arg Gl u Val Ser Val A la Ala G lu lie Leu Arg Arg Ser Arg Lys
(Y22 - 3抗原) Ser Val Ala Ala Glu lie Leu Arg Arg Ser
Arg Lys Phe Pro Ala Ala Leu Pro lie Trp Ala Arg Pro Asp Tyr Asn Pro Pro Leu Leu Glu Pro Trp Lys Asp (Y22— 7抗原)
Glu lie Leu Arg Arg Ser Arg Lys Phe Pro Ala Ala Leu Pro He Trp Ala Arg Pro Asp
Tyr Asn Pro Pro Leu Leu Glu Pro Trp Lys Asp (Y22 - 6抗原)
Arg Arg Ser Arg Lys Phe Pro Ala Al a Leu Pro lie Trp Ala Arg Pro Asp Tyr Asn Pro Pro Leu Leu Glu Pro Trp Lys Asp
( Y22 - 5抗原)
Ser Arg Lys Phe Pro Ala Al a Leu Pro lie
Trp Ala Arg Pro Asp Tyr Asn Pro Pro Leu Leu Glu Pro Trp Lys Asp
(Y22 - 4抗原)
9. 請求の範囲 6または 7記載のアミノ酸配列を有する融合抗原ポリ ペプチド
10. 請求の範囲 6または 7記載のァミノ酸配列を有し、 ^一ガラク ト シダーゼ (^一 gal) と融合した融合抗原ポリペプチ ド
1 1. 請求の範囲 6または 7記載のポリべプチドに含まれるェピトープ と免疫学的に同一であるとみなし得るェピトープを有するポリぺプ チド
12. ポリペプチ ド Y 19群、 ポリペプチド Y22群、 ポリペプチド Y22 群の断片群および非 A非 B型肝炎関連抗原ポリペプチ ド群の中から 選ばれる 2種以上の抗原を融合した複合抗原ポリぺプチ ド
1 3. 下記アミ ノ酸配列で示される非 A非 B型肝炎ウィルス抗原ポリ ぺプチ ド Y22— 19群
N - X3 Leu Asp Ser Phe Asp Pro Leu Arg Ala
Glu Glu Asp Glu Arg Glu Val Ser Val Ala Ala Glu lie Leu Arg Arg Ser Arg Lys Phe
Pro Ala Ala Leu Pro lie Trp A la Arg Pro Asp Tyr Asn Pro Pro Leu Leu Glu Pro Trp
Lys Asp Y lie Pro lie G lu A l a l i e Lys Gly G ly Arg His Leu lie Phe Cys Hi s Ser Lys Lys Lys Cys Asp Glu Leu Ala Ala Lys
Leu Ser Ser Leu Gly Val Asn A la Va A la
Tyr Tyr Arg Gly Leu Asp Val Ser lie l ie Pro Thr Ser Gly Asp Val Val Val Val Ala
Thr Asp Ala Leu Met Thr Gly Tyr Thr Gly
Asp Phe Asp Ser Val lie Asp Cys Asn Thr
Cys Val Thr Gin Thr Val Asp Phe Ser Leu
Asp Pro Thr Phe Thr He Glu Thr Thr Thr
Val Pro Gin Asp Ala Val Ser Arg Ser Gin
Arg Arg Gly Arg Thr Gly Arg Gly Arg Gly
Gly lie Tyr Arg Tyr Val Thr Pro Gly Glu
Arg
(上記式中、 X3は N末端が水素原子または 1〜20個の任意のァミ ノ 酸を、 また Yは 1〜20個の任意のアミ ノ酸を意味する。)
14. 請求の範囲 6〜13のいずれかの項に記載の抗原ポリペプチ ドを コー ドするポリ ヌク レオチ ド
15. 下記塩基配列で示される非 A非 B型肝炎ウィルスポリ ヌク レオ チ ド Y 1 9
ATT CCC ATC GAG GCC ATC AAG GGG GGG AGG CAC CTC ATC TTC TGC CAT TCC AAG AAG AAG TGT GAC GAG CTC GCC GCG AAG CTG TCG TCC CTC GGA GTC AAT GCT GTA GCA TAC TAC CGG GGT CTT GAC GTG TCC ATC ATA CCG ACA AGC GGA GAC GTC GTT GTT GTG GCA ACA GAC GCT CTG ATG ACA GGC TAT ACC GGC GAC TTC GAC TCA GTG ATC GAC TGT AAC ACA TGT GTC ACC CAG ACA GTC GAT TTC AGC TTG GAC CCT ACA TTC ACC ATT GAG ACG ACA ACC GTG CCC CAA GAC GCG GTG TCG CGC TCG CAG CGG CGA GG C AGG ACT GGT AGG GGC AGA GGG GGC ATA TAC A GG TAT GTG ACT CCA GGG GAA CG G
16. 下記塩基配列で示される非 A非 B型肝炎ウィルスポリヌク レオ チ ド Y22
CTG GAC TCT TTC GAC CCG CTT CGA GCG GAG
GAG GAT GAG AGG GAA GTA TCC GTT GCG GCG
GAG ATC CTG CGA AGA TCC AGG AAG TTC CCC
GCA GCA CTG CCC ATA TGG G CG CGG CCG GA T
TAC AAC CCT CCA CTG TTA GAG CCC TG G AAG GAC
17. 下記塩基配列で示される非 A非 B型肝炎ウィルスポリ ヌク レオ チ ド Y22 - 19
C TG GAC TCT TTC GAC CCG CT T CGA GCG GA G GAG GAT GAG AGG GAA GTA TCC GTT GCG GCG GAG ATC CTG CGA AGA TCC AGG A AG TTC CCC GCA GCA CTG CC C ATA TG G GCG CGG CCG GAT TAC AAC CCT CCA CTG TTA GAG CCC TGG AAG GAC GGT GGC GCC ATG GCT ATT CCC ATC GAG GCC ATC AAG GGG GGG AGG CAC CTC ATC TTC TGC CAT TCC AAG AAG AAG TGT GAC GAG CTC GCC GCG AAG CTG TCG TCC CTC GGA GTC AAT GCT GTA GCA TAC TAC CGG GGT CTT GAC GTG TCC ATC ATA CCG ACA AGC GGA GAC GTC G TT GTT GTG GCA ACA GAC GCT CTG ATG ACA GGC TAT ACC GGC GAC TTC GAC TCA GTG ATC GAC TGT AAC ACA TGT GTC ACC CAG ACA GTC GAT TTC AGC TTG GAC CCT ACA TTC ACC ATT GAG ACG ACA ACC GTG CCC CAA GAC GCG GTG TCG CGC TCG CAG CGG CGA GGC AGG ACT GGT AGG GGC AGA GGG GGC ATA TAC AGG TAT GTG ACT CCA G GG GAA CGG
18. 非 A非 B型肝炎ウィルスに由来するポリ ヌクレオチ ドを検出す るためのポリヌクレオチドプローブであって、 請求の範囲 15又は 16 記載の相捕鎖の配列に由来する連続した 8塩基、 またはそれ以上の長 さからなる配列を含むポリ ヌク レオチ ドプローブ
19. 請求の範囲 18記載のポリヌクレオチ ドプローブを用いて、 非 A 非 B型肝炎ウイルスに由来するポリ ヌクレオチ ドを検出する方法
20. 非 A非 B型肝炎ウィルスに由来するポリ ヌク レオチ ドを逆転写 一 PCR法にて検出するためのポリヌクレオチ ドプライマ一対であつ て、 請求項 1 5又は 1 6記載の配列およびその相補鎖に由来する連続 した 8塩基、 またはそれ以上の長さからなる配列を含むポリヌクレオ チ ドプライマ一対
21. 請求項 20記載のポリヌクレオチドプライマ一対を用いて、 非 A 非 B型肝炎ウィルスに由来するポリヌクレオチドを逆転写一 PCR法 にて検出する方法
22. 請求項 6〜13記載の抗原または複合抗原ポリべプチ ドをコー ド する組換え体発現ベクターで形質転換された宿主細胞を該ポリぺプ チ ドを発現する条件下で培養することを特徵とする抗原ポリぺプチ ドの生産方法
23. 発現べクターが大腸菌用発現ベクターでありそして宿主が大腸 菌である請求の範囲 22記載の生産方法
PCT/JP1991/000964 1990-07-24 1991-07-19 Non-a non-b hepatitis virus antigen WO1992001714A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP19573690 1990-07-24
JP2/195736 1990-07-24
JP2/195735 1990-07-24
JP19573590 1990-07-24
JP2/286901 1990-10-24
JP28690190 1990-10-24
JP15515891 1991-05-30
JP3/155158 1991-05-30

Publications (1)

Publication Number Publication Date
WO1992001714A1 true WO1992001714A1 (en) 1992-02-06

Family

ID=27473333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1991/000964 WO1992001714A1 (en) 1990-07-24 1991-07-19 Non-a non-b hepatitis virus antigen

Country Status (1)

Country Link
WO (1) WO1992001714A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0644202A1 (en) * 1990-12-14 1995-03-22 N.V. Innogenetics S.A. Synthetic antigens for the detection of antibodies to hepatitis C virus
US5910404A (en) * 1990-12-14 1999-06-08 Innogenetics N.V. Synthetic antigens for the detection of antibodies to hepatitis C virus
US6007982A (en) * 1990-12-14 1999-12-28 Innogenetics N.V. Synthetic antigens for the detection of antibodies to hepatitis C virus
EP0769954B2 (de) 1995-05-08 2011-03-09 Baxter Aktiengesellschaft Qualitätsgesichertes arzneimittel, enthaltend ein oder mehrere plasmaderivate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02500880A (ja) * 1987-11-18 1990-03-29 カイロン コーポレイション Nanbvの診断用薬およびワクチン
WO1990014436A1 (en) * 1989-05-18 1990-11-29 Chiron Corporation Nanbv diagnostics: polynucleotides useful for screening for hepatitis c virus
WO1991004262A1 (en) * 1989-09-15 1991-04-04 National Institute Of Health Of Japan New hcv isolates

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02500880A (ja) * 1987-11-18 1990-03-29 カイロン コーポレイション Nanbvの診断用薬およびワクチン
WO1990014436A1 (en) * 1989-05-18 1990-11-29 Chiron Corporation Nanbv diagnostics: polynucleotides useful for screening for hepatitis c virus
WO1991004262A1 (en) * 1989-09-15 1991-04-04 National Institute Of Health Of Japan New hcv isolates

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SCIENCE, Vol. 244, (1989), QUI LIM CHOO et al., "Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome", p. 359-362. *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0644202A1 (en) * 1990-12-14 1995-03-22 N.V. Innogenetics S.A. Synthetic antigens for the detection of antibodies to hepatitis C virus
US5910404A (en) * 1990-12-14 1999-06-08 Innogenetics N.V. Synthetic antigens for the detection of antibodies to hepatitis C virus
US5922532A (en) * 1990-12-14 1999-07-13 Innogenetics, N.V. Synthetic antigens for the detection of antibodies to hepatitis C virus
US6007982A (en) * 1990-12-14 1999-12-28 Innogenetics N.V. Synthetic antigens for the detection of antibodies to hepatitis C virus
US6287761B1 (en) 1990-12-14 2001-09-11 Innogenetics N.V. Synthetic antigens for the detection of antibodies to hepatitis C virus
US6576417B2 (en) 1990-12-14 2003-06-10 Innogenetics, N.V. Synthetic antigens for the detection of antibodies to hepatitis C virus
US6872520B2 (en) 1990-12-14 2005-03-29 Innogenetics N.V. Synthetic antigens for the detection of antibodies to hepatitis C virus
EP0769954B2 (de) 1995-05-08 2011-03-09 Baxter Aktiengesellschaft Qualitätsgesichertes arzneimittel, enthaltend ein oder mehrere plasmaderivate

Similar Documents

Publication Publication Date Title
JP5829830B2 (ja) E型肝炎ウイルスのポリペプチド断片、それを含むワクチン組成物及び診断キット、並びにその使用
CA2005950C (en) Non-a, non-b hepatitis virus genome rna, cdna and virus antigen protein
Tsukiyama-Kohara et al. Antigenicities of group I and II hepatitis C virus polypeptides—molecular basis of diagnosis
Komurian‐Pradel et al. Antigenic relevance of F protein in chronic hepatitis C virus infection
AU659649B2 (en) Hepatitis C diagnostics and vaccines
KR102019008B1 (ko) 메르스 코로나바이러스 뉴클레오캡시드 융합 단백질을 이용한 메르스 코로나바이러스 검출 방법
JP2002515763A (ja) Ehrlichia感染の診断および処置のための化合物および方法
KR0181517B1 (ko) 비-에이 비-비형 간염-특이 항원 및 간염 진단에서 그의 용도
GB2239245A (en) Post-transfusional non-A non-B hepatitis viral polypeptides
CA2331845A1 (en) Compounds and methods for the diagnosis and treatment of ehrlichia infection
US6166177A (en) Compounds and methods for the treatment and diagnosis of chlamydial infection
US5945277A (en) Strain of hantavirus nucleotide sequences thereof related probes, primers and vectors, and methods for detection
JP4641695B2 (ja) 新規なhev抗原性ペプチド及び方法
EP1282711A2 (en) COMPOUNDS AND METHODS FOR THE DIAGNOSIS AND TREATMENT OF i EHRLICHIA INFECTION /i
JPH08504954A (ja) B型およびc型肝炎同時診断用診断キットおよび方法
WO1992001714A1 (en) Non-a non-b hepatitis virus antigen
WO1992009634A1 (en) Non-a non-b hepatitis virus antigen protein
EP1169455A1 (en) Compounds and methods for the diagnosis and treatment of babesia microti infection
IE64571B1 (en) Non-a non-b sequences
JP2005510211A (ja) 合成hcv外被蛋白質及びワクチンのためのその使用
US5866139A (en) Nucleotide and peptide sequences of a hepatitis C virus isolate, diagnostic and therapeutic applications
WO1995027788A1 (fr) Polypeptide derive d&#39;une variante du virus de l&#39;hepatite b, gene le codant et adn associe
JPH04144686A (ja) 構造蛋白質遺伝子、組換えベクター、それにより形質転換された大腸菌、ポリペプチドおよびポリペプチドの製造方法
JP3665371B2 (ja) C型肝炎ウイルス感染又はグループ判定のためのエピトープキメラ抗原ペプチド、その製法、及びそれを使用する感染又はグループ判定法
CN100497630C (zh) 乙型肝炎病毒前s1区多表位抗原的基因克隆及其编码序列

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE

NENP Non-entry into the national phase

Ref country code: CA