WO1992019574A1 - Composition de catalyseur composite et procede fischer-tropsch utilisant cette composition - Google Patents
Composition de catalyseur composite et procede fischer-tropsch utilisant cette composition Download PDFInfo
- Publication number
- WO1992019574A1 WO1992019574A1 PCT/US1992/003601 US9203601W WO9219574A1 WO 1992019574 A1 WO1992019574 A1 WO 1992019574A1 US 9203601 W US9203601 W US 9203601W WO 9219574 A1 WO9219574 A1 WO 9219574A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- catalyst
- zeolite
- fischer
- water
- composite
- Prior art date
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 121
- 239000002131 composite material Substances 0.000 title claims abstract description 24
- 238000000034 method Methods 0.000 title claims abstract description 24
- 230000008569 process Effects 0.000 title claims abstract description 14
- 239000000203 mixture Substances 0.000 title claims description 11
- 239000010457 zeolite Substances 0.000 claims abstract description 84
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims abstract description 74
- 229910021536 Zeolite Inorganic materials 0.000 claims abstract description 70
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 29
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 29
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 19
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 16
- 229910017052 cobalt Inorganic materials 0.000 claims description 32
- 239000010941 cobalt Substances 0.000 claims description 32
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 32
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 24
- 239000000377 silicon dioxide Substances 0.000 claims description 12
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 10
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 8
- ZCUFMDLYAMJYST-UHFFFAOYSA-N thorium dioxide Chemical compound O=[Th]=O ZCUFMDLYAMJYST-UHFFFAOYSA-N 0.000 claims description 6
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 229910052702 rhenium Inorganic materials 0.000 claims description 4
- 229910052707 ruthenium Inorganic materials 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 229910052680 mordenite Inorganic materials 0.000 claims description 3
- 229910052708 sodium Inorganic materials 0.000 claims description 3
- 229910004369 ThO2 Inorganic materials 0.000 claims description 2
- 229910052791 calcium Inorganic materials 0.000 claims description 2
- 229910052593 corundum Inorganic materials 0.000 claims description 2
- 229910052744 lithium Inorganic materials 0.000 claims description 2
- 229910052749 magnesium Inorganic materials 0.000 claims description 2
- 229910052763 palladium Inorganic materials 0.000 claims description 2
- 229910052697 platinum Inorganic materials 0.000 claims description 2
- 229910052700 potassium Inorganic materials 0.000 claims description 2
- 229910001845 yogo sapphire Inorganic materials 0.000 claims description 2
- 239000000758 substrate Substances 0.000 claims 1
- 239000007789 gas Substances 0.000 abstract description 48
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 abstract description 25
- 229910002091 carbon monoxide Inorganic materials 0.000 abstract description 23
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 12
- 239000001257 hydrogen Substances 0.000 abstract description 12
- 239000000463 material Substances 0.000 abstract description 12
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 7
- 239000010409 thin film Substances 0.000 abstract description 7
- 150000001336 alkenes Chemical class 0.000 abstract description 3
- 230000000295 complement effect Effects 0.000 abstract description 3
- 150000001335 aliphatic alkanes Chemical class 0.000 abstract description 2
- 230000015572 biosynthetic process Effects 0.000 description 37
- 238000003786 synthesis reaction Methods 0.000 description 29
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 26
- 229910052751 metal Inorganic materials 0.000 description 22
- 239000002184 metal Substances 0.000 description 22
- 230000000694 effects Effects 0.000 description 20
- 239000000047 product Substances 0.000 description 20
- 238000006243 chemical reaction Methods 0.000 description 16
- 238000002425 crystallisation Methods 0.000 description 14
- 230000008025 crystallization Effects 0.000 description 14
- 239000002002 slurry Substances 0.000 description 14
- 238000009826 distribution Methods 0.000 description 13
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 239000002808 molecular sieve Substances 0.000 description 11
- 239000011148 porous material Substances 0.000 description 11
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 11
- 239000012071 phase Substances 0.000 description 10
- 238000006116 polymerization reaction Methods 0.000 description 9
- 239000011159 matrix material Substances 0.000 description 7
- 230000007246 mechanism Effects 0.000 description 7
- 230000009467 reduction Effects 0.000 description 7
- BGQMOFGZRJUORO-UHFFFAOYSA-M tetrapropylammonium bromide Chemical compound [Br-].CCC[N+](CCC)(CCC)CCC BGQMOFGZRJUORO-UHFFFAOYSA-M 0.000 description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 238000005470 impregnation Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 238000012546 transfer Methods 0.000 description 6
- 238000013459 approach Methods 0.000 description 5
- 239000000571 coke Substances 0.000 description 5
- 239000007791 liquid phase Substances 0.000 description 5
- 241000894007 species Species 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 239000004809 Teflon Substances 0.000 description 4
- 229920006362 Teflon® Polymers 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 150000002431 hydrogen Chemical class 0.000 description 4
- 235000015097 nutrients Nutrition 0.000 description 4
- -1 offretite Inorganic materials 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical compound FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 4
- 230000004580 weight loss Effects 0.000 description 4
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000001354 calcination Methods 0.000 description 3
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 239000003245 coal Substances 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 230000009849 deactivation Effects 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 3
- 230000009977 dual effect Effects 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 239000004115 Sodium Silicate Substances 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000004645 aluminates Chemical class 0.000 description 2
- UORVGPXVDQYIDP-UHFFFAOYSA-N borane Chemical compound B UORVGPXVDQYIDP-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000010494 dissociation reaction Methods 0.000 description 2
- 230000005593 dissociations Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 238000005984 hydrogenation reaction Methods 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000001465 metallisation Methods 0.000 description 2
- 239000004005 microsphere Substances 0.000 description 2
- 239000003607 modifier Substances 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 2
- 229910052911 sodium silicate Inorganic materials 0.000 description 2
- 238000001694 spray drying Methods 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- 230000008016 vaporization Effects 0.000 description 2
- RRKODOZNUZCUBN-CCAGOZQPSA-N (1z,3z)-cycloocta-1,3-diene Chemical compound C1CC\C=C/C=C\C1 RRKODOZNUZCUBN-CCAGOZQPSA-N 0.000 description 1
- 241000370685 Arge Species 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910000085 borane Inorganic materials 0.000 description 1
- CVCSGXJPONFHRC-UHFFFAOYSA-N carbon monoxide;cobalt;nitroxyl anion Chemical compound [Co].[O+]#[C-].[O+]#[C-].[O+]#[C-].O=[N-] CVCSGXJPONFHRC-UHFFFAOYSA-N 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 150000001868 cobalt Chemical class 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000004939 coking Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000005574 cross-species transmission Effects 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000002283 diesel fuel Substances 0.000 description 1
- 238000000113 differential scanning calorimetry Methods 0.000 description 1
- 238000011143 downstream manufacturing Methods 0.000 description 1
- 239000012013 faujasite Substances 0.000 description 1
- 230000005350 ferromagnetic resonance Effects 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000000155 isotopic effect Effects 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 230000005291 magnetic effect Effects 0.000 description 1
- VASIZKWUTCETSD-UHFFFAOYSA-N manganese(II) oxide Inorganic materials [Mn]=O VASIZKWUTCETSD-UHFFFAOYSA-N 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000006864 oxidative decomposition reaction Methods 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000010517 secondary reaction Methods 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 229910001388 sodium aluminate Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
- ABDKAPXRBAPSQN-UHFFFAOYSA-N veratrole Chemical group COC1=CC=CC=C1OC ABDKAPXRBAPSQN-UHFFFAOYSA-N 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2/00—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/024—Multiple impregnation or coating
- B01J37/0246—Coatings comprising a zeolite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/60—Synthesis on support
- B01J2229/64—Synthesis on support in or on refractory materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/03—Catalysts comprising molecular sieves not having base-exchange properties
- B01J29/035—Microporous crystalline materials not having base exchange properties, such as silica polymorphs, e.g. silicalites
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2521/00—Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
- C07C2521/02—Boron or aluminium; Oxides or hydroxides thereof
- C07C2521/04—Alumina
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2521/00—Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
- C07C2521/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2521/00—Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
- C07C2521/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- C07C2521/08—Silica
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2523/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
- C07C2523/12—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of actinides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2529/00—Catalysts comprising molecular sieves
- C07C2529/03—Catalysts comprising molecular sieves not having base-exchange properties
- C07C2529/035—Crystalline silica polymorphs, e.g. silicalites
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2529/00—Catalysts comprising molecular sieves
- C07C2529/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
- C07C2529/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- C07C2529/08—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2529/00—Catalysts comprising molecular sieves
- C07C2529/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
- C07C2529/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- C07C2529/18—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2529/00—Catalysts comprising molecular sieves
- C07C2529/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
- C07C2529/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- C07C2529/40—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2529/00—Catalysts comprising molecular sieves
- C07C2529/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
- C07C2529/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- C07C2529/50—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the eroionite or offretite type, e.g. zeolite T
Definitions
- This invention is a composite catalyst comprising a water-gas shift catalyst coated by a thin film zeolitic material which, in turn, has a Fischer-Tropsch catalyst deposited on its outer surface.
- the zeolite has the gatekeeper function of allowing short chain hydrocarbons and steam into the water-gas shift catalyst and allowing the return of the carbon monoxide and hydrogen products back to the Fischer-Tropsch
- a stream of short chain hydrocarbons e.g., C 1 -C 4 alkanes or alkenes
- steam is passed to the catalyst composite where it diffuses past the
- Fischer-Tropsch process permits the synthesis of
- hydrocarbons ranging from methane to high melting point paraffins, depending on the catalyst and process
- Cobalt based catalysts for Fischer-Tropsch synthesis have been extensively used during the first half century until the end of World War II. Precipitated
- Co-ThO 2 -MgO catalysts were the standard used in Germany's fixed bed reactors during the war. Although those catalysts gave the highest yields and longest life, they present some drawbacks. Cobalt is a relatively expensive metal, the methane fraction in the reaction products is rather high, and the metal cannot process carbon
- the rate-controlling step is variously identified as the
- the Fischer-Tropsch synthesis proceeds via a polymerization reaction in which the hydrocarbon product grows through the addition of single hydrocarbon monomer units.
- This growth mechanism implies that the product distribution can be described by the Anderson-Schulz-Flory (ASF) equation for the most probable distribution.
- ASF Anderson-Schulz-Flory
- Hydrocarbon product distributions from carbon monoxide-H 2 synthesis including commercial data from the South African Coal, Oil, and Gas Corporation (SASOL) plant, are consistent with ASF polymerization kinetics. Very recent data obtained using sophisticated analytical techniques further support the applicability of ASF polymerization kinetics.
- C 1 hydrocarbon intermediate for example, methanol, which can be produced from carbon monoxide and H 2 in 100% selectivity
- methanol which can be produced from carbon monoxide and H 2 in 100% selectivity
- a typical example of this approach is the synthesis of methanol and its subsequent reaction over ZSM-5 type zeolites, as practiced by Mobil Oil Company, to produce lower olefins or aromatics at very high selectivities.
- Fischer-Tropsch technology is practiced on a commercial scale by SASOL. This operation uses two types of technology: an older fixed-bed (ARGE) reactor and a newer fluidized-bed (Synthol) unit. These units are differentiated by their catalysts, product distributions, productivity, and required downstream processing. The products of both of these reactors, however, are
- catalyst composition as a function of active metal promoters, support, surface area, and porosity; temperature; pressure; feed H 2 to carbon monoxide ratio; reactor design; and conversion.
- the Fischer-Tropsch reaction can be operated at any desired degree of polymerization to achieve the product distribution specified by the ASF polymerization model.
- Fischer-Tropsch plants will be based on slurry phase reactors. While the technology of hydrocarbon synthesis from synthesis gas in liquid phase (slurry) reactors is relatively old, pre-World War II, the use of slurry reactors for Fischer-Tropsch chemistry is undergoing a renaissance. This is because of certain potential economic advantages, such as integration of the liquid phase Fischer-Tropsch process with the new generation of more efficient coal gasifiers.
- Hydrocarbon synthesis in the slurry reactor is complex from an engineering standpoint due to the
- H 2 and carbon monoxide leading to a mass transfer coefficient for H 2 that can be 37 times that for carbon monoxide.
- catalyst surface is of paramount importance permitting this system to operate with low H 2 to carbon monoxide ratio feeds.
- the presence of the liquid phase may have other beneficial effects. These include temperature control, avoidance of hot spots, and minimization of the Bouduard reaction; solvent washing effects to remove heavy
- hydrocarbons and/or free carbon hydrocarbons and/or free carbon; and enhancement of the water-gas shift reaction.
- catalysts prepared from metal salts and cobalt carbonyls deposited on supports such as silica, alumina, and titania have been studied in slurry phase reactors.
- Promoters such as thoria and zirconia are usually
- a zeolite Fischer-Tropsch catalyst has three potential advantages.
- the Fischer-Tropsch function can be highly dispersed in the fresh catalyst, reducing the metal loading needed to attain a specific activity.
- the zeolite can selectively modify (by acid catalyzed shape selective reactions) the primary Fischer-Tropsch product.
- a water-gas sift function could be introduced into a molecular sieve based catalyst.
- CoAPO-34 could be modified by Zn and Cu components as to introduce the water gas shift activity.
- Our approach is to introduce a water-gas shift function in the catalyst and yet zeolite composite materials with high surface area.
- These novel materials comprise a conventional porous support lined with a thin layer of zeolite crystallites providing a useful high surface area.
- the zeolitic layer can support the cobalt metal providing the Fischer-Tropsch function, while serving as a "gatekeeper" for a water-gas shift function located at a catalytic surface beneath it.
- the molecules participating in the water-gas shift reaction may diffuse through the zeolite layer to catalytic sites on the porous support.
- the larger hydrocarbon molecules, unable to enter the zeolite pore structure, will react only on the Fischer-Tropsch active sites located on the zeolite surface.
- this invention is a composite catalyst having an inner water-gas shift catalyst, a thin film of a zeolite coating the water-gas shift catalyst, and a Fischer-Tropsch catalyst dispersed throughout the outer surface of the zeolitic layer. Additionally, the intention involves a process of using the composite upon a hydrocarbon steam stream to produce higher molecular weight hydrocarbons through complementary water-gas and Fischer-Tropsch reactions in the catalyst composite. Preparation of Zeolites
- zeolite materials are prepared by crystallization from solution.
- High surface area zeolite coated metals have been prepared by nucleating zeolite crystallites in solution and letting them settle gravitationally onto copper foils (Davis et al, 1990).
- zeolite crystallization on porous supports such as silica, alumina, zirconia, thoria, or mixtures. These are novel materials because of their structure.
- the surface of the support is substantially or completely lined by a thin layer of zeolite
- the key to preparing high surface area zeolites is to obtain small crystallites with a narrow size distribution. Reducing the crystallite size increases the surface to volume ratio. For cube shaped crystals, a tenfold decrease in particle size results in a 100 fold increase in external surface to volume ratio.
- the zeolite crystallites can be envisaged either as
- perturbation of the zeolite structure and its electronic field may occur at the zeolite/matrix interface
- thermogravimetric analysis- differential scanning calorimeter TGA-DSC
- cobalt Fischer-Tropsch catalysts The major constituents of cobalt Fischer-Tropsch catalysts are cobalt, a second metal (generally Re or Ru, although Pt and Pd may also be used) oxide promoters (ThO 2 , ZrO 2 , Al 2 O 3 , MgO, MnO) and the support. It is likely that the function of the second metal is to lower the reduction temperature of cobalt, presumably by providing a source of spill over hydrogen atoms that facilitates the reduction of the cobalt and prevents the formation of coke. The oxide promoters probably improve the selectivity and lower the deactivation rate of the catalyst.
- Our materials are molecular sieve based cobalt catalysts. These are basically dual function catalysts where the cobalt metal provides the Fischer-Tropsch function while the molecular sieve modifies the product and protects the water-gas shift function from
- the acidity of the support has to be carefully controlled to obtain the desired product (long chain paraffins) and low methane selectivity. This can be achieved adding alkali and alkaline earth promoters (i.e Li, Na, K, Ca, Mg or mixtures).
- the molecular sieves may be USY, Si-rich mordenite, offretite, zeolite omega, ZSM-5, silicalite, X, Y and CoAPO-34.
- the Fischer-Tropsch reaction produces water, hence the catalyst must be stable in the presence of steam.
- zeolites steam dealumination and structural collapse could occur unless they have a sufficiently high Si/Al ratio.
- Other suitable Si-rich zeolites include dealuminated materials like USY, Si-rich mordenite, Sirich offretite, zeolite omega, and ZSM-5.
- Vaporization of Metal Atoms Vaporizing cobalt under low pressure in an organic solvent such as toluene or cyclooctadiene has been used as the first step in the production of small metal clusters in zeolites (Nazar, 1983; Ozin, 1984). The resulting zero valent metal solvent complex is used to impregnate the zeolite. The solvent is then removed at low temperature leaving metal clusters primarily in the zeolite pores. These metal aggregates have been characterized by Mössbauer
- Microwave Discharge Microwave discharge decomposition has been used to prepare nearly zero valent highly dispersed clusters of cobalt in X and Y zeolites
- Zeolite catalysts containing a highly dispersed active metal can also be prepared by fixing metal complexes in their void volume.
- Co-ZSM-5 catalysts have been prepared by impregnation with C 5 H 5 Co(CO) 2 (Shamasi, 1984). Even though a partial ion exchange of Co (II) species for acidic protons occurs, the resulting
- Cobalt based Fischer-Tropsch catalysts have also been prepared by contacting zeolite NaY with Co(CO) 3 NO and decomposing the encapsulated carbonyl at low temperature in a
- Methane Selectivity Methane is readily produced on cobalt catalysts under Fischer-Tropsch synthesis
- the methane fraction obtained on those catalysts is typically larger than predicted by the ASF product distribution curve.
- Iron based preparations produce less methane but have shorter life than their cobalt based counterparts.
- the hydrogen transfer activity of the catalyst should be depressed. This may result in increased coke formation and shorter catalyst life.
- the optimum catalyst should balance methane production and coke formation.
- the acidity of the zeolite should be moderated through the addition of alkali and alkaline-earth promoters. It is also likely that
- molecular sieve based catalysts may present a distinct advantage in reducing coke formation through shape selective processes. Thus, it may be possible to reduce the hydrogen transfer activity without severely
- zeolites e.g. silica or silica/alumina.
- zeolite e.g. silicalite, ZSM-5, faujasite, X or Y
- cobalt is deposited on the zeolite surface.
- a composite high surface area zeolite on a porous support catalyst including a water-gas shift function may be produced as described above.
- the hydrogen transfer activity on the zeolite layer is adjusted as described above so to minimize the production of methane.
- the initial pretreatment will be hydrogen activation at reaction temperature.
- the catalyst synthesis scheme described below is to a particularly desirable catalyst.
- the scheme produced a cobalt supported on a thin film of silicalite protecting the water-gas shift catalyst which are, in turn, on catalyst microspheres. This is a desirable catalyst form for fluid bed or slurry phase reactors.
- Spray Drying Commercially available spray dried microspheres may be suitable starting materials for catalyst supports. Modification of this support
- modifiers is accomplished through impregnation of the catalyst support.
- Materials can be predeposited in the catalyst support matrix to alter the distribution of the promoters as a function of distance from the particle center.
- non-aqueous) from the catalyst particle may change the distributions, and is highly affected by the
- the cobalt should be deposited or selectively moved to the zeolite surface.
- the porous support supplies some or all of the nutrients needed to form the zeolite structure.
- the additional nutrients are supplied by solution addition to the support.
- the support e.g., silica
- the support is impregnated to incipient wetness with a solution containing sodium silicate, sodium hydroxide, and optionally sodium
- impregnated support may be dried to limit the water remaining in the pores.
- the impregnated support is then placed in a vessel, and transferred to a controlled temperature and humidity chamber. Under these conditions
- zeolite crystallization is initiated. After the desired zeolite level is achieved, the crystallization is terminated.
- the zeolite is immersed in the nutrient containing solution, and zeolite crystallization is initiated in the slurry. After a brief time, the slurry is filtered, and the support particles with zeolite nuclei may be further dried to limit the water remaining in the pores. This material is placed in an open vessel, and transferred to a controlled temperature and humidity chamber. Under these
- a solution is prepared which has the correct levels of sodium silicate, sodium hydroxide, and optionally sodium aluminate and
- Crystallization is started under hydrothermal conditions and proceeds until zeolite nuclei are present in the solution.
- the support is then impregnated with this zeolite seeding solution.
- the impregnated support is then placed in a vessel, and transferred to a controlled temperature and humidity chamber. Under these conditions
- Standard methods for in situ zeolite growth require heated, stirred crystallization reactors which are known equipment. Key crystallization parameters are those which are typically encountered for zeolite
- synthesis and include time, temperature, nutrient concentrations, template selection, etc.
- Drying and Calcining are standard procedures in the processing of the catalyst. Various moving bed or moving belt driers and calciners may also be used for production of the catalyst. Catalyst Reduction. The cobalt must be reduced for use in the reactor. This can be carried out by several methods. It may be performed in the catalyst preparation facility, and then the catalyst transported to the reactor. At the reactor, the transporting
- container may be attached to reactor in a manner
- the reduced catalyst is then added to the reactor. Reduction of the catalyst at the reactor site probably more desirable because it would greatly reduce the possibility that a portion of the cobalt was oxidized during storage or transport. This would be accomplished by having a pretreatment chamber connected to the reactor. The catalyst is added to the pretreatment chamber, reduced, and then dropped directly into the reactor without exposure to air. Key elements for the reduction include time, temperature, flow rate, and the concentration of reducing gases.
- the composite produced as specified above is used in a stream containing water and short chain hydrocarbons at a temperature, pressure, catalyst to feed ratio (and the like) as suitable to produce higher molecular hydrocarbons than those fed to the catalyst composite.
- zeolites could be prepared using vapor phase synthetic techniques similar to those used in Example 1. For each experiment, two grams of silica were used and were impregnated with 2 cc of a solution consisting of one part tetrapropylammonium bromide (TPAB) powder
- the vapor pressure depression was obtained by placing appropriate NaCl solutions (1.5 to 5.0 M) in the TEFLON autoclave liner instead of the distilled water of Example 1. After synthesis, the samples were washed by stirring the pellets in 300 ml of distilled water, and then filtering them as in Example 1. The samples were analyzed using X-ray and using thermogravimetric
- TGA-DSC analysis-differential scanning calorimetry
- crystallinity by XRD is 0%
- crystallinity by TGA-DSC are materials of this invention.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Crystallography & Structural Chemistry (AREA)
- Catalysts (AREA)
Abstract
La présente invention décrit un catalyseur composite comprenant un catalyseur de transformation eau-gaz revêtu d'une couche mince de matière zéolitique, sur la surface extérieure de laquelle est déposé un catalyseur Fischer-Tropsch. La zéolite a pour fonction de céder des hydrocarbures à chaîne courte et de la vapeur au cataalyseur de transformation eau-gaz et de permettre la restitution des produits de monoxyde de carbone et d'hydrogène au catalyseur Fischer-Tropsch sur sa surface extérieure. Le procédé utilisant ce catalyseur composite fait appel aux caractéristiques complémentaires des diverses parties du catalyseur. Un courant d'hydrocarbures à chaîne courte (par exemple alcanes ou alcènes C1-C4) et de vapeur est transmis au catalyseur composite où il se diffuse jusqu'au catalyseur de transformation eau-gaz en passant par le catalyseur Fischer-Tropsch et en traversant la couche zéolitique. Au niveau de cette surface, l'hydrocarbure à chaîne courte réagit avec l'eau pour donner du monoxyde de carbone et de l'hydrogène. Ces produits se diffusent ensuite en retour jusqu'à la surface où ils réagissent sur le catalyseur Fischer-Tropsch pour donner des oligomères d'hydrocarbure.
Applications Claiming Priority (8)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US69420091A | 1991-05-01 | 1991-05-01 | |
| US694,200 | 1991-05-01 | ||
| US72499491A | 1991-07-01 | 1991-07-01 | |
| US724,994 | 1991-07-01 | ||
| US75119891A | 1991-08-29 | 1991-08-29 | |
| US751,198 | 1991-08-29 | ||
| US79173791A | 1991-11-08 | 1991-11-08 | |
| US791,737 | 1991-11-08 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO1992019574A1 true WO1992019574A1 (fr) | 1992-11-12 |
Family
ID=27505449
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US1992/003601 WO1992019574A1 (fr) | 1991-05-01 | 1992-05-01 | Composition de catalyseur composite et procede fischer-tropsch utilisant cette composition |
Country Status (2)
| Country | Link |
|---|---|
| AU (1) | AU1892092A (fr) |
| WO (1) | WO1992019574A1 (fr) |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5672388A (en) * | 1994-07-08 | 1997-09-30 | Exxon Research & Engineering Company | Membrane reparation and poer size reduction using interfacial ozone assisted chemical vapor deposition |
| NL1003778C2 (nl) * | 1996-08-09 | 1998-02-12 | Univ Delft Tech | Werkwijze ter vervaardiging van een composiet-katalysator. |
| US5824617A (en) * | 1994-07-08 | 1998-10-20 | Exxon Research & Engineering Company | Low alkaline inverted in-situ crystallized zeolite membrane |
| US5871650A (en) * | 1994-07-08 | 1999-02-16 | Exxon Research And Engineering Company | Supported zeolite membranes with controlled crystal width and preferred orientation grown on a growth enhancing layer |
| WO2004058632A3 (fr) * | 2002-12-20 | 2004-12-29 | Honda Motor Co Ltd | Formulations de catalyseur a base de platine alcalin/alcalino-terreux pour production d'hydrogene |
| WO2015080611A1 (fr) | 2013-11-26 | 2015-06-04 | Infra XTL Technology Limited | Catalyseur pour diriger la production d'huile synthétique riche en isoparaffines et procédé de préparation du catalyseur |
| WO2017162575A1 (fr) * | 2016-03-24 | 2017-09-28 | Friedrich-Alexander-Universität Erlangen-Nürnberg | Fabrication d'un matériau composite à base de zéolithe avec une porosité hiérarchique |
| US11229898B2 (en) | 2015-12-29 | 2022-01-25 | Friedrich-Alexander-Universität Erlangen-Nürnberg | Nanometer-size zeolitic particles and method for the production thereof |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3468815A (en) * | 1967-09-11 | 1969-09-23 | Texaco Inc | Extended zeolitic structures |
| US4579830A (en) * | 1984-06-27 | 1986-04-01 | Union Carbide Corporation | Enhanced catalyst for converting synthesis gas to liquid motor fuels |
-
1992
- 1992-05-01 AU AU18920/92A patent/AU1892092A/en not_active Abandoned
- 1992-05-01 WO PCT/US1992/003601 patent/WO1992019574A1/fr active Application Filing
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3468815A (en) * | 1967-09-11 | 1969-09-23 | Texaco Inc | Extended zeolitic structures |
| US4579830A (en) * | 1984-06-27 | 1986-04-01 | Union Carbide Corporation | Enhanced catalyst for converting synthesis gas to liquid motor fuels |
Cited By (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5672388A (en) * | 1994-07-08 | 1997-09-30 | Exxon Research & Engineering Company | Membrane reparation and poer size reduction using interfacial ozone assisted chemical vapor deposition |
| US5824617A (en) * | 1994-07-08 | 1998-10-20 | Exxon Research & Engineering Company | Low alkaline inverted in-situ crystallized zeolite membrane |
| US5849980A (en) * | 1994-07-08 | 1998-12-15 | Exxon Research And Engineering Company | Low alkaline inverted in-situ crystallized zeolite membrane |
| US5871650A (en) * | 1994-07-08 | 1999-02-16 | Exxon Research And Engineering Company | Supported zeolite membranes with controlled crystal width and preferred orientation grown on a growth enhancing layer |
| NL1003778C2 (nl) * | 1996-08-09 | 1998-02-12 | Univ Delft Tech | Werkwijze ter vervaardiging van een composiet-katalysator. |
| WO1998006495A1 (fr) * | 1996-08-09 | 1998-02-19 | Technische Universiteit Delft | Procede de preparation d'un catalyseur composite |
| WO2004058632A3 (fr) * | 2002-12-20 | 2004-12-29 | Honda Motor Co Ltd | Formulations de catalyseur a base de platine alcalin/alcalino-terreux pour production d'hydrogene |
| US7744849B2 (en) | 2002-12-20 | 2010-06-29 | Honda Giken Kogyo Kabushiki Kaisha | Platinum-alkali/alkaline-earth catalyst formulations for hydrogen generation |
| WO2015080611A1 (fr) | 2013-11-26 | 2015-06-04 | Infra XTL Technology Limited | Catalyseur pour diriger la production d'huile synthétique riche en isoparaffines et procédé de préparation du catalyseur |
| US11229898B2 (en) | 2015-12-29 | 2022-01-25 | Friedrich-Alexander-Universität Erlangen-Nürnberg | Nanometer-size zeolitic particles and method for the production thereof |
| WO2017162575A1 (fr) * | 2016-03-24 | 2017-09-28 | Friedrich-Alexander-Universität Erlangen-Nürnberg | Fabrication d'un matériau composite à base de zéolithe avec une porosité hiérarchique |
| CN109475858A (zh) * | 2016-03-24 | 2019-03-15 | 埃朗根-纽伦堡弗里德里希-亚历山大大学 | 基于沸石的具有层级式孔隙度的复合材料的制造 |
| JP2019509968A (ja) * | 2016-03-24 | 2019-04-11 | フリードリヒ−アレクサンダー−ウニヴェルシテート エアランゲン−ニュルンベルク | 階層的多孔性を有するゼオライトベースの複合材料の製造 |
Also Published As
| Publication number | Publication date |
|---|---|
| AU1892092A (en) | 1992-12-21 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Kasipandi et al. | Recent advances in direct synthesis of value‐added aromatic chemicals from syngas by cascade reactions over bifunctional catalysts | |
| AU590208B2 (en) | Enhanced conversion of syngas to liquid motor fuels | |
| JP6180421B2 (ja) | 担持活性金属触媒および前駆体を製造および形成する方法 | |
| Su et al. | Synergic effect of GaO+/Brønsted acid in hierarchical Ga/Al-ZSM-5 bifunctional catalysts for 1-hexene aromatization | |
| KR101138849B1 (ko) | 메탄올 또는/및 디메틸 에테르로 저급 올레핀을 제조하는 방법 | |
| JP2000511107A (ja) | 金属含有ゼオライト触媒、その製造、及び炭化水素の転化のための使用 | |
| Qiu et al. | The state of Pt active phase and its surrounding environment during dehydrogenation of ethane to ethylene | |
| JPS6133235A (ja) | ゼオライト触媒寿命の改善方法 | |
| CA2026189C (fr) | Aluminosilicates de type faujasite; methode de preparation; catalyseurs d'hydrocraquage pour hydrocarbures lourds | |
| Liu et al. | Recent advances in the synthesis, characterization, and catalytic consequence of metal species confined within zeolite for hydrogen-related reactions | |
| EP1547683A1 (fr) | Catalyseur d'hydrocraquage et procede de fabrication d'hydrocarbures liquides | |
| KR100993397B1 (ko) | 탄화수소의 접촉분해 방법 | |
| WO1992019574A1 (fr) | Composition de catalyseur composite et procede fischer-tropsch utilisant cette composition | |
| Meng et al. | Influence of different Ga species in MWW zeolite bifunctional catalysts on the ethane dehydrogenation and dehydroaromatization in the absence and presence of CO2 | |
| Sharifi et al. | Effective factors on performance of zeolite based metal catalysts in light hydrocarbon aromatization | |
| Yao et al. | Advances in the Catalytic Conversion of Ethanol into Nonoxygenated Added‐Value Chemicals | |
| Galarza et al. | Influence of the Sn incorporation method in ZSM-11 zeolites in the distribution of bio-oil products obtained from biomass pyrolysis | |
| US4617320A (en) | Enhanced conversion of syngas to liquid motor fuels | |
| Makeeva et al. | Production of aromatic hydrocarbons from syngas: Principles, problems, and prospects | |
| Wen et al. | Effect of Na+ migration and the component proximity on direct conversion of aromatics into aromatics over Fe-based zeolite bifunctional catalysts | |
| JPH06330055A (ja) | 軽質炭化水素の転化法 | |
| Cid et al. | Characterization of tungsten-modified ultrastable Y zeolite catalysts and their activity in thiophene hydrodesulfurization | |
| Vicente et al. | Improving the dehydrogenation function and stability of Zn-modified ZSM-5 catalyst in methanol-to-aromatics reaction by Ca addition | |
| Jongpatiwuta et al. | n-Octane aromatization on Pt-containing non-acidic large pore zeolite catalysts | |
| KR20140006730A (ko) | 피셔-트롭쉬 합성 반응용 혼성촉매 및 이를 이용한 피셔-트롭쉬 합성 공정 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): AT AU BB BG BR CA CH CS DE DK ES FI GB HU JP KP KR LK LU MG MN MW NL NO PL RO RU SD SE US |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE BF BJ CF CG CH CI CM DE DK ES FR GA GB GN GR IT LU MC ML MR NL SE SN TD TG |
|
| DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) |
Free format text: PL |
|
| NENP | Non-entry into the national phase |
Ref country code: CA |
|
| REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
| 122 | Ep: pct application non-entry in european phase |