[go: up one dir, main page]

WO1992016599A1 - Systeme pour le traitement par thermolyse de produits solides dont le rejet est prejudiciable pour l'environnement - Google Patents

Systeme pour le traitement par thermolyse de produits solides dont le rejet est prejudiciable pour l'environnement Download PDF

Info

Publication number
WO1992016599A1
WO1992016599A1 PCT/FR1992/000250 FR9200250W WO9216599A1 WO 1992016599 A1 WO1992016599 A1 WO 1992016599A1 FR 9200250 W FR9200250 W FR 9200250W WO 9216599 A1 WO9216599 A1 WO 9216599A1
Authority
WO
WIPO (PCT)
Prior art keywords
zone
thermolysis
products
dehydration
reactor
Prior art date
Application number
PCT/FR1992/000250
Other languages
English (en)
Inventor
Pierre Chaussonnet
Original Assignee
Societe Française De Thermolyse
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe Française De Thermolyse filed Critical Societe Française De Thermolyse
Priority to CA002105289A priority Critical patent/CA2105289C/fr
Priority to RU9393056159A priority patent/RU2097402C1/ru
Publication of WO1992016599A1 publication Critical patent/WO1992016599A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B49/00Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated
    • C10B49/02Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with hot gases or vapours, e.g. hot gases obtained by partial combustion of the charge
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B19/00Heating of coke ovens by electrical means
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B7/00Coke ovens with mechanical conveying means for the raw material inside the oven
    • C10B7/14Coke ovens with mechanical conveying means for the raw material inside the oven with trucks, containers, or trays

Definitions

  • the present invention relates to a system for the thermolysis treatment of solid products, the rejection of which is harmful to the environment.
  • Document FR-2.106.844 discloses a garbage processing device comprising a succession of zones of increasing temperatures (up to 800-1300 ° C) which are passed through the garbage after packaging in a container. porous coating material; this garbage is gradually freed of its water vapor and then pyrolyzed.
  • this solution requires still high temperatures, which again leads to rapid wear and a high operating cost.
  • the object of the invention is to overcome the aforementioned drawbacks by allowing treatment by thermolysis at medium temperature, around 600 ° C. for example all
  • the invention thus provides a system for the treatment of solid products, the rejection of which is harmful to the environment, comprising a reactor successively integrating a dehydration zone and a thermolysis zone, characterized in that this reactor comprises downstream of the thermolysis zone, a cooling zone and in that the dehydration zone is provided with a sealed entry door, the cooling zone is provided with a sealed exit door, and airlocks isolate the thermolysis area on the one hand with respect to the dehydration zone, on the other hand with respect to the cooling zone so as to limit the entry of air into the thermolysis zone during the introduction of the products and during the extraction of the residues, this thermolysis zone being provided with a gas extraction line thanks to which it is under vacuum.
  • the aforementioned areas are therefore separated into isolated rooms.
  • thermolysis zone is maintained without free oxygen
  • thermolysis zone is at a temperature between 400 ° C and 750 ° C and at a pressure less than or equal to 800 millibars.
  • the products to be treated are introduced into the reactor in carriages which pass successively from the dehydration chamber to the thermolysis chamber and from the thermolysis chamber to the cooling chamber using a mechanical system of the pinion type, and rack for example, or even of the electromagnetic drive type.
  • the carts are designed so that solid residues
  • thermoreactors also called catalytic radiant panels supplied on the one hand with pure oxygen or air and on the other hand with pyrolysis gas originating from thermolytic decomposition as well as by resistors electrics placed inside the chambers or glued to the walls outside the chambers, - the carbon dioxide and water vapor generated in the oxidation of the pyrolysis gases in the catalytic radiant panels help to warm up by convection and radiation of products,
  • thermolytic decomposition as well as the catalytic oxidation gases formed in the catalytic radiant panels are cooled and purified at the outlet of the reactor in a gas washer where the condensation of the water, the separation of noncondensable gases and condensed heavy hydrocarbons, the halogen and sulfur compounds are eliminated in the washer by dissolution in the washing water,
  • the gases at the outlet of the vacuum pump are sent to a washer containing for example an aqueous solution of potassium carbonate, where carbon dioxide is eliminated, - the pyrolysis gases purified from halogenated, sulfur-containing compounds and carbon dioxide are used in the heating the reactor and the excess is set aside for later use,
  • thermolysis chamber Control of the kinetics of thermolytic transformation in the thermolysis chamber is obtained by regulating electric heating and catalytic heating by implementing conventional systems for measuring temperatures and regulating gas and Electric power.
  • - Figure 1 is a plan view of a system according to the invention
  • - Figure 2 is an elevational view of an inlet portion of the oven of this system
  • FIG. 3 is a cross-sectional view thereof along line A-A of FIG. 2, and
  • FIG. 4 is an enlarged view of the connection of a panel 4 to its support.
  • Figure 1 shows the block diagram of the system and Figures 2 to 4 show some constructive details.
  • the system according to the invention comprises a reactor integrating in a single device a chamber 1 for introducing the products to be treated and in which these products are undergoing dehydration, a thermolysis chamber 2 in which the products, partially or completely dehydra ⁇ tees, are brought to the thermal decomposition temperature, for example around 600 ° C (typically between 400 ° C and 750 ° C) and a cooling chamber 3 where the solid residues of the heat treatment are brought to an ordinary temperature.
  • a reactor integrating in a single device a chamber 1 for introducing the products to be treated and in which these products are undergoing dehydration, a thermolysis chamber 2 in which the products, partially or completely dehydra ⁇ tees, are brought to the thermal decomposition temperature, for example around 600 ° C (typically between 400 ° C and 750 ° C) and a cooling chamber 3 where the solid residues of the heat treatment are brought to an ordinary temperature.
  • thermolytic transformation in the reactor is advantageously carried out in the total absence of free oxygen at an average temperature of 600 ° C.
  • the decomposition products - incondensable gases, heavy hydrocarbons, coal - are continuously monitored at the outlet of the system and are possibly recycled for further treatment. Operation at this temperature does not induce marked wear of the system, the service life of which is thus extended and the operating cost reduced.
  • the chambers are insulated from one another in a substantially sealed manner, by guillotine doors 23 actuated by jacks; the door between chambers 1 and 2 and the door between chambers 2 and 3 are vertically movable in watertight housings, the crossing of the lifting cylinders being by cable gland.
  • watertight doors are provided at the entrance to chamber 1 and at the exit from chamber 3, whereby the dehydration and cooling zones are, as desired, isolated from the outside and / or the thermolysis zone 2; they can be movable vertically or horizontally or around a joint according to the dimensions of the reactor, the space available and the free choice of the designer.
  • Chambers 1 and 2 of the reactor are lagged (item 27) to limit heat loss.
  • the chambers 1 and 2 are provided with heating means of all suitable known types, two examples of which are given under references 4 and 5.
  • the temperature of the chamber 2 is for example maintained around 600 ° C. while that of the chamber 1, lower, is maintained above 100 ° C., for example around 120 ° C.
  • Catalytic radiant panels 4 provided with incorporated resistors 25 intended for their temperature setting to allow the phenomenon of catalytic oxidation of feed gas, are represented on the ceiling of chambers 1 and 2 but can also be placed on the walls side. These panels are placed in watertight housing vis-à-vis the outside.
  • the detail of FIG. 4 shows the principle of fixing a panel 4 on the internal wall of the reactor and the position of a seal identified 26 put in place to force the gaseous supply mixture (preferably oxygen, pyrolysis gas) to pass through the catalytic panel 4 where it is oxidized.
  • Chamber 3 can be equipped with a system (not shown) for cooling solid residues and recovering heat by heating the gases which supply the catalytic radiant panels.
  • Electric resistors 5 are supplied from a transformer 6; these resistances are shown here inside the reactor, stuck to the wall
  • the power supply being made using waterproof bushings.
  • Chamber 2 is kept under vacuum, typically at a pressure less than or equal to 800 mbar, or even 500 mbar. Preferably, the same pressure prevails in chambers 1, 2 and 3.
  • the gas mixture extracted from chamber 2 goes into a gas washer 9 opening into a decan ⁇ tation block 13 and supplied with cold water by a basin 14 where the water at the outlet of the decantation tank 13 is treated by methods classics of water chemistry. Hydrocarbons condensed and the carbon separated from the aqueous phase in the tank 13 are sent to a storage tank 17 where they will be taken up for use.
  • the non-condensed gases at the outlet of the tank 9 are sucked in by a pumping group 10, the discharge of which flows into a washing tank 11 where the carbon dioxide is eliminated by adding potassium carbonate, for example, in the water coming from the tank. 14.
  • the purified gas is compressed by the compressor 12 and stored in a tank 16.
  • This compressed gas is here sent to the catalytic radiant panels 4 after passing through a mixer 15 which also receives compressed air from any source at 18, or alternatively, depending on the application, pure oxygen coming from a outdoor storage.
  • the gas mixture passes through a recuperator 7 where it is heated in order to improve the thermodynamic balance of the catalytic oxidation.
  • FIG. 1 indeed shows an exit of the catalysis gases from the chamber 1; these gases, essentially composed of carbon dioxide and water vapor from dehydration and catalytic oxidation, pass through the recuperator 7 where they are cooled. They are sucked up by a pumping group 8, the discharge of which flows onto a chimney 19.
  • FIG. 2 shows a carriage 20 in which the products to be treated are placed; the carriage passes from one room to another via a rack and pinion system 21.
  • a drive shaft 22 ensures the synchronized movement of the carriages.
  • the gases are extracted from chambers 1 and 2 by flues 24 located at the end of the chambers and on the floor so as to entrain the coal in the gas flow.
  • Gas washers are a product of classical chemical engineering.
  • the system described above offers the following advantages: - it is applicable to any quantity of products by varying the section of the reactor or the length of the reactor, either by placing as many reactors in parallel as necessary,
  • the system according to the invention makes it possible to treat the products to be eliminated under good conditions for the protection of
  • thermolytic decomposition the products of thermolytic decomposition are purified of all contaminants and can be checked before any subsequent use.
  • the waters of the aqueous phase are treated by conventional methods after decanting the hydrocarbons and coals.
  • the various inert materials - glasses, metals, etc. - can be recycled under the best possible sanitary conditions.
  • the heavy metals not vaporized in the thermolyser will be recovered in the trolley after cooling, the heavy metals vaporized will be recovered in the foot of the washer or in the basin for treating the settling water.
  • the system according to the invention allows excellent energy recovery with the possibility of storing the recovered energy in the form of coal and hydrocarbons, possibly of transporting it for consumption at the appropriate place and time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Processing Of Solid Wastes (AREA)
  • Disintegrating Or Milling (AREA)
  • Coke Industry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Drying Of Solid Materials (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Glass Compositions (AREA)
  • Catalysts (AREA)
  • Treatment Of Sludge (AREA)

Abstract

Un système pour le traitement de produits solides dont le rejet est préjudiciable pour l'environnement, comportant un réacteur intégrant successivement une zone de déshydratation (1) et une zone de thermolyse (2), caractérisé en ce que ce réacteur comporte en aval de la zone de thermolyse (2), une zone de refroidissement (3) et en ce que la zone de déshydratation est munie d'une porte d'entrée étanche, la zone de refroidissement est munie d'une porte de sortie étanche, et des sas isolent la zone de thermolyse (2), d'une part vis à vis de la zone de déshydratation (1), d'autre part vis à vis de la zone de refroidissement (3) en sorte de limiter les entrées d'air dans la zone de thermolyse lors de l'introduction des produits et lors de l'extraction des résidus, cette zone de thermolyse (2) étant munie d'une ligne d'extraction de gaz grâce à quoi elle est en dépression.

Description

Système pour le traitement par thermolyse de produits solides dont le rejet est préjudiciable pour l'environnement
La présente invention concerne un système pour le traitement par thermolyse des produits solides dont le rejet est préjudiciable pour l'environnement.
Traditionnellement ces produits sont, soit stockés, soit traités par incinération. Dans le premier cas le danger potentiel subsiste et peut s'aggraver d'une pollution possible des nappes phréatiques. Dans le second cas les températures du traitement par incinération sont élevées et entraînent une usure rapide des équipements et un coût d'exploitation élevé ; par ailleurs les produits gazeux du traitement par incinération sont évacués dans l'atmosphère avant tout contrôle ce qui ne permet pas de donner toutes les garanties requises quant à la non pollution de l'environ¬ nement. On connaît d'après le document FR-2.106.844 un dispositif de traitement d'ordures comportant une succession de zones de températures croissantes (jusqu'à 800-1300°C) que l'on fait traverser aux ordures après un conditionnement dans un matéria^ d'enrobage poreux ; ces ordures sont progres- sivement débarrassées de leur vapeur d'eau puis pyrolysées. Toutefois cette solution nécessite des températures encore élevées, ce qui conduit encore à une usure rapide et un coût d'exploitation élevé.
L'invention a pour objet de pallier les incon- venients précités en permettant un traitement par thermolyse à température moyenne, aux environs de 600°C par exemple tout
MENT en permettant un contrôle continu des produits de décom¬ position.
L'invention propose ainsi un système pour le traitement de produits solides dont le rejet est préjudi- ciable pour l'environnement, comportant un réacteur intégrant successivement une zone de déshydratation et une zone de thermolyse, caractérisé en ce que ce réacteur comporte en aval de la zone de thermolyse, une zone de refroidissement et en ce que la zone de déshydratation est munie d'une porte d'entrée étanche, la zone de refroidissement est munie d'une porte de sortie étanche, et des sas isolent la zone de thermolyse, d'une part vis à vis de la zone de déshydra¬ tation, d'autre part vis à vis de la zone de refroidissement en sorte de limiter les entrées d'air dans la zone de thermolyse lors de l'introduction des produits et lors de l'extraction des résidus, cette zone de thermolyse étant munie d'une ligne d'extraction de gaz grâce à quoi elle est en dépression.
Les zones précitées- sont donc séparées en chambres isolées.-
Selon des dispositions préférées de l'invention éventuellement combinées :
- la zone de thermolyse est maintenue sans oxygène libre,
- la zone de thermolyse est à une température comprise entre 400°C et 750°C et à une pression inférieure ou égale à 800 millibars.
Selon d'autres dispositions préférées de l'inven¬ tion :
- les produits à traiter sont introduits dans le réacteur dans des chariots qui passent successivement de la chambre de déshydratation à la chambre de thermolyse et de la chambre de thermolyse à la chambre de refroidissement à l'aide d'un système mécanique du genre pignons et crémaillère par exemple, ou encore du genre entraînement électromagné- tique. Les chariots sont conçus pour que les résidus solides
- verres, métaux, gravats par exemple - restent dans les chariots tout en étant enlevés facilement après refroidi¬ ssement à la sortie de la chambre de refroidissement,
- la chambre de déshydratation et la chambre de thermolyse sont chauffées par des thermoréacteurs appelés également panneaux radiants catalytiques alimentés d'une part en oxygène pur ou en air et d'autre part en gaz de pyrolyse provenant de la décomposition thermolytique ainsi que par des résistances électriques placées à 1 ' intérieur des chambres ou collées aux parois à l'extérieur des chambres, - le gaz carbonique et la vapeur d'eau générés dans l'oxydation des gaz de pyrolyse dans les panneaux radiants catalytiques participent à la mise en température par convection et radiation des produits,
- les gaz de pyrolyse formés dans la décom- position thermolytique ainsi que les gaz de l'oxydation catalytique formés dans les panneaux radiants catalytiques sont refroidis et épurés à la sortie du réacteur dans un laveur de gaz où s'effectue la condensation de l'eau, la séparation des gaz incondensables et des hydrocarbures lourds condensés, les composés halogènes et de soufre sont éliminés dans le laveur par dissolution dans l'eau de lavage,
- le flux gazeux à la sortie du réacteur entraîne le charbon formé dans la décomposition thermolytique vers le laveur où il est refroidi,
- les hydrocarbures lourds et le charbon sont récupérés par décantation de l'eau de lavage à la sortie du laveur dans un décanteur,
- le flux gazeux à la sortie du laveur est aspiré par une pompe à vide,
- les gaz à la sortie de la pompe à vide sont envoyés dans un laveur contenant par exemple une solution aqueuse de carbonate de potassium, où est éliminé le gaz carbonique, - les gaz de pyrolyse épurés des composés halogènes, soufrés et du gaz carbonique sont utilisés dans le chauffage du réacteur et l'excédent est mis en réserve pour utilisation ultérieure,
- le contrôle de la cinétique de la transfor¬ mation thermolytique dans le chambre de thermolyse est obtenu par la régulation du chauffage électrique et du chauffage catalytique par la mise en oeuvre des systèmes classiques de mesure des températures et de régulation des débits de gaz et de courant électrique.
Des objets, caractéristiques et avantages de l'invention ressortent de la description qui suit, donnée à titre d'exemple non limitatif, en regard des dessins annexés sur lesquels :
- la figure 1 est une vue en plan d'un système selon 1' invention, - la figure 2 est une vue en élévation d'une portion d'entrée du four de ce système,
- la figure 3 en est une vue en coupe transver¬ sale selon la ligne A-A de la figure 2, et
- la figure 4 est une -vue agrandie de la liaison d'un panneau 4 à-son support.
La figure 1 montre le schéma de principe du système et les figures 2 à 4 en présentent certains détails constructifs.
Le système selon 1' invention comporte un réacteur intégrant en un seul appareil une chambre 1 d'introduction des produits à traiter et dans laquelle ces produits subis¬ sent une déshydratation, une chambre de thermolyse 2 dans laquelle les produits, partiellement ou totalement déshydra¬ tés, sont portés à la température de décomposition thermique, par exemple aux environs de 600°C (typiquement entre 400°C et 750°C) et une chambre de refroidissement 3 où les résidus solides du traitement thermique sont amenés à une température ordinaire.
La transformation thermolytique dans le réacteur est avantageusement effectués en absence totale d'oxygène libre à température moyenne de 600°C. Les produits de décomposition - gaz inconden- sables, hydrocarbures lourds, charbon - sont contrôlés en continu à la sortie du système et sont éventuellement recyclés pour traitement complémentaire. Le fonctionnement à cette température n'induit pas d'usure marqués du système dont la durée de vie est ainsi prolongée et le coût de fonctionnement réduit.
Les chambres sont isolées les unes des autres de façon sensiblement étanche, par des portes guillotine 23 actionnées par des vérins ; la porte entre les chambres 1 et 2 et la porte entre les chambres 2 et 3 sont mobiles ver¬ ticalement dans des logements étanches, la traversée des vérins de levage se faisant par presse-étoupe. En outre des portes étanches sont prévues à 1 ' entrée de la chambre 1 et à la sortie de la chambre 3 grâce à quoi les zones de déshydra¬ tation 1 et de refroidissement sont, à volonté, isolées vis à vis de l'extérieur et/ou de la zone de thermolyse 2 ; elles peuvent être mobiles verticalement ou horizontalement ou encore autour d'une articulation selon les dimensions du réacteur, l'espace disponible et le libre choix du concep¬ teur.
On appréciera que l'étanchéité assurée par les portes d'entrée et de sortie se fait entre l'extérieur et des zones 1 et 3 de températures modérées, très inférieures à celles de la chambre 2.
L'introduction des produits et de l'extraction des résidus sont ainsi réalisés, pour éviter l'entrée d'air dans la chambre 2, par des sas qui isolent alternativement selon les besoins la chambre de déshydratation de la chambre de thermolyse quand on introduit les produits dans la chambre de déshydratation et la chambre de thermolyse de la chambre de refroidissement quand on extrait les résidus de cette troisième chambre.
Les chambres 1 et 2 du réacteur sont calorifugées (repère 27) pour limiter les déperditions calorifiques. Les chambres 1 et 2 sont munies de moyens de chauffage de tous types connus appropriés, dont deux exemples sont donnés sous les références 4 et 5. La température de la chambre 2 est par exemple maintenue aux alentours de 600°C tandis que celle de la chambre 1 , inférieure, est maintenue au dessus de 100°C, par exemple aux environs de 120°C.
Des panneaux radiants catalytiques 4, munis de résistances incorporées 25 destinées à leur mise en tempéra¬ ture pour permettre le phénomène d'oxydation catalytique de gaz d'alimentation, sont représentés en plafond des chambres 1 et 2 mais peuvent également être mis sur les parois latérales. Ces panneaux sont placés dans des logements étanches vis à vis de l'extérieur. Le détail de la figure 4 montre le principe de fixation d'un panneau 4 sur la paroi interne du réacteur et la position d'un joint d'étanchéité repéré 26 mis en place pour obliger le mélange gazeux d'alimentation (de préférence oxygène, gaz de pyrolyse) à passer par le panneau catalytique 4 où il est oxydé. La chambre 3 peut être équipée d'un système (non représenté) de refroidissement des résidus solides et de récupération de la chaleur par réchauffage des gaz qui alimentent les panneaux radiants catalytiques.
Des résistances électriques 5 sont alimentées à partir d'un transformateur 6 ; ces résistances sont ici représentées à l'intérieur du réacteur, collées à la paroi
(mais peuvent être mises à l'extérieur), l'alimentation électrique étant faite en utilisant des traversées étanches.
La chambre 2 est maintenue en dépression, typiquement à une pression inférieure ou égale à 800 mbar, voire 500 mbars. De préférence, la même pression règne dans les chambres 1, 2 et 3.
Le mélange gazeux extrait de la chambre 2 va dans un laveur de gaz 9 débouchant dans un bloc de décan¬ tation 13 et alimenté en eau froide par un bassin 14 où l'eau à la sortie du bac de décantation 13 est traitée par les méthodes classiques de la chimie des eaux. Les hydrocarbures condensés et le charbon séparés de la phase aqueuse dans le bac 13 sont envoyés dans un réservoir de stockage 17 où ils seront repris pour utilisation.
Les gaz non condensés à la sortie du bac 9 sont aspirés par un groupe de pompage 10 dont le refoulement débite dans un bac laveur 11 où le gaz carbonique est éliminé par addition de carbonate de potassium, par exemple, dans l'eau venant du bac 14. A la sortie du bac 11 le gaz épuré est comprimé par le compresseur 12 et stocké dans un réser- voir 16.
Ce gaz comprimé est ici envoyé aux panneaux radiants catalytiques 4 après passage dans un mélangeur 15 où arrive également de 1 'air comprimé de provenance quelconque en 18, ou encore, selon les cas d'application, de l'oxygène pur venant d'un stockage extérieur. Le mélange gazeux traverse un récupérateur 7 où il est échauffé afin d'amé¬ liorer le bilan thermodynamique de l'oxydation catalytique. La figure 1 montre en effet une sortie des gaz de catalyse de la chambre 1 ; ces gaz, composés essentiellement de gaz carbonique et de .vapeur d'eau provenant de la déshydratation et de l'oxydation catalytique, traversent le récupérateur 7 où ils sont refroidis. Ils sont aspirés par un groupe de pompage 8 dont le refoulement débite sur une cheminée 19.
La figure 2 montre un chariot 20 dans lequel sont placés les produits à traiter ; le chariot passe d'une chambre à l'autre par l'intermédiaire d'un système pignon crémaillère 21.
Un arbre d'entraînement 22 assure le mouvement synchronisé des chariots. Les gaz sont extraits des chambres 1 et 2 par des carneaux 24 situés en extrémité des chambres et en plancher de façon à entraîner le charbon dans le flux gazeux.
Les laveurs de gaz ressortissent du génie chimique classique. Le système décrit ci-dessus offre les avantages suivants : - il est applicable à toute quantité de produits en faisant varier la section du réacteur ou la longueur du réacteur soit en mettant en parallèle autant de réacteurs que nécessaire,
- le système selon l'invention permet de traiter les produits à éliminer dans de bonnes conditions pour la protection de
1'environnement,
- les produits de la décomposition thermolytique sont épurés de tous les contaminants et peuvent être contrôlés avant toute utilisation ultérieure. Les eaux de la phase aqueuse sont traitées par les méthodes classiques après décantation des hydrocarbures et des charbons. Les inertes divers - verres, métaux, etc.. - peuvent être recyclés dans les meilleures conditions sanitaires possibles. Les métaux lourds non vaporisés dans le thermolyseur seront récupérés dans le chariot après refroidissement, les métaux lourds vaporisés seront récupérés dans le pied du laveur ou dans le bassin de traitement des eaux de décantation.
Enfin, le système selon l'invention permet une excellente récupération énergétique avec la possibilité de stocker sous forme de charbon et d'hydrocarbures l'énergie récupérée, éventuellement de la transporter pour la consommer à 1'endroit et au moment convenables.
Il va de soi que la description qui précède n'a été proposée qu'à titre d'exemple non limitatif et que de nombreuses variantes peuvent être proposées par l'homme de l'art sans sortir du cadre de l'invention.

Claims

REVENDICATIONS 1. Système pour le traitement de produits solides dont le rejet est préjudiciable pour l'environnement, comportant un réacteur intégrant successivement une zone de déshydratation ( 1 ) et une zone de thermolyse (2), caractérisé en ce que ce réacteur comporte en aval de la zone de ther¬ molyse (2), une zone de refroidissement (3) et en ce que la zone de déshydratation est munie d'une porte d'entrée étanche, la zone de refroidissement est munie d'une porte de sortie étanche, et des sas isolent la zone de thermolyse (2), d'une part vis à vis de la zone de déshydratation (1), d'autre part vis à vis de la zone de refroidissement (3) en sorte de limiter les entrées d'air dans la zone de thermolyse lors de l'introduction des produits et lors de l'extraction des résidus, cette zone de thermolyse (2) étant munie d'une ligne d'extraction de gaz grâce à quoi elle est en dépression.
2. Système selon la revendication 1, caractérisé en ce que la zone de thermolyse (2) est maintenue sans oxygène libre.
3. Système selon la revendication 1 ou 2, caractérisé en ce que la zone de thermolyse (2) est à une température comprise entre 400°C et 750°C et à une pression inférieure ou égale à 800 millibars.
4. Système selon l'une quelconque des reven¬ dications 1 à 3, caractérisé en ce que les produits sont portés par des chariots (20) déplacés au travers du réacteur par un ensemble mécanique (21) tel que pignon-crémaillère.
5. Système selon l'une quelconque des reven- dications 1 à 4, caractérisé en ce que la chambre de déshy¬ dratation (1) et la zone de thermolyse (2) sont chauffées par des moyens de chauffage comportant des panneaux radiants catalytiques (4).
6. Système selon la revendication 5, caractérisé en ce que les panneaux radiants catalytiques sont alimentés au moins en partie par les gaz prélevés dans la zone de thermolyse.
7. Système selon les revendications 5 et 6, caractérisé en ce que le gaz carbonique et la vapeur d'eau générés dans l'oxydation catalytique participent à la mise en température des produits à traiter par convection et radia¬ tion.
8. Système selon l'une quelconque des reven¬ dications 1 à 7, caractérisé en ce que les gaz de thermolyse formés dans la décomposition thermolytique et les gaz formés dans l'oxydation catalytique sont refroidis et épurés dans des laveurs de gaz où seront éliminés les composés halogènes, de soufre et le gaz carbonique.
9. Système selon la revendication 8, caractérisé en ce que les gaz à la sortie des laveurs sont aspirés par des groupes de pompage à vide.
10. Système selon 1'une quelconque des reven¬ dications 1 à 9, caractérisé en ce que le contrôle de la cinétique de la transformation thermolytique est obtenu par la régulation du chauffage électrique et du chauffage catalytique par la mise en oeuvre des systèmes classiques de mesure des températures et de régulation des débits de gaz et de courant électrique.
PCT/FR1992/000250 1991-03-20 1992-03-19 Systeme pour le traitement par thermolyse de produits solides dont le rejet est prejudiciable pour l'environnement WO1992016599A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA002105289A CA2105289C (fr) 1991-03-20 1992-03-19 Systeme pour le traitement par thermolyse de produits solides dont le rejet est prejudiciable pour l'environnement
RU9393056159A RU2097402C1 (ru) 1991-03-20 1992-03-19 Система для обработки термолизом твердых продуктов, выброс которых вреден для окружающей среды

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9103675A FR2674149B1 (fr) 1991-03-20 1991-03-20 Systeme pour le traitement par thermolyse, en absence totale d'oxygene des produits solides dont le rejet est prejudiciable pour l'environnement.
FR91/03675 1991-03-20

Publications (1)

Publication Number Publication Date
WO1992016599A1 true WO1992016599A1 (fr) 1992-10-01

Family

ID=9411156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1992/000250 WO1992016599A1 (fr) 1991-03-20 1992-03-19 Systeme pour le traitement par thermolyse de produits solides dont le rejet est prejudiciable pour l'environnement

Country Status (10)

Country Link
EP (1) EP0505278B1 (fr)
JP (1) JP2869188B2 (fr)
AT (1) ATE113309T1 (fr)
CA (1) CA2105289C (fr)
DE (1) DE69200560T2 (fr)
DK (1) DK0505278T3 (fr)
ES (1) ES2062871T3 (fr)
FR (1) FR2674149B1 (fr)
RU (1) RU2097402C1 (fr)
WO (1) WO1992016599A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0541009A1 (fr) * 1991-11-06 1993-05-12 VOMM IMPIANTI E PROCESSI S.r.L. Procédé pour éliminer des polluants contenus dans le gaz obtenu lors du séchage de substrats
EP0623797A1 (fr) * 1993-05-03 1994-11-09 Societe Francaise De Thermolyse Procédé et dispositif pour le chauffage par flamme d'une chambre en dépression
EP0624656A1 (fr) * 1993-05-11 1994-11-17 Societe Francaise De Thermolyse Procédé et installation pour le traitement par thermolyse sous vide de produits solides, avec séparation et récupération en continu d'une fraction liquide de ces produits
WO1995008605A1 (fr) * 1993-09-24 1995-03-30 Sce - Tvd, Societe Civile D'etude Des Traitements Sous Vide Des Dechets Procede et dispositif de valorisation des dechets par pyrolyse avec reduction
EP1115810A1 (fr) * 1998-09-23 2001-07-18 Hartwig Streitenberger Procede et dispositif pour traiter des residus de production et des rejets
EP0724008B1 (fr) * 1995-01-25 2003-05-28 O.E.T. CALUSCO S.r.l. Procédé et installation de traitement pyrolytique de déchets chargés de matières organiques, en particulier le traitement de déchets municipaux

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2701035B1 (fr) * 1993-02-01 1995-04-21 Thermolyse Ste Francaise Procédé et installation pour le traitement par thermolyse de déchets solides, sans condensation d'hydrocarbures.
DE4418562A1 (de) * 1993-06-29 1995-01-12 Leybold Durferrit Gmbh Verfahren und Vorrichtung zur Behandlung von im wesentlichen aus Kunststoff oder Gummi bestehendem Gut
GB2280451B (en) * 1993-06-29 1998-01-28 Leybold Durferrit Gmbh Process for embrittling and crushing of plastics/rubber
FR2711396B1 (fr) * 1993-10-18 1996-09-13 Thermolyse Ste Francaise Dispositif d'extraction en continu d'une phase liquide ou pâteuse vers une pression finale supérieure à la pression initiale.
ATE172231T1 (de) * 1994-03-18 1998-10-15 Ald Vacuum Techn Gmbh Verfahren und vorrichtung zum thermischen behandeln von materialien mit anteilen an verdampfbaren stoffen
FR2735707A1 (fr) 1995-06-20 1996-12-27 Minghi Osvald Procede et dispositif de rehabilitation de matieres et sols pollues en continu par pyrolyse sous atmosphere controlee
AU1193197A (en) * 1995-06-28 1997-01-30 Liquid Carbonic Industrias S.A. Process for the realization of endothermic reactions for thethermal decomposition of solids, producing gases and solid residues
FR2745819B1 (fr) * 1996-03-11 1999-04-09 Seit Installation de traitement thermique de dechets industriels, hospitaliers, menagers et assimilables avec protection de l'environnement au-dela des normes fixees
FR2754540B1 (fr) * 1996-10-15 1998-12-31 Thermolyse Soc France Procede et installation pour le traitement de dechets solides par thermolyse
KR100281312B1 (ko) 1996-10-15 2001-03-02 쏘시에뜨 프랑세즈 드 떼르몰리즈 열분해에의한고체폐기물처리방법및설비
FR2822527B1 (fr) 2001-03-20 2003-10-10 Maillot Sarl Procede de traitement des dechets industriels et/ou menagers et installation de traitement des dechets industriels et/ou menagers
GB2377900B (en) * 2002-05-03 2003-06-18 John Alan Porter Treatment of municipal solid waste
WO2004018591A1 (fr) * 2002-08-26 2004-03-04 Megumi Yamada Procede et dispositif de production d'une matiere carbonee
RU2295092C2 (ru) * 2003-04-29 2007-03-10 Геннадий Петрович Кузнецов Способ высокотемпературной переработки отходов жизнедеятельности мегаполиса без выброса окиси углерода и углекислого газа в атмосферу
GB0604907D0 (en) 2006-03-10 2006-04-19 Morgan Everett Ltd Pyrolysis apparatus and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR503446A (fr) * 1917-06-14 1920-06-10 George Edward Heyl Perfectionnements à la distillation de charbon
FR2106844A5 (fr) * 1970-09-25 1972-05-05 Sodeteg
US4402791A (en) * 1981-08-10 1983-09-06 Brewer John C Apparatus for pyrolyzing shredded tires
EP0426925A1 (fr) * 1989-11-07 1991-05-15 Societe Anonyme Dite: C.G.C. Entreprise Procédé et installation de traitement de déchets urbains et/ou industriels

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR503446A (fr) * 1917-06-14 1920-06-10 George Edward Heyl Perfectionnements à la distillation de charbon
FR2106844A5 (fr) * 1970-09-25 1972-05-05 Sodeteg
US4402791A (en) * 1981-08-10 1983-09-06 Brewer John C Apparatus for pyrolyzing shredded tires
EP0426925A1 (fr) * 1989-11-07 1991-05-15 Societe Anonyme Dite: C.G.C. Entreprise Procédé et installation de traitement de déchets urbains et/ou industriels

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0541009A1 (fr) * 1991-11-06 1993-05-12 VOMM IMPIANTI E PROCESSI S.r.L. Procédé pour éliminer des polluants contenus dans le gaz obtenu lors du séchage de substrats
EP0623797A1 (fr) * 1993-05-03 1994-11-09 Societe Francaise De Thermolyse Procédé et dispositif pour le chauffage par flamme d'une chambre en dépression
FR2704941A1 (fr) * 1993-05-03 1994-11-10 Thermolyse Ste Francaise Procédé et dispositif pour le chauffage par flamme d'une chambre en dépression.
WO1994025814A1 (fr) * 1993-05-03 1994-11-10 Societe Française De Thermolyse Procede et dispositif pour le chauffage par flamme d'une chambre en depression
EP0624656A1 (fr) * 1993-05-11 1994-11-17 Societe Francaise De Thermolyse Procédé et installation pour le traitement par thermolyse sous vide de produits solides, avec séparation et récupération en continu d'une fraction liquide de ces produits
FR2705103A1 (fr) * 1993-05-11 1994-11-18 Thermolyse Ste Francaise Procédé et installation pour le traitement par thermolyse sous vide de produits solides, avec séparation et récupération en continu d'une fraction liquide de ces produits.
WO1994026941A1 (fr) * 1993-05-11 1994-11-24 Societe Francaise De Thermolyse Procede et installation pour le traitement par thermolyse sous vide de produits solides, avec separation et recuperation en continu d'une fraction liquide de ces produits
WO1995008605A1 (fr) * 1993-09-24 1995-03-30 Sce - Tvd, Societe Civile D'etude Des Traitements Sous Vide Des Dechets Procede et dispositif de valorisation des dechets par pyrolyse avec reduction
FR2710400A1 (fr) * 1993-09-24 1995-03-31 Fortin Claude Pyrolyse avec réduction pour valorisation des déchets, et pyrolyso-réducteurs selon ce procédé.
EP0724008B1 (fr) * 1995-01-25 2003-05-28 O.E.T. CALUSCO S.r.l. Procédé et installation de traitement pyrolytique de déchets chargés de matières organiques, en particulier le traitement de déchets municipaux
EP1115810A1 (fr) * 1998-09-23 2001-07-18 Hartwig Streitenberger Procede et dispositif pour traiter des residus de production et des rejets

Also Published As

Publication number Publication date
ES2062871T3 (es) 1994-12-16
RU2097402C1 (ru) 1997-11-27
EP0505278A1 (fr) 1992-09-23
ATE113309T1 (de) 1994-11-15
DK0505278T3 (da) 1995-01-02
CA2105289A1 (fr) 1992-09-21
DE69200560D1 (de) 1994-12-01
FR2674149B1 (fr) 1994-04-15
FR2674149A1 (fr) 1992-09-25
JPH06506246A (ja) 1994-07-14
EP0505278B1 (fr) 1994-10-26
CA2105289C (fr) 2001-03-13
JP2869188B2 (ja) 1999-03-10
DE69200560T2 (de) 1995-04-27

Similar Documents

Publication Publication Date Title
EP0505278B1 (fr) Système pour le traitement par thermolyse de produits solides dont le rejet est préjudiciable pour l'environnement
US5138959A (en) Method for treatment of hazardous waste in absence of oxygen
US5010829A (en) Method and apparatus for treatment of hazardous waste in absence of oxygen
WO2010128055A1 (fr) Procède et installation de densification énergétique d'un produit sous forme de solides divises, en vue de l'obtention d'huiles pyrolytiques a vocation énergétique
FR2858570A1 (fr) Procede pour la thermolyse et/ou le sechage de dechets organiques utilisant un four a billes
US4896614A (en) Method and apparatus for treatment of hazardous waste in absence of oxygen
US7025006B2 (en) Industrial and/or household waste treatment method and an industrial and/or household waste treatment installation
US5678496A (en) Method and plant for the pyrolytic treatment of waste containing organic material, particularly for treating municipal solid waste
US4708641A (en) Waste removal system for problematic materials
WO2013095163A1 (fr) Appareil de pyrolyse continue
US20090211892A1 (en) Pyrolysis system for waste rubber
EP0610120B1 (fr) Procédé et installation pour le traitement par thermolyse de déchets solides, sans condensation d'hydrocarbures
FR2822721A1 (fr) Procede et installation de reduction des oxydes d'azote presents dans les fumees de combustion d'un gaz issu d'un processus de thermolyse
CA2240532A1 (fr) Procede et installation pour le traitement de dechets solides par thermolyse
EP0524847B1 (fr) Procédé et dispositif de traitement de déchets par contact direct
EP0426925B1 (fr) Procédé et installation de traitement de déchets urbains et/ou industriels
EP0630957B1 (fr) Four de pyrolyse sous basse pression pour la destruction de déchets organiques industriels
FR2705103A1 (fr) Procédé et installation pour le traitement par thermolyse sous vide de produits solides, avec séparation et récupération en continu d'une fraction liquide de ces produits.
EP0827998B1 (fr) Système pour la valorisation de matières organiques de récupération
FR2685449A1 (fr) Four de pyrolyse sous basse pression pour la destruction de dechets organiques industriels.
FR2511025A1 (fr) Procede de prechauffage ameliore de schistes huileux avant la pyrolyse
EP0795594B1 (fr) Installation de traitement thermique de déchets industriels, hospitaliers, ménagers et similaires avex protection de l'environnement
CN112393247A (zh) 一种低温薄层速热梯级绝氧热解系统及基于该系统的固废热解系统
US20070081930A1 (en) Universal waste processor
FR2877427A1 (fr) Procede et installation de traitement de matieres solides carbonees, par decomposition thermique

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP RU US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref document number: 1993 107761

Country of ref document: US

Date of ref document: 19930825

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2105289

Country of ref document: CA