WO1992007872A1 - Peptides apparentes a la tenascine - Google Patents
Peptides apparentes a la tenascine Download PDFInfo
- Publication number
- WO1992007872A1 WO1992007872A1 PCT/US1991/008018 US9108018W WO9207872A1 WO 1992007872 A1 WO1992007872 A1 WO 1992007872A1 US 9108018 W US9108018 W US 9108018W WO 9207872 A1 WO9207872 A1 WO 9207872A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polypeptide
- arg
- gly
- ser
- asp
- Prior art date
Links
- 108090000765 processed proteins & peptides Proteins 0.000 title claims abstract description 230
- 102000004196 processed proteins & peptides Human genes 0.000 title claims abstract description 165
- 102000007000 Tenascin Human genes 0.000 title claims abstract description 95
- 108010008125 Tenascin Proteins 0.000 title claims abstract description 95
- 229920001184 polypeptide Polymers 0.000 claims abstract description 137
- 125000000539 amino acid group Chemical group 0.000 claims abstract description 47
- 238000000034 method Methods 0.000 claims description 37
- 239000007787 solid Substances 0.000 claims description 22
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 20
- 239000011159 matrix material Substances 0.000 claims description 18
- 108010053299 glycyl-arginyl-glycyl-aspartyl-seryl-proline Proteins 0.000 claims description 11
- 230000002401 inhibitory effect Effects 0.000 claims description 11
- NTEDOEBWPRVVSG-XUXIUFHCSA-N (2s)-1-[(2s)-2-[[(2s)-2-[[2-[[(2s)-2-[(2-aminoacetyl)amino]-5-(diaminomethylideneamino)pentanoyl]amino]acetyl]amino]-3-carboxypropanoyl]amino]-3-hydroxypropanoyl]pyrrolidine-2-carboxylic acid Chemical compound NC(N)=NCCC[C@H](NC(=O)CN)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CO)C(=O)N1CCC[C@H]1C(O)=O NTEDOEBWPRVVSG-XUXIUFHCSA-N 0.000 claims description 10
- 230000000694 effects Effects 0.000 claims description 10
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 8
- 239000011780 sodium chloride Substances 0.000 claims description 5
- AEGSIYIIMVBZQU-CIUDSAMLSA-N (3s)-3-[[2-[[(2s)-2-amino-5-(diaminomethylideneamino)pentanoyl]amino]acetyl]amino]-4-[[(1r)-1-carboxy-2-sulfanylethyl]amino]-4-oxobutanoic acid Chemical compound NC(N)=NCCC[C@H](N)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CS)C(O)=O AEGSIYIIMVBZQU-CIUDSAMLSA-N 0.000 claims description 3
- 108010006195 arginyl-glycyl-aspartyl-cysteine Proteins 0.000 claims description 3
- 239000011521 glass Substances 0.000 claims description 3
- 239000000843 powder Substances 0.000 claims description 3
- 239000000057 synthetic resin Substances 0.000 claims description 3
- 229920003002 synthetic resin Polymers 0.000 claims description 3
- 102000008186 Collagen Human genes 0.000 claims description 2
- 108010035532 Collagen Proteins 0.000 claims description 2
- 239000000020 Nitrocellulose Substances 0.000 claims description 2
- 229920001436 collagen Polymers 0.000 claims description 2
- 239000000084 colloidal system Substances 0.000 claims description 2
- 230000001747 exhibiting effect Effects 0.000 claims description 2
- 239000000499 gel Substances 0.000 claims description 2
- 150000004676 glycans Chemical class 0.000 claims description 2
- 239000006210 lotion Substances 0.000 claims description 2
- 229920001220 nitrocellulos Polymers 0.000 claims description 2
- 239000002674 ointment Substances 0.000 claims description 2
- 229920000728 polyester Polymers 0.000 claims description 2
- 229920001282 polysaccharide Polymers 0.000 claims description 2
- 239000005017 polysaccharide Substances 0.000 claims description 2
- 230000002792 vascular Effects 0.000 claims description 2
- 230000001737 promoting effect Effects 0.000 claims 2
- 230000002708 enhancing effect Effects 0.000 claims 1
- 239000000835 fiber Substances 0.000 claims 1
- 125000000896 monocarboxylic acid group Chemical group 0.000 claims 1
- 210000004027 cell Anatomy 0.000 description 170
- 102000053602 DNA Human genes 0.000 description 46
- 108020004414 DNA Proteins 0.000 description 41
- 108090000623 proteins and genes Proteins 0.000 description 34
- 238000003556 assay Methods 0.000 description 28
- 230000005764 inhibitory process Effects 0.000 description 27
- 239000000203 mixture Substances 0.000 description 27
- 230000027455 binding Effects 0.000 description 26
- 238000009739 binding Methods 0.000 description 24
- 102000004169 proteins and genes Human genes 0.000 description 23
- 102000016359 Fibronectins Human genes 0.000 description 21
- 108010067306 Fibronectins Proteins 0.000 description 21
- 235000018102 proteins Nutrition 0.000 description 19
- 239000013598 vector Substances 0.000 description 19
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 14
- 239000000562 conjugate Substances 0.000 description 14
- 229940098773 bovine serum albumin Drugs 0.000 description 13
- 150000001413 amino acids Chemical class 0.000 description 12
- 239000003153 chemical reaction reagent Substances 0.000 description 12
- 210000004408 hybridoma Anatomy 0.000 description 12
- 102000007547 Laminin Human genes 0.000 description 11
- 108010085895 Laminin Proteins 0.000 description 11
- 235000001014 amino acid Nutrition 0.000 description 11
- 229940024606 amino acid Drugs 0.000 description 11
- 239000000047 product Substances 0.000 description 11
- 241000124008 Mammalia Species 0.000 description 10
- 206010028980 Neoplasm Diseases 0.000 description 10
- 206010035226 Plasma cell myeloma Diseases 0.000 description 10
- 108020004511 Recombinant DNA Proteins 0.000 description 10
- 108010087298 Tn receptor Proteins 0.000 description 10
- 210000004899 c-terminal region Anatomy 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 10
- 239000013604 expression vector Substances 0.000 description 10
- 201000000050 myeloid neoplasm Diseases 0.000 description 10
- 239000002773 nucleotide Substances 0.000 description 10
- 125000003729 nucleotide group Chemical group 0.000 description 10
- 125000006239 protecting group Chemical group 0.000 description 10
- 230000009870 specific binding Effects 0.000 description 10
- 239000004480 active ingredient Substances 0.000 description 9
- 230000002788 anti-peptide Effects 0.000 description 9
- 239000000427 antigen Substances 0.000 description 9
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 9
- -1 form amine hydrochlorides Chemical class 0.000 description 9
- 230000036046 immunoreaction Effects 0.000 description 9
- 230000001404 mediated effect Effects 0.000 description 9
- 239000002609 medium Substances 0.000 description 9
- 239000002953 phosphate buffered saline Substances 0.000 description 9
- 150000003839 salts Chemical class 0.000 description 9
- 239000011230 binding agent Substances 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 8
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 8
- 239000000523 sample Substances 0.000 description 8
- 239000000758 substrate Substances 0.000 description 8
- 238000002965 ELISA Methods 0.000 description 7
- 241000282414 Homo sapiens Species 0.000 description 7
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 7
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 7
- 102000036639 antigens Human genes 0.000 description 7
- 108091007433 antigens Proteins 0.000 description 7
- 239000003085 diluting agent Substances 0.000 description 7
- 239000002054 inoculum Substances 0.000 description 7
- 238000006467 substitution reaction Methods 0.000 description 7
- 230000001225 therapeutic effect Effects 0.000 description 7
- 102000004190 Enzymes Human genes 0.000 description 6
- 108090000790 Enzymes Proteins 0.000 description 6
- 108060003951 Immunoglobulin Proteins 0.000 description 6
- 239000004472 Lysine Substances 0.000 description 6
- 241001465754 Metazoa Species 0.000 description 6
- 241000699666 Mus <mouse, genus> Species 0.000 description 6
- 108091028043 Nucleic acid sequence Proteins 0.000 description 6
- 239000002671 adjuvant Substances 0.000 description 6
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 6
- 230000001580 bacterial effect Effects 0.000 description 6
- 102000018358 immunoglobulin Human genes 0.000 description 6
- 108010045069 keyhole-limpet hemocyanin Proteins 0.000 description 6
- 235000018977 lysine Nutrition 0.000 description 6
- 102000005962 receptors Human genes 0.000 description 6
- 108020003175 receptors Proteins 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 5
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 5
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 5
- 241000283973 Oryctolagus cuniculus Species 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 238000007792 addition Methods 0.000 description 5
- 125000003277 amino group Chemical group 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 230000000295 complement effect Effects 0.000 description 5
- 210000002744 extracellular matrix Anatomy 0.000 description 5
- 239000012634 fragment Substances 0.000 description 5
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 5
- 230000010076 replication Effects 0.000 description 5
- 230000001177 retroviral effect Effects 0.000 description 5
- 230000003248 secreting effect Effects 0.000 description 5
- 239000007790 solid phase Substances 0.000 description 5
- 241000894007 species Species 0.000 description 5
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 4
- IYMAXBFPHPZYIK-BQBZGAKWSA-N Arg-Gly-Asp Chemical compound NC(N)=NCCC[C@H](N)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(O)=O IYMAXBFPHPZYIK-BQBZGAKWSA-N 0.000 description 4
- WHUUTDBJXJRKMK-GSVOUGTGSA-N D-glutamic acid Chemical compound OC(=O)[C@H](N)CCC(O)=O WHUUTDBJXJRKMK-GSVOUGTGSA-N 0.000 description 4
- 206010059866 Drug resistance Diseases 0.000 description 4
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 4
- 241000588724 Escherichia coli Species 0.000 description 4
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 4
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 4
- 239000011149 active material Substances 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 4
- 239000008280 blood Substances 0.000 description 4
- 230000021164 cell adhesion Effects 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 239000001963 growth medium Substances 0.000 description 4
- FDGQSTZJBFJUBT-UHFFFAOYSA-N hypoxanthine Chemical compound O=C1NC=NC2=C1NC=N2 FDGQSTZJBFJUBT-UHFFFAOYSA-N 0.000 description 4
- 230000001900 immune effect Effects 0.000 description 4
- 230000003053 immunization Effects 0.000 description 4
- 238000001727 in vivo Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 4
- 239000002516 radical scavenger Substances 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 229920002477 rna polymer Polymers 0.000 description 4
- 210000004989 spleen cell Anatomy 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 210000004881 tumor cell Anatomy 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 239000004475 Arginine Substances 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 101000666340 Homo sapiens Tenascin Proteins 0.000 description 3
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- 206010027476 Metastases Diseases 0.000 description 3
- 241000699670 Mus sp. Species 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 229920002684 Sepharose Polymers 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 3
- 230000033115 angiogenesis Effects 0.000 description 3
- 210000000628 antibody-producing cell Anatomy 0.000 description 3
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 3
- 235000003704 aspartic acid Nutrition 0.000 description 3
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 201000011510 cancer Diseases 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 238000003776 cleavage reaction Methods 0.000 description 3
- 238000012258 culturing Methods 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- UAOMVDZJSHZZME-UHFFFAOYSA-N diisopropylamine Chemical compound CC(C)NC(C)C UAOMVDZJSHZZME-UHFFFAOYSA-N 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 210000002889 endothelial cell Anatomy 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 235000013922 glutamic acid Nutrition 0.000 description 3
- 239000004220 glutamic acid Substances 0.000 description 3
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 3
- 108010044896 glycyl-arginyl-glycyl-glutamyl-seryl-proline Proteins 0.000 description 3
- 229920001519 homopolymer Polymers 0.000 description 3
- 230000002163 immunogen Effects 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000009401 metastasis Effects 0.000 description 3
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 3
- 239000002777 nucleoside Substances 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 239000000863 peptide conjugate Substances 0.000 description 3
- 238000010647 peptide synthesis reaction Methods 0.000 description 3
- 210000002381 plasma Anatomy 0.000 description 3
- 229920002223 polystyrene Polymers 0.000 description 3
- 230000007017 scission Effects 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 239000003104 tissue culture media Substances 0.000 description 3
- 238000000954 titration curve Methods 0.000 description 3
- 230000001131 transforming effect Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- XZKIHKMTEMTJQX-UHFFFAOYSA-N 4-Nitrophenyl Phosphate Chemical compound OP(O)(=O)OC1=CC=C([N+]([O-])=O)C=C1 XZKIHKMTEMTJQX-UHFFFAOYSA-N 0.000 description 2
- HVBSAKJJOYLTQU-UHFFFAOYSA-N 4-aminobenzenesulfonic acid Chemical compound NC1=CC=C(S(O)(=O)=O)C=C1 HVBSAKJJOYLTQU-UHFFFAOYSA-N 0.000 description 2
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 2
- LPXQRXLUHJKZIE-UHFFFAOYSA-N 8-azaguanine Chemical compound NC1=NC(O)=C2NN=NC2=N1 LPXQRXLUHJKZIE-UHFFFAOYSA-N 0.000 description 2
- 229960005508 8-azaguanine Drugs 0.000 description 2
- 229920000936 Agarose Polymers 0.000 description 2
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 2
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 2
- 108010032595 Antibody Binding Sites Proteins 0.000 description 2
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 2
- 241000283707 Capra Species 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 2
- 241000701533 Escherichia virus T4 Species 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- 208000032612 Glial tumor Diseases 0.000 description 2
- 206010018338 Glioma Diseases 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- 102000003886 Glycoproteins Human genes 0.000 description 2
- 108090000288 Glycoproteins Proteins 0.000 description 2
- 108091006905 Human Serum Albumin Proteins 0.000 description 2
- 102000008100 Human Serum Albumin Human genes 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- UGQMRVRMYYASKQ-UHFFFAOYSA-N Hypoxanthine nucleoside Natural products OC1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 UGQMRVRMYYASKQ-UHFFFAOYSA-N 0.000 description 2
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 2
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 2
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 2
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 2
- 241000829100 Macaca mulatta polyomavirus 1 Species 0.000 description 2
- 229920001213 Polysorbate 20 Polymers 0.000 description 2
- LCTONWCANYUPML-UHFFFAOYSA-N Pyruvic acid Chemical compound CC(=O)C(O)=O LCTONWCANYUPML-UHFFFAOYSA-N 0.000 description 2
- 241000700159 Rattus Species 0.000 description 2
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 2
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 2
- 150000001408 amides Chemical group 0.000 description 2
- RWZYAGGXGHYGMB-UHFFFAOYSA-N anthranilic acid Chemical compound NC1=CC=CC=C1C(O)=O RWZYAGGXGHYGMB-UHFFFAOYSA-N 0.000 description 2
- 230000000890 antigenic effect Effects 0.000 description 2
- 239000012736 aqueous medium Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 235000009582 asparagine Nutrition 0.000 description 2
- 229960001230 asparagine Drugs 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 238000001574 biopsy Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 230000021615 conjugation Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 2
- 235000018417 cysteine Nutrition 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 210000003743 erythrocyte Anatomy 0.000 description 2
- 239000007850 fluorescent dye Substances 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 2
- 235000011167 hydrochloric acid Nutrition 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 238000010324 immunological assay Methods 0.000 description 2
- 238000011081 inoculation Methods 0.000 description 2
- 150000007529 inorganic bases Chemical class 0.000 description 2
- 102000006495 integrins Human genes 0.000 description 2
- 108010044426 integrins Proteins 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- VPKDCDLSJZCGKE-UHFFFAOYSA-N methanediimine Chemical compound N=C=N VPKDCDLSJZCGKE-UHFFFAOYSA-N 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 230000003278 mimic effect Effects 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000013642 negative control Substances 0.000 description 2
- 125000003835 nucleoside group Chemical group 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 150000007530 organic bases Chemical class 0.000 description 2
- 239000006179 pH buffering agent Substances 0.000 description 2
- 150000002972 pentoses Chemical class 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- 239000013612 plasmid Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 2
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 108091008146 restriction endonucleases Proteins 0.000 description 2
- 239000006152 selective media Substances 0.000 description 2
- 102000015340 serglycin Human genes 0.000 description 2
- 108010050065 serglycin Proteins 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- ZMZDMBWJUHKJPS-UHFFFAOYSA-N thiocyanic acid Chemical compound SC#N ZMZDMBWJUHKJPS-UHFFFAOYSA-N 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- 238000013518 transcription Methods 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- 235000002374 tyrosine Nutrition 0.000 description 2
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 2
- 239000004474 valine Substances 0.000 description 2
- 239000000080 wetting agent Substances 0.000 description 2
- AGOOUZZBQZNYCU-AJNGGQMLSA-N (2s)-1-[(2s)-2-[[(2s)-2-[[2-[[(2s)-2-[(2-aminoacetyl)amino]-5-(diaminomethylideneamino)pentanoyl]amino]acetyl]amino]-4-carboxybutanoyl]amino]-3-hydroxypropanoyl]pyrrolidine-2-carboxylic acid Chemical compound NC(N)=NCCC[C@H](NC(=O)CN)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)N1CCC[C@H]1C(O)=O AGOOUZZBQZNYCU-AJNGGQMLSA-N 0.000 description 1
- DBSPXXDVFBMFOZ-VDQHJUMDSA-N (2s)-2,6-diaminohexanoic acid;(2s)-pyrrolidine-2-carboxylic acid Chemical compound OC(=O)[C@@H]1CCCN1.NCCCC[C@H](N)C(O)=O DBSPXXDVFBMFOZ-VDQHJUMDSA-N 0.000 description 1
- KOAWDFCVOHGUFB-ZETCQYMHSA-N (2s)-2-amino-3-(3-ethylimidazol-4-yl)propanoic acid Chemical compound CCN1C=NC=C1C[C@H](N)C(O)=O KOAWDFCVOHGUFB-ZETCQYMHSA-N 0.000 description 1
- KUHSEZKIEJYEHN-BXRBKJIMSA-N (2s)-2-amino-3-hydroxypropanoic acid;(2s)-2-aminopropanoic acid Chemical compound C[C@H](N)C(O)=O.OC[C@H](N)C(O)=O KUHSEZKIEJYEHN-BXRBKJIMSA-N 0.000 description 1
- UKAUYVFTDYCKQA-UHFFFAOYSA-N -2-Amino-4-hydroxybutanoic acid Natural products OC(=O)C(N)CCO UKAUYVFTDYCKQA-UHFFFAOYSA-N 0.000 description 1
- WBYWAXJHAXSJNI-VOTSOKGWSA-M .beta-Phenylacrylic acid Natural products [O-]C(=O)\C=C\C1=CC=CC=C1 WBYWAXJHAXSJNI-VOTSOKGWSA-M 0.000 description 1
- MIJDSYMOBYNHOT-UHFFFAOYSA-N 2-(ethylamino)ethanol Chemical compound CCNCCO MIJDSYMOBYNHOT-UHFFFAOYSA-N 0.000 description 1
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical compound CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 1
- BMGWZHWESYHXHC-UHFFFAOYSA-N 2-amino-3-methylpentanoic acid;2-amino-4-methylpentanoic acid Chemical compound CCC(C)C(N)C(O)=O.CC(C)CC(N)C(O)=O BMGWZHWESYHXHC-UHFFFAOYSA-N 0.000 description 1
- CONTUAOLJJWUKH-OMSMUOAWSA-N 2-aminoacetic acid;(2s)-2-amino-4-methylsulfanylbutanoic acid;(2s)-2-amino-3-phenylpropanoic acid Chemical compound NCC(O)=O.CSCC[C@H](N)C(O)=O.OC(=O)[C@@H](N)CC1=CC=CC=C1 CONTUAOLJJWUKH-OMSMUOAWSA-N 0.000 description 1
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 description 1
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 1
- TVZGACDUOSZQKY-LBPRGKRZSA-N 4-aminofolic acid Chemical compound C1=NC2=NC(N)=NC(N)=C2N=C1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 TVZGACDUOSZQKY-LBPRGKRZSA-N 0.000 description 1
- 229940117976 5-hydroxylysine Drugs 0.000 description 1
- HWQQCFPHXPNXHC-UHFFFAOYSA-N 6-[(4,6-dichloro-1,3,5-triazin-2-yl)amino]-3',6'-dihydroxyspiro[2-benzofuran-3,9'-xanthene]-1-one Chemical compound C=1C(O)=CC=C2C=1OC1=CC(O)=CC=C1C2(C1=CC=2)OC(=O)C1=CC=2NC1=NC(Cl)=NC(Cl)=N1 HWQQCFPHXPNXHC-UHFFFAOYSA-N 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 102100022704 Amyloid-beta precursor protein Human genes 0.000 description 1
- 206010003445 Ascites Diseases 0.000 description 1
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 108700000434 Cannabis sativa edestin Proteins 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- WBYWAXJHAXSJNI-SREVYHEPSA-N Cinnamic acid Chemical compound OC(=O)\C=C/C1=CC=CC=C1 WBYWAXJHAXSJNI-SREVYHEPSA-N 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- 102000000989 Complement System Proteins Human genes 0.000 description 1
- 108010069112 Complement System Proteins Proteins 0.000 description 1
- 241000699802 Cricetulus griseus Species 0.000 description 1
- 229930182847 D-glutamic acid Natural products 0.000 description 1
- KDXKERNSBIXSRK-RXMQYKEDSA-N D-lysine Chemical compound NCCCC[C@@H](N)C(O)=O KDXKERNSBIXSRK-RXMQYKEDSA-N 0.000 description 1
- 102000012410 DNA Ligases Human genes 0.000 description 1
- 108010061982 DNA Ligases Proteins 0.000 description 1
- 102000004594 DNA Polymerase I Human genes 0.000 description 1
- 108010017826 DNA Polymerase I Proteins 0.000 description 1
- 241000450599 DNA viruses Species 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 238000009007 Diagnostic Kit Methods 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- 239000012983 Dulbecco’s minimal essential medium Substances 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 108010042407 Endonucleases Proteins 0.000 description 1
- 102000004533 Endonucleases Human genes 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- 102000008857 Ferritin Human genes 0.000 description 1
- 108050000784 Ferritin Proteins 0.000 description 1
- 238000008416 Ferritin Methods 0.000 description 1
- 102000008946 Fibrinogen Human genes 0.000 description 1
- 108010049003 Fibrinogen Proteins 0.000 description 1
- 102000002090 Fibronectin type III Human genes 0.000 description 1
- 108050009401 Fibronectin type III Proteins 0.000 description 1
- CEAZRRDELHUEMR-URQXQFDESA-N Gentamicin Chemical compound O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N CEAZRRDELHUEMR-URQXQFDESA-N 0.000 description 1
- 229930182566 Gentamicin Natural products 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 229920002683 Glycosaminoglycan Polymers 0.000 description 1
- 108060003393 Granulin Proteins 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 101100118545 Holotrichia diomphalia EGF-like gene Proteins 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000823051 Homo sapiens Amyloid-beta precursor protein Proteins 0.000 description 1
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 1
- PMMYEEVYMWASQN-DMTCNVIQSA-N Hydroxyproline Chemical compound O[C@H]1CN[C@H](C(O)=O)C1 PMMYEEVYMWASQN-DMTCNVIQSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 102000000924 Integrin beta subunit Human genes 0.000 description 1
- 108050007872 Integrin beta subunit Proteins 0.000 description 1
- 108010025815 Kanamycin Kinase Proteins 0.000 description 1
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 1
- AHLPHDHHMVZTML-BYPYZUCNSA-N L-Ornithine Chemical compound NCCC[C@H](N)C(O)=O AHLPHDHHMVZTML-BYPYZUCNSA-N 0.000 description 1
- 150000008575 L-amino acids Chemical group 0.000 description 1
- GGLZPLKKBSSKCX-YFKPBYRVSA-N L-ethionine Chemical compound CCSCC[C@H](N)C(O)=O GGLZPLKKBSSKCX-YFKPBYRVSA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- UKAUYVFTDYCKQA-VKHMYHEASA-N L-homoserine Chemical compound OC(=O)[C@@H](N)CCO UKAUYVFTDYCKQA-VKHMYHEASA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 238000006845 Michael addition reaction Methods 0.000 description 1
- 241000713869 Moloney murine leukemia virus Species 0.000 description 1
- 229930193140 Neomycin Natural products 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- AHLPHDHHMVZTML-UHFFFAOYSA-N Orn-delta-NH2 Natural products NCCCC(N)C(O)=O AHLPHDHHMVZTML-UHFFFAOYSA-N 0.000 description 1
- UTJLXEIPEHZYQJ-UHFFFAOYSA-N Ornithine Natural products OC(=O)C(C)CCCN UTJLXEIPEHZYQJ-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 241000237988 Patellidae Species 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 1
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 1
- 241000276498 Pollachius virens Species 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 241001505332 Polyomavirus sp. Species 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 101000781681 Protobothrops flavoviridis Disintegrin triflavin Proteins 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- 230000004570 RNA-binding Effects 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 241000714474 Rous sarcoma virus Species 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 229920005654 Sephadex Polymers 0.000 description 1
- 239000012507 Sephadex™ Substances 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 102000009843 Thyroglobulin Human genes 0.000 description 1
- 108010034949 Thyroglobulin Proteins 0.000 description 1
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 1
- 108090000992 Transferases Proteins 0.000 description 1
- 102000004357 Transferases Human genes 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- GELXFVQAWNTGPQ-UHFFFAOYSA-N [N].C1=CNC=N1 Chemical compound [N].C1=CNC=N1 GELXFVQAWNTGPQ-UHFFFAOYSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 229940037003 alum Drugs 0.000 description 1
- 150000003862 amino acid derivatives Chemical class 0.000 description 1
- 229960003896 aminopterin Drugs 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- DZHSAHHDTRWUTF-SIQRNXPUSA-N amyloid-beta polypeptide 42 Chemical compound C([C@@H](C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@H](C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)NCC(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(O)=O)[C@@H](C)CC)C(C)C)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@@H](NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC(O)=O)C(C)C)C(C)C)C1=CC=CC=C1 DZHSAHHDTRWUTF-SIQRNXPUSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000005571 anion exchange chromatography Methods 0.000 description 1
- 230000000181 anti-adherent effect Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 108010072041 arginyl-glycyl-aspartic acid Proteins 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 125000001584 benzyloxycarbonyl group Chemical group C(=O)(OCC1=CC=CC=C1)* 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 102000005936 beta-Galactosidase Human genes 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 1
- 229960000074 biopharmaceutical Drugs 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 238000011072 cell harvest Methods 0.000 description 1
- 230000008619 cell matrix interaction Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000021617 central nervous system development Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 125000002668 chloroacetyl group Chemical group ClCC(=O)* 0.000 description 1
- 108010031071 cholera toxoid Proteins 0.000 description 1
- 239000003593 chromogenic compound Substances 0.000 description 1
- 235000013985 cinnamic acid Nutrition 0.000 description 1
- 229930016911 cinnamic acid Natural products 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- WZHCOOQXZCIUNC-UHFFFAOYSA-N cyclandelate Chemical compound C1C(C)(C)CC(C)CC1OC(=O)C(O)C1=CC=CC=C1 WZHCOOQXZCIUNC-UHFFFAOYSA-N 0.000 description 1
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- YSMODUONRAFBET-UHFFFAOYSA-N delta-DL-hydroxylysine Natural products NCC(O)CCC(N)C(O)=O YSMODUONRAFBET-UHFFFAOYSA-N 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 229940043279 diisopropylamine Drugs 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- MGHPNCMVUAKAIE-UHFFFAOYSA-N diphenylmethanamine Chemical compound C=1C=CC=CC=1C(N)C1=CC=CC=C1 MGHPNCMVUAKAIE-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- PMMYEEVYMWASQN-UHFFFAOYSA-N dl-hydroxyproline Natural products OC1C[NH2+]C(C([O-])=O)C1 PMMYEEVYMWASQN-UHFFFAOYSA-N 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 241001493065 dsRNA viruses Species 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- YSMODUONRAFBET-UHNVWZDZSA-N erythro-5-hydroxy-L-lysine Chemical compound NC[C@H](O)CC[C@H](N)C(O)=O YSMODUONRAFBET-UHNVWZDZSA-N 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002169 ethanolamines Chemical class 0.000 description 1
- 125000004494 ethyl ester group Chemical group 0.000 description 1
- 210000000416 exudates and transudate Anatomy 0.000 description 1
- 239000012894 fetal calf serum Substances 0.000 description 1
- 229940012952 fibrinogen Drugs 0.000 description 1
- 230000003328 fibroblastic effect Effects 0.000 description 1
- 239000012847 fine chemical Substances 0.000 description 1
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 229960002518 gentamicin Drugs 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 108010038082 heparin proteoglycan Proteins 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 229940042795 hydrazides for tuberculosis treatment Drugs 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 229960002591 hydroxyproline Drugs 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 238000002649 immunization Methods 0.000 description 1
- 238000003119 immunoblot Methods 0.000 description 1
- 229940127121 immunoconjugate Drugs 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- JJWLVOIRVHMVIS-UHFFFAOYSA-N isopropylamine Chemical compound CC(C)N JJWLVOIRVHMVIS-UHFFFAOYSA-N 0.000 description 1
- 150000002540 isothiocyanates Chemical class 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 239000006194 liquid suspension Substances 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 210000001161 mammalian embryo Anatomy 0.000 description 1
- 201000001441 melanoma Diseases 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- WBYWAXJHAXSJNI-UHFFFAOYSA-N methyl p-hydroxycinnamate Natural products OC(=O)C=CC1=CC=CC=C1 WBYWAXJHAXSJNI-UHFFFAOYSA-N 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 239000003068 molecular probe Substances 0.000 description 1
- PSZYNBSKGUBXEH-UHFFFAOYSA-N naphthalene-1-sulfonic acid Chemical compound C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-N 0.000 description 1
- 229960004927 neomycin Drugs 0.000 description 1
- 230000014390 neural crest cell migration Effects 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 230000009871 nonspecific binding Effects 0.000 description 1
- 150000003833 nucleoside derivatives Chemical class 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 229920002113 octoxynol Polymers 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 229960003104 ornithine Drugs 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 125000001805 pentosyl group Chemical group 0.000 description 1
- 108010091748 peptide A Proteins 0.000 description 1
- 239000008194 pharmaceutical composition Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 235000011007 phosphoric acid Nutrition 0.000 description 1
- 150000003016 phosphoric acids Chemical class 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 229920001308 poly(aminoacid) Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920002523 polyethylene Glycol 1000 Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920000379 polypropylene carbonate Polymers 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- MFDFERRIHVXMIY-UHFFFAOYSA-N procaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1 MFDFERRIHVXMIY-UHFFFAOYSA-N 0.000 description 1
- 229960004919 procaine Drugs 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 238000001814 protein method Methods 0.000 description 1
- 230000006920 protein precipitation Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 229940107700 pyruvic acid Drugs 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000009738 saturating Methods 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 210000004988 splenocyte Anatomy 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 229950000244 sulfanilic acid Drugs 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229960000814 tetanus toxoid Drugs 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- JGVWCANSWKRBCS-UHFFFAOYSA-N tetramethylrhodamine thiocyanate Chemical compound [Cl-].C=12C=CC(N(C)C)=CC2=[O+]C2=CC(N(C)C)=CC=C2C=1C1=CC=C(SC#N)C=C1C(O)=O JGVWCANSWKRBCS-UHFFFAOYSA-N 0.000 description 1
- MPLHNVLQVRSVEE-UHFFFAOYSA-N texas red Chemical compound [O-]S(=O)(=O)C1=CC(S(Cl)(=O)=O)=CC=C1C(C1=CC=2CCCN3CCCC(C=23)=C1O1)=C2C1=C(CCC1)C3=[N+]1CCCC3=C2 MPLHNVLQVRSVEE-UHFFFAOYSA-N 0.000 description 1
- 229940104230 thymidine Drugs 0.000 description 1
- 229960002175 thyroglobulin Drugs 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 125000005270 trialkylamine group Chemical group 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- 230000005747 tumor angiogenesis Effects 0.000 description 1
- 230000005740 tumor formation Effects 0.000 description 1
- 230000004614 tumor growth Effects 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 230000029663 wound healing Effects 0.000 description 1
- 210000005253 yeast cell Anatomy 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
- A61K39/39533—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
- A61K39/39558—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against tumor tissues, cells, antigens
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
Definitions
- the present invention relates to polypeptides and anti-polypeptide antibodies capable of modulating cell attachment to tenascin. More specifically, the polypeptides and antipolypeptide antibodies of this invention can be used to inhibit tumor metastasis and angiogenesis. The polypeptides are further capable of mimicking the ability of tenascin to promote cell attachment.
- Tenascin is a multifunctional extracellular matrix glycoprotein with an oncodevelopmental pattern of expression, Erickson, Annu. Rev. Cell Biol.. 5:71- 92, 1989.
- tenascin is expressed in malignant tumors such as glimas, melanomas, and breast carcinomas, Bourdon et al., Cancer Res.. 43:2796-2805, 1983; Mackie et al., Proc. Natl. Acad. Sci. USA. 84:4621-4625, 1987.
- tenascin is associated with the extracellular matrix and the tumor neovasculature indicating a function(s) for tenascin in cell-matrix interaction during tumor growth and angiogenesis.
- Tenascin expression developmentally is highly regulated and associated with mesenchymal differentiation during mesenchymal-epithelial interactions of kidney, Aufderheide et al., J. Cell Biol.. 105:599-608, 1987, gut, Aufderheide et al., J. Cell Biol.. 107:2341-2349, 1988, and breast, Chiguet- Ehrismann et al., Cell. 47:131-139, 1986, as well as during central nervous system development, Chuong et al., J. Cell Biol.. 104:331-342, 1987; Gru et et. al., Proc. Natl. Acad. Sci. USA.
- tenascin is a large (250-280 kd) glycoprotein which forms disulfide trimers and hexamers; these last are 1.5 to 1.8 x 10 6 daltons in size, Gulcher et al., Proc. Natl. Acad. Sci. USA. 86:1588-1592, 1989; Jones et al., Proc. Natl. Acad. Sci. USA. 85:2186-2190, 1988; Spring et al.. Cell. 59:325-334, 1989. Within tenascin there are multiple fibronectin type III repeats flanked by aminoterminal EGF-like repeats and carboxy-terminal fibrinogen-like globular end.
- tenascin is a multifunctional protein.
- functions attributed to tenascin are cell adhesion, Bourdon et al., J. Cell Biol.. 108:1149-1155, 1989, heparin- proteoglycan binding, Hoffman et al., J. Cell Biol.. 106:519-532, 1988, and anti-adhesive properties, Spring et al, Cell. 59:325-334, 1989.
- the present invention contemplates a polypeptide of the formula: X-Ser-Arg-Arg-Gly-Asp-Met-Ser-Z wherein:
- X is a chain of 1 to 20 amino acid residues or an amino-terminal group
- Z is a chain of 1 to 20 amino acid residues or a carboxy-terminal group.
- Preferred polypeptides include those represented by the formulae:
- the present invention contemplates a method for inhibiting attachment of cells to tenascin comprising contacting the cells with a peptide of this invention in an amount of said peptide effective to inhibit said attachment.
- the present invention also contemplates a method for inhibiting attachment of cells to a subcellular matrix comprising contacting the subcellular matrix with an antibody that immunoreacts with a polypeptide of the formula:
- compositions preferably in unit does form, of a polypeptide or antibody of this invention are also contemplated, such compositions being useful for modulating cell attachment in vivo when administered in a therapeutically effective amount.
- Figure 1 illustrates the amino acid residue sequence of a portion of tenascin and a nucleotide sequence coding for it from nucleotide sequence residue 1201 through 1600. Gulcher et al., Proc. Natl. Acad. Sci. USA. 86:1588-1592, 1989.
- the preferred nucleotide sequence coding for the cell interacting site of tenascin, SRRGDMS, begins at nucleotide 1433 and ends at 1451.
- Figure 2 Inhibition of cell attachment to tenascin with anti-peptide antibodies.
- FIG. 3 Cell attachment to SRRGDMS-BSA conjugate.
- Cell attachment to SRRGDMA-BSA ( ⁇ ) and GRGDSP-BSA (A) or control MGSRSRD-BSA (scrambled tenascin-derived peptide) (O) were assayed in wells coated with increasing amounts of peptide conjugate.
- Figure 4 Peptide inhibition of Cell Attachment.
- the peptide SDDYSGSGSG is derived from the glycosamino- glycan attachment signal of serglycin;
- the peptide GRGESP is a negative control derived from the GRGDSP fibronectin cell attachment signal;
- the peptide SRRGDMS is derived from human tenascin.
- FIG. 5 Peptide SRRGDMS cell attachment inhibition curves. Cell attachment of human U251 cells to tenascin (O) and fibronectin (0) was assayed with increasing concentrations of SRRGDMS peptide.
- Figure 6 Inhibition of cell attachment to peptide-BSA conjugates with soluble peptide. Cell attachment to either SRRGDMS-BSA (1 ⁇ g/ml coating concentration) or GRGDSP-BSA (0.5 ⁇ g/ml coating concentration) was assayed in the presence or absence of 1 mg/ml SRRGDMS-NH 2 , GRGDSP-NG 2 , or MGSRSRD-NH 2 .
- Figure 7 Anti-SRRGDMS antibody binding to peptide conjugates.
- Anti-SRRGDMS antibody specificity was assayed by ELISA.
- the anti-SRRGDMS at 1 mg/ml IgG concentration, antibody was allowed to bind peptide-BSA conjugates (0.10 ⁇ g/ml coating concentration), washed with PBS, 0.02% Tween 20. Bound antibody was detected with goat anti-rabbit-alkaline phosphatase secondary antibody and developed with the substrate PNPP.
- Figure 8 Inhibition of cell attachment to
- SRRGDMS-BSA by anti peptide antibody.
- Cell attachment to wells coated with 1 ⁇ g/ml SRRGDMS-BSA or 0.05 ⁇ g/ml GRGDSP-BSA was inhibited by both anti-SRRGDMS (50 ⁇ g) and anti-tenascin antibody (50 ⁇ g) affinity purified on SRRGDMS-sepharose. Maximum cell attachment was observed in control wells containing media alone or IgG from preimmune sera.
- Amino Acid Residue The amino acid residues described herein are preferred to be in the "L” isomeric form. However, residues in the "D" isomeric form can be substituted for any L-amino acid residue, as long as the desired functional property of immunoglobulin-binding is retained by the polypeptide.
- NH2 refers to the free amino group present at the amino- or carboxy- terminus of a polypeptide.
- C00H refers to the free carboxy group present at the carboxy terminus of a polypeptide.
- the amino-terminal NH 2 group and carboxy-terminal COOH group of free polypeptides are typically not set forth in a formula.
- polypeptide refers to a linear series of amino acid residues connected to one another by peptide bonds between the alpha-amino groups and carboxy groups of contiguous amino acid residues.
- Peptide refers to a linear series of no more than about 50 amino acid residues connected one to the other as in a polypeptide.
- Protein refers to a linear series of greater than 50 amino acid residues connected one to the other as in a peptide.
- Synthetic peptide refers to a chemically produced chain of amino acid residues linked together by peptide bonds that is free of naturally occurring proteins and fragments thereof.
- Nucleotide a monomeric unit of DNA or RNA consisting of a sugar moiety (pentose) , a phosphate, and a nitrogenous heterocyclic base.
- the base is linked to the sugar moiety via the glycosidic carbon (1* carbon of the pentose) and that combination of base and sugar is a nucleoside.
- the nucleoside contains a phosphate group bonded to the 3' or 5' position of the pentose it is referred to as a nucleotide.
- a sequence of operatively linked nucleosides is typically referred to herein as a "nucleotide sequence", and is represented herein by a formula whose left to right orientation is in the conventional direction of 5• terminus to 3 • terminus.
- the present invention contemplates a polypeptide characterized by the formula :
- B is either Ser or Glu, preferably Ser.
- X and Z each represent amino- and carboxy-terminal groups, respectively. The presence or absence of X is indicated by its subscript, n, which is either 0 or 1 such that when n is 0, X is not present and when n is 1 X is present. Similarly, when m is 0, Z is not present and when m is 1, Z is present.
- X can be an amino- terminal NH 2 group.
- X can also be a chain of 1 to about 20 amino acid residues that is present when n is 1 and is not present when n is 0.
- Z can be a carboxy- terminal COOH group or a carboxy-terminal NH 2 group.
- Z can also be a chain of 1 to about 20 amino acid residues that is present when n is 1 and not present when n is 0.
- X and/or Z can be one of the following amino acid residue sequences: (a) Gly-Arg-Gly-Asp-Ser-Pro, (b) Arg-Gly-Asp-Thr, and
- polypeptide of this invention has the formula:
- p is an integer such that the homoblock polymer is soluble in aqueous 0.15 M sodium chloride.
- the value of p is 2 to about 6.
- a preferred polypeptide has less than about 30 amino acid residues and contains a biologically active sequence, exhibiting cell attachment activity, of the sequence Ser-Arg-Arg-Gly-Asp-Met-Ser.
- polypeptides according to formulae: pi NH 2 -Ser-Arg-Arg-Gly-Asp-Met-Ser-COOH, and p2 NH 2 -Ser-Arg-Arg-Gly-Asp-Met-Ser-NH 2 .
- Each of the polypeptides of this invention are characterized as having the ability to mimic the cell attachment-promoting activity of tenascin.
- a subject polypeptide is operatively linked to a solid matrix, such as agarose, collagen, nitrocellulose, polyester, glass, synthetic resin, long chain polysaccharide and the like.
- a solid matrix such as agarose, collagen, nitrocellulose, polyester, glass, synthetic resin, long chain polysaccharide and the like.
- the subject polypeptides are operatively linked to a solid matrix forming a prosthetic device, percutaneous device, vascular graft, and the like.
- the polypeptides of this invention can be conventionally formulated into a lotion, salve, gel, colloid power, and the like.
- a subject polypeptide includes any analog, fragment or chemical derivative of a polypeptide whose amino acid residue sequence is shown herein so long as the polypeptide is capable of competitively inhibiting the binding of tenascin to its receptor. Therefore, a present polypeptide can be subject to various changes, substitutions, insertions, and deletions where such changes provide for certain advantages in their use.
- analog refers to any polypeptide having an amino acid residue sequence substantially identical to a sequence specifically shown herein in which one or more residues have been conservatively substituted with a functionally similar residue.
- conservative substitutions include the substitution of one non-polar (hydrophobic) residue such as isoleucine, valine, leucine or ethionine for another, the substitution of one polar (hydrophilic) residue for another such as between arginine and lysine, between glutamine and asparagine, between glycine and serine, the substitution of one basic residue such as lysine, arginine or histidine for another, or the substitution of one acidic residue, such as aspartic acid or glutamic acid for another.
- “conservative substitution” also includes the use of a chemically derivatized residue in place of a non-derivatized residue provided that such polypeptide displays the requisite binding activity.
- “Chemical derivative” refers to a subject polypeptide having one or more residues chemically derivatized by reaction of a functional side group.
- Such derivatized molecules include for example, those molecules in which free amino groups have been derivatized to form amine hydrochlorides, p-toluene sulfonyl groups, carbobenzoxy groups, t- butyloxycarbonyl groups, chloroacetyl groups or formyl groups.
- Free carboxyl groups may be derivatized to form salts, methyl and ethyl esters or other types of esters or hydrazides. Free hydroxyl groups may be derivatized to form O-acyl or 0-alkyl derivatives. The imidazole nitrogen of histidine may be derivatized to form N-im-benzylhistidine. Also included as chemical derivatives are those peptides which contain one or more naturally occurring amino acid derivatives of the twenty standard amino acids.
- Polypeptides of the present invention also include any polypeptide having one or more additions and/or deletions or residues relative to the sequence of a polypeptide whose sequence is shown herein, so long as the requisite binding activity is maintained.
- fragment refers to any subject polypeptide having an amino acid residue sequence shorter than that of a polypeptide whose amino acid residue sequence is shown herein.
- a subject polypeptide can be prepared using the solid-phase synthetic technique initially described by Merrifield, in J. Am. Che . Soc.. 85:2149-2154 (1963).
- Other polypeptide synthesis techniques may be found, for example, in M. Bodanszky et al., Peptide Synthesis. John Wiley & Sons, 2d Ed., (1976) as well as in other reference works known to those skilled in the art.
- a summary of polypeptide synthesis techniques may be found in J. Stuart and J.D. Young, Solid Phase Peptide Synthesis. Pierce Chemical Company, Rockford, IL, 3d Ed., Neurath, H. et al., Eds., p. 104-237, Academic Press, New York, NY (1976) .
- Appropriate protective groups for use in such syntheses will be found in the above texts as well as in J.F.W. McOmie, Protective Groups in Organic Chemistry. Plenum Press, New York, NY (1973) .
- those synthetic methods comprise the sequential addition of one or more amino acid residues or suitably protected amino acid residues to a growing polypeptide chain.
- amino acid residues or suitably protected amino acid residues Normally, either the amino or carboxyl group of the first amino acid residue is protected by a suitable, selectively removable protecting group.
- a different, selectively removable protecting group is utilized for amino acids containing a reactive side group such as lysine.
- the protected or derivatized amino acid is attached to an inert solid support through its unprotected carboxyl or amino group.
- the protecting group of the amino or carboxyl group is then selectively removed and the next amino acid in the sequence having the complementary (amino or carboxyl) group suitably protected is admixed and reacted under conditions suitable for forming the amid linkage with the residue already attached to the solid support.
- the protecting group of the amino or carboxyl group is then removed from this newly added amino acid residue, and the next amino acid (suitably protected) is then added, and so forth. After all the desired amino acids have been linked in the proper sequence any remaining terminal and side group protecting groups (and solid support) are removed sequentially or concurrently, to provide the final polypeptide.
- C-terminal amides such as peptides according to formula p2
- peptides with a C-terminal acid are cleaved in 92.5% HF/7.5% anisole for one hour. This involves an "SN1" type reaction where anisole is used as a scavenger.
- this reaction cleaves the side chain protecting groups via a milder "SN2" type reaction which involves the unimolecular transfer of the protecting groups from the peptide to the scavenger (bypassing the reactive carbocation intermediate) while leaving the peptide linked to the resin.
- This method of cleavage can not be used for the much more labile resins used in the production of C-terminal acid.
- the scavenger byproducts are then rinsed away and the peptide is cleaved from the resin using the standard "SN1" procedure.
- the polypeptides of the present invention generally contain a tenascin receptor-binding segment of at least 7 amino acid residues and up to fifty amino acid residues, preferably 10-35 amino acid residues.
- the polypeptides can be linked to an additional sequence of amino acids at either or both the N- terminus and C-terminus, wherein the additional sequences are from 1-100 amino acids in length.
- Such additional amino acid sequences, or linker sequences are heterologous to the tenascin amino acid residue sequence and can be conveniently affixed to a detectable label, solid matrix, or carrier. Labels, solid matrices and carriers that can be used with peptides of the present invention are described below.
- Typical amino acid residues used for linking are tyrosine, cysteine, lysine, glutamic acid and aspartic acid, and the like.
- Preferred linking residues are carboxy-terminal Cys and Lys, and amino-terminal Tyr.
- a heparin binding sequence such as that described by Ponez et al., Blood. 69:219-223 (1989), can also be linked to the polypeptide at either its amino or carboxy terminus.
- Any polypeptide of the present invention may be used in the form of a pharmaceutically acceptable salt.
- Suitable acids which are capable of forming salts with the polypeptides of the present invention include inorganic acids such as hydrochloric acid, hydrobromic acid, perchloric acid, nitric acid, thiocyanic acid, sulfuric acid, phosphoric acetic acid, propionic acid, glycolic acid, lactic acid, pyruvic acid, oxalic acid, malonic acid, succinic acid, maleic acid, fumaric acid, anthranilic acid, cinnamic acid, naphthalene sulfonic acid, sulfanilic acid or the like.
- Suitable bases capable of forming salts with the peptides of the present invention include inorganic bases such as sodium hydroxide, ammonium hydroxide, potassium hydroxide and the like; and organic bases such as mono-, di- and tri-alkyl and aryl amines (e.g. triethylamine, diisopropyl amine, methyl a ine, dimethyl amine and the like) and optionally substituted ethanolamines (e.g. ethanolamine, diethanolamine and the like) .
- inorganic bases such as sodium hydroxide, ammonium hydroxide, potassium hydroxide and the like
- organic bases such as mono-, di- and tri-alkyl and aryl amines (e.g. triethylamine, diisopropyl amine, methyl a ine, dimethyl amine and the like) and optionally substituted ethanolamines (e.g. ethanolamine, diethanolamine and the like) .
- the present invention further includes a composition that includes a subject polypeptide in combination with one or more of a pH buffering agent, wetting agent, anti-oxidant, reducing agent, aqueous medium, and the like, such composition being formulated as an aqueous solution for a use as described herein or as a dry composition, such as a powder, that can be reconstituted to form an aqueous solution.
- a chimeric polypeptide of this invention is defined by the presence of at least one tenascin receptor-binding peptide segment defined by the formula
- the tenascin receptor-binding segments of a subject chimeric polypeptide can be either contiguous or adjacent to each other within the polypeptide chain. Where they are adjacent, the segments are separated by amino acid residues forming a spacer segment typically comprised of from about 5 conveniently up to about 50 residues, preferably about 15 to about 30 residues.
- a subject chimeric polypeptide can contain a plurality of the same tenascin receptor-binding segment. Where three or more of the tenascin receptor-binding segments are adjacent within a subject chimeric polypeptide, the spacer segments can be the same or different.
- a subject chimeric polypeptide can further contain a head and/or tail segment of 1 conveniently up to about 50, such as about 5 or 10, typically about 15 or about 30, at its amino- or carboxy terminus, respectively, where such a segment is advantageous in the polypeptide's making or use.
- a tail segment can provide a means for linking the subject chimeric polypeptide to a solid matrix, where as a leader segment can advantageously be used to facilitate secretion of the polypeptide during its expression in cells.
- a gene can be defined in terms of the amino acid residue sequence, i.e., protein or polypeptide, for which it codes.
- nucleotide triplet An important and well known feature of the genetic code is its redundancy. That is, for most of the amino acids used to make proteins, more than one coding nucleotide triplet (codon) can code for or designate a particular amino acid residue. Therefore, a number of different nucleotide sequences may code for a particular amino acid residue sequence. Such nucleotide sequences are considered functionally equivalent since they can result in the production of the same amino acid residue sequence in all organisms. Occasionally, a methylated variant of a purine or pyrimidine may be incorporated into a given nucleotide sequence. However, such methylations do not affect the coding relationship in any way.
- the present invention contemplates a deoxyribonucleic acid (DNA) molecule or segment that defines a gene coding for, i.e., capable of expressing, a subject polypeptide or a subject chimeric polypeptide.
- a preferred DNA segment has a nucleotide base sequence corresponding to the sequence shown in Figure 1 from base position 1433 to 1451, 1427 to 1451, 1401 to 1451, 1427 to 1466 and 1401 to 1500.
- DNA molecules that encode the subject polypeptides can easily be synthesized by chemical techniques, for example, the phosophotriester method of Matteucci et al. , J. Am. Chem. Soc.. 103:3185 (1981).
- DNA molecules including base sequences identical to all or a portion of that shown in Figure 1 is preferred.
- a DNA molecule that includes a DNA sequence encoding a subject polypeptide can be prepared by operatively linking (ligating) appropriate restriction fragments from each of the above deposited plasmids using well known methods.
- the DNA molecules of the present invention produced in this manner typically have cohesive termini, i.e., "overhanging" single- stranded portions that extend beyond the double- stranded portion of the molecule. The presence of cohesive termini on the DNA molecules of the present invention is preferred.
- RNA ribonucleic acid
- the present invention further contemplates a re ⁇ ombinant DNA molecule comprising a vector operatively linked, for replication and/or expression, to a subject DNA molecule, i.e., a DNA molecule defining a gene coding for a subject polypeptide or a subject chimeric polypeptide.
- a vector refers to a DNA molecule capable of autonomous replication in a cell and to which another DNA segment can be operatively linked so as to bring about replication of the attached segment.
- vectors capable of directing the expression of a gene delivered by a subject DNA segment are referred to herein as "expression vectors".
- a recombinant DNA molecule is a hybrid DNA molecule comprising at least two nucleotide sequences not normally found together in nature.
- a vector contemplated by the present invention is at least capable of directing the replication, and preferably also expression, of the subject chimeric polypeptide gene included in DNA segments to which it is operatively linked.
- a vector contemplated by the present invention includes a procaryotic replicon, i.e., a DNA sequence having the ability to direct autonomous replication and maintenance of the recombinant DNA molecule extrachromosomally in a procaryotic host cell, such as a bacterial host cell, transformed therewith.
- a procaryotic replicon i.e., a DNA sequence having the ability to direct autonomous replication and maintenance of the recombinant DNA molecule extrachromosomally in a procaryotic host cell, such as a bacterial host cell, transformed therewith.
- procaryotic replicon i.e., a DNA sequence having the ability to direct autonomous replication and maintenance of the recombinant DNA molecule extrachromosomally in a procaryotic host cell, such as a bacterial host cell, transformed therewith.
- procaryotic replicon i.e., a DNA sequence having the ability to direct autonomous replication and maintenance of the recombinant
- Those vectors that include a procaryotic replicon can also include a procaryotic promoter capable of directing the expression (transcription and translation) of the subject chimeric polypeptide gene in a bacterial host cell, such as E. coli. transformed therewith.
- a promoter is an expression control element formed by a DNA sequence that permits binding of RNA polymerase and transcription to occur. Promoter sequences compatible with bacterial hosts are typically provided in plasmid vectors containing convenient restriction sites for insertion of a DNA segment of the present invention.
- vector plasmids Typical of such vector plasmids are pUC8, pUC9, pBR322 and pBR329 available from Biorad Laboratories, (Richmond, CA) and pPL and pKK223 available from Pharmacia, Piscataway, N.J.
- Expression vectors compatible with eucaryotic cells preferably those compatible with vertebrate cells, can also be used to form the recombinant DNA molecules of the present invention.
- Eucaryotic cell expression vectors are well known in the art and are available from several commercial sources. Typically, such vectors are provided containing convenient restriction sites for insertion of the desired DNA segment.
- Typical of such vectors are pSVL and pKSV-10 (Pharmacia) , pBPV-lpML2d (International
- the eucaryotic cell expression vectors used to construct the recombinant DNA molecules of the present invention include a selection marker that is effective in an eucaryotic cell, preferably a drug resistance selection marker.
- a preferred drug resistance marker is the gene whose expression results in neomycin resistance, i.e., the neomycin phosphotransferase (neo) gene. Southern et al., J. Mol. APPI. Genet.. 1:327-341 (1982).
- retroviral expression vector refers to a DNA molecule that includes a promoter sequence derived from the long terminal repeat (LTR) region of a retrovirus genome.
- LTR long terminal repeat
- the expression vector is typically a retroviral expression vector that is preferably replication-incompetent in eucaryotic cells.
- retroviral vectors The construction and use of retroviral vectors has been described by Sorge, et al., Mol. Cell. Biol.. 4:1730-37 (1984) .
- complementary homopolymer tracts can be added to the DNA segment to be inserted and to the vector DNA.
- the vector and DNA segment are then joined by hydrogen bonding between the complementary homopolymer tracts can be added to the DNA segment to be inserted and to the vector DNA.
- the vector and DNA segment are then joined by hydrogen bonding between the complementary homopolymeric tails to form recombinant DNA molecules.
- Synthetic linkers containing one or more restriction sites provide an alternative method of joining the DNA segment to vectors.
- the DNA segment generated by endonuclease restriction digestion as described earlier, is treated with bacteriophage T4 DNA polymerase of E. coli DNA polymerase I, enzymes that remove protruding, 3' , single-stranded termini with their 3 • -5' exonucleotytic activities and fill in recessed 3' ends with their polymerizing activities. The combination of these activities therefore generates blunt-ended DNA segments.
- the blunt-ended segments are then incubated with a large molar excess of linker molecules in the presence of an enzyme that is able to catalyze the ligation of blunt-ended DNA molecules, such as bacteriophage T4 DNA ligase.
- an enzyme that is able to catalyze the ligation of blunt-ended DNA molecules
- the products of the reaction are DNA segments carrying polymeric linker sequences at their ends.
- These DNA segments are then cleaved with the appropriate restriction enzyme and ligated to an expression vector that has been cleaved with an enzyme that produces termini compatible with those of the DNA segment.
- Synthetic linkers containing a variety of restriction endonuclease sites are commercially available from a number of sources including International Biotechnologies, Inc., New Haven, CN.
- RNA equivalents of the above described recombinant DNA molecules are also contemplated by the present invention.
- the present invention also relates to a host cell transformed with a recombinant DNA molecule of the present invention preferably an rDNA capable of expressing a subject chimeric polypeptide.
- the host cell can be either procaryotic or eucaryotic.
- Bacterial cells are preferred procaryotic host cells and typically are a strain of E. coli such as, for example, the E. coli strain DH5 available from Bethesda Research Laboratories, Inc., Bethesda, MD.
- Preferred eucaryotic host cells include yeast and mammalian cells, preferably vertebrate cells such as those from a mouse, rat, monkey or human fibroblastic cell line.
- Preferred eucaryotic host cells include Chinese hamster ovary (CHO) cells available from the ATCC as CCL61 and NIH Swiss mouse embryo cells NIH/3T3 available from the ATCC as CRL 1658. Transformation of appropriate cell hosts with a recombinant DNA molecule of the present invention is accomplished by well known methods that typically depend on the type of vector used. With regard to transformation of procaryotic host cells, see, for example, Cohen et al., Proc. Natl. Acad. Sci. USA- 69:2110 (1972); and Maniatis et al. , Molecular Cloning. A Laboratory Mammal. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1982) .
- Successfully transformed cells i.e., cells that contain a recombinant DNA molecule of the present invention
- cells resulting from the introduction of an rDNA of the present invention can be cloned to produce monoclonal colonies. Cells from those colonies can be harvested, lysed and their DNA content examined for the presence of the rDNA using a method such as that described by Southern, J. Mol. Biol.. 98-503 (1975) or Berent et al., Biotech.. 3:208 (1985).
- successful transformation can be confirmed by well known immunological methods when the rDNA is capable of directing the expression of a subject chimeric polypeptide.
- cells successfully transformed with an expression vector produce proteins displaying tenascin receptor-binding region antigenicity.
- Samples of cells suspected of being transformed are harvested and assayed for the presence of tenascin receptor-binding region antigenicity using antipolypeptide antibodies specific for that region.
- the present invention also contemplates a culture of those cells, preferably a monoclonal
- a (clonally homogeneous) culture or a culture derived from a monoclonal culture, in a nutrient medium.
- the culture also contains a protein displaying tenascin receptor-binding activity.
- Nutrient media useful for culturing transformed host cells are well known in the art and can be obtained from several commercial sources. In embodiments wherein the host cell is mammalian, a "serum-free" medium is preferably used.
- a polypeptide of this invention preferably a peptide corresponding to formula pi or p2 is used in a pharmaceutically acceptable aqueous diluent composition to form an inoculum that, when administered in an effective amount, is capable of inducing antibodies that immunoreact with tenascin and inhibit its ability to facilitate cell attachment.
- inoculum in its various grammatical forms is used herein to describe a composition containing a polypeptide of this invention as an active ingredient used for the preparation of antibodies against an Integrin beta subunit.
- polypeptide When a polypeptide is used to induce antibodies it is to be understood that the polypeptide can be used alone, or linked to a carrier as a conjugate, or as a polypeptide polymer, but for ease of expression the various embodiments of the polypeptides of this invention are collectively referred to herein by the term "polypeptide", and its various grammatical forms. As already noted, one or more additional amino acid residues can be added to the amino- or carboxy- termini of the polypeptide to assist in binding the polypeptide to a carrier. Cysteine residues added at the amino- or carboxy-termini of the polypeptide have been found to be particularly useful for forming conjugates via disulfide bonds.
- conjugates can also be used.
- additional linking procedures include the use of Michael addition reaction products, di-aldehydes such as glutaraldehyde, Klipstein et al., J. Infect. Pis.. 147. 318-326 (1983) and the like, or the use of carbodimide technology as in the use of a water-soluble carbodimide to form amide links to the carrier.
- di-aldehydes such as glutaraldehyde, Klipstein et al., J. Infect. Pis.. 147. 318-326 (1983) and the like
- carbodimide technology as in the use of a water-soluble carbodimide to form amide links to the carrier.
- KLH keyhole limpet hemocyanin
- edestin thyroglobulin
- albumins such as bovine serum albumin (BSA) or human serum albumin (HSA)
- red blood cells such as sheep erythrocytes (SRBC)
- SRBC sheep erythrocytes
- tetanus toxoid cholera toxoid
- polyamino acids such as poly (D-lysine: D-glutamic acid) , and the like.
- the choice of carrier is more dependent upon the ultimate use of the inoculum and is based upon criteria not particularly involved in the present invention. For example, a carrier that does not generate an untoward reaction in the particular animal to be inoculated should be selected.
- the present inoculum contains an effective, immunogenic amount of a polypeptide of this invention, typically as a conjugate linked to a carrier.
- the effective amount of polypeptide or protein per unit dose depends, among other things, on the species of animal inoculated, the body weight of the animal and the chosen inoculation regimen as is well known in the art.
- Inocula typically contain polypeptide or protein concentrations of about 10 micrograms to about 500 milligrams per inoculation (dose) , preferably about 50 micrograms to about 50 milligrams per dose.
- unit dose refers to physically discrete units suitable as unitary dosages for animals, each unit containing a predetermined quantity of active material calculated to produce the desired immunogenic effect in association with the required diluent; i.e., carrier, or vehicle.
- the specifications for the novel unit dose of an inoculum of this invention are dictated by and are directly dependent on (a) the unique characteristics of the active material and the particular immunologic effect to be achieved, and (b) the limitations inherent in the art of compounding such active material for immunologic use in animals, as disclosed in detail herein, these being features of the present invention.
- Inocula are typically prepared from the dried solid polypeptide-conjugate by dispersing the polypeptide-conjugate in a physiologically tolerable (acceptable) diluent or vehicle such as water, saline or phosphate-buffered saline to form an aqueous composition.
- a physiologically tolerable (acceptable) diluent or vehicle such as water, saline or phosphate-buffered saline to form an aqueous composition.
- diluents are well known in the art and are discussed, for example, in Remington's Pharmaceutical Sciences. 16th Ed. , Mack Publishing Company, Easton, PA (1980) at pages 1465-1467.
- Inocula can also include an adjuvant as part of the diluent.
- Adjuvants such as complete Freund's adjuvant (CFA), incomplete Freund's adjuvant (IFA) and alum are materials well known in the art, and are available commercially from several sources.
- An antibody of the present invention whether polyclonal or monoclonal, immunorreacts with tenascin and a peptide according to formula pi.
- the antibody inhibits endothelial cell attachment.
- the antibody does not immunoreact with a peptide represented by the formula:
- antibody in its various grammatical forms is used herein to refer to immunoglobulin molecules and immunologically active portions of immunoglobulin molecules, i.e., molecules that contain an antibody combining site or paratope.
- Exemplary antibody molecules are intact immunoglobulin molecules, substantially intact immunoglobulin molecules and those portions of an immunoglobulin molecule that contain the paratope, including those portions known in the art as Fab, Fab', F(ab') 2 and F(v).
- an "antibody combining site” is that structural portion of an antibody molecule comprised of a heavy and light chain variable and hypervariable regions that specifically binds (immunoreacts with) antigen.
- the term “immunoreact” in its various forms means binding between an antigenic determinant-containing molecule and a molecule containing an antibody combining site such as a whole antibody molecule or a portion thereof.
- Antigenic determinant refers to the actual structural portion of the antigen that immunologically bound by an antibody combining site. The terms is also used interchangeably with “epitope”.
- a polyclonal antibody of the present invention immunoreacts with a subject polypeptide, preferably a polypeptide corresponding in amino acid residue sequence to the formula pi.
- a subject polyclonal antibody is further characterized as not substantially immunoreacting with a polypeptide having an amino acid residue sequence of the formula: Gly- Arg-Gly-Asp-Ser-Pro.
- a preferred polyclonal antibody is characterized as having the ability to immunoreact with tenascin and inhibit the capacity of tenascin promote cell attachment, tumor metastasis, angiogenesis and the like.
- a polyclonal antibody of the present invention is typically produced by immunizing a mammal with an inoculum of the present invention, preferably an inoculum containing a peptide corresponding to a Formula I and thereby induce in the mammal antibody molecules having the appropriate polypeptide immunospecificity.
- the antibody molecules are then collected from the mammal and isolated to the extent desired by well known techniques such as, for example, by iramunoaffinity chromatography using the immunizing polypeptide in the solid phase.
- the polyclonal antibody so produced can be used in, inter alia, the diagnostic methods and systems of the present invention to discriminate between activated and nonactivated platelets or nucleated cells and in therapeutic methods for the purpose of modulating cell adhesion, such as inhibiting platelet adhesion.
- a monoclonal antibody of the present invention is characterized as immunoreacting with an epitope formed by the amino acid residue sequence Ser- Arg-Arg-Gly-Asp-Met-Ser.
- a subject monoclonal antibody is further characterized as not immunoreacting with a polypeptide corresponding to the amino acid residue sequence Gly-Arg-Gly-Asp-Ser-Pro.
- a preferred monoclonal antibody is also characterized as having the ability to inhibit the specific binding between tenascin and its receptor, and thereby inhibit cell adhesion, metastasis, angiogenesis and the like.
- a monoclonal antibody in its various grammatical forms refers to a population of antibody molecules that contain only one species of antibody combining site capable of immunoreacting with a particular antigen.
- a monoclonal antibody composition thus typically displays a single binding affinity for any antigen with which it immunoreacts.
- a monoclonal antibody composition may therefore contain an antibody molecule having a plurality of antibody combining sites, each immunospecific for a different antigen, e.g., a bispecific monoclonal antibody.
- a monoclonal antibody is typically composed of antibodies produced by clones of a single cell called a hybridoma that secretes (produces) but one kind of antibody molecule.
- the hybridoma cell is formed by fusing an antibody-producing cell and a myeloma or other self-perpetuating cell line.
- Such antibodies were first described by Kohler and Milstein, Nature 256:495-497 (1975), which description is incorporated by reference.
- the present invention contemplates a method of forming a monoclonal antibody that immunoreacts with a polypeptide of formula pi, but does not immunoreact with a peptide of the formula Gly-Arg- Asp-Gly-Ser-Pro.
- the method comprises the steps of: (a) Immunizing an animal with a tenascin or a subject polypeptide, preferably a peptide according to formula pi. This is typically accomplished by administering an immunologically effective amount i.e., an amount sufficient to produce an immune response, of the immunogen to an immunologically competent mammal.
- the mammal is a rodent such as a rabbit, rat or mouse.
- a suspension of antibody-producing cells removed from the immunized mammal is then prepared. This is typically accomplished by removing the spleen of the mammal and mechanically separating the individual spleen cells is a physiologically tolerable medium using methods well known in the art.
- the suspended antibody producing cells are treated with a transforming agent capable of producing a transformed (“immortalized”) cell line.
- Transforming agents and their use to produce immortalized cell lines are well known in the art and include DNA viruses such as Epstein Bar Virus (EBV) , Simian Virus 40 (SV40) , Polyoma Virus and the like, RNA viruses such as Moloney Murine Leukemia Virus (Mo- MuLV) , Rous Sarcoma Virus and the like, myeloma cells such as P3X63-Ag8.653, Sp2/0-Agl4 and the like.
- treatment with the transforming agent results in the production of a hybridoma by fusing the suspended spleen cells with mouse myeloma cells from a suitable cell line by the use of a suitable fusion promoter.
- the preferred ratio is about 5 spleen cells per myeloma cell.
- the cell line used should preferably be of the so-called "drug resistant" type, so that unfused myeloma cells will not survive in a selective medium, while hybrids will survive.
- the most common class is 8-azaguanine resistant cell lines, which lack the enzyme hypoxanthine guanine phophoribosyl transferase and hence will not be supported by HAT (hypoxanthine, aminopterin, and thymidine) medium.
- HAT hypoxanthine, aminopterin, and thymidine
- the myeloma cell line used be of the so-called “non-secreting" type, in that it does not itself produce any antibody, although secreting types may be used. In certain cases, however. secreting myeloma lines may be preferred.
- the preferred fusion promoter is polyethylene glycol having an average molecule weight from about 1000 to about 4000 (commercially available as PEG 1000, etc.), other fusion promoters known in the art maybe
- the transformed cells are then cloned, preferably to monoclonality.
- the cloning is preferably performed in a tissue culture medium that will not support non-transformed cells.
- this is typically performed by diluting and culturing in separate containers, the mixture of unfused spleen cells, unfused myeloma cells, and fused cells (hybridomas) in a selective medium which will not support the unfused myeloma cells for a time sufficient to allow death of the unfused cells (about one week) .
- the dilution may be a type of limiting one, in which the volume of diluent is statistically calculated to isolate a certain number of cells (e.g., 1-4) in each separate container (e.g., each well of a microtiter plate).
- the medium is one (e.g., HAT medium) which will not support the drug-resistant (e.g., 8-azaguanine resistant) unfused myeloma cell line.
- tissue culture medium of the cloned transformants is evaluated for the presence of secreted antibody molecules that immunoreact with tenascin and a polypeptide according to formula pi.
- Peptide positive transformants are preferably further screened to identify those that do not react with the peptide Gly-Arg-Asp-Gly-Ser-Pro.
- step (f) Once a desired transformant has been identified in step (e) , it is selected and grown in a suitable tissue culture medium for a suitable length of time, followed by recovery of the desired antibody from the culture supernatant.
- the suitable medium and suitable length of culturing time are known or are readily determined.
- the desired hybridoma may be injected into mice, preferably syngenic or semisyngenic mice.
- the hybridoma will cause formation of antibody-producing tumors after a suitable incubation time, which will result in a high concentration of the desired antibody (about 5-20 mg/ml) in the bloodstream and peritoneal exudate (ascites) of the host mouse.
- DMEM Dulbecco's minimal essential medium
- a monoclonal antibody of the present invention can also be further purified by well known immunoaffinity chromatography methods by using in the solid phase a subject polypeptide with which the antibody immunoreacts.
- a monoclonal antibody produced by the above method can be used, for example, in diagnostic and therapeutic modalities wherein formation of a tenascin immunoreaction product is desired.
- Hybridomas and Methods of Preparation are those which are characterized as having the capacity to produce a subject monoclonal antibody. - 32 -
- hybridomas producing (secreting) antibody molecules having a desired immunospecificity i.e., having the ability to immunoreact with a particular protein, an identifiable epitope on a particular protein and/or a polypeptide.
- a desired immunospecificity i.e., having the ability to immunoreact with a particular protein, an identifiable epitope on a particular protein and/or a polypeptide.
- Particularly applicable is the hybridoma technology described by Niman et al., Proc. Natl. Acad. Sci. USA. 80:4949-4953 (1983), and by Galfre et al. , Meth. Enzy ol.. 73:3-46 (1981), which descriptions are incorporated herein by reference.
- a subject polypeptide can be used to modulate the attachment in vivo of cells expressing the tenascin receptor, e.g., endothelial cells and undifferentiated tumor cells.
- a subject polypeptide preferably a peptide corresponding to formula pi or p2
- a pharmaceutically acceptable composition that, when administered to a human subject in an effective amount, is capable of competitively inhibiting cell attachment to the subcellular matrix. That inhibition is believed to result in a decreased rate of tumor formation.
- the attachment of cells can be inhibited by intravenous and/or subcutaneous administration of an effective amount of a pharmaceutically acceptable composition comprising a subject polyclonal antibody that immunoreacts with a polypeptide corresponding to formula pi or p2.
- a preferred method of modulating cell adhesion contemplates administering a cell attachment-inhibiting amount of a subject monoclonal antibody that immunoreacts with a polypeptide corresponding to formula pi.
- the polypeptide- or antibody molecule- containing compositions administered take the form of solutions or suspensions, however, polypeptides can also take the form of tablets, pills, capsules, sustained release formulations or powders.
- the polypeptide-containing compositions typically contain about 0.1 uM to about 1.0 M of polypeptide as active ingredient, preferably about 1.0 uM to about 10 millimolar (mM)
- the antibody molecule- containing compositions typically contain about 10 ug/ml to about 20 mg/ml of antibody as active ingredient, preferably about 1 mg/ml to about 10 mg/ml.
- compositions that contains polypeptides or antibody molecules as active ingredients are well understood in the art.
- such compositions are prepared as injectables, either as liquid solutions or suspensions, however, solid forms suitable for solution in, or suspension in, liquid prior to injection can also be prepared.
- the preparation can also be emulsified.
- the active therapeutic ingredient is often mixed with excipients which are pharmaceutically acceptable and compatible with the active ingredient as are well known. Suitable excipients are, for example, water, saline, dextrose, glycerol, ethanol, or the like and combinations thereof.
- the composition can contain minor amounts of auxiliary substances such as wetting or emulsifying agents, pH buffering agents which enhance the effectiveness of the active ingredient.
- a polypeptide or antibody can be formulated into the therapeutic composition as neutralized pharmaceutically acceptable salt forms.
- Pharmaceutically acceptable salts include the acid addition salts (formed with the free amino groups of the polypeptide or antibody molecule) that are formed with inorganic acids such as, for example, hydrochloric or phosphoric acids, or such organic acids as acetic, tartaric, mandelic, and the like. Salts formed with the free carboxyl groups can also be derived from inorganic bases such as, for example, sodium, potassium, ammonium, calcium, or ferric hydroxides, and such organic bases as isopropylamine, trimethylamine, 2-ethylamino ethanol, histidine, procaine, and the like.
- the therapeutic polypeptide- or antibody containing compositions are conventionally administered intravenously, as by injection of a unit dose, for example.
- unit dose when used in reference to a therapeutic composition of the present invention refers to physically discrete units suitable as unitary dosages for humans, each unit containing a predetermined quantity of active material calculated to produce the desired therapeutic effect in association with the required diluent, i.e., carrier, or vehicle.
- compositions are administered in a manner compatible with the dosage formulation, and in a therapeutically effective amount.
- quantity to be administered depends on the subject to be treated, capacity of the subject to utilize the active ingredient, and degree of inhibition of receptor-ligand binding desired. Precise amounts of active ingredient required to be administered depend on the judgment of the practitioner and are peculiar to each individual. However, suitable dosage ranges are of the order of one to several milligrams of active ingredient per individual per day and depend on the route of administration. Suitable regimes for initial administration and booster shots are also variable, but are typified by an initial administration followed by repeated doses at one or more hour intervals by a subsequent injection or other administration. Alternatively, continuous intravenous infusion sufficient to maintain therapeutically effective concentrations in the blood are contemplated.
- therapeutically effective blood concentrations are in the range of about 0.1 mM to about 10 mM, preferably about 1.0 mM.
- Therapeutically effective blood concentrations of antibody molecules of the present invention are in the range of about 0.1 uM to about 10 uM, preferably 1.0 uM.
- a diagnostic system in kit form of the present invention includes, in an amount sufficient for at least one assay, a polypeptide, polyclonal antibody or monoclonal antibody of the present invention, as a separately packaged reagent. Instructions for use of the packaged reagent are also typically included. "Instructions for use” typically include a tangible expression describing the reagent concentration or at least one assay method parameter such as the relative amounts of reagent and sample to be admixed, maintenance time periods for reagent/sample admixtures, temperature, buffer conditions and the like.
- a diagnostic system for assaying for tumor cells in a sample comprises a package containing a subject antibody that immunoreacts with a polypeptide corresponding to formula pi.
- a diagnostic system for assaying for tumor cells in a sample comprises a package containing a subject monoclonal antibody.
- kits wherein the antibody molecules of the polyclonal or monoclonal antibody are linked to a label.
- a diagnostic system of the present invention further includes a label or indicating means capable of signaling the formation of a complex containing the antibody molecules of a polyclonal or monoclonal antibody of the present invention.
- complex refers to the product of a specific binding reaction such as an antibody-antigen or receptor-ligand reaction.
- Exemplary complexes are immunoreaction products.
- label and “indicating means” in their various grammatical forms refer to single atoms and molecules that are either directly or indirectly involved in the production of a detectable signal to indicate the presence of a complex.
- "In vivo" labels or indicating means are those useful within the body of a human subject and include 1 "ln, w Tc, 67 Ga, 186 Re, and 132 I. Any label or indicating means can be linked to or incorporated in an expressed protein, polypeptide, or antibody molecule that is part of an antibody or monoclonal antibody composition of the present invention, or used separately, and those atoms or molecules can be used alone or in conjunction with additional reagents.
- Such labels are themselves well-known in clinical diagnostic chemistry and constitute a part of this invention only insofar as they are utilized with otherwise novel protein methods and/or systems.
- Preferred labels include alkaline phosphatase
- labeling of, polypeptides and proteins is well known in the art.
- antibody molecules produced by a hybridoma can be labeled by metabolic incorporation of radioisotope-containing amino acids provided as a component in the culture medium.
- the techniques of protein conjugation or coupling through activated functional groups are particularly applicable. See, for example, Aurameas, et al., Scand. J. Immunol.. Vol. 8 Suppl. 7:7-23 (1978), Rodwell et al., Biotech.. 3:889-894 (1984), and U.S. Pat. No. 4,493,795.
- the diagnostic systems can also include, preferably as a separate package, a specific binding agent.
- a "specific binding agent” is a molecular entity capable of selectively binding a reagent species of the present invention but is not itself a protein expression product, polypeptide, or antibody molecule of the present invention.
- Exemplary specific binding agents are antibody molecules, complement proteins or fragments thereof, protein A and the like.
- the specific binding agent can bind the antibody molecule or polypeptide of this invention when it is present as part of a complex.
- the specific binding agent is labeled.
- the agent is typically used as an amplifying means or reagent.
- the labeled specific binding agent is capable of specifically binding the amplifying means when the amplifying means is bound to a reagent species-containing complex.
- the diagnostic kits of the present invention can be used in an "ELISA" format to detect the presence or quantity of fibrinogen-bound platelets in a body fluid sample such as serum, plasma or urine.
- ELISA refers to an enzyme-linked immunosorbent assay that employs an antibody or antigen bound to a solid phase and an enzyme-antigen or enzyme-antibody conjugate to detect and quantify the amount of an antigen or antibody present in a sample.
- a description of the ELISA technique is found in Chapter 22 of the 4th
- the expressed protein, polypeptide, or antibody molecule of the present invention can be affixed to a solid matrix to form a solid support that is separately packaged in the subject diagnostic systems.
- the reagent is typically affixed to the solid matrix by adsorption from an aqueous medium although other modes of affixation, well known to those skilled in the art can be used.
- Useful solid matrices are well known in the art. Such materials include the cross-linked dextran available under the trademark SEPHADEX from Pharmacia Fine Chemicals (Piscataway, NJ) ; agarose; beads of polystyrene beads about 1 micron to about 5 millimeters in diameter available from Abbott Laboratories of North Chicago, IL; polyvinyl chloride, polystyrene, cross- linked polyacrylamide, nitrocellulose- or nylon-based webs such as sheets, strips or paddles; or tubes, plates or the wells of a microtiter plate such as those made from polystyrene or polyvinylchloride.
- the reagent species, labeled specific binding agent or amplifying reagent of any diagnostic system described herein can be provided in solution, as a liquid dispersion or as a substantially dry power, e»q., in lyophilized form.
- the indicating means is an enzyme
- the enzyme's substrate can also be provided in a separate package of a system.
- a solid support such as the before-described microtiter plate and one or more buffers can also be included as separately packaged elements in this diagnostic assay system.
- the packages discussed herein in relation to diagnostic systems are those customarily utilized in diagnostic systems.
- Such packages include glass and plastic (e.g., polyethylene, polypropylene and polycarbonate) bottles, vials, plastic and plastic-foil laminated envelopes and the like.
- the present invention contemplates any method that results in detecting tenascin, by producing a complex containing an antibody molecule contained in a polyclonal antibody or monoclonal antibody of the present invention.
- a tumor biopsy sample and 15 I- labeled antibody molecules are admixed.
- the immunoreaction admixture thus formed is maintained under immunological assay conditions for a time period sufficient for any undifferentiated tumor cells expressing tenascin to immunoreact with the labeled antibodies and form a labeled immunoreaction product.
- the labeled immunoreaction products are then separated from the non-reacted labeled-antibodies, typically by centrifugation sufficient to pellet all cells present in the sample. The amount of labeled immunoreaction product formed is then assayed.
- Immunological assay conditions are those that maintain the immunological activity of the antibody molecules contained in a polyclonal or monoclonal antibody of this invention and the Integrin molecules sought to be assayed. Those conditions include a temperature range of about 4 degrees C to about 45 degrees C, preferably about 37 degrees C, a pH value range of about 5 to about 9, preferably about 7 and an ionic strength varying from that of distilled water to that of about one molar sodium chloride, preferably about that of physiological saline. Methods for optimizing such conditions are well known in the art.
- an aliquot of an antibody of this invention having antibody molecules linked to an in vivo label are intravenously administered to a subject. After a predetermined period of time sufficient for the antibody molecules to immunoreact, the subject is then assayed for the presence of tenascin-containing labeled immunoreaction products.
- Peptides used in cell attachment assays were assayed for purity by HPLC and for cytotoxicity.
- the peptides SRRGDMS-NH 2 , MGSRSRD-NH 2 , GRGDSP-NH 2 and LLGAKQAGDV-NH 2 purchased from Multiple Peptide
- Conjugates of peptide were prepared by mixing 1 mg each peptide and keyhole limpet homocyamin (KLH) or bovine serum albumin (BSA) , adding glutaraldehyde (.025 M) and further mixing for 3 hours at room temperature. Conjugates were then concentrated and buffer exchanged into phosphate buffered saline (PBS) using Centricon 10 concentrators (Amicon) .
- KLH keyhole limpet homocyamin
- BSA bovine serum albumin
- Tenascin was isolated from the spent culture media of U251 human glioma cells. Culture media was first concentrated by salt precipitation of proteins with 40% ammonium sulfate. The precipitated material was then resolubilized in a small volume of PBS, containing a 1% Triton-X 100, 2 M area and size chromatographed over a 2.5 cm X 120 cm Sephacryl-500 column. Fractions corresponding to tenascin as determined by SDS-PAGE and immunoblot were pooled. Pooled fractions were then further purified by DEAE anion exchange chromatography and finally 81C6 anti- tenascin monoclonal antibody affinity chromatography. The resulting tenascin is greater than 99% pure with yields of approximately 70%.
- the human cell line human glioma U251, was grown in DMEM (GIBCO Laboratories, Grand Island, NY) containing 10% FBS (Tissue Culture Biologicals, Tulare, CA) and gentamicin. Cultures were maintained in a humidified 7% C0 2 atmosphere at 37 ⁇ C. Cell attachment assays were performed with cells harvested from cultures in log phase growth. Typically, cells were treated with Dil, a fluorescent dye, (40 ⁇ g/ml) (Molecular Probes) for 1 hour prior to cell harvest. Cells were harvested using 0.02 M EDTA in PBS to detach the cells. The harvested cells were centrifuged to form a pellet of cells.
- the resultant pellet of cells was resuspended in DMEM - 1% BSA and aliquoted into microtiter wells (3 x 10 5 cells/ml) , to which either peptides or antibodies in DMEM - 1% BSA were separately admixed to form either a cell-peptide admixture or cell antibody admixture.
- the admixtures were aliquoted to individual wells of Falcon pro-bind plates.
- the tissue culture plates containing ells in the absence of presence of peptide or antibody were then maintained for 1 to 1.5 hours at 37°C.
- the plates were subjected to cytofluorometric analysis to determine the amount of fluorescent dye, thereby obtaining a relative indication of cell attachment.
- the individual wells were coated with protein or protein- peptide conjugates at various concentrations for 4 to 16 hours prior to the addition of cells.
- the peptide SRRGDMS-NH 2 from human tenascin was examined in cell attachment inhibition assays.
- the assays were performed as described for cell attachment assays in Example 3 on the extracellular matrix substrates, tenascin (TN) , plasma fibronectin (FN) and laminin (LM) .
- the attachment of cells to the different substrates was measured in the presence of media or synthetic peptides admixed at a final concentration of 1 mg/ml.
- the synthetic peptides evaluated in the assay for their ability to inhibit the interaction of cells with the substrate included the following: 1) SRRGDMS (tenascin-derived) ; 2) GRGDSP (fibronectin cell attachment signal-derived) ; 3) GRGESP (negative control) ; and 4) SDDYSGSGSG (glycosaminoglycan attachment signal of serglycin-derived) .
- the activity of the SRRGDMS-NH 2 peptide was further assayed by titrating peptide inhibition of cell attachment to tenascin and fibronectin.
- the assays were performed as described in Example 3 and 4 with the concentration of the SRRGDMS-NH 2 peptide ranging in from 1 ⁇ M up to 40 mM.
- GRGDSP conjugated to BSA, promoted cell attachment as described in Example 3 and shown in Figure 3.
- the effect of admixed soluble synthetic peptides on cell attachment to peptide-coated wells was determined in inhibition assays performed as described in Example 4.
- Individual wells of the microtiter plates were coated with either 1. ⁇ g/ml of SRRGDMS-BSA or 0.5 ⁇ g/ml of GRGDSP-BSA. Attachment of U251 cells to the peptide- coated wells was assayed either in the absence of peptide, for measuring maximum cell attachment, or in the presence of 1 mg/ml of the following synthetic peptides: SRRGDMS-NH 2; GRGDSP-NH 2 ; or MGSRSRD-NH 2 .
- Antibodies to tenascin were prepared by immunization of rabbits with purified human tenascin in MPL - TDM adjuvant (RIBI Immunochem Research, Hamilton, MT) . Rabbit polyclonal antibodies were raised against SRRGDMS-NH 2 coupled to KLH using glutaraldehyde.
- Peptide - KLH conjugates in adjuvant were used to immunize rabbits for preparation of anti peptide.
- Immunoglobin fractions of antisera were prepared by sodium sulfate precipitation and resuspension in PBS.
- Antibodies were affinity purified on purified human tenascin-sepharose.
- An IgG fraction of the anti peptide antibodies was prepared and examined in ELISA for reactivity to SRRGDMS-NH 2 and control peptide MGSRSRD- NH 2 and other peptides coupled to BSA.
- the anti- SRRGDMS antibody at a concentration of lmg/ l IgG was admixed into microtiter wells previously coated with separate solutions of above synthetic peptides at a final concentration of 1 ⁇ g/ml to form an immunoreaction admixture.
- the microtiter plate was maintained for one hour to result in an immunoreacted product. The maintenance period was followed by washing with PBS containing 0.02% Tween 20.
- the immunoreactant products were detected by admixing a solution of goat anti- rabbit alkaline phosphatase conjugated secondary antibodies into each well to form a second immunoreactant admixture.
- the resultant immunoreaction was detected by the chromogenic substrate, PNPP (Signa Chemicals, St. Louis, MO) .
- the optical density of the microtiter plate was measured at an absorbance of 450 n .
- the assays were performed as described in Example 4 with the exception that antibodies to either tenascin or SRRGDMS were used in place of soluble peptides. Either 100 ⁇ g anti-tenascin antibody or 50 ⁇ g anti-SRRGDMS antibody affinity purified on tenascin was used in the assay.
- both anti- tenascin and the anti-SRRGDMS antibodies inhibited cell attachment to SRRGDMS-BSA but not cell attachment to GRGDSP-BSA.
- These anti-peptide antibodies recognize both intact tenascin as well as the peptide to which it was raised but not GRGDSP-BSA.
- the specificity of the interaction with SRRGDMS-BSA and not GRGDSP-BSA confirms that the epitopes are unique.
- the specificity of antibody inhibition contrasts with the results of peptide inhibition in Examples 4 and 5 in which either SRRGDMS or GRGDSP peptide were effective in inhibiting tenascin cell attachment.
- SRRGDMS or GRGDSP peptide were effective in inhibiting tenascin cell attachment.
- the likely explanation for the less selective properties of peptides is that the antibodies recognize a particular structural conformation, while the peptides may assume large number of conformations capable of interacting with integrin receptors.
- the results of anti peptide antibody cell attachment inhibition also imply that these antibody may be used to selectively block tenascin activities mediated by the SRRGDMS site.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Immunology (AREA)
- Genetics & Genomics (AREA)
- Gastroenterology & Hepatology (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Zoology (AREA)
- Toxicology (AREA)
- Biomedical Technology (AREA)
- Oncology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Mycology (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Peptides Or Proteins (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Polypeptide de la formule: X-Ser-Arg-Arg-Gly-Asp-Met-Ser-Z dans laquelle X représente une chaîne comportant 1 à 20 restes d'acides aminés ou un groupe amino-terminal et Z représente une chaîne comportant 1 à 20 restes d'acides aminés ou un groupe carboxy-terminal. Les polypeptides imitent la ténascine dans son pouvoir de stimulation de la fixation des cellules.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US60592090A | 1990-10-29 | 1990-10-29 | |
US605,920 | 1990-10-29 | ||
US60566790A | 1990-10-30 | 1990-10-30 | |
US605,667 | 1990-10-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1992007872A1 true WO1992007872A1 (fr) | 1992-05-14 |
Family
ID=27085019
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1991/008018 WO1992007872A1 (fr) | 1990-10-29 | 1991-10-29 | Peptides apparentes a la tenascine |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO1992007872A1 (fr) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0781297A4 (fr) * | 1994-09-16 | 1999-05-19 | Scripps Research Inst | Derives de cytotactine stimulant la connexion neuronale et la croissance des axones et des dendrites, leurs procedes de preparation et d'utilisation |
WO2000066628A1 (fr) * | 1999-05-01 | 2000-11-09 | University Of Medicine And Dentistry Of New Jersey | Croissance et guidage des neurites par la tenascine-c |
US6335014B1 (en) * | 1998-06-17 | 2002-01-01 | The Institute Of Physical And Chemical Research | Medicament for suppressing cancer metastasis |
WO2009028838A1 (fr) * | 2007-08-28 | 2009-03-05 | Industry-Academy Cooperation Foundation, Dankook University | Aptamères peptidiques dirigés anti- ténascine c |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4614517A (en) * | 1982-08-04 | 1986-09-30 | La Jolla Cancer Research Foundation | Tetrapeptide |
US4638291A (en) * | 1984-06-13 | 1987-01-20 | Ford Motor Company | Sensor assembly for a radiator mounted coolant level monitoring system |
US4857508A (en) * | 1987-12-03 | 1989-08-15 | Monsanto Company | Novel platelet-aggregation inhibitor peptide derivatives |
-
1991
- 1991-10-29 WO PCT/US1991/008018 patent/WO1992007872A1/fr active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4614517A (en) * | 1982-08-04 | 1986-09-30 | La Jolla Cancer Research Foundation | Tetrapeptide |
US4638291A (en) * | 1984-06-13 | 1987-01-20 | Ford Motor Company | Sensor assembly for a radiator mounted coolant level monitoring system |
US4857508A (en) * | 1987-12-03 | 1989-08-15 | Monsanto Company | Novel platelet-aggregation inhibitor peptide derivatives |
Non-Patent Citations (2)
Title |
---|
CELL, Volume 44, issued 28 February 1986, E. RUOSLAHTI et al., "Arg-Gly-Asp: A Versatile Cell Recognition Signal", pages 517-518. * |
SCIENCE, Volume 238, issued 23 October 1987, E. RUOSLAHTI et al., "New Perspectives in Cell Adhesion: RGD and Integrins", pages 491-497. * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0781297A4 (fr) * | 1994-09-16 | 1999-05-19 | Scripps Research Inst | Derives de cytotactine stimulant la connexion neuronale et la croissance des axones et des dendrites, leurs procedes de preparation et d'utilisation |
US6335014B1 (en) * | 1998-06-17 | 2002-01-01 | The Institute Of Physical And Chemical Research | Medicament for suppressing cancer metastasis |
WO2000066628A1 (fr) * | 1999-05-01 | 2000-11-09 | University Of Medicine And Dentistry Of New Jersey | Croissance et guidage des neurites par la tenascine-c |
WO2009028838A1 (fr) * | 2007-08-28 | 2009-03-05 | Industry-Academy Cooperation Foundation, Dankook University | Aptamères peptidiques dirigés anti- ténascine c |
KR100958840B1 (ko) * | 2007-08-28 | 2010-05-24 | 단국대학교 산학협력단 | 항-테나신 c 펩타이드 및 그의 용도 |
US9018351B2 (en) | 2007-08-28 | 2015-04-28 | Industry-Academy Cooperation Foundation, Dankook University | Peptide aptamers against tenascin C |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5204445A (en) | Peptides and antibodies that inhibit integrin-ligand binding | |
US5149780A (en) | Peptides and antibodies that inhibit integrin-ligand binding | |
US5196511A (en) | Peptides and antibodies that inhibit integrin-ligand binding | |
EP0326595B1 (fr) | Peptides et anticorps empechant l'adherence de plaquettes | |
US5262520A (en) | Peptides and antibodies that inhibit integrin-ligand binding | |
EP0309548B1 (fr) | Segments d'adn apparentes au facteur tissulaire humain, polypeptides et anticorps | |
EP0619839B1 (fr) | Nouveaux polypeptides promoteurs de la fixation de cellules | |
US5589570A (en) | Integrin alpha subunit cytoplasmic domain polypeptides and methods | |
US5310729A (en) | Interferon-related polypeptides as CR2 ligands and their use for modulating immune cell functions | |
EP0781297A1 (fr) | Derives de cytotactine stimulant la connexion neuronale et la croissance des axones et des dendrites, leurs procedes de preparation et d'utilisation | |
WO1992007872A1 (fr) | Peptides apparentes a la tenascine | |
EP0575522B1 (fr) | Polypeptides derives de la proteine endonuclease du virus de l'immunodeficience humaine | |
PT91877A (pt) | Processo de preparacao de polipeptidos reactivos cr2 para inibicao da infeccao provocada pelo virus epstein-barr (ebv) | |
AU622117B2 (en) | Peptides and antibodies that inhibit platelet adhesion | |
AU671950C (en) | Polypeptides derived from the human immunodeficiency virus endonuclease protein | |
HK1060578A (en) | Human tissue factor related dna segments, polypeptides and antibodies |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CA JP |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE |
|
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: CA |