WO1992013018A1 - Polymers and products derived therefrom - Google Patents
Polymers and products derived therefrom Download PDFInfo
- Publication number
- WO1992013018A1 WO1992013018A1 PCT/EP1992/000129 EP9200129W WO9213018A1 WO 1992013018 A1 WO1992013018 A1 WO 1992013018A1 EP 9200129 W EP9200129 W EP 9200129W WO 9213018 A1 WO9213018 A1 WO 9213018A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polymer
- group
- amino
- compound
- activating
- Prior art date
Links
- 229920000642 polymer Polymers 0.000 title claims abstract description 132
- 150000001875 compounds Chemical class 0.000 claims abstract description 34
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims abstract description 21
- 125000003396 thiol group Chemical group [H]S* 0.000 claims abstract description 21
- 239000004814 polyurethane Substances 0.000 claims abstract description 18
- XSQUKJJJFZCRTK-UHFFFAOYSA-N urea group Chemical group NC(=O)N XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims abstract description 10
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000004952 Polyamide Substances 0.000 claims abstract description 9
- 229920002396 Polyurea Polymers 0.000 claims abstract description 9
- 150000001408 amides Chemical class 0.000 claims abstract description 9
- 229920002647 polyamide Polymers 0.000 claims abstract description 9
- 102000004169 proteins and genes Human genes 0.000 claims description 48
- 108090000623 proteins and genes Proteins 0.000 claims description 48
- 238000006243 chemical reaction Methods 0.000 claims description 26
- 230000003213 activating effect Effects 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 22
- 239000007788 liquid Substances 0.000 claims description 9
- 230000015572 biosynthetic process Effects 0.000 claims description 8
- 229920003226 polyurethane urea Polymers 0.000 claims description 8
- 230000000694 effects Effects 0.000 claims description 6
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 5
- 125000005842 heteroatom Chemical group 0.000 claims description 4
- 239000001257 hydrogen Substances 0.000 claims description 4
- 229910052739 hydrogen Inorganic materials 0.000 claims description 4
- 125000000217 alkyl group Chemical group 0.000 claims description 3
- 125000002947 alkylene group Chemical group 0.000 claims description 3
- 125000004429 atom Chemical group 0.000 claims description 3
- 125000006575 electron-withdrawing group Chemical group 0.000 claims description 3
- 239000003446 ligand Substances 0.000 claims description 3
- 125000005647 linker group Chemical group 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 3
- 229920001184 polypeptide Polymers 0.000 claims description 3
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 3
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 3
- VQKDJSXHVSAIAR-UHFFFAOYSA-N 1h-imidazol-2-yl carbamate Chemical group NC(=O)OC1=NC=CN1 VQKDJSXHVSAIAR-UHFFFAOYSA-N 0.000 claims description 2
- 125000000732 arylene group Chemical group 0.000 claims description 2
- 229920002635 polyurethane Polymers 0.000 abstract description 10
- 239000000203 mixture Substances 0.000 abstract description 4
- 238000000926 separation method Methods 0.000 abstract description 3
- 125000001424 substituent group Chemical group 0.000 abstract description 3
- 239000000243 solution Substances 0.000 description 45
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 33
- 239000000523 sample Substances 0.000 description 25
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 23
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 21
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 21
- 239000000047 product Substances 0.000 description 15
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 14
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 14
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 12
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- KZNICNPSHKQLFF-UHFFFAOYSA-N dihydromaleimide Natural products O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 description 12
- PFKFTWBEEFSNDU-UHFFFAOYSA-N 1,1'-Carbonyldiimidazole Substances C1=CN=CN1C(=O)N1C=CN=C1 PFKFTWBEEFSNDU-UHFFFAOYSA-N 0.000 description 9
- 239000008055 phosphate buffer solution Substances 0.000 description 9
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 8
- 239000008367 deionised water Substances 0.000 description 8
- 239000000178 monomer Substances 0.000 description 8
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 7
- 238000010041 electrostatic spinning Methods 0.000 description 7
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 7
- 235000017557 sodium bicarbonate Nutrition 0.000 description 7
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 7
- YXMISKNUHHOXFT-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) prop-2-enoate Chemical compound C=CC(=O)ON1C(=O)CCC1=O YXMISKNUHHOXFT-UHFFFAOYSA-N 0.000 description 6
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- MHABMANUFPZXEB-UHFFFAOYSA-N O-demethyl-aloesaponarin I Natural products O=C1C2=CC=CC(O)=C2C(=O)C2=C1C=C(O)C(C(O)=O)=C2C MHABMANUFPZXEB-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 230000008878 coupling Effects 0.000 description 6
- 238000010168 coupling process Methods 0.000 description 6
- 238000005859 coupling reaction Methods 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- SUTWPJHCRAITLU-UHFFFAOYSA-N 6-aminohexan-1-ol Chemical compound NCCCCCCO SUTWPJHCRAITLU-UHFFFAOYSA-N 0.000 description 5
- 102000008186 Collagen Human genes 0.000 description 5
- 108010035532 Collagen Proteins 0.000 description 5
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 5
- 229920001436 collagen Polymers 0.000 description 5
- 125000005442 diisocyanate group Chemical group 0.000 description 5
- 239000000835 fiber Substances 0.000 description 5
- 239000011541 reaction mixture Substances 0.000 description 5
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 5
- BCMYXYHEMGPZJN-UHFFFAOYSA-N 1-chloro-2-isocyanatoethane Chemical compound ClCCN=C=O BCMYXYHEMGPZJN-UHFFFAOYSA-N 0.000 description 4
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- -1 haloacetyl isocyanates Chemical class 0.000 description 4
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 4
- 239000003208 petroleum Substances 0.000 description 4
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 4
- GRNOZCCBOFGDCL-UHFFFAOYSA-N 2,2,2-trichloroacetyl isocyanate Chemical compound ClC(Cl)(Cl)C(=O)N=C=O GRNOZCCBOFGDCL-UHFFFAOYSA-N 0.000 description 3
- FSFFIYOYBDBDMQ-UHFFFAOYSA-N 6-(2-methylprop-2-enoylamino)hexanoic acid Chemical compound CC(=C)C(=O)NCCCCCC(O)=O FSFFIYOYBDBDMQ-UHFFFAOYSA-N 0.000 description 3
- SLXKOJJOQWFEFD-UHFFFAOYSA-N 6-aminohexanoic acid Chemical compound NCCCCCC(O)=O SLXKOJJOQWFEFD-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 229960002684 aminocaproic acid Drugs 0.000 description 3
- 239000004202 carbamide Substances 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 239000012948 isocyanate Substances 0.000 description 3
- 239000002736 nonionic surfactant Substances 0.000 description 3
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229960002317 succinimide Drugs 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- QOSSAOTZNIDXMA-UHFFFAOYSA-N Dicylcohexylcarbodiimide Chemical compound C1CCCCC1N=C=NC1CCCCC1 QOSSAOTZNIDXMA-UHFFFAOYSA-N 0.000 description 2
- 102400001368 Epidermal growth factor Human genes 0.000 description 2
- 101800003838 Epidermal growth factor Proteins 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 230000027455 binding Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 150000002009 diols Chemical class 0.000 description 2
- 230000005686 electrostatic field Effects 0.000 description 2
- 229940116977 epidermal growth factor Drugs 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 150000002513 isocyanates Chemical class 0.000 description 2
- RBQRWNWVPQDTJJ-UHFFFAOYSA-N methacryloyloxyethyl isocyanate Chemical compound CC(=C)C(=O)OCCN=C=O RBQRWNWVPQDTJJ-UHFFFAOYSA-N 0.000 description 2
- 230000009871 nonspecific binding Effects 0.000 description 2
- CWEFIMQKSZFZNY-UHFFFAOYSA-N pentyl 2-[4-[[4-[4-[[4-[[4-(pentoxycarbonylamino)phenyl]methyl]phenyl]carbamoyloxy]butoxycarbonylamino]phenyl]methyl]phenyl]acetate Chemical compound C1=CC(CC(=O)OCCCCC)=CC=C1CC(C=C1)=CC=C1NC(=O)OCCCCOC(=O)NC(C=C1)=CC=C1CC1=CC=C(NC(=O)OCCCCC)C=C1 CWEFIMQKSZFZNY-UHFFFAOYSA-N 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000009870 specific binding Effects 0.000 description 2
- 150000003568 thioethers Chemical class 0.000 description 2
- KYRUKRFVOACELK-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 3-(4-hydroxyphenyl)propanoate Chemical compound C1=CC(O)=CC=C1CCC(=O)ON1C(=O)CCC1=O KYRUKRFVOACELK-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- QLUSCAGZZUFIMY-UHFFFAOYSA-N 1-[(6-benzylidenecyclohexa-2,4-dien-1-yl)amino]pyrrolidine-2,5-dione Chemical compound C1(CCC(N1NC1C(C=CC=C1)=CC1=CC=CC=C1)=O)=O QLUSCAGZZUFIMY-UHFFFAOYSA-N 0.000 description 1
- HQWDKLAIDBOLFE-UHFFFAOYSA-M 2-fluoro-1-methylpyridin-1-ium;4-methylbenzenesulfonate Chemical compound C[N+]1=CC=CC=C1F.CC1=CC=C(S([O-])(=O)=O)C=C1 HQWDKLAIDBOLFE-UHFFFAOYSA-M 0.000 description 1
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 1
- 125000004801 4-cyanophenyl group Chemical group [H]C1=C([H])C(C#N)=C([H])C([H])=C1* 0.000 description 1
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical compound ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 150000001414 amino alcohols Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 125000002603 chloroethyl group Chemical group [H]C([*])([H])C([H])([H])Cl 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000013068 control sample Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 238000005421 electrostatic potential Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 125000001188 haloalkyl group Chemical group 0.000 description 1
- 125000004836 hexamethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[*:1] 0.000 description 1
- 150000002430 hydrocarbons Chemical group 0.000 description 1
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 1
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 1
- 125000005027 hydroxyaryl group Chemical group 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- CQUTXCKGINHWKG-UHFFFAOYSA-N isocyanato prop-2-enoate Chemical compound C=CC(=O)ON=C=O CQUTXCKGINHWKG-UHFFFAOYSA-N 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- VHRYZQNGTZXDNX-UHFFFAOYSA-N methacryloyl chloride Chemical compound CC(=C)C(Cl)=O VHRYZQNGTZXDNX-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 125000000636 p-nitrophenyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)[N+]([O-])=O 0.000 description 1
- 125000000538 pentafluorophenyl group Chemical group FC1=C(F)C(F)=C(*)C(F)=C1F 0.000 description 1
- 239000005056 polyisocyanate Substances 0.000 description 1
- 229920001228 polyisocyanate Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000011514 reflex Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000006748 scratching Methods 0.000 description 1
- 230000002393 scratching effect Effects 0.000 description 1
- 239000012265 solid product Substances 0.000 description 1
- 239000011877 solvent mixture Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- AVWRKZWQTYIKIY-UHFFFAOYSA-N urea-1-carboxylic acid Chemical compound NC(=O)NC(O)=O AVWRKZWQTYIKIY-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G69/00—Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
- C08G69/48—Polymers modified by chemical after-treatment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/18—Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/22—Polypeptides or derivatives thereof, e.g. degradation products
- A61L27/227—Other specific proteins or polypeptides not covered by A61L27/222, A61L27/225 or A61L27/24
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/54—Biologically active materials, e.g. therapeutic substances
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/10—Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/83—Chemically modified polymers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/20—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
- A61L2300/252—Polypeptides, proteins, e.g. glycoproteins, lipoproteins, cytokines
Definitions
- the invention relates to polymers and to products derived therefrom. More particularly, fibre-forming or film-forming polyamide, polyurethane or polyurea polymers are provided bearing active substituents which permit the covalent attachment of compounds to the polymers. Applications for such "activated" fibres include affinity separation
- polyurethane and polyurea polymers is known.
- polyurethane polymers comprise the reaction products of polyisocyanates and polyhydroxy compounds.
- Fibres or films can be prepared from solutions or melts of such polymers having a sufficiently high molecular weight.
- GB-A-1 530 990 describes the production of electrostatically spun polyurethane tubular
- GB-A-1 527 592 describes the use of a mat of
- electrostically spun polyurethane fibres in a product suitable for use as a wound dressing.
- the invention provides a fibre-forming or film-forming polyamide, polyurethane or polyurea polymer characterised in that the polymer contains activating groups attached to the polymer through the nitrogen atom of the amide, urethane or urea groups of the polymer, the activating groups being capable of reaction with the amino or thiol group of a compound containing an amino or thiol group to effect covalent attachment of the compound to the polymer e.g. by the formation of an amide or thioether link, respectively.
- the invention also extends to the polymer in shaped form e.g. fibrous or film form.
- the polymer has an amino or thiol group-containing compound covalently attached thereto by the formation of a link by reaction between the activating group of the polymer and the amino or thiol group of the compound.
- containing the compound comprises passing the liquid through a mat of fibres of the activated polymer of the invention.
- the polymers of the invention can be prepared by modifying any polyamide, polyurethane or polyurea having fibre-forming or film-forming
- the polymer may be an elastomer and, in a preferred embodiment of the invention, a
- polyetherurethane is employed.
- suitable commercially available polymers from which polymers of the invention can be prepared include, but are not limited to, BIOMERTM, PELLETHANETM, TECOFLEXTM and ESTANETM polymers.
- Preferred activating groups include an imidazolyl carbamate group, a 14methyl-2-pyrydyl group or a group having the formula -COOZ wherein Z is an electron-withdrawing group.
- Functional groups are classified as electron-withdrawing groups relative to hydrogen, e.g. -NO 2 and -I groups draw electrons to themselves more than a hydrogen atom occupying the same position in the molecule, J. March, Advanced
- Z groups include N-succinimido, benzylidene aniline, pentafluorophenyl, 4-nitrophenyl, 4-cyanophenyl, 4-alkylsulphonylphenyl, acyl, 4-acylphenyl, 4-dialkylaminocarbonylphenyl, 4-alkoxycarbonylphenyl and 4-alkoxysulphonylphenyl.
- invention comprises units having the formula o r
- 0 or 1 is an amide, urethane or urea group in the polymer backbone, L and L' are each independently a linking group, R is hydrogen or alkyl, Y is an amide, urethane or urea group in the polymer backbone, L and L' are each independently a linking group, R is hydrogen or alkyl, Y is an amide, urethane or urea group in the polymer backbone, L and L' are each independently a linking group, R is hydrogen or alkyl, Y is an amide, urethane or urea group in the polymer backbone, L and L' are each independently a linking group, R is hydrogen or alkyl, Y is an amide, urethane or urea group in the polymer backbone, L and L' are each independently a linking group, R is hydrogen or alkyl, Y is an amide, urethane or urea group in the polymer backbone, L and L' are each independently a linking group, R is
- n is an integer from 10 to 150, preferably from 30 to 120.
- L and L' together with the atoms linking them serve to space the activating group Y away from the polymer backbone.
- Each of L and L' may comprise one or more divalent hydrocarbon groups such as substituted or unsubstituted alkylene and arylene groups which are connected or terminated with
- L comprises a chain of from 4 to 50 atoms separating the activating group or the activating group-containing moiety from the polymer backbone.
- L and L' groups are shown in the following schematic representations of polyurethane polymers of the invention wherein the term "Polymer” is used to indicate the remainder of the polyurethane polymer which contains further urethane groups similarly substituted: ,
- the compound is a protein or a polypeptide.
- the protein may be a ligand suitable for use in affinity chromatography e.g. an antibody.
- the protein may be a cell-compatible protein such as collagen which could render the polymer suitable for use as a cell support medium.
- the polypeptide may be a growth factor, e.g. Epidermal Growth Factor (EGF)
- the activating group reacts directly with the amino group-containing compound. Preferably, such reaction will take place under physiological reaction conditions.
- One method comprises reacting a fibreforming or film-forming polyamide, polyurethane or polyurea with a haloisocyanate or an ethylenically unsaturated isocyanate and subsequently grafting an ethylenically unsaturated monomer comprising an activating group onto the product.
- haloisocyanates include haloalkyl and haloacetyl isocyanates e.g. 2-chloroethyl isocyanate and trichloroacetyl isocyanate.
- ethylenically unsaturated isocyanates include isocyanato acrylate monomers e.g.
- Examples of ethylenically unsaturated monomers comprising an activating group include N-acryloyloxy-succinimide and the succinimide ester of 6-methacrylamidocaproic acid.
- Another method of preparing a polymer of the invention comprises reacting a fibre-forming or film-forming polyamide, polyurethane or polyurea with a diisocyanate and subsequently reacting the product containing free isocyanate groups with a hydroxy- containing reactive ester.
- the product containing free isocyanate groups may be reacted with an alkanolamine or other amino alcohol, or a diol, to produce a hydroxylated or carboxylated polymer which may subsequently be activated.
- diisocyanates examples include alkylene and arylene diisocyanates, e.g. hexamethylene diisocyanate and 2,4-tolylene diisocyanate.
- hydroxy-containing reactive esters examples include hydroxyalkyl, hydroxyaryl,
- hydroxyalkaryl and hydroxyaralkyl reactive esters e.g. N-[3-(4-hydroxyphenyl)-propionyloxy]-succinimide.
- hydroxylated forms include alkanolamines such as ethanolamine, 6-amino-1-hexanol and glucamine, and diols such as poly (ethylene glycol).
- carboxylated forms include amine group-containing carboxylic acids such as 6-aminocaproic acid.
- activating the hydroxylated polymer are 1,1'-carbonyldiimidazole (CDI) and 2-fluoro-1-methyl pyridinium toluene 4-sulphonate (FMP).
- CDI 1,1'-carbonyldiimidazole
- FMP 2-fluoro-1-methyl pyridinium toluene 4-sulphonate
- activated polymer is formed which may subsequently be shaped into the desired fibrous or film form.
- the polymer in solid form e.g. in fibrous or film form may be treated with solutions of the reactants so that only the surface of the polymer is activated.
- the activated polymer is provided in fibrous form.
- the fibres may be produced by
- the activated polymer of the invention may be spun into fibres.
- a polymer may be spun into fibres and then modified by the attachment of activating groups.
- the fibres are collected as a porous mat on a suitably located receiver. In this way, a substrate coated with a layer of the fibres can be produced.
- the fibrous mat can be stripped from the receiver.
- the fibrous product can be produced in a variety of shapes. For example, by using a
- a tubular product can be made.
- diameters of 0.5 to 10 ⁇ m, especially 1.0 to 5 ⁇ m may be preferred.
- the polymer may be conveniently spun from solution.
- Suitable solvents include
- Solvent mixtures may be preferred, such as a mixture of N,N-dimethylformamide and methyl ethyl ketone (1.45:1 weight ratio).
- concentration of the polymer in solution will depend upon the amount required to provide adequate fibre properties and will be
- poly (etherurethaneurea) having a molecular weight in the region of 60,000, dissolved in N,N- dimethylacetamide is from 10 to 20% w/w, for example, 16% w/w.
- the solution may be supplied to an appropriate position in the electrostatic field by feeding it to a nozzle from which it is drawn by the field to form fibres.
- the solution may be fed from a syringe reservoir to the tip of a grounded syringe needle, the tip being located at an appropriate distance from an
- the electrostatic potential employed may be conveniently from 10 to 100 Kv, preferably from 10 to 50 Kv.
- the pore size and porosity of the fibrous product may be controlled, for example, by varying such parameters as the diameter of the fibres and their density of deposition.
- the fibrous product Typically, the fibrous product
- the overall surface area of the fibres is extremely large. For example, 1 g of the fibrous material may have a total surface area of
- BIOMER TM polymer is a commercially available poly (etherurethaneurea) having the structure:
- the molecular weight (MnW) of the polymer is about 60,000.
- a polyetherurethane (BIOMERTM, Ethicon, Someville, NJ: 30 g) was dissolved in N,N-dimethylacetamide (DMAC) (50 ml). 2-Chloroethyl isocyanate (4 ml) was added to the resultant solution. The reaction mixture was kept for 3 days at room temperature and then precipitated into water. After precipitation the polymer was filtered off, washed carefully with water and then dried in a vacuum oven.
- DMAC N,N-dimethylacetamide
- 6-Aminocaproic acid (26.2 g, 0.2 moles) was dissolved in a solution of sodium hydroxide (8.0 g) m water (25 ml).
- TOPANOL OC TM a commercially available surfactant from ICI comprising 4-methyl-2,6- tertiary-butyl phenol, was added, and the solution cooled to -10°C.
- a solution of methacryloyl chloride (20.8 g, 0.2 moles) in dioxane (15 ml) was then added simultaneously with a solution of sodium hydroxide (8.0 g) in water (20 ml) over a period of 1 hour. The latter two solutions had been cooled in an ice-bath prior to their addition.
- reaction was stirred for a further 2 hours at -10°C. The reaction mixture was then left to stand overnight in the refrigerator.
- 6-Methacrylamidocaproic acid (10 g, 0.05 moles) and N-hydroxysuccinimide (5.75 g, 0.05 moles) were placed in a three-necked flask that was fitted with a magnetic stirrer, air condenser (with calcium chloride guard tube) and a dropping funnel.
- Dichloromethane (50 ml) and tetrahydrofuran (10 ml) and 4-methylamino ⁇ yridine (4-DMAP) (0.12 g) were added, and the solution was stirred in an ice bath.
- a solution of dicyclohexylcarbodiimide (DCCI) (11.5 g) in dichloromethane (20 ml) was added dropwise. The urea precipitated in due course and the reaction was allowed to run overnight.
- DCCI dicyclohexylcarbodiimide
- the solid (urea) precipitate was filtered off and washed with dichloromethane. The combined washings and filtrate were stripped on the rotary evaporator. The residual oil was dissolved in acetonitrile and the solution was cooled in the refrigerator for 2 hours. The small amount of urea which had precipitated was filtered off and the solvent was then removed under vacuum. The remaining oil was dissolved in ethyl acetate. The solid product precipitated on standing in an ice-salt bath, and was filtered and dried.
- the polymer product was filtered off and washed with diethyl ether, vacuum dried and weighed.
- the weight increase - corresponding to grafting of the polymer of (II) onto (I) to generate the pre-activated polyetherurethane (III) - was 8.14%.
- the photochemically initiated grafting reaction is represented in the following equation.
- the pre-activated polymer (III) was dissolved in bulk DMAC to obtain a concentration suitable for electrostatic spinning (16% w/w). The solution was spun at minimum humidity following the procedure given in GB-A-1 530 990 to produce the required sheet of fibrous pre-activated
- the sheet was cut into strips measuring 2 ⁇ 1 cm. Samples of the strips were immersed in a solution of radiolabelled Protein A (1.0 ml, 1 mg Protein A/ml 0.1 molar sodium hydrogen carbonate buffer, pH 8). The strips were left to stand for 2 hours at room temperature. The strips were then removed, washed first in excess buffer and then in deionised water before blotting dry on a filter paper.
- Radiolabelled Protein A 1.0 ml, 1 mg Protein A/ml 0.1 molar sodium hydrogen carbonate buffer, pH 8
- the strips were allowed to stand in a solution of sodium dodecyl sulphate (SDS) (5 ml, 2% by weight) for one hour at room temperature. They were then washed with deionised water and dried.
- SDS sodium dodecyl sulphate
- Each strip was then counted for one minute in a scintillation counter and compared with a reference to determine the quantity of Protein A covalently bound to the polyetherurethane.
- the binding activity of the Protein A coupled to the polymer was assessed as follows.
- the strips of polyetherurethane having Protein A coupled thereto were placed in a solution of radiolabelled human IgG (1.0 mg/ml, 1 ml) for one hour at room temperature.
- the strips were removed, washed with water and placed in 0.15 molar PBS containing 0.2% TWEEN TM 20 nonionic surfactant (5 ml) for five minutes to remove non-specifically bound protein.
- the strips were rewashed with water and blotted dry on filter paper. Each strip was counted for one minute using a scintillation counter to provide a measure of specific binding.
- nonionic surfactant as above to provide a measure of non-specific binding of protein.
- Reference strips were prepared by adsorbing a known quantity of radiolabelled human IgG (1 mg/ml) on the polyetherurethane and counted.
- Protein A coupled thereto was about 92 mg/m 2 .
- the non-specific binding of protein to the equivalent sample was found to be about 18 mg/m 2 .
- An electrostatically spun polyetherurethane (BIOMERTM) tube suitable for use in arterial prosthesis was modified as follows.
- the fibrous tube was reacted with trichloroacetyl isocyanate (3 g, 0.016 mole) in 150ml hexane for 24 hours. After this time the tube was washed off with water very carefully and subsequently immersed in water for 2 days and vacuum dried. The tube showed a positive chlorine test.
- the overall reaction of the polyetherurethane and trichloroacetyl isocyanate is depicted in the following equation:
- the fibrous tube of functionalized polyetherurethane (IV) was placed in a reaction vessel and a solution of Re 2 (CO) 10 (0.095 g 0.00014 mole) and
- N-acryloyloxysuccinimide (0.75 g, 0.0044 mole) in 25 ml dry ethyl acetate was added.
- the reaction mixture was degassed under vacuum and the vessel sealed off.
- V The chemical structure of the grafted polyetherurethane (V) is shown as follows :
- the grafted tube of polyetherurethane (V) was reacted with 1% w/v suspension collagen (type I) in 0.05 molar acetic acid for 2 hours.
- the tube was dried at room temperature overnight and then in a vacuum for 24 hours.
- the tube was washed thoroughly in distilled water and vacuum dried. Scanning
- the film was washed extensively with water and dried.
- the film of polyetherurethane was treated in a manner identical to that described for the fibrous tube in steps 1 to 3 of Example 3.
- the sheet of polymer (VI) was placed in a flask containing a solution of 0.4 g of N-[3-(4- hydroxyphenyl)propionyloyl] succinimide (Fluka) in 40 ml of dry acetonitrile. The flask was wrapped in foil and stirred at room temperature for 5 days. After this time the sheet was removed and carefully washed with an excess of acetonitrile and vacuum dried.
- the activated polymer was produced according to the following equation.
- a solution of radiolabelled Protein A was prepared containing 1 mg Protein A/ml 0.1 molar
- the disc was left standing for one hour in 10 ml sodium dodecyl sulphate (SDS) (2%), washed with deionised water and blotted dry. The disc was then counted for 1 minute in a vial using a SDS (SDS) (2%), washed with deionised water and blotted dry. The disc was then counted for 1 minute in a vial using a SDS (SDS) (2%), washed with deionised water and blotted dry. The disc was then counted for 1 minute in a vial using a
- BIOMERTM 0.1086 11, 600 0 . 0370 7 . 93
- the electrostatically spun polymer was reacted with isocyanatoethyl methacrylate monomer (20% v/v in hexane) at room temperature for 5 days. After this time the functionalized polyetherurethane was washed with hexane, methanol, water and methanol, respectively. The reaction is shown as follows.
- a specimen of macromer (VIII) (1.9 g) was placed in a reaction vessel containing a mixture of 0.5 g N-acryloyloxysuccinimide in 10 ml of dry acetonitrile and 0.2 g azobisisobutyronitrile (AIBN) dissolved in 10 ml acetonitrile. After degassing, the polymerization was carried out at 60°C for 4 hours. The macromer sheet was removed and washed with
- Protein A was bound to a sample of
- polyetherurethane sheet was reacted with 2-chloroethyl isocyanate (1 g in 20 ml of hexane) for 24 hours at
- a graft copolymer (X) was synthesized by grafting N-acryloyloxysuccinimide
- Protein A was bound to a sample of
- BIOMERTM polymer sheet (2 g each) were placed in two
- reaction vessels The first one was reacted with 30% hexamethylene diisocyanate in petroleum ether (b.p.
- BIOMERTM which had been isocyanated with hexamethylene diisocyanate was reacted with 0.5 g (1.7 mmole) of FMP dissolved in 10 ml of dry acetonitrile in the presence of triethylamine (0.2 ml) to give an activated polymer of the invention (Example 8).
- the reaction was carried out at room temperature for 24 hours. After this time, the sample was washed with dry acetonitrile and dried in a vacuum.
- Example 9 an activated polymer of the invention (Example 9).
- the reaction was carried out at room temperature for 24 hours. After this time the sample was washed with dry acetonitrile and dried in a vacuum.
- hexamethylene diisocyanate were converted to hydroxylic forms by reaction with 6-amino-1-hexanol (Example 12) and glucamine (Example 15).
- Polymer samples isocyanated with 2,4-tolylene diisocyanate were converted to hydroxylic forms by reaction with 6- amino-1-hexanol (Example 13), poly (ethylene glycol) ( Molecular weight 4000) (Example 14) and glucamine
- Carboxylated polymers were prepared from polyurethane samples isocyanated with
- CDI (Examples 17 and 18, respectively).
- BIOMERTM polymer unreacted BIOMERTM polymer as a control.
- PBS containing 0.2% TWEENTM 20 nonionic surfactant for one hour to remove the non-specifically bound protein PBS containing 0.2% TWEENTM 20 nonionic surfactant for one hour to remove the non-specifically bound protein.
- the discs were washed with water and blotted dry on filter paper. Each disc was counted for one minute in
- IgG (mg/g
- IgG was coupled to samples of polymer VII and the polymer of Example 9 directly. In this case three discs of each of these samples were placed in two Millipore filter holders and labeled IgG ( 125 I)
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Epidemiology (AREA)
- Organic Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Polymers & Plastics (AREA)
- Public Health (AREA)
- Dermatology (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Materials For Medical Uses (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Polyamides (AREA)
- Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
- Polyurethanes Or Polyureas (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
Abstract
Description
Claims
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4503487A JPH06504802A (en) | 1991-01-25 | 1992-01-20 | Polymers and products derived therefrom |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB9101727.7 | 1991-01-25 | ||
GB919101727A GB9101727D0 (en) | 1991-01-25 | 1991-01-25 | Polymers and products derived therefrom |
GB9124000.2 | 1991-11-12 | ||
GB919124000A GB9124000D0 (en) | 1991-11-12 | 1991-11-12 | Polymers and products derived therefrom |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1992013018A1 true WO1992013018A1 (en) | 1992-08-06 |
Family
ID=26298337
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP1992/000129 WO1992013018A1 (en) | 1991-01-25 | 1992-01-20 | Polymers and products derived therefrom |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0571406A1 (en) |
JP (1) | JPH06504802A (en) |
WO (1) | WO1992013018A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996015223A1 (en) * | 1994-11-14 | 1996-05-23 | Universite Catholique De Louvain | Biomaterial and method for obtaining it |
EP0744428A3 (en) * | 1995-05-26 | 1997-10-01 | Kodak Ltd | Polymers and products derived therefrom |
EP0733303A3 (en) * | 1995-03-08 | 1999-02-17 | Kodak Limited | A material, method and apparatus for inhibiting bacterial growth in an aqueous medium |
WO2002058645A1 (en) * | 2001-01-23 | 2002-08-01 | Unilever Plc | Polyurethanes, cosmetic compositions containing them and method of preparation |
WO2003062790A2 (en) | 2002-01-17 | 2003-07-31 | Applera Corporation | Solid phases optimized for chemiluminescent detection |
JP3461505B2 (en) | 1992-09-24 | 2003-10-27 | カイロン コーポレイション | Synthesis of N-substituted oligomers |
EP1700873A1 (en) * | 2005-03-11 | 2006-09-13 | Bayer MaterialScience AG | Special allophanates containing modified polyurethanes |
US7812087B2 (en) * | 2005-09-03 | 2010-10-12 | Bayer Materialscience Ag | Polyurethane prepolymers containing alkoxysilane groups and allophanate and/or biuret groups |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2427948A1 (en) * | 1973-06-15 | 1975-01-09 | Univ Ramot | SUBSTITUTED POLYAMIDES AND METHOD FOR MANUFACTURING THEREOF |
FR2240233A1 (en) * | 1973-08-06 | 1975-03-07 | Nat Res Dev | |
WO1986002654A1 (en) * | 1984-10-29 | 1986-05-09 | Memtec Limited | Sulphuryl chloride/polyamide derivatives |
DE3523615A1 (en) * | 1985-07-02 | 1987-01-15 | Cytomed Medizintechnik | Medical apparatus, especially cannula, catheter or implant |
US4880883A (en) * | 1987-06-03 | 1989-11-14 | Wisconsin Alumni Research Foundation | Biocompatible polyurethanes modified with lower alkyl sulfonate and lower alkyl carboxylate |
EP0367489A2 (en) * | 1988-11-01 | 1990-05-09 | Baxter International Inc. | Thromboresistant materials and methods for making same |
-
1992
- 1992-01-20 WO PCT/EP1992/000129 patent/WO1992013018A1/en not_active Application Discontinuation
- 1992-01-20 JP JP4503487A patent/JPH06504802A/en active Pending
- 1992-01-20 EP EP19920903268 patent/EP0571406A1/en not_active Withdrawn
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2427948A1 (en) * | 1973-06-15 | 1975-01-09 | Univ Ramot | SUBSTITUTED POLYAMIDES AND METHOD FOR MANUFACTURING THEREOF |
FR2240233A1 (en) * | 1973-08-06 | 1975-03-07 | Nat Res Dev | |
WO1986002654A1 (en) * | 1984-10-29 | 1986-05-09 | Memtec Limited | Sulphuryl chloride/polyamide derivatives |
DE3523615A1 (en) * | 1985-07-02 | 1987-01-15 | Cytomed Medizintechnik | Medical apparatus, especially cannula, catheter or implant |
US4880883A (en) * | 1987-06-03 | 1989-11-14 | Wisconsin Alumni Research Foundation | Biocompatible polyurethanes modified with lower alkyl sulfonate and lower alkyl carboxylate |
EP0367489A2 (en) * | 1988-11-01 | 1990-05-09 | Baxter International Inc. | Thromboresistant materials and methods for making same |
Non-Patent Citations (1)
Title |
---|
BIOMATERIALS vol. 9, no. 1, January 1988, GUILDFORD,SURREY,GB pages 36 - 46; W.G.PITT ET AL.: 'ALBUMIN ADSORPTION ON ALKYL CHAIN DERIVATIZED POLYURETHANES' * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3461505B2 (en) | 1992-09-24 | 2003-10-27 | カイロン コーポレイション | Synthesis of N-substituted oligomers |
WO1996015223A1 (en) * | 1994-11-14 | 1996-05-23 | Universite Catholique De Louvain | Biomaterial and method for obtaining it |
EP0733303A3 (en) * | 1995-03-08 | 1999-02-17 | Kodak Limited | A material, method and apparatus for inhibiting bacterial growth in an aqueous medium |
EP0744428A3 (en) * | 1995-05-26 | 1997-10-01 | Kodak Ltd | Polymers and products derived therefrom |
WO2002058645A1 (en) * | 2001-01-23 | 2002-08-01 | Unilever Plc | Polyurethanes, cosmetic compositions containing them and method of preparation |
US6730289B2 (en) | 2001-01-23 | 2004-05-04 | Unilever Home & Personal Care Usa, Division Of Conopco, Inc. | Cosmetic composition |
WO2003062790A2 (en) | 2002-01-17 | 2003-07-31 | Applera Corporation | Solid phases optimized for chemiluminescent detection |
EP1470422A4 (en) * | 2002-01-17 | 2006-06-07 | Applera Corp | Solid phases optimized for chemiluminescent detection |
US7368296B2 (en) | 2002-01-17 | 2008-05-06 | Applied Biosystems | Solid phases optimized for chemiluminescent detection |
EP2101174A1 (en) * | 2002-01-17 | 2009-09-16 | Applied Biosystems, LLC | Solid phases optimized for chemiluminescent detection |
EP1700873A1 (en) * | 2005-03-11 | 2006-09-13 | Bayer MaterialScience AG | Special allophanates containing modified polyurethanes |
US7812087B2 (en) * | 2005-09-03 | 2010-10-12 | Bayer Materialscience Ag | Polyurethane prepolymers containing alkoxysilane groups and allophanate and/or biuret groups |
Also Published As
Publication number | Publication date |
---|---|
JPH06504802A (en) | 1994-06-02 |
EP0571406A1 (en) | 1993-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ishihara et al. | Synthesis of phospholipid polymers having a urethane bond in the side chain as coating material on segmented polyurethane and their platelet adhesion-resistant properties | |
US5403750A (en) | Biocompatible, low protein adsorption affinity matrix | |
JP2538559B2 (en) | Improvements on biocompatible surfaces | |
Park et al. | PDMS-based polyurethanes with MPEG grafts: synthesis, characterization and platelet adhesion study | |
JP5671024B2 (en) | Process for making polymers, preferably (alkyl) acryloyl polycarbonates, resulting polymers and (alkyl) acryloyl polycarbonates, and biodevices comprising the same | |
JP4053612B2 (en) | Functionalized photoinitiator, its macromer and its use | |
EP2213293A2 (en) | Self-assembling monomers and oligomers as surface-modifying endgroups for polymers | |
JP2000506554A (en) | Polyurethanes made from polysiloxane / polyol macromers | |
WO1992013018A1 (en) | Polymers and products derived therefrom | |
KR20150123791A (en) | Modified polyaryletherketone (paek) polymer and method for obtaining it | |
EP0913416A1 (en) | Biocompatible polymers | |
Meng et al. | Phosphorylcholine modified chitosan: Appetent and safe material for cells | |
JP2001501232A (en) | Active substance-containing thermoplastic polyurethane | |
JP2017082174A (en) | Polymer, polymer solution and polymer coated substrate | |
CN117402319A (en) | Additive based on fluorine-containing carbamate prepolymer, preparation method and application of additive in preparation of medical fluorine-containing anticoagulant polyurethane material | |
Dai et al. | Fabrication of reversible bacteria-killing and bacteria-releasing cotton fabrics with anti-bacteria adhesion capacity for potential application in reusable medical materials | |
Li et al. | Synthesis and hemocompatibilities of new segmented polyurethanes and poly (urethane urea) s with poly (butadiene) and phosphatidylcholine analogues in the main chains and long-chain alkyl groups in the side chains | |
EP0744428A2 (en) | Polymers and products derived therefrom | |
EP0335308A2 (en) | Protein non-adsorptive polyurea-urethane polymer coated devices | |
US6143893A (en) | 1,4-bis{β-[N-methyl-N-(2-hydroxyethyl)amino]propionyl}piperazine and process for its preparation | |
CN110819224B (en) | Coating composition, protective coating based on coating composition and coated product | |
US5910565A (en) | Oligoglycine compound, fibrous microtube of oligoglycine compound and process of producing fibrous microtube | |
EP0567187A1 (en) | An immunoassay and test kit | |
US20250135409A1 (en) | Ultralow-Fouling Zwitterionic Polyurethane-Modified Membrane Methods and Devices for Rapid Separation of Plasma From Whole Blood | |
JP2001136960A (en) | Cell culture membrane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LU MC NL SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
ENP | Entry into the national phase |
Ref country code: US Ref document number: 1993 90165 Date of ref document: 19930715 Kind code of ref document: A Format of ref document f/p: F |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1992903268 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1992903268 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1992903268 Country of ref document: EP |