WO1993003500A1 - Procede de formation d'un element resistant dans un dispositif a semi-conducteur et memoire ram statique obtenue par ce procede - Google Patents
Procede de formation d'un element resistant dans un dispositif a semi-conducteur et memoire ram statique obtenue par ce procede Download PDFInfo
- Publication number
- WO1993003500A1 WO1993003500A1 PCT/US1992/006449 US9206449W WO9303500A1 WO 1993003500 A1 WO1993003500 A1 WO 1993003500A1 US 9206449 W US9206449 W US 9206449W WO 9303500 A1 WO9303500 A1 WO 9303500A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- approximately
- implanting
- silicon
- silicon dioxide
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 40
- 239000004065 semiconductor Substances 0.000 title claims abstract description 21
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 50
- 235000012239 silicon dioxide Nutrition 0.000 claims abstract description 25
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 25
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 24
- 239000010703 silicon Substances 0.000 claims abstract description 24
- 239000011810 insulating material Substances 0.000 claims abstract description 17
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 21
- 239000000758 substrate Substances 0.000 claims description 16
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 13
- -1 silicon ions Chemical class 0.000 claims description 10
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 9
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 9
- 238000000151 deposition Methods 0.000 claims description 5
- 239000007943 implant Substances 0.000 claims description 5
- 238000000137 annealing Methods 0.000 claims description 4
- 239000011521 glass Substances 0.000 claims description 4
- 230000003068 static effect Effects 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims description 3
- 239000011574 phosphorus Substances 0.000 claims description 3
- 230000000873 masking effect Effects 0.000 claims 9
- 239000000463 material Substances 0.000 claims 5
- GDFCWFBWQUEQIJ-UHFFFAOYSA-N [B].[P] Chemical compound [B].[P] GDFCWFBWQUEQIJ-UHFFFAOYSA-N 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 claims 1
- 238000000059 patterning Methods 0.000 claims 1
- 239000010410 layer Substances 0.000 description 26
- 229920005591 polysilicon Polymers 0.000 description 10
- 239000002019 doping agent Substances 0.000 description 7
- 229910052785 arsenic Inorganic materials 0.000 description 3
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000006880 cross-coupling reaction Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B10/00—Static random access memory [SRAM] devices
- H10B10/15—Static random access memory [SRAM] devices comprising a resistor load element
Definitions
- the present invention relates to a method for making a resistive element having high resistivity in a semiconductor device. More particularly, the present invention relates to a method of forming a vertical resistor for use in a SRAM memory cell.
- polycrystalline silicon is disclosed as a resistive element for use in an SRAM memory cell.
- the polycrystalline silicon is positioned horizontally.
- a method for forming a resistive element for use in an SRAM Cell comprises implanting oxygen into polycrystalline silicon to form the resistive element.
- a method of forming a resistive element between a first and a second conductive element in a semiconductor device is disclosed.
- the resistive element can be horizontal, vertical or any other shape and can be used in any application. However, the resistive element is particularly suited for use in a static ram memory cell.
- the resistive element has a resistance having a certain value.
- the method of the invention comprises the steps of forming the first conductive element. A layer of insulating material is deposited in contact with the first conductive element. A non-insulating element is implanted into the layer of insulating material to decrease the resistance of the layer to the desired certain value of the resistive element. Finally, the second conductive element is formed in contact with the layer of the implanted insulating material.
- Figure 1 is a schematic circuit diagram of an SRAM memory cell using resistive load elements of the prior art.
- Figure 2 is a cross-sectional view of a semiconductor structure of the prior art, implementing the schematic circuit shown in figure 1.
- Figure 3 (a-g) are steps in the method of the present invention in forming a vertical resistive element for use in a static ram memory cell whose circuit diagram is shown in figure 1.
- Figure 4 is a plot of concentration of the silicon implant into an insulating layer of silicon dioxide, in accordance with the method of the present invention.
- FIG. 1 there is shown a schematic circuit diagram of a SRAM memory cell 10 of the prior art.
- the SRAM memory cell 10 comprises two cross- coupled transistors Ql and Q2 with two access transistors Q3 and Q4.
- the SRAM memory cell 10 is known as a four transistor (or 4T) cell.
- the Cell 10 comprises two resistive load elements 18 (a and b) . Each of the resistive elements 18 (a and b) is connected to one of the transistors Ql or Q2.
- each of the transistors Q1-Q4 comprises a source 12, a gate 16 and a drain 14.
- the source 12 of the transistors Ql and Q2 are connected to a source of first voltage potential, i.e., ground potential.
- the drain 14 of the transistors Ql and Q2 are connected to transistors Q3 and Q4 respectively and to one end of the resistive elements 18 (a and b) .
- the other end of the resistive elements 18 (a and b) are connected to a source of second voltage potential, such as V cc .
- the transistors Ql and Q2 have a gate 16 which is connected to the drain 14 of the other transistor. In this manner, the transistors Ql and Q2 are cross-coupled.
- Transistor Ql is shown as having source 12, gate 16, and drain 14.
- a heavily doped polycrystalline layer labeled poly-2 is electrically connected to the drain region 14.
- the poly-2 has a region 18 which is undoped and forms the intrinsic poly or the resistive element 18.
- At its other end of the poly-2 is another heavily doped region forming the connection to the source of second voltage potential V cc .
- the first heavily doped region of the poly- 2 is connected to a first layer of heavily doped polysilicon labelled poly-1 which is connected to the gate 16 of the transistor Q2 (not shown) .
- the prior art SRAM memory cell 10 has a resistive element 18 which is horizontally displaced.
- resistive element 18 As the scale of integration increases and it is desired to increase the density of the SRAM memory cell 10 in a device, it is desired to "shrink" the lateral area occupied by each SRAM cell 10.
- U.S. Patent No. 4,416,049 discloses a vertically aligned resistive element 18 for use in an SRAM memory cell 10 in order to increase the density of an SRAM Memory Circuit.
- the present invention relates to a method for forming a vertically aligned resistive element which can be used in a 4-T SRAM cell 10.
- the method of the present invention can be used in any application where a resistive element in a semiconductor device is desired.
- the method of the present invention can also be used to form a horizontal resistive element.
- a semiconductor substrate 30 is shown as having field oxide regions 32 formed thereon.
- a layer of buffered oxide 34 is formed on top of the semiconductor substrate 30.
- the formation of the field oxide region 32 and the buffer oxide region 34 on the substrate 30 is well known in the art.
- One method is to begin with a semiconductor substrate 30 and forming the buffer oxide layer 34 on the entire surface of the substrate 30, by oxidizing the silicon substrate. Thereafter, silicon nitride is deposited over the buffered oxide layer 34. The silicon nitride layer is patterned and etched using conventional photolithographic techniques.
- the mask 36 is applied.
- the mask 36 is patterned exposing a selected region of the structure.
- the selected region exposes a portion of the gate oxide 42 and field oxide 32.
- the exposed region of silicon dioxide from the gate oxide layer 42 and the field oxide region 32 is then etched.
- the mask 36 is then removed.
- a 3,000-4,000 Angstrom thick polycrystalline silicon layer 38 is deposited over the entire structure by conventional LPCVD.
- the polysilicon layer 38 is then doped with an N type dopant such as phosphorus or arsenic at approximately 900-1,000°C.
- the high temperature drives the dopant into the substrate 30, where the polycrystalline silicon layer 38 is in direct contact with the silicon substrate 30, to form a buried contact with the drain 14a.
- the silicon dioxide prevents the dopant from being driven into the silicon substrate 30.
- the polysilicon layer 38 is patterned and etched by conventional lithographic methods to form the gate 16 of transistors Ql and Q2 and the cross-coupling or the electrical connection between the polycrystalline silicon 38 of transistor Ql (which is in contact with the drain 14a of Ql) to the gate 16 of Q2 (not shown, but is directly behind polysilicon 38) and from the polycrystalline silicon 38 of transistor Q2 (which is in contact with the drain 14a of Q2 - not shown, but is directly behind gate 16) to the gate 16 of Ql.
- a mask is then applied exposing the source 12 and drain 14b of the transistors Ql and Q2. Dopants are implanted into the source 12 and drain 14b regions and the gate 16 to render them conductive.
- a typical dopant is
- a mask 42 is formed over the entire structure.
- the mask 42 is patterned and is exposed.
- the exposed area is removed.
- the exposed area is over the region where the vertical resistor 18 would be formed connected to the underlying polysilicon layer 38.
- Silicon ions are implanted through the exposed area of the mask 42, into the silicon dioxide region 40 between the dotted lines shown in Figure 3f.
- the silicon is implanted a number of times with each implant having an energy range from 20 KeV to 200 KeV and with the dosages ranging from 1.0 E15 to 1.0 E17.
- Figure 4 there is shown a graph of the concentration of silicon in a 2,000 Angstrom thick region of silicon dioxide.
- a second layer of polysilicon 44 is deposited over the entire structure. This can be done for example, by depositing 1,000-2,500 Angstrom thick polysilicon using conventional LPCVD.
- the second polysilicon layer 44 is then implanted with an N-type dopant such as phosphorus or arsenic.
- the structure is then annealed at a temperature range of approximately 900 to l,000°C in nitrogen. The annealing process joins the dopants from the drain regions 14a and 14b to form a single contiguous drain region 14.
- the second polysilicon layer 44 is then patterned and etched by conventional lithographic methods to form the necessary connection to the resistor 18 and to connect to the source of second voltage potential V cc .
- the result is the structure shown in figure 3g.
- the method described heretofore is the preferred method, the method can be practiced by implanting any non-insulating element (such as a semiconductor element or a conductive element) into an insulating material.
- the implanted semiconductor element can be silicon.
- the implanted conductive element can be aluminum or carbon.
- the insulating material can be silicon dioxide, BPSG (boron phosphorous doped glass) , PSG (phosphorous doped glass) or silicon nitride.
- the insulating material has a resistivity that is lowered by the implanting of a non-insulating element.
- the amount of implanted non- insulating element determines the degree to which the resistivity of the insulating material is lowered until the desired resistivity is achieved.
- the resistive element can be formed vertically, horizontally or in any other shape and is not necessarily limited to the vertical resistor described in the preferred embodiment.
- the resistor formed by the method of the present invention can be used for an SRAM cell or any other application in a semiconductor device.
Landscapes
- Semiconductor Memories (AREA)
Abstract
L'invention concerne un procédé de formation d'un élément résistant (18) destiné à être utilisé dans un dispositif à semi-conducteur. L'élément résistant (18) peut être utilisé dans un élément de mémoire RAM statique 4T. L'élément résistant (18) est constitué par l'implantation d'un élément non isolant, par exemple du silicium, dans une couche de matériau isolant (40), tel que du dioxyde de silicium, pour diminuer la résistance spécifique de la couche de façon à obtenir un élément résistant (18) présentant la valeur de résistance désirée.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US74004191A | 1991-08-01 | 1991-08-01 | |
US740,041 | 1991-08-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1993003500A1 true WO1993003500A1 (fr) | 1993-02-18 |
Family
ID=24974796
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1992/006449 WO1993003500A1 (fr) | 1991-08-01 | 1992-07-31 | Procede de formation d'un element resistant dans un dispositif a semi-conducteur et memoire ram statique obtenue par ce procede |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO1993003500A1 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0863546A1 (fr) * | 1997-03-07 | 1998-09-09 | STMicroelectronics S.A. | Pseudofusible et application à un circuit d'établissement d'une bascule à la mise sous tension |
GB2343787A (en) * | 1998-11-06 | 2000-05-17 | United Microelectronics Corp | Method of fabricating load resistor |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4656729A (en) * | 1985-03-25 | 1987-04-14 | International Business Machines Corp. | Dual electron injection structure and process with self-limiting oxidation barrier |
US4733482A (en) * | 1987-04-07 | 1988-03-29 | Hughes Microelectronics Limited | EEPROM with metal doped insulator |
US4868618A (en) * | 1988-03-24 | 1989-09-19 | Northern Telecom Limited | Ion implanted semiconductor device |
-
1992
- 1992-07-31 WO PCT/US1992/006449 patent/WO1993003500A1/fr active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4656729A (en) * | 1985-03-25 | 1987-04-14 | International Business Machines Corp. | Dual electron injection structure and process with self-limiting oxidation barrier |
US4733482A (en) * | 1987-04-07 | 1988-03-29 | Hughes Microelectronics Limited | EEPROM with metal doped insulator |
US4868618A (en) * | 1988-03-24 | 1989-09-19 | Northern Telecom Limited | Ion implanted semiconductor device |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0863546A1 (fr) * | 1997-03-07 | 1998-09-09 | STMicroelectronics S.A. | Pseudofusible et application à un circuit d'établissement d'une bascule à la mise sous tension |
FR2760563A1 (fr) * | 1997-03-07 | 1998-09-11 | Sgs Thomson Microelectronics | Pseudofusible et application a un circuit d'etablissement d'une bascule a la mise sous tension |
GB2343787A (en) * | 1998-11-06 | 2000-05-17 | United Microelectronics Corp | Method of fabricating load resistor |
US6140198A (en) * | 1998-11-06 | 2000-10-31 | United Microelectronics Corp. | Method of fabricating load resistor |
GB2343787B (en) * | 1998-11-06 | 2001-01-17 | United Microelectronics Corp | Method of fabricating load resistor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4110776A (en) | Semiconductor integrated circuit with implanted resistor element in polycrystalline silicon layer | |
US4370798A (en) | Interlevel insulator for integrated circuit with implanted resistor element in second-level polycrystalline silicon | |
US4208781A (en) | Semiconductor integrated circuit with implanted resistor element in polycrystalline silicon layer | |
US4675715A (en) | Semiconductor integrated circuit vertical geometry impedance element | |
US4408385A (en) | Semiconductor integrated circuit with implanted resistor element in polycrystalline silicon layer | |
KR900008207B1 (ko) | 반도체기억장치 | |
US4416049A (en) | Semiconductor integrated circuit with vertical implanted polycrystalline silicon resistor | |
US6143615A (en) | Method of forming a resistor | |
US6482693B1 (en) | Methods of forming diodes | |
EP0289163B1 (fr) | Pocédé pour la fabrication d'un elément semi-conducteur en silicide ayant des régions en polysilicium | |
US4878100A (en) | Triple-implanted drain in transistor made by oxide sidewall-spacer method | |
EP0536902B1 (fr) | Interconnexion et résistance pour circuits intégrés | |
EP0282629A1 (fr) | Structure tridimensionnelle de cellule de mémoire semi-conductrice dynamique à condensateur sillonné et procédé de fabrication d'un contact pour la ligne de bit | |
US5536962A (en) | Semiconductor device having a buried channel transistor | |
US5770498A (en) | Process for forming a diffusion barrier using an insulating spacer layer | |
KR100545144B1 (ko) | 감소된시트저항을가지는신뢰할수있는폴리사이드게이트스택 | |
EP0078220B1 (fr) | Interférences de silicium polycristallin pour transistors bipolaires en circuit flip-flop | |
EP0203960B1 (fr) | Condensateurs a tranchees de hautes performances pour les cellules des memoires dynamiques a acces aleatoire rapide (dram) | |
JPH07240390A (ja) | 半導体装置の製造方法 | |
EP0193934B1 (fr) | Circuit intégré semi-conducteur et son procédé de fabrication | |
US5308781A (en) | Semiconductor memory device | |
US5751043A (en) | SRAM with SIPOS resistor | |
US5488008A (en) | Method of fabricating a stacked capacitor memory cell in a semiconductor memory device | |
US4721685A (en) | Single layer poly fabrication method and device with shallow emitter/base junctions and optimized channel stopper | |
WO1993003500A1 (fr) | Procede de formation d'un element resistant dans un dispositif a semi-conducteur et memoire ram statique obtenue par ce procede |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CA JP |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LU MC NL SE |
|
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: CA |