WO1992007553A1 - Coating or matrix material for medicaments - Google Patents
Coating or matrix material for medicaments Download PDFInfo
- Publication number
- WO1992007553A1 WO1992007553A1 PCT/EP1991/002046 EP9102046W WO9207553A1 WO 1992007553 A1 WO1992007553 A1 WO 1992007553A1 EP 9102046 W EP9102046 W EP 9102046W WO 9207553 A1 WO9207553 A1 WO 9207553A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- carboxy groups
- copolymer
- meth
- alkyl
- coating
- Prior art date
Links
- 239000003814 drug Substances 0.000 title claims abstract description 30
- 239000011248 coating agent Substances 0.000 title claims abstract description 19
- 238000000576 coating method Methods 0.000 title claims abstract description 19
- 239000011159 matrix material Substances 0.000 title claims abstract description 19
- 229920001577 copolymer Polymers 0.000 claims abstract description 40
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims abstract description 36
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 16
- 125000002768 hydroxyalkyl group Chemical group 0.000 claims abstract description 16
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims abstract description 9
- 229920003145 methacrylic acid copolymer Polymers 0.000 claims abstract description 7
- 239000000463 material Substances 0.000 claims description 9
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 6
- YXHKONLOYHBTNS-UHFFFAOYSA-N Diazomethane Chemical compound C=[N+]=[N-] YXHKONLOYHBTNS-UHFFFAOYSA-N 0.000 claims description 4
- 230000032050 esterification Effects 0.000 claims description 3
- 238000005886 esterification reaction Methods 0.000 claims description 3
- 238000002360 preparation method Methods 0.000 claims description 3
- 239000007795 chemical reaction product Substances 0.000 claims description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 2
- 125000006273 (C1-C3) alkyl group Chemical group 0.000 claims 1
- 229920000136 polysorbate Polymers 0.000 claims 1
- 210000001072 colon Anatomy 0.000 abstract description 14
- 210000004051 gastric juice Anatomy 0.000 abstract description 4
- 239000000178 monomer Substances 0.000 abstract 1
- 239000002253 acid Substances 0.000 description 13
- 239000011247 coating layer Substances 0.000 description 13
- 239000002775 capsule Substances 0.000 description 8
- 210000000813 small intestine Anatomy 0.000 description 6
- 239000000243 solution Substances 0.000 description 5
- 239000004480 active ingredient Substances 0.000 description 4
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 230000002285 radioactive effect Effects 0.000 description 4
- 210000002784 stomach Anatomy 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 108010007979 Glycocholic Acid Proteins 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 2
- RFDAIACWWDREDC-UHFFFAOYSA-N Na salt-Glycocholic acid Natural products OC1CC2CC(O)CCC2(C)C2C1C1CCC(C(CCC(=O)NCC(O)=O)C)C1(C)C(O)C2 RFDAIACWWDREDC-UHFFFAOYSA-N 0.000 description 2
- UREZNYTWGJKWBI-UHFFFAOYSA-M benzethonium chloride Chemical compound [Cl-].C1=CC(C(C)(C)CC(C)(C)C)=CC=C1OCCOCC[N+](C)(C)CC1=CC=CC=C1 UREZNYTWGJKWBI-UHFFFAOYSA-M 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- -1 corticosteroides Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 2
- 239000007903 gelatin capsule Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- RFDAIACWWDREDC-FRVQLJSFSA-N glycocholic acid Chemical compound C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(=O)NCC(O)=O)C)[C@@]2(C)[C@@H](O)C1 RFDAIACWWDREDC-FRVQLJSFSA-N 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 230000000968 intestinal effect Effects 0.000 description 2
- 210000002429 large intestine Anatomy 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 229940063557 methacrylate Drugs 0.000 description 2
- 125000005395 methacrylic acid group Chemical group 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 206010009944 Colon cancer Diseases 0.000 description 1
- 208000019399 Colonic disease Diseases 0.000 description 1
- 229920008712 Copo Polymers 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- XDXHAEQXIBQUEZ-UHFFFAOYSA-N Ropinirole hydrochloride Chemical compound Cl.CCCN(CCC)CCC1=CC=CC2=C1CC(=O)N2 XDXHAEQXIBQUEZ-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 125000005250 alkyl acrylate group Chemical group 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 208000029742 colonic neoplasm Diseases 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 239000002702 enteric coating Substances 0.000 description 1
- 238000009505 enteric coating Methods 0.000 description 1
- 239000012374 esterification agent Substances 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000005251 gamma ray Effects 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- PSCMQHVBLHHWTO-UHFFFAOYSA-K indium(iii) chloride Chemical compound Cl[In](Cl)Cl PSCMQHVBLHHWTO-UHFFFAOYSA-K 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000008141 laxative Substances 0.000 description 1
- 229940125722 laxative agent Drugs 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 229940063559 methacrylic acid Drugs 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- 244000005706 microflora Species 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 150000007519 polyprotic acids Polymers 0.000 description 1
- 229920002744 polyvinyl acetate phthalate Polymers 0.000 description 1
- 229940100467 polyvinyl acetate phthalate Drugs 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/4891—Coated capsules; Multilayered drug free capsule shells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/28—Dragees; Coated pills or tablets, e.g. with film or compression coating
- A61K9/2806—Coating materials
- A61K9/2833—Organic macromolecular compounds
- A61K9/284—Organic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone
- A61K9/2846—Poly(meth)acrylates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
- C08F8/14—Esterification
Definitions
- This invention relates to a coating or matrix material for medicaments which is resistent to gastric juice and will disintegrate only within the large intestine (co ⁇ lon) . Further, it relates to a method of preparing such a coating or matrix material and to medicaments provided with a coating or matrix of that material.
- medicaments for oral administration are provided with a coating or matrix of a material which is resistent to gastric juice but will disolve or disintegrate in the juice of the small intestine, thus allowing the active ingredient to pass the stomach without any hindrance and to be released only in the small intestine to excercise its activity.
- Materials of this type are commonly indicated as gastric-resistent coating or matrix materials or "enteric coating matrix materials". Suitable examples thereof are: methacrylate polymers and copolymers, cellulose derivatives esterified with polybasic acids, and polyvinyl acetate-phthalate.
- a medicament with a coating or matrix which can withstand gastric as well as enteric environments and which will release the active ingredient only when the medicament has reached the large intestine and in particular the colon.
- This may be suitable in treating special colon diseases such as Crohm's disease and several types of colon cancer but also to reach a higher efficacy of medicaments such as corticosteroides, laxatives, vermicides and the like, thus allowing smaller doses to be sufficient.
- Most of the cited coating and matrix materials are unsuitable for this purpose, however, because they will dissolve or disintegrate already in the small intestine. It has been suggested already to coat medicaments with polymers which have been cross-linked with azoaromatic groups.
- the invention provides a coating or matrix material for medicaments which comprises a copolymer of
- the copolymers meant herein are composed of acrylic acid or methacrylic acid units and of alkyl acrylate, hy ⁇ droxyalkyl acrylate, alkyl methacrylate or hydroxyalkyl methacrylate units, in random or ordered sequences.
- the alkyl groups will have 1-5 and preferably 1-3 carbon atoms whereas the hydroxyalkyl groups will have 1-5 and preferably 2-4 carbon atoms.
- Suitable examples are copolymers of metha- crylic acid and methyl methacrylate, copolymers of methacry- lie acid and ethyl methacrylate as well as copolymers of methacrylic acid and methyl acrylate.
- They should satisfy the condition that the ratio of free carboxy groups to esterified carboxy groups is between 1:4.5 and 1:3.
- the invented coating or matrix material may be prepared in general in several ways. Thus, it is possible that preparation is effected by copoly erisation of (meth)- acrylic acid and alkyl or hydroxyalkyl (meth)acrylate in such proportions that the ratio of free carboxy groups to esterified carboxy groups in the end product is between 1:4.4 and 1:3.
- Such a copolymerisation may be effected conventionally as an emulsion polymerisation.
- Another option which is preferred at the moment comprises starting with a copolymer of (meth)acrylic acid and alkyl or hydroxyalkyl (meth)acrylate wherein the ratio of free carboxy group to esterified carboxy groups has a value between 1:1 and 1:3, and partially esterifying the free carboxy groups therein until the ratio of free carboxy groups to esterified carboxy groups is between 1:4.5 and 1:3.
- Esterification may be effected with alkyl groups or hydroxyalkyl groups, alkyl groups having 1-3 carbon atoms and hydroxyalkyl groups having 2-4 carbon atoms being again preferred.
- Any suitable agent for introducing alkyl or hydroxyalkyl groups may be used as an esterification agent.
- Diazomethane is a preferred agent for the introduction of methyl groups.
- the invented copolymer may be used as a coating material for medicaments by spraying a solution of that copolymer in an organic solvent onto the medicament which may have the form of a fine powder, a granulate or tablets or which may be contained in gelatin capsules. After removal of the solvent by drying, the polymer remains as a coating layer at the surface of the medicament.
- the copolymer is mixed with the medicament in such a way that it will form a matrix having the medicament embedded therein. In both cases, the medicament will be released as soon as the copolymer has passed the stomach and has reached the colon after oral administration.
- the copolymer is used as a coating material for medicaments
- several variants are possible which may lead to a controlled release of medicament in the colon or in other parts of the gastro-intestinal tract.
- various degrees of delay can be obtained by varying the solubility characteristics of the coating layer, simply by blending copolymers having different values for the ratio of free carboxy groups to esterified carboxy groups.
- Fur- ther it is possible to provide different parts or particles of the medicament with coating layers of varying thickness so as to result into a phased or gradual release.
- the requi ⁇ red thickness can be determined by routine experiments but it should be noted that a thickness of at least 10 ⁇ m is normally needed for providing sufficient mechanical strength.
- the coating layer may consist as a whole of a copolymer according to the invention, but as an alternative, this copolymer may form a "window" in an inert coating layer or it may lend temporary strength to a coating layer which is weak in itself.
- the copolymer-coated medicament may be provided with a conventional gastric-resistent coa ⁇ ting layer and may optionally have an active ingredient between the two coating layers; in that way, it is possible to ensure release of a medicament in the stomach and/or in the small intestine, and release of a medicament in the colon as well.
- the material coated with a coating layer may be a solid or an aqueous or semi-aqueous liquid, provided that this material does not affect or deteriorate the copo ⁇ lymer.
- the starting material of this example was a commer ⁇ cially available copolymer of methacrylic acid and methyl methacrylate, having about 30% of methacrylic acid units (the ratio of free carboxy groups to esterified carboxy groups being 1:2.3).
- the acid number was 185 (calculated as mg of KOH per gram of dry solids) .
- 10 grams of this copolymer were suspended in 25 ml of ether. 50 ml of an ethereal solution of diazomethane (concentration 0.425 M) was added thereto and the mixture was stirred at room temperature for 5 minutes. The resulting product was filtered off, dried in the air and completely dried at 50°C in vacuo. This product had an acid number of 120 which corresponds to a value of 1:3.5 for the ratio of free carboxy groups to esterified carboxy groups.
- a solution of the resulting copolymer in acetone was cast onto a glass plate and dried thereon to obtain a film product.
- Pieces of the isolated film were introduced in glass tubes containing buffer solutions of different pH values (ranging from pH 7 to pH 8) .
- the time period necessa ⁇ ry for the film to dissolve was measured.
- the copolymer having an acid number of 120 did not dissolve after staying 4 hours in a medium of pH 7 but had been dissolved after 2 hours stay in a medium of pH 7.4.
- the copolymer having an acid number of 100 did not dissolve after staying 4 hours at pH 7 or pH 7.4 but had been dissolved after 2 hours stay at pH 8.
- Pieces of the isolated film were introduced as a membrane between the donor compartment and the acceptor compartment of a series of diffusion cells.
- Both compart ⁇ ments of each cell contained an electrolyte of certain pH (ranging from pH 7 to pH 8 for the whole series of cells) and caffe ⁇ n had been added as a marker to each donor com ⁇ partment.
- the progression of caffe ⁇ n concentration within the acceptor compartment of each cell was measured spectrop- hotometrically during a period of several hours.
- a sudden increase of the caffe ⁇ n concentration as measured was regar ⁇ ded as indicating the disintegration of the film used as a membrane. 5
- the film from copolymer of acid number 120 disinte ⁇ grated after 13 hours at pH 7, after 144 minutes at pH 7.5, and after 50 minutes at pH 8.
- Gelatin capsules were filled with pellets of Amber- lite IR-120-P (Sigma, USA) ion exchanger which had been marked with [ ⁇ In] indium chloride and a small amount of [1- 15 14 C] cholylglycine. Thereafter, the capsules were coated with a film of methylated copolymer.
- the capsules were orally administered to test persons and their course through the body was scintigraphi- cally monitored with the aid of a gamma-ray camera and an 20 image screen. The time needed by the capsules to reach the colon without disintegration was measured.
- Capsules having a coating layer of 2.1 mg/cm 2 from copolymer of acid number 100 reached the colon without disintegration after 300 minutes (one test person) and disintegrated after 600 minutes (detection of radio active C0 2 in the person's breath and visual observation on the image screen) .
- Capsules having a coating layer of 5.3 mg/cm 2 from copolymer of acid number 100 also reached the colon after 300 minutes (one test person) but did not disintegrate.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Veterinary Medicine (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Medicinal Preparation (AREA)
Abstract
A coating or matrix material for medicaments, comprising a copolymer of (meth)acrylic acid and alkyl or hydroxyalkyl (meth)acrylate, will have the property of being resistent to gastric juice and dissolving or disintegrating only in the colon if the ratio of free carboxy groups to esterified carboxy groups in the copolymer is between 1:4.5 and 1:3 (the limiting values excluded). Such copolymers may be prepared either by direct copolymerisation of monomers in such proportions that a copolymer having the specified ratio is obtained, or else by starting with a copolymer having a ratio between 1:1 and 1:3 and partially esterifying the free carboxy groups therein to reach the specified ratio.
Description
Coating or matrix material for medicaments
This invention relates to a coating or matrix material for medicaments which is resistent to gastric juice and will disintegrate only within the large intestine (co¬ lon) . Further, it relates to a method of preparing such a coating or matrix material and to medicaments provided with a coating or matrix of that material.
In many cases, it is desirable to coat a medicament in such a way that the active ingredient is only released after a predetermined time interval or after reaching a certain location within the body. Thus, many medicaments for oral administration are provided with a coating or matrix of a material which is resistent to gastric juice but will disolve or disintegrate in the juice of the small intestine, thus allowing the active ingredient to pass the stomach without any hindrance and to be released only in the small intestine to excercise its activity. Materials of this type are commonly indicated as gastric-resistent coating or matrix materials or "enteric coating matrix materials". Suitable examples thereof are: methacrylate polymers and copolymers, cellulose derivatives esterified with polybasic acids, and polyvinyl acetate-phthalate.
In some cases, it is desired to provide a medicament with a coating or matrix which can withstand gastric as well as enteric environments and which will release the active ingredient only when the medicament has reached the large intestine and in particular the colon. This may be suitable in treating special colon diseases such as Crohm's disease and several types of colon cancer but also to reach a higher efficacy of medicaments such as corticosteroides, laxatives, vermicides and the like, thus allowing smaller doses to be sufficient. Most of the cited coating and matrix materials are unsuitable for this purpose, however, because they will dissolve or disintegrate already in the small intestine. It has been suggested already to coat medicaments with polymers which have been cross-linked with azoaromatic groups. Such polymers would protect the medicament against
absorption within the stomach and the small intestine but would release the medicament in the colon as a result of disintegration through activity of the microflora present therein. Reported data show, however, that large individual differences are existing in practice (Saffran et al, Scien¬ ce, 1986, 233, 1081).
In accordance with the invention, it has been found that certain copolymers of (meth)acrylic acid and alkyl or hydroxyalkyl (meth)aerylate will fulfill the object in view because they are resistent to gastric juice and will dissol¬ ve or disintegrate only in an environment of pH above 7 such as prevailing in the colon. A precondition is that the ratio of free carboxy groups to esterified carboxy groups in the copolymer is between 1:4.5 and 1:3, the limiting values of this range being excluded. The copolymer has become insolu¬ ble in any intestinal juice at a value of 1:4.5 for said ratio and the copolymer will dissolve or disintegrate alrea¬ dy prior to reaching the colon at a value of 1:3.
It has to be noted that several copolymers of (meth)acrylic acid and alkyl (meth)acrylate, suitable for use as gastric-resistent coating or matrix material for medicaments, are already known in the art and commercially available. However, the available copolymers of this type have a value of 1:1 or 1:2.3 for the ratio of free carboxy groups to esterified carboxy groups and will start to disin¬ tegrate already in the small intestine at pH 6, and pH 7 respectively, thus rendering them unsuitable for the purpo¬ ses of the invention.
So, the invention provides a coating or matrix material for medicaments which comprises a copolymer of
(meth)acrylic acid and alkyl or hydroxyalkyl (meth)aerylate wherein the ratio of free carboxy groups to esterified carboxy groups is between 1:4.5 and 1:3, the limiting values of this range being excluded. The copolymers meant herein are composed of acrylic acid or methacrylic acid units and of alkyl acrylate, hy¬ droxyalkyl acrylate, alkyl methacrylate or hydroxyalkyl methacrylate units, in random or ordered sequences. The
alkyl groups will have 1-5 and preferably 1-3 carbon atoms whereas the hydroxyalkyl groups will have 1-5 and preferably 2-4 carbon atoms. Suitable examples are copolymers of metha- crylic acid and methyl methacrylate, copolymers of methacry- lie acid and ethyl methacrylate as well as copolymers of methacrylic acid and methyl acrylate. However, they should satisfy the condition that the ratio of free carboxy groups to esterified carboxy groups is between 1:4.5 and 1:3. The invented coating or matrix material may be prepared in general in several ways. Thus, it is possible that preparation is effected by copoly erisation of (meth)- acrylic acid and alkyl or hydroxyalkyl (meth)acrylate in such proportions that the ratio of free carboxy groups to esterified carboxy groups in the end product is between 1:4.4 and 1:3. Such a copolymerisation may be effected conventionally as an emulsion polymerisation.
Another option which is preferred at the moment comprises starting with a copolymer of (meth)acrylic acid and alkyl or hydroxyalkyl (meth)acrylate wherein the ratio of free carboxy group to esterified carboxy groups has a value between 1:1 and 1:3, and partially esterifying the free carboxy groups therein until the ratio of free carboxy groups to esterified carboxy groups is between 1:4.5 and 1:3. Esterification may be effected with alkyl groups or hydroxyalkyl groups, alkyl groups having 1-3 carbon atoms and hydroxyalkyl groups having 2-4 carbon atoms being again preferred. Any suitable agent for introducing alkyl or hydroxyalkyl groups may be used as an esterification agent. Diazomethane is a preferred agent for the introduction of methyl groups.
The invented copolymer may be used as a coating material for medicaments by spraying a solution of that copolymer in an organic solvent onto the medicament which may have the form of a fine powder, a granulate or tablets or which may be contained in gelatin capsules. After removal of the solvent by drying, the polymer remains as a coating layer at the surface of the medicament.
In another utilisation, the copolymer is mixed with the medicament in such a way that it will form a matrix having the medicament embedded therein. In both cases, the medicament will be released as soon as the copolymer has passed the stomach and has reached the colon after oral administration.
In the case that the copolymer is used as a coating material for medicaments, several variants are possible which may lead to a controlled release of medicament in the colon or in other parts of the gastro-intestinal tract. Thus, various degrees of delay can be obtained by varying the solubility characteristics of the coating layer, simply by blending copolymers having different values for the ratio of free carboxy groups to esterified carboxy groups. Fur- ther, it is possible to provide different parts or particles of the medicament with coating layers of varying thickness so as to result into a phased or gradual release. The requi¬ red thickness can be determined by routine experiments but it should be noted that a thickness of at least 10 μm is normally needed for providing sufficient mechanical strength. The coating layer may consist as a whole of a copolymer according to the invention, but as an alternative, this copolymer may form a "window" in an inert coating layer or it may lend temporary strength to a coating layer which is weak in itself. Further, the copolymer-coated medicament may be provided with a conventional gastric-resistent coa¬ ting layer and may optionally have an active ingredient between the two coating layers; in that way, it is possible to ensure release of a medicament in the stomach and/or in the small intestine, and release of a medicament in the colon as well. The material coated with a coating layer may be a solid or an aqueous or semi-aqueous liquid, provided that this material does not affect or deteriorate the copo¬ lymer. Example a) Preparation of a suitable copolymer by methylation.
The starting material of this example was a commer¬ cially available copolymer of methacrylic acid and methyl
methacrylate, having about 30% of methacrylic acid units (the ratio of free carboxy groups to esterified carboxy groups being 1:2.3). The acid number was 185 (calculated as mg of KOH per gram of dry solids) . 10 grams of this copolymer were suspended in 25 ml of ether. 50 ml of an ethereal solution of diazomethane (concentration 0.425 M) was added thereto and the mixture was stirred at room temperature for 5 minutes. The resulting product was filtered off, dried in the air and completely dried at 50°C in vacuo. This product had an acid number of 120 which corresponds to a value of 1:3.5 for the ratio of free carboxy groups to esterified carboxy groups.
In a similar way, a product having an acid number of 100, corresponding to a value of 1:4 for the ratio of free to esterified carboxy groups, was obtained from 10 grams of starting copolymer and 38 ml of diazomethane solution, b) Solubility in vitro.
A solution of the resulting copolymer in acetone was cast onto a glass plate and dried thereon to obtain a film product. Pieces of the isolated film were introduced in glass tubes containing buffer solutions of different pH values (ranging from pH 7 to pH 8) . The time period necessa¬ ry for the film to dissolve was measured. The copolymer having an acid number of 120 did not dissolve after staying 4 hours in a medium of pH 7 but had been dissolved after 2 hours stay in a medium of pH 7.4. The copolymer having an acid number of 100 did not dissolve after staying 4 hours at pH 7 or pH 7.4 but had been dissolved after 2 hours stay at pH 8. c) Disintegration of the copolymer in vitro
Pieces of the isolated film were introduced as a membrane between the donor compartment and the acceptor compartment of a series of diffusion cells. Both compart¬ ments of each cell contained an electrolyte of certain pH (ranging from pH 7 to pH 8 for the whole series of cells) and caffeϊn had been added as a marker to each donor com¬ partment. The progression of caffeϊn concentration within the acceptor compartment of each cell was measured spectrop-
hotometrically during a period of several hours. A sudden increase of the caffeϊn concentration as measured was regar¬ ded as indicating the disintegration of the film used as a membrane. 5 The film from copolymer of acid number 120 disinte¬ grated after 13 hours at pH 7, after 144 minutes at pH 7.5, and after 50 minutes at pH 8.
The film from copolymer of acid number 100 disinte¬ grated after 12 hours at pH 7.5 and after 200 minutes at pH 0 8. d) Behaviour in vivo.
Gelatin capsules were filled with pellets of Amber- lite IR-120-P (Sigma, USA) ion exchanger which had been marked with [ ιIn] indium chloride and a small amount of [1- 15 14C] cholylglycine. Thereafter, the capsules were coated with a film of methylated copolymer.
The capsules were orally administered to test persons and their course through the body was scintigraphi- cally monitored with the aid of a gamma-ray camera and an 20 image screen. The time needed by the capsules to reach the colon without disintegration was measured.
Moreover, a breath test on radio-active C02 was carried out. If the coating layer of the capsule disintegra¬ tes after a certain residence time in the colon, the con- 25 tents of the capsule will be released and radio-active cholylglycine will be metabolised by the intestinal flora whereupon [14C] C02 is breathed out. During the breath test, C0 was captured by hyamine dissolved in ethanol. The con¬ centration of [1 C] C02 in the hyamine solution was determi- 30 ned with a Packard counter.
Capsules having a coating layer from copolymer of acid number 120 reached the colon after 300 minutes (average of 6 test persons) and radio-active C02 was measured in the test persons1 breath after 70 minutes residence time in the 35 colon, which indicates a disintegration of the coating layer.
Capsules having a coating layer of 2.1 mg/cm2 from copolymer of acid number 100 reached the colon without
disintegration after 300 minutes (one test person) and disintegrated after 600 minutes (detection of radio active C02 in the person's breath and visual observation on the image screen) . Capsules having a coating layer of 5.3 mg/cm2 from copolymer of acid number 100 also reached the colon after 300 minutes (one test person) but did not disintegrate.
The conclusion from these tests must be that the copolymer of acid number 120 (ratio 1:3.5) is suitable for the purposes of the invention whereas the copolymer of acid number 100 is substantially unsuitable for such purposes.
Claims
1. A coating or matrix material for medicaments, said material comprising a copolymer of (meth)acrylic acid and alkyl or hydroxyalkyl (meth)acrylate wherein the ratio of free carboxy groups to esterified carboxygroups is be- tween 1:4.5 and 1:3, the limiting values of this range being excluded.
2. A coating or matrix material as claimed in claim 1, characterized in that the alkyl or hydroxy alkyl (meth)- acrylate in said copolymer is a C1-3 alkyl or a C.4 hydroxy- alkyl (meth)acrylate.
3. A method of preparing a coating or matrix materi¬ al for medicaments, characterized by preparing a copolymer of (meth)acrylic acid and alkyl or hydroxyalkyl (meth)acryl¬ ate wherein the ratio of free carboxy groups to esterified carboxy groups is between 1:4.5 and 1:3, the limiting values of this range being excluded.
4. A method as claimed in claim 3, characterized in that the preparation is effected by copolymerisation of (meth)acrylic acid and alkyl or hydroxyalkyl (meth)acrylate in such proportions that the ratio of free carboxy groups to esterified carboxy groups in the end product is between 1:4.5 and 1:3.
5. A method as claimed in claim 3, characterized by starting with a copolymer of (meth)acrylic acid and alkyl or hydroxyalkyl (meth)acrylate which has a value between 1:1 and 1:3 for its ratio of free carboxy groups to esterified carboxy groups, and partially esterifying the free carboxy groups therein until the ratio of free carboxy groups to esterified carboxy groups is between 1:4.5 and 1:3.
6. A method as claimed in claim 5, characterized in that esterification is effected by introducing C^ alkyl or C2. hydroxyalkyl groups.
7. A method as claimed in claim 5, characterized in that esterification is effected by introducing methyl groups with the aid of diazomethane. 3
8. A medicament provided with a coating or matrix of a material as claimed in claim 1.
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| NL9002331A NL9002331A (en) | 1990-10-24 | 1990-10-24 | Delivery of medicaments to the colon - by providing acrylic coating stable to gastric juice, used for treatment of colon diseases, laxatives, corticosteroid(s), vermicides, etc. |
| NL9002331 | 1990-10-24 | ||
| NL9002336A NL9002336A (en) | 1990-10-24 | 1990-10-25 | COATING OR MATRIX MATERIAL FOR MEDICINES. |
| NL9002336 | 1990-10-25 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO1992007553A1 true WO1992007553A1 (en) | 1992-05-14 |
Family
ID=26646764
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/EP1991/002046 WO1992007553A1 (en) | 1990-10-24 | 1991-10-24 | Coating or matrix material for medicaments |
Country Status (3)
| Country | Link |
|---|---|
| AU (1) | AU8852391A (en) |
| NL (1) | NL9002336A (en) |
| WO (1) | WO1992007553A1 (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1995011032A1 (en) * | 1993-10-19 | 1995-04-27 | The Procter & Gamble Company | Senna dosage form |
| WO1996014344A1 (en) * | 1994-11-02 | 1996-05-17 | Zeneca Limited | Rheology modifier for solvent-based coatings |
| EP0779361A2 (en) | 1995-12-15 | 1997-06-18 | F. Hoffmann-La Roche Ag | Truncated form of inhibitory kappa B protein (1kB), recombinant production and uses thereof |
| EP1195394A1 (en) * | 2000-10-04 | 2002-04-10 | Basf Aktiengesellschaft | (Co-)Polymers of hydroxyalkyl(meth)acrylates, process for their preparation and their use in pharmaceutical dosage forms |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5330759A (en) * | 1992-08-26 | 1994-07-19 | Sterling Winthrop Inc. | Enteric coated soft capsules and method of preparation thereof |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB907309A (en) * | 1959-02-18 | 1962-10-03 | Abbott Lab | Water permeable tablet coating and method of application |
| GB1159236A (en) * | 1967-03-07 | 1969-07-23 | Nattermann A & Cie | Improvements relating to Soft-Gelatine Capsules and their Production |
| DE1944693A1 (en) * | 1968-09-03 | 1970-04-30 | Banker Dr Gilbert S | Drug preparation |
| WO1983000435A1 (en) * | 1981-07-31 | 1983-02-17 | Rhodes, John | Orally administrable pharmaceutical compositions |
| EP0143608A2 (en) * | 1983-11-25 | 1985-06-05 | Ciba Specialty Chemicals Water Treatments Limited | Manufacture and use of polymeric beads |
| EP0143935B1 (en) * | 1983-10-04 | 1989-08-16 | RB Kunststoffpatent-Verwertungs AG | Thermoplastic polymer and articles made of a thermoplastic polymer |
| EP0383967A1 (en) * | 1989-02-17 | 1990-08-29 | Dojin Iyaku-Kako Co., Ltd. | Long acting diclofenac sodium preparation |
-
1990
- 1990-10-25 NL NL9002336A patent/NL9002336A/en not_active Application Discontinuation
-
1991
- 1991-10-24 WO PCT/EP1991/002046 patent/WO1992007553A1/en unknown
- 1991-10-24 AU AU88523/91A patent/AU8852391A/en not_active Abandoned
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB907309A (en) * | 1959-02-18 | 1962-10-03 | Abbott Lab | Water permeable tablet coating and method of application |
| GB1159236A (en) * | 1967-03-07 | 1969-07-23 | Nattermann A & Cie | Improvements relating to Soft-Gelatine Capsules and their Production |
| DE1944693A1 (en) * | 1968-09-03 | 1970-04-30 | Banker Dr Gilbert S | Drug preparation |
| WO1983000435A1 (en) * | 1981-07-31 | 1983-02-17 | Rhodes, John | Orally administrable pharmaceutical compositions |
| EP0143935B1 (en) * | 1983-10-04 | 1989-08-16 | RB Kunststoffpatent-Verwertungs AG | Thermoplastic polymer and articles made of a thermoplastic polymer |
| EP0143608A2 (en) * | 1983-11-25 | 1985-06-05 | Ciba Specialty Chemicals Water Treatments Limited | Manufacture and use of polymeric beads |
| EP0383967A1 (en) * | 1989-02-17 | 1990-08-29 | Dojin Iyaku-Kako Co., Ltd. | Long acting diclofenac sodium preparation |
Non-Patent Citations (1)
| Title |
|---|
| CHEM. ZENTRALBLATT vol. 50, no. 1864, 1965, I. UTSUMI: 'SCHUTZ]BERZ]GE' see abstract * |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1995011032A1 (en) * | 1993-10-19 | 1995-04-27 | The Procter & Gamble Company | Senna dosage form |
| US5514663A (en) * | 1993-10-19 | 1996-05-07 | The Procter & Gamble Company | Senna dosage form |
| WO1996014344A1 (en) * | 1994-11-02 | 1996-05-17 | Zeneca Limited | Rheology modifier for solvent-based coatings |
| US6117935A (en) * | 1994-11-02 | 2000-09-12 | Zeneca Limited | Rheology modifier for solvent-based coatings |
| EP0779361A2 (en) | 1995-12-15 | 1997-06-18 | F. Hoffmann-La Roche Ag | Truncated form of inhibitory kappa B protein (1kB), recombinant production and uses thereof |
| EP1195394A1 (en) * | 2000-10-04 | 2002-04-10 | Basf Aktiengesellschaft | (Co-)Polymers of hydroxyalkyl(meth)acrylates, process for their preparation and their use in pharmaceutical dosage forms |
| US7049360B2 (en) | 2000-10-04 | 2006-05-23 | Basf Aktienegesellschaft | Water-soluble or water-dispersible (co) polymers of hydroxyalkyl (meth) acrylates, a process for their preparation, and their use as coating agent, binder and/or film-forming excipient pharmaceutical dosage forms |
Also Published As
| Publication number | Publication date |
|---|---|
| AU8852391A (en) | 1992-05-26 |
| NL9002336A (en) | 1992-05-18 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| AU652032B2 (en) | Delayed release oral dosage forms for treatment of intestinal disorders | |
| Van den Mooter et al. | Azo polymers for colon-specific drug delivery | |
| US4755385A (en) | Oral pharmaceutical preparations containing 9-deoxo-11-deoxy-9,11-[imino[2-(2-methoxyethoxy)-ethylidene]-oxy]-(9S)-erythromycin | |
| US5849327A (en) | Delivery of drugs to the lower gastrointestinal tract | |
| RU2201217C2 (en) | Tablet with enterosoluble coating and method of preparing | |
| RU2093148C1 (en) | Composition exhibiting the delayed (prolonged) releasing | |
| US3431338A (en) | Coated dosage form adapted to oral emetine or dehydroemetine therapy | |
| Ueda et al. | Development of a novel drug release system, time-controlled explosion system (TES). II. Design of multiparticulate TES and in vitro drug release properties | |
| LV11729B (en) | Controlled-release dosage forms of azithromycin | |
| PL129290B1 (en) | Method of obtaining new forms of dipyridamole exhibiting prolonged action | |
| CN101287443B (en) | pH-controlled pulsatile release system, method for its preparation and use | |
| Leopold et al. | Eudragit® E as coating material for the pH-controlled drug release in the topical treatment of inflammatory bowel disease (IBD) | |
| PL207776B1 (en) | Modified release pharmaceutical composition | |
| CA2020802A1 (en) | Solid dosage form for pharmaceutically active drugs | |
| EP0876142B1 (en) | Topical delivery of drugs to the lower gastrointestinal tract | |
| WO1992007553A1 (en) | Coating or matrix material for medicaments | |
| CN1232386A (en) | Colonic delivery of weak acid drugs | |
| NL9002331A (en) | Delivery of medicaments to the colon - by providing acrylic coating stable to gastric juice, used for treatment of colon diseases, laxatives, corticosteroid(s), vermicides, etc. | |
| WO2020048979A1 (en) | Controlled drug release formulation | |
| CN112770730B (en) | Controlled drug release formulations | |
| Milojevic | Amylose coated pellets for colon-specific drug delivery | |
| RU2412694C2 (en) | pH-CONTROLLED PULSE DELIVERY SYSTEMS, METHODS FOR PRODUCING AND USING THEREOF | |
| Gupta | Development and optimization of a novel colonic drug delivery system using multiple coatings of aqueous polymethacrylates | |
| Basit | The in vivo assessment of drug absorption from different regions of the human gastrointestinal tract | |
| Sood et al. | Recent innovation in gastroretentive delivery systems in the treatment of diabetes: A review |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU CA CS HU JP NO PL US |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE |
|
| NENP | Non-entry into the national phase |
Ref country code: CA |