[go: up one dir, main page]

WO1993011440A1 - Process and device for the optical determination of charge carrier density variations in semiconductor components - Google Patents

Process and device for the optical determination of charge carrier density variations in semiconductor components Download PDF

Info

Publication number
WO1993011440A1
WO1993011440A1 PCT/DE1992/000771 DE9200771W WO9311440A1 WO 1993011440 A1 WO1993011440 A1 WO 1993011440A1 DE 9200771 W DE9200771 W DE 9200771W WO 9311440 A1 WO9311440 A1 WO 9311440A1
Authority
WO
WIPO (PCT)
Prior art keywords
charge carrier
carrier density
laser
probe
probe beam
Prior art date
Application number
PCT/DE1992/000771
Other languages
German (de)
French (fr)
Inventor
Gerald SÖLKNER
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO1993011440A1 publication Critical patent/WO1993011440A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/265Contactless testing
    • G01R31/2656Contactless testing using non-ionising electromagnetic radiation, e.g. optical radiation

Definitions

  • the present invention relates to a method in which a laser beam coming from a laser source is split into a probe beam and a reference beam, in which a probe beam is directed at a target area in a semiconductor body and a reference beam is directed at a reference area in a semiconductor body.
  • a photodetector device which is a measure of the difference in charge carrier density between Represents target and reference area
  • a laser source a means for splitting the laser beam coming from the laser source into a probe beam and a reference beam
  • a lens device for aligning the probe beam with a target area and the reference beam a uf a reference area
  • a photo detector device for detecting the measuring beam and for forming a measuring signal, the represents a measure of the charge carrier density difference between target and reference area.
  • the invention has for its object to provide a method and an arrangement of the type mentioned that a rapid adaptation of the distance between a probe and a reference beam to the distance between a target area and a reference area in a semiconductor body, for example the channel width of a field effect transistor, enables.
  • the advantage of the method according to the invention and the associated arrangement is, in particular, that it is possible to dispense with polarizing the laser beam coming from the laser source.
  • the drawing shows an arrangement for carrying out the method according to the invention, wherein a laser beam TB1 coming from a laser source LS can be split into a probe beam TB2 and a reference beam RBI with the aid of an acousto-optical Bragg cell.
  • the Bragg cell BC is advantageously arranged such that the emerging probe beam TB2 is colinear with the laser beam TB1 coming from the laser source and the emerging reference beam RBI includes a splitting angle A with the probe beam TB2.
  • a control signal S is applied to the acousto-optic Bragg cell BC, which comes from a signal generator SG and generates acoustic waves of the frequency ⁇ f in the Bragg cell BC.
  • a Bragg cell consists, for example, of tellurium oxide, a layer for generating acoustic waves being generally provided at one end of the cell and a layer for damping the acoustic waves at the other end.
  • the probe beam TB2 is bundled by a lens device L and as a bundled one Probe beam TB3 directed at a target area D1 at a structuring surface SO of a semiconductor body SUB, the bundled probe beam TB3 from a surface RO facing away from the structuring surface 5 into the semiconductors
  • the reference beam RBI can be bundled with the aid of the lens device L to form a bundled reference beam RB2 and from the surface RO of the semiconductor body SUB facing away from the structuring surface SO
  • the lens device can preferably be designed or arranged such that the axis of the bundled probe beam TB3 runs at a distance V parallel to the axis of the bundled reference beam RB2.
  • the target area Dl can, for example, how
  • the source (drain) region and the reference region D2 can, for example, as shown here, represent the drain (source) region of a field effect transistor T, which has a channel width W and on the structuring surface SO of the semiconductor body SUB is provided.
  • a beam RB can be formed from a reflected part of the reference beam RBI and a reflected part of the probe beam TB2 which is diffracted by the Bragg cell BC by the splitting angle A.
  • the measuring beam MB arrives at a photodetector device PD depending on the measuring beam
  • 25 measurement signal M can be generated.
  • the measurement signal M is combined with a reference signal REF, which, for example, also originates from the signal generator SG and always has the double frequency 2 ⁇ f of the control signal S of the Bragg cell Output signal OUT
  • the laser beam TB1 coming from the laser source LS has the fixed light frequency f n and, due to the arrangement of the Bragg cell BC, the probe beam TB2 leaving the Bragg cell and the bundled probe beam TB3 likewise have the fixed light frequency f n .
  • the reference beam RBI With the reference beam RBI
  • the light frequency f Q is reduced by the acoustic frequency ⁇ f.
  • the measuring beam MB is composed of a combination of the light frequencies f Q + ⁇ f and f Q - ⁇ f, since the reflected and diffracted part of the probe Beam TB2 is raised in its light frequency by jf.
  • the phase position of the reflected portion of the probe beam TB2 is dependent on the charge carrier density in the target area D1 and the phase position of the reflected portion of the reference beam RBI is dependent on the charge carrier density in the reference area D2.
  • a change in the phase position of the probe beam or the reference beam causes a change in intensity due to interference, which change can be detected by the photodetector device PD.
  • the laser beam TB1 coming from the laser source LS which should have a light frequency fg that is as constant as possible, is directed onto the acousto-optical Bragg cell BC and diffracted at the acoustic waves propagating in the Bragg cell.
  • the acoustic waves are generated by thickness vibrations of a layer, for example a zinc oxide layer, by applying the control signal S.
  • the splitting angle A between the emerging probe beam TB2 and the emerging reference beam RBI depends on the acoustic frequency of the control signal S as follows:
  • A is the splitting angle
  • is the wavelength of the laser light
  • ⁇ f is the acoustic frequency
  • the splitting angle A can thus be quickly changed within relatively wide limits by the acoustic frequency f of the control signal S, which is not readily possible with purely optical means.
  • a change in the splitting angle A is converted by the lens device L into a corresponding change in the distance V between the bundled probe beam TB3 and the bundled reference beam RB2.
  • This is particularly Another advantage is that the channel width of MOS transistors can vary widely within a semiconductor component, for example, and the distance V can be adapted quickly and easily to the respective channel width W.
  • a part of the bundled probe beam TB3 is modulated in phase by the charge density in the target area D1, reflected back to the Bragg cell BC and diffracted there to the photodetector device PD in the direction of the measuring beam MB.
  • the light frequency of the diffracted reflected probe beam is raised from f n to f Q + ⁇ f.
  • the bundled reference beam RB2 with the light frequency f 0 - ⁇ f is modulated in phase by the charge carrier density in the reference area D2 and a part of it via the lens device L and the Bragg cell BC from the Bragg cell undeflected in the direction of the measuring beam MB reflects back where it interferes with the reflected portion of the probe beam and collinearly strikes the photodetector device.
  • the photodetector device PD detects fluctuations in intensity of the beat frequency
  • the signal generator SG not only generates the control signal S with the frequency .DELTA.f, but also a reference signal REF with the double frequency .DELTA.f, that is to say the beat frequency, and in addition to the measurement signal M the lock-in-E receiver LIR fed.
  • the reference signal REF of the frequency 2 ⁇ f is multiplied by the measurement signal M of the frequency 24f and integrated in time, accordingly a reference signal REF of the frequency 2 ⁇ f which is phase-shifted by 90 * is multiplied by the measurement signal M of the frequency 24f plicated and integrated in time.
  • the lock-in receiver LIR forms two orthogonal components which can be superimposed to form an overall amplitude and which form the output signal OUT.
  • the beat frequency 2 ⁇ f is now preferably selected such that the 1 / f noise of the laser source and other components is negligible, as a result of which the sensitivity of the arrangement can be significantly increased.
  • the more target areas the probe beam TB3 scans per time or the more amplitude samples of a time-varying charge carrier density of the same target area are taken the shorter the integration time of the lock-in receiver must be, whereby the signal / noise ratio decreases.
  • pulsed laser sources are to be used according to the invention in order to sample the temporal signal curves with the aid of a sampling method.
  • the measuring method is not limited to silicon components, but can also be used for components made of other semiconductor materials, such as GaAs.
  • the main pulsed light sources are 15 lasers in the infrared wavelength range: for silicon, for example, gain-switched laser diodes with wavelengths of 1,315 nm and 1,500 nm and mode-coupled Nd: Yag and Nd: YLF solid-state lasers with a wavelength of 1,300 nm. 20
  • the probe beam TB2 is not colinear with the laser beam TB1 coming from the laser source LS or in which the reference beam RBI does not have the light frequency f Q -. ⁇ f but the light frequency 25 f 0 +.
  • the method according to the invention is particularly suitable for testing electronic components with contact pads arranged in the middle, because here, due to the shadowing by

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

The invention relates to a process in which a laser beam (TB1) from a laser source (LS) is divided into a test beam (TB2) and a reference beam (RBI). The splitting angle (A) and hence a distance (V) between the test and reference beams is matched by altering the acoustic frequency (Δf) of a control signal (S) at an acoutic-optical Bragg cell (BC) to the distance (W) between a target region (D1) and a reference region (D2) allocated to the target region in a semiconductor body (SUB). Reflected portions of the test and reference beams with their phase relation affected by the charge carrier density in the target and reference regions are brought together to form a measuring beam (MB). A measuring signal (M) is detected from the measuring beam with the aid of a photodetector device (PD) and the measuring signal is processed with a reference signal (REF) into an output signal (OUT) which is a measure of the difference in charge carrier density between the target and reference regions.

Description

Verfahren zur optischen Bestimmung von Ladungsträgerdichteun¬ terschieden in Halbleiterbauelementen und Anordnung zu dessen Durchführung.Method for optically determining charge carrier density differences in semiconductor components and arrangement for carrying it out.
Die vorliegende Erfindung betrifft ein Verfahren, bei dem ein von einer Laserquelle kommender Laserstrahl in einen Sonden¬ strahl und einen Referenzstrahl aufgespalten wird, bei dem ein Sondenstrahl auf ein Zielgebiet in einem Halbleiterkörper und ein Referenzstrahl auf ein Referenzgebiet in einem Halbleiter¬ körper gerichtet wird, bei dem reflektierte und durch die La¬ dungsträgerdichte im Ziel- und Referenzgebiet in der Phasenla¬ ge beeinflußte Anteile des Sonden- und Referenzstrahls zu einem Meßstrahl zusammengeführt werden und bei dem mit Hilfe einer Photodetektoreinrichtung ein Meßsignal gewonnen wird, das ein Maß für den Ladungsträgerdichteunterschied zwischen Ziel- und Referenzgebiet darstellt, und eine Anordnung mit einer Laserquelle, einem Mittel zum Aufspalten des von der Laserquelle kommenden Laserstrahls in einen Sondenstrahl und in einen Referenzstrahl, einer Linseneinrichtung zum Ausrich¬ ten des Sondenstrahls auf ein Zielgebiet und des Referenz¬ strahls auf ein Referenzgebiet, einem Mittel zur Zusammenfüh¬ rung der reflektierten und durch die Ladungsträgerdichte im Ziel-und Referenzgebiet in der Phase beeinflußten Anteile des Sonden-und Referenzstrahls zu einem Meßstrahl und einer Photo¬ detektoreinrichtung zum Detektieren des Meßstrahls und zur Bildung eines Meßsignals, das ein Maß für den Ladungsträger¬ dichteunterschied zwischen Ziel- und Referenzgebiet darstellt.The present invention relates to a method in which a laser beam coming from a laser source is split into a probe beam and a reference beam, in which a probe beam is directed at a target area in a semiconductor body and a reference beam is directed at a reference area in a semiconductor body. in which portions of the probe and reference beam that are reflected and influenced by the charge carrier density in the target and reference area in the phase position are brought together to form a measuring beam and in which a measuring signal is obtained with the aid of a photodetector device, which is a measure of the difference in charge carrier density between Represents target and reference area, and an arrangement with a laser source, a means for splitting the laser beam coming from the laser source into a probe beam and a reference beam, a lens device for aligning the probe beam with a target area and the reference beam a uf a reference area, a means for bringing together the portions of the probe and reference beam which are reflected and influenced in phase by the charge carrier density in the target and reference area to form a measuring beam and a photo detector device for detecting the measuring beam and for forming a measuring signal, the represents a measure of the charge carrier density difference between target and reference area.
Ein Verfahren und eine Anordnung dieser Art sind aus der US-Patentschrift 4,758,092 (Heinrich et al. ) bekannt.A method and an arrangement of this type are known from US Pat. No. 4,758,092 (Heinrich et al.).
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren und eine Anordnung der eingangs genannten Art anzugeben, die ein schnelles Anpassen des Abstandes zwischen einem Sonden- und einem Referenzstrahl an den Abstand zwischen einem Zielgebiet und einem Referenzgebiet in einem Halbleiterkörper, beispiels- weise der Kanalweite eines Feldeffekttransistors, ermöglicht.The invention has for its object to provide a method and an arrangement of the type mentioned that a rapid adaptation of the distance between a probe and a reference beam to the distance between a target area and a reference area in a semiconductor body, for example the channel width of a field effect transistor, enables.
Diese Aufgabe wird erfindungsgemäß durch die im Patentanspruch 1 angegebenen Merkmale für das Verfahren und durch die im Pa¬ tentanspruch 5 angegebenen Merkmale für die zugehörige Anord- nung gelöst.This object is achieved according to the invention by the features specified in patent claim 1 for the method and by the features specified in patent claim 5 for the associated arrangement.
Der Vorteil des erfindungsgemäßen Verfahrens und der zugehöri¬ gen Anordnung liegt insbesondere darin, daß hierbei auf ein Polarisieren des von der Laserquelle kommenden Laserstrahls verzichtet werden kann.The advantage of the method according to the invention and the associated arrangement is, in particular, that it is possible to dispense with polarizing the laser beam coming from the laser source.
Die Patentansprüche 2 bis 4 sind auf bevorzugte Weiterbildun¬ gen des Verfahrens und die Patentansprüche 6 und 7 auf bevor¬ zugte Ausgestaltungen der zugehörigen Anordnung gerichtet.Claims 2 to 4 are directed to preferred further developments of the method and claims 6 and 7 are directed to preferred configurations of the associated arrangement.
Die Erfindung wird nachfolgend anhand der Zeichnung erläutert.The invention is explained below with reference to the drawing.
In der Zeichnung ist eine Anordnung zur Durchführung des erfin¬ dungsgemäßen Verfahrens dargestellt, wobei ein von einer Laser- quelle LS kommender Laserstrahl TB1 mit Hilfe einer akustoopti- schen Bragg-Zelle in einen Sondenstrahl TB2 und einen Referenz¬ strahl RBI aufspaltbar ist. Die Bragg-Zelle BC ist dabei vor¬ teilhafterweise so angeordnet, daß der austretende Sondenstrahl TB2 kolinear mit dem von der Laserquelle kommenden Laserstrahl TB1 ist und der austretende Referenzstrahl RBI mit dem Sonden¬ strahl TB2 einen Aufspaltwinkel A einschließt. Die akustoopti- sche Bragg-Zelle BC wird mit einem Steuersignal S beaufschlagt, das aus einem Signalgenerator SG stammt und in der Bragg-Zelle BC akustische Wellen der FrequenzΔf erzeugt. Eine Bragg-Zelle besteht beispielsweise aus Telluroxid, wobei i. a. an einem Ende der Zelle eine Schicht zur Erzeugung von akustischen Wellen und am anderen Ende eine Schicht zur Dämpfung der akustischen Wellen vorgesehen ist. Der Sondenstrahl TB2 ist durch eine Linseneinrichtung L gebündelt und als gebündelter Sondenstrahl TB3 auf ein Zielgebiet Dl an einer Strukturie- rungsoberfläche SO eines Halbleiterkörpers SUB gerichtet, wo¬ bei der gebündelte Sondenstrahl TB3 von einer der Strukturie- 5 rungsoberfläche abgewandten Oberfläche RO in den Halbleiter¬The drawing shows an arrangement for carrying out the method according to the invention, wherein a laser beam TB1 coming from a laser source LS can be split into a probe beam TB2 and a reference beam RBI with the aid of an acousto-optical Bragg cell. The Bragg cell BC is advantageously arranged such that the emerging probe beam TB2 is colinear with the laser beam TB1 coming from the laser source and the emerging reference beam RBI includes a splitting angle A with the probe beam TB2. A control signal S is applied to the acousto-optic Bragg cell BC, which comes from a signal generator SG and generates acoustic waves of the frequency Δf in the Bragg cell BC. A Bragg cell consists, for example, of tellurium oxide, a layer for generating acoustic waves being generally provided at one end of the cell and a layer for damping the acoustic waves at the other end. The probe beam TB2 is bundled by a lens device L and as a bundled one Probe beam TB3 directed at a target area D1 at a structuring surface SO of a semiconductor body SUB, the bundled probe beam TB3 from a surface RO facing away from the structuring surface 5 into the semiconductors
~\ körper SUB eintritt. Der Referenzstrahl RBI ist mit Hilfe der Linseneinrichtung L zu einem gebündelten Referenzstrahl RB2 bündelbar und von der der Strukturierungsoberfläche SO abge¬ wandten Oberfläche RO des Halbleiterkörpers SUB aus auf ein~ \ body SUB enters. The reference beam RBI can be bundled with the aid of the lens device L to form a bundled reference beam RB2 and from the surface RO of the semiconductor body SUB facing away from the structuring surface SO
10 zum Zielgebiet gehöriges Referenzgebiet D2 gerichtet. Die Lin¬ seneinrichtung kann vorzugsweise so ausgebildet bzw. angeord¬ net sein, daß die Achse des gebündelten Sondenstrahls TB3 parallel zur Achse des gebündelten Referenzstrahls RB2 im Ab¬ stand V verläuft. Das Zielgebiet Dl kann beispielsweise, wie10 reference area D2 belonging to the target area. The lens device can preferably be designed or arranged such that the axis of the bundled probe beam TB3 runs at a distance V parallel to the axis of the bundled reference beam RB2. The target area Dl can, for example, how
15 hier gezeigt, das Source(Drain)-Gebiet und das Referenzgebiet D2 kann beispielsweise, wie hier gezeigt, das Drain(Source)-Ge- biet eines Feldeffekttransistors T darstellen, der eine Kanal¬ weite W besitzt und an der Strukturierungsoberfläche SO des Haibleiterkörpers SUB vorgesehen ist. Kolinear zum Referenz-15 shown here, the source (drain) region and the reference region D2 can, for example, as shown here, represent the drain (source) region of a field effect transistor T, which has a channel width W and on the structuring surface SO of the semiconductor body SUB is provided. Colinear to the reference
20 strahl RBI ist aus einem reflektierten Anteil des Referenz¬ strahls RBI und einem reflektierten und durch die Bragg-Zelle BC um den Aufspaltwinkel A gebeugten Anteil des Sondenstrahls TB2 ein Meßstrahl MB bildbar. Der Meßstrahl MB trifft auf eine Photodetektoreinrichtung PD in der abhängig vom Meßstrahl einA beam RB can be formed from a reflected part of the reference beam RBI and a reflected part of the probe beam TB2 which is diffracted by the Bragg cell BC by the splitting angle A. The measuring beam MB arrives at a photodetector device PD depending on the measuring beam
25 Meßsignal M erzeugbar ist. In einem kommerziell erhältlichen Lock-in-Empfänger LIR ist das Meßsignal M mit einem Referenz¬ signal REF, das beispielsweise ebenfalls aus dem Signalgenera¬ tor SG stammt und die immer doppelte Frequenz 2Λf des Steuer¬ signals S der Bragg-Zelle besitzt, zu einem Ausgangssignal OUT25 measurement signal M can be generated. In a commercially available lock-in receiver LIR, the measurement signal M is combined with a reference signal REF, which, for example, also originates from the signal generator SG and always has the double frequency 2Λf of the control signal S of the Bragg cell Output signal OUT
30 verarbeitbar. Der von der Laserquelle LS kommende Laserstrahl TB1 besitzt die feste Lichtfrequenz fn und aufgrund der Anord¬ nung der Bragg-Zelle BC weist der die Bragg-Zelle verlassende Sondenstrahl TB2 und der gebündelte Sondenstrahl TB3 ebenfalls die feste Lichtfrequenz fn auf. Beim Referenzstrahl RBI wird30 processable. The laser beam TB1 coming from the laser source LS has the fixed light frequency f n and, due to the arrangement of the Bragg cell BC, the probe beam TB2 leaving the Bragg cell and the bundled probe beam TB3 likewise have the fixed light frequency f n . With the reference beam RBI
35 jedoch, wie in der Zeichnung gezeigt, die Lichtfrequenz fQ um die akustische Frequenz Δf herabgesetzt. Dies gilt auch für den gebündelten Referenzstrahl RB2. Der Meßstrahl MB setzt sich aus einer Kombination der Lichtfrequenzen fQ + Δf und fQ - Δf zusammen, da der reflektierte und gebeugte Anteil des Sonden- Strahls TB2 in seiner Lichtfrequenz um j f angehoben wird. Fer¬ ner ist die Phasenlage des reflektierten Anteils des Sonden¬ strahls TB2 von der Ladungsträgerdichte im Zielgebiet Dl und der Phasenlage des reflektierten Anteils des Referenzstrahls RBI von der Ladungsträgerdichte im Referenzgebiet D2 abhängig. Eine Änderung der Phasenlage des Sondenstrahls oder des Refe¬ renzstrahls bewirkt infolge von Interferenz eine Intensitäts¬ änderung, die durch die Photodetektoreinrichtung PD detektier- bar ist.35, however, as shown in the drawing, the light frequency f Q is reduced by the acoustic frequency Δf. This also applies to the bundled reference beam RB2. The measuring beam MB is composed of a combination of the light frequencies f Q + Δf and f Q - Δf, since the reflected and diffracted part of the probe Beam TB2 is raised in its light frequency by jf. Furthermore, the phase position of the reflected portion of the probe beam TB2 is dependent on the charge carrier density in the target area D1 and the phase position of the reflected portion of the reference beam RBI is dependent on the charge carrier density in the reference area D2. A change in the phase position of the probe beam or the reference beam causes a change in intensity due to interference, which change can be detected by the photodetector device PD.
Beim erfindungsgemäßen Verfahren zur optischen Bestimmung von Ladungsträgerdichteunterschieden in Halbleiterbauelementen wird der von der Laserquelle LS kommende Laserstrahl TB1, der eine möglichst konstante Lichtfrequenz fg besitzen sollte, auf die akustooptische Bragg-Zelle BC gerichtet und an der in der Bragg-Zelle propagierenden akustischen Wellen gebeugt. Die akustischen Wellen werden durch Dickenschwingungen einer Schicht, beispielsweise einer Zinkoxidschicht durch Anlegen des Steuersignals S erzeugt. Der Aufspaltwinkel A zwischen dem austretenden Sondenstrahl TB2 und dem austretenden Referenz¬ strahl RBI hängt dabei von der akustischen Frequenz des Steuer¬ signals S wie folgt ab:In the method according to the invention for the optical determination of charge carrier density differences in semiconductor components, the laser beam TB1 coming from the laser source LS, which should have a light frequency fg that is as constant as possible, is directed onto the acousto-optical Bragg cell BC and diffracted at the acoustic waves propagating in the Bragg cell. The acoustic waves are generated by thickness vibrations of a layer, for example a zinc oxide layer, by applying the control signal S. The splitting angle A between the emerging probe beam TB2 and the emerging reference beam RBI depends on the acoustic frequency of the control signal S as follows:
Figure imgf000006_0001
ak wobei A der Aufspaltwinkel, Ä die Wellenlänge des Laserlichts, Δf die akustische Frequenz und v . die Ausbreitungsgeschwindig¬ keit der akustischen Wellen darstellt. Beträgt beispielsweise die Ausbreitungsgeschwindigkeit v k = 4.260 m/s, die Wellenlän¬ ge = 1.300 n , so beträgt der Ablenkwinkel für eine akusti¬ sche Frequenz von 10 MHz 2,5 mrad und bei 100 MHz 25 mrad. Der Aufspaltungswinkel A wird also durch die akustische Frequenz f des Steuersignals S in relativ weiten Grenzen schnell änder- bar, was mit rein optischen Mitteln nicht ohne weiteres mög¬ lich ist. Eine Änderung des Aufspaltungswinkels A wird durch die Linseneinrichtung L in eine entsprechende Änderung des Abstandes V zwischen dem gebündelten .Sondenstrahl TB3 und dem gebündelten Referenzstrahl RB2 umgesetzt. Dies ist von beson- derem Vorteil, da innerhalb eines Halbleiterbauelementes bei¬ spielsweise die Kanalweite von MOS-Transistoren stark variie¬ ren können und eine Anpassung des Abstandes V an die jeweilige Kanalweite W schnell und problemlos erfolgen kann. Ein Teil des gebündelten Sondenstrahls TB3 wird durch die Ladungsdichte im Zielgebiet Dl in der Phasenlage moduliert, zur Bragg-Zelle BC zurückreflektiert und dort zur Photodetektoreinrichtung PD in Richtung des Meßstrahls MB gebeugt. Die Lichtfrequenz des gebeugten reflektierten Sondenstrahls wird dabei von fn auf fQ + Λf angehoben. Entsprechend wird der gebündelte Referenzstrahl RB2 mit der Lichtfrequenz f0 - Λf durch die Ladungsträgerdich¬ te im Referenzgebiet D2 in der Phase moduliert und ein Teil davon über die Linseneinrichtung L und die Bragg-Zelle BC von der Bragg-Zelle ungebeugt in Richtung des Meßstrahls MB zurück¬ reflektiert, wo er zusammen mit dem reflektierten Anteil des Sondenstrahls interferiert und kolinear auf die Photodetektor¬ einrichtung trifft. Die Photodetektoreinrichtung PD detektiert dann Intensitätsschwankungen der Schwebungsfrequenz
Figure imgf000006_0001
ak where A is the splitting angle, Ä is the wavelength of the laser light, Δf is the acoustic frequency and v. represents the speed of propagation of the acoustic waves. If, for example, the propagation speed is v k = 4,260 m / s, the wavelength = 1,300 n, the deflection angle for an acoustic frequency of 10 MHz is 2.5 mrad and 25 mrad at 100 MHz. The splitting angle A can thus be quickly changed within relatively wide limits by the acoustic frequency f of the control signal S, which is not readily possible with purely optical means. A change in the splitting angle A is converted by the lens device L into a corresponding change in the distance V between the bundled probe beam TB3 and the bundled reference beam RB2. This is particularly Another advantage is that the channel width of MOS transistors can vary widely within a semiconductor component, for example, and the distance V can be adapted quickly and easily to the respective channel width W. A part of the bundled probe beam TB3 is modulated in phase by the charge density in the target area D1, reflected back to the Bragg cell BC and diffracted there to the photodetector device PD in the direction of the measuring beam MB. The light frequency of the diffracted reflected probe beam is raised from f n to f Q + Λf. Correspondingly, the bundled reference beam RB2 with the light frequency f 0 - Λf is modulated in phase by the charge carrier density in the reference area D2 and a part of it via the lens device L and the Bragg cell BC from the Bragg cell undeflected in the direction of the measuring beam MB reflects back where it interferes with the reflected portion of the probe beam and collinearly strikes the photodetector device. The photodetector device PD then detects fluctuations in intensity of the beat frequency
frt + Λf - (fn - Δf) = 2Δff rt + Λf - (f n - Δf) = 2Δf
und bildet das Meßsignal M mit der Schwebungsfrequenz 2/lf. Vorteilhafterweise wird vom Signalgenerator S.G nicht nur das Steuersignal S mit der Frequenz Δf, sondern auch ein Referenz¬ signal REF mit der doppelten Frequenz Δf, also der Schwebungs¬ frequenz, erzeugt und neben dem Meßsignal M dem Lock-in-E pfän- ger LIR zugeführt. Durch den Lock-in-Empfänger LIR wird das Referenzsignal REF der Frequenz 2Δf mit dem Meßsignal M der Frequenz 24f multipliziert und zeitlich aufintegriert, entspre¬ chend wird ein um 90* phasenverschobenes Referenzsignal REF der Frequenz 2Δf mit dem Meßsignal M der Frequenz 24f multi¬ pliziert und zeitlich aufintegriert. Der Lock-in-Empfänger LIR bildet zwei orthogonale-Ko ponenten, die zu einer Gesamtampli- tude überlagert werden können und das Ausgangssignal OUT bil¬ den. Die Schwebungsfrequenz 2Δf wird nun vorzugsweise so ge¬ wählt, daß das 1/f-Rauschen der Laserquelle und anderer Kompo¬ nenten vernachlässigbar ist, wodurch die Empfindlichkeit der Anordnung wesentlich erhöht werden kann. Je mehr Zielgebiete der Sondenstrahl TB3 pro Zeit abtastet oder je mehr Amplituden¬ proben einer zeitlich veränderlichen Ladungsträgerdichte dessel¬ ben Zielgebiets genommen werden, desto geringer muß die Inte- 5 grationszeit des Lock-in-Empfängers werden, wodurch das Signal/ Rausch-Verhältnis abnimmt. Für Messungen von hochfrequenten Ladungsträgerdichteänderungen sind erfindungsgemäß gepulste Laserquellen zu verwenden, um mit Hilfe eines Sampling-Verfah- rens die zeitlichen Signalverläufe abzutasten. Sampling-Verfah- 10 ren wie beispielsweise Multisampling oder Coinzidence-Sampling gehören zum Stand der Technik. Das Meßverfahren beschränkt sich nicht auf Silizium-Bauelemente, sondern ist auch bei Bau¬ elementen aus anderen Halbleitermaterialien, wie zum Beispiel GaAs anwendbar. Als gepulste Lichtquellen kommen vornehmlich 15 Laser im infraroten Wellenlängenbereich in Frage: für Silizium beispielsweise gütegeschaltete (= gain switched) Laserdioden mit Wellenlängen von 1.315 nm und 1.500 nm und modengekoppelte Nd:Yag und Nd:YLF-Festkörperlaser mit der Wellenlänge von 1.300 nm. 20and forms the measurement signal M with the beat frequency 2 / lf. Advantageously, the signal generator SG not only generates the control signal S with the frequency .DELTA.f, but also a reference signal REF with the double frequency .DELTA.f, that is to say the beat frequency, and in addition to the measurement signal M the lock-in-E receiver LIR fed. By means of the lock-in receiver LIR, the reference signal REF of the frequency 2Δf is multiplied by the measurement signal M of the frequency 24f and integrated in time, accordingly a reference signal REF of the frequency 2Δf which is phase-shifted by 90 * is multiplied by the measurement signal M of the frequency 24f plicated and integrated in time. The lock-in receiver LIR forms two orthogonal components which can be superimposed to form an overall amplitude and which form the output signal OUT. The beat frequency 2Δf is now preferably selected such that the 1 / f noise of the laser source and other components is negligible, as a result of which the sensitivity of the arrangement can be significantly increased. The more target areas the probe beam TB3 scans per time or the more amplitude samples of a time-varying charge carrier density of the same target area are taken, the shorter the integration time of the lock-in receiver must be, whereby the signal / noise ratio decreases. For measurements of high-frequency changes in charge carrier density, pulsed laser sources are to be used according to the invention in order to sample the temporal signal curves with the aid of a sampling method. Sampling methods such as multisampling or coincidence sampling are part of the prior art. The measuring method is not limited to silicon components, but can also be used for components made of other semiconductor materials, such as GaAs. The main pulsed light sources are 15 lasers in the infrared wavelength range: for silicon, for example, gain-switched laser diodes with wavelengths of 1,315 nm and 1,500 nm and mode-coupled Nd: Yag and Nd: YLF solid-state lasers with a wavelength of 1,300 nm. 20
Es sind Anordnungen denkbar, bei denen beispielsweise der Son¬ denstrahl TB2 nicht kolinear mit dem von der Laserquelle LS kommenden Laserstrahl TB1 ist oder bei denen der Referenzstrahl RBI nicht die Lichtfrequenz fQ -.Δf, sondern die Lichtfrequenz 25 f0 + besitzt.Arrangements are conceivable in which, for example, the probe beam TB2 is not colinear with the laser beam TB1 coming from the laser source LS or in which the reference beam RBI does not have the light frequency f Q -.Δf but the light frequency 25 f 0 +.
Das erfindungsgemäße Verfahren ist vor allem zum Test von elektronischen Bausteinen mit in der Mitte angeordneten Kon- taktpads geeignet, da hierbei, aufgrund der Abschattung durchThe method according to the invention is particularly suitable for testing electronic components with contact pads arranged in the middle, because here, due to the shadowing by
30 Bonddrähte, Spider und Nadeln zur Bausteinansteuerung, Elek- * tronenstrahl-Meßverfahren weitgehend versagen. Eine Messung wird in der Regel von der der Strukturierungsoberfläche abge¬ wandten Oberfläche RO erfolgen müssen, da das Ziel- und Re¬ ferenzgebiet von der Strukturierungsoberfläche her meist durch30 bond wires, Spider and needles on the block control, elec- * tronenstrahl measuring method largely fail. As a rule, a measurement will have to be made from the surface RO facing away from the structuring surface, since the target and reference area mostly from the structuring surface
35. darüberliegende Metallisierungsbereiche verdeckt ist. 35. Metallization areas lying above are covered.

Claims

Patentansprüche Claims
1. Verfahren zur Bestimmung der Ladungsträgerdichte eines Ziel- gebiets (Dl) in einem Halbleiterkörper (SUB) mit folgenden Ver¬ fahrensschritten:1. Method for determining the charge carrier density of a target area (DI) in a semiconductor body (SUB) with the following method steps:
a) Aufspalten eines von einer Laserquelle (LS) kommenden Laser¬ strahls (TB1) in einen Sondenstrahl (TB2) und einen Refe- renzstrahl (RBI), wobei der von der Laserquelle kommende Laserstrahl (TB1) eine feste Lichtfrequenz (fn) besitzt;a) splitting a laser beam (TB1) coming from a laser source (LS) into a probe beam (TB2) and a reference beam (RBI), the laser beam (TB1) coming from the laser source having a fixed light frequency (f n ) ;
b) Ausrichten des Sondenstrahls (TB2, TB3) auf das Zielgebiet (Dl),b) aligning the probe beam (TB2, TB3) to the target area (Dl),
c) Ausrichten des Referenzstrahls (RBI, RB2) auf ein zum Ziel¬ gebiet gehöriges Referenzgebiet (D2) durch Ändern des Auf¬ spaltungswinkels (A) zwischen dem Sondenstrahl (TB2) und dem Referenzstrahl (RBI) in Abhängigkeit von einem Steuer- signal (S);c) Aligning the reference beam (RBI, RB2) with a reference area (D2) belonging to the target area by changing the splitting angle (A) between the probe beam (TB2) and the reference beam (RBI) as a function of a control signal ( S);
d) Zusammenführen eines reflektierten Anteils des Sondenstrahls (TB2) mit einem reflektierten Anteil des Referenzstrahls (RBI) zu einem Meßstrahl (MB), wobei der reflektierte An- teil des Sondenstrahls abhängig von der Ladungsträgerdichte im Zielgebiet und der reflektierte Anteil des Referenz¬ strahls abhängig von der Ladungsträgerdichte des Referenz¬ gebiets innerhalb des Halbleiterkörpers (SUB) seine Phasen¬ lage ändert;d) bringing together a reflected portion of the probe beam (TB2) with a reflected portion of the reference beam (RBI) to form a measuring beam (MB), the reflected portion of the probe beam depending on the charge carrier density in the target area and the reflected portion of the reference beam its phase position changes within the semiconductor body (SUB) from the charge carrier density of the reference region;
e) Detektieren des Meßstrahls (MB) und Bilden eines Meßsignals (M) mit Hilfe einer Photodetektoreinrichtung (PD); unde) detecting the measuring beam (MB) and forming a measuring signal (M) with the aid of a photodetector device (PD); and
f) Verarbeiten des Meßsignals (M) in Gegenwart eines vom Steuersignal (S) abhängigen Referenzsignals (REF) zu einem Ausgangssignal (OUT), dessen Amplitude ein Maß für den La¬ dungsträgerdichteunterschied zwischen der Ladungsträger- dichte des Zielgebiets und der Ladungsträgerdichte des Re¬ ferenzgebiets darstellt. f) Processing the measurement signal (M) in the presence of a reference signal (REF) dependent on the control signal (S) to form an output signal (OUT), the amplitude of which is a measure of the charge carrier density difference between the charge carrier density of the target area and the charge carrier density of the target area represents the territory.
2. Verfahren nach Anspruch 1, d a d u r c h g e k e n n ¬ z e i c h n e t , daß der von der Laserquelle kommende Laser¬ strahl (TB1) in einer akustooptischen Bragg-Zelle durch Beu¬ gung in den Sondenstrahl (TB2) und den Referenzstrahl (RBI) aufgespalten wird, daß durch das Steuersignal (S) akustische Wellen, an denen die Beugung erfolgt, in der BraggrZelle er¬ zeugt werden und daß der Aufspaltungswinkel (A) durch die akustische Frequenz (Δf) des Steuersignals verändert wird.2. The method according to claim 1, characterized in that the laser beam (TB1) coming from the laser source is split in an acousto-optical Bragg cell by diffraction into the probe beam (TB2) and the reference beam (RBI), that by , are generated in the er¬ r Bragg cell, the control signal (S), acoustic waves, on which the diffraction occurs, and that the split angle (A) by the acoustic frequency (.DELTA.f) is changed the control signal.
3. Verfahren nach Anspruch 1 oder 2, d a d u r c h g e ¬ k e n n z e i c h n e t , daß bei schnellen zeitlichen Ände¬ rungen des Ladungsträgerdichteunterschieds der von der Laser¬ quelle kommende Laserstrahl (TB1) aus kurzen Laserpulsen be- steht und der zeitliche Verlauf des Ladungsträgerdichteunter¬ schieds durch ein Sampling-Verfahren abgetastet wird.3. The method according to claim 1 or 2, dadurchge ¬ indicates that in the case of rapid changes in the charge carrier density difference over time, the laser beam (TB1) coming from the laser source consists of short laser pulses and the time profile of the charge carrier density difference is obtained by sampling -Procedure is scanned.
4. Verfahren nach einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t , daß das Zielgebiet (Dl) das Drain (Source)-Gebiet eines Feldeffekttransistors (T) und das Referenzgebiet das Source(Drain)-Gebiet des Feldeffekttransi¬ stors (T) darstellt, wobei sich der Feldeffekttransistor (T) an der strukturierten Oberfläche (SO) des Halbleiterkörpers (SUB) befindet, daß der Sondenstrahl (TB3) und der Referenz- strahl (RB2) auf die der strukturierten Oberfläche (SO) abge¬ wandten Oberfläche (RO) des Halbleiterkörpers (SUB) gerichtet wird und daß abhängig vom Steuersignal (S) der Referenzstrahl so ausgerichtet wird, daß der Abstand (V) zwischen Sonden¬ strahl (TB3) und Referenzstrahl (RB2) der Kanalweite (W) des Feldeffekttransistors (T) angepaßt wird.4. The method according to any one of claims 1 to 3, characterized in that the target region (Dl) represents the drain (source) region of a field effect transistor (T) and the reference region represents the source (drain) region of the field effect transistor (T), the field effect transistor (T) being on the structured surface (SO) of the semiconductor body (SUB), the probe beam (TB3) and the reference beam (RB2) on the surface (RO) facing away from the structured surface (SO) of the semiconductor body (SUB) is directed and that depending on the control signal (S) the reference beam is aligned so that the distance (V) between probe beam (TB3) and reference beam (RB2) is adjusted to the channel width (W) of the field effect transistor (T) becomes.
5. Anordnung zur Durchführung eines Verfahrens zur Bestimmung der Ladungsträgerdichte eines Zielgebiets (Dl) in einem Halb¬ leiterkörper (SUB), bestehend aus5. Arrangement for carrying out a method for determining the charge carrier density of a target area (DI) in a semiconductor body (SUB), consisting of
- einer Laserquelle mit fester Lichtfrequenz (f**-*.)» - a laser source with a fixed light frequency (f ** - *.) »
- einem Mittel zum Aufspalten eines von der Laserquelle kom¬ menden Lichtstrahls in einen Sondenstrahl und in einen Re- ferenzstrahl, bei dem der Aufspaltungswinkel (A) zwischen dem Sondenstrahl und dem Referenzstrahl abhängig von einem Steuersignal (S) steuerbar ist,a means for splitting a light beam coming from the laser source into a probe beam and into a radiation beam. reference beam, in which the splitting angle (A) between the probe beam and the reference beam can be controlled as a function of a control signal (S),
- einer Linseneinrichtung (L) zum Ausrichten und Bündeln des Sondenstrahls (TB2) auf das Zielgebiet (Dl) und zum Aus¬ richten und Bündeln des Referenzstrahls (RBI) auf das Re¬ ferenzgebiet (D2),a lens device (L) for aligning and focusing the probe beam (TB2) onto the target area (D1) and for aligning and focusing the reference beam (RBI) onto the reference area (D2),
- einem Mittel zur Zusammenführung eines reflektierten Anteils des Sondenstrahls mit einem reflektierten Anteil des Refe¬ renzstrahls und deren Ausrichtung auf die Photodetektorein¬ richtung (PD) und- A means for bringing together a reflected portion of the probe beam with a reflected portion of the reference beam and their alignment with the photodetector device (PD) and
- einem Mittel zur Verarbeitung eines von der Photodetektor¬ einrichtung (PD) erzeugten Meßsignals (M) in Gegenwart eines vom Steuersignal (S) abhängigen Referenzsignals (REF).- A means for processing a measurement signal (M) generated by the photodetector device (PD) in the presence of a reference signal (REF) dependent on the control signal (S).
6. Anordnung nach Anspruch 5, d a d u r c h g e k e n n ¬ z e i c h n e t , daß das Mittel zum Aufspalten des von der Laserquelle kommenden Laserstrahls eine akustooptische Bragg- Zelle (BC) beinhaltet und daß der Aufspaltungswinkel (A) zwi¬ schen Sondenstrahl und Referenzstrahl durch die akustische Frequenz ( f) des Steuersignals (S) steuerbar ist.6. Arrangement according to claim 5, characterized in that the means for splitting the laser beam coming from the laser source includes an acousto-optical Bragg cell (BC) and that the splitting angle (A) between the probe beam and reference beam by the acoustic frequency (f ) of the control signal (S) is controllable.
7. Anordnung nach Anspruch 5 oder 6, d a d u r c h g e ¬ k e n n z e i c h n e t , daß die Bragg-Zelle (BC) so ange¬ ordnet ist, daß der von der Laserquelle kommende Laserstrahl (TB1) kolinear zum Sondenstrahl (TB2) ist. 7. Arrangement according to claim 5 or 6, so that the Bragg cell (BC) is arranged so that the laser beam (TB1) coming from the laser source is colinear with the probe beam (TB2).
PCT/DE1992/000771 1991-11-29 1992-09-11 Process and device for the optical determination of charge carrier density variations in semiconductor components WO1993011440A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP4139438.0 1991-11-29
DE19914139438 DE4139438A1 (en) 1991-11-29 1991-11-29 METHOD FOR OPTICALLY DETERMINING CARTRIDGE DENSITY DIFFERENCES IN SEMICONDUCTOR COMPONENTS AND ARRANGEMENT THEREOF

Publications (1)

Publication Number Publication Date
WO1993011440A1 true WO1993011440A1 (en) 1993-06-10

Family

ID=6445936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1992/000771 WO1993011440A1 (en) 1991-11-29 1992-09-11 Process and device for the optical determination of charge carrier density variations in semiconductor components

Country Status (2)

Country Link
DE (1) DE4139438A1 (en)
WO (1) WO1993011440A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010046806A1 (en) * 2010-09-28 2012-03-29 Manz Automation Ag Method for detecting existence of structures on substrate for use in manufacture of silicon solar cell, involves recording and evaluating reflected and/or scattered and/or continuous light portion of optical detecting device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3962577A (en) * 1975-01-10 1976-06-08 Itek Corporation Electro-optic system with expanded power range
US4758092A (en) * 1986-03-04 1988-07-19 Stanford University Method and means for optical detection of charge density modulation in a semiconductor
US5067798A (en) * 1988-02-29 1991-11-26 Tokyo Electron Limited Laser beam scanning system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3962577A (en) * 1975-01-10 1976-06-08 Itek Corporation Electro-optic system with expanded power range
US4758092A (en) * 1986-03-04 1988-07-19 Stanford University Method and means for optical detection of charge density modulation in a semiconductor
US5067798A (en) * 1988-02-29 1991-11-26 Tokyo Electron Limited Laser beam scanning system

Also Published As

Publication number Publication date
DE4139438A1 (en) 1993-06-03

Similar Documents

Publication Publication Date Title
EP1009984B1 (en) Method and device for determining the phase- and/or amplitude data of an electromagnetic wave
DE19511869B4 (en) Method and arrangement for response analysis of semiconductor materials with optical excitation
DE10006493C2 (en) Method and device for optoelectronic distance measurement
DE69315877T2 (en) Method and device for measuring the photoluminescence in a crystal
EP2535680B1 (en) Test device for testing a connective layer between wafer-shaped samples and test method for testing the connective layer
DE19609521C2 (en) Photo-induced current scanning analyzer capable of detecting photo-induced current in non-biased samples
DE4230345A1 (en) LOW-COHERENCE OPTICAL REFLECTOR WITH OPTICAL GAIN
DE69103783T2 (en) Method and device for measuring the thickness of a layer.
DE69807683T2 (en) ELLIPSOMETER WITH TWO LASERS
DE102008045387A1 (en) Apparatus and method for measuring a surface
DE7903488U1 (en) Device for analyzing the image of a sample
DE3877628T2 (en) VOLTAGE DETECTOR.
EP4111605A1 (en) Method and photodiode device for the coherent detection of an optical signal
DE60216393T2 (en) Heterodyne-based optical spectral analysis with reduced data acquisition requirements
EP3867974B1 (en) Photoconductive multichannel terahertz receiving antenna, receiver, terahertz system and terahertz method
DE60208961T2 (en) Measuring plate for use in a sensor based on the principle of attenuated total reflection
DE102018101554B4 (en) Device and method for distance measurement for a laser processing system, and laser processing system
DE112017008083T5 (en) REMOTE INFRARED LIGHT SOURCE AND REMOTE INFRARED SPECTROMETER
EP0443702A2 (en) Measuring method for determining small light absorptions
DE102005061464A1 (en) Opto-electronic measuring method for absolute measurement of gaps/clearances applies two or more stages with different large areas of clearness and different measuring accuracy
WO1993011440A1 (en) Process and device for the optical determination of charge carrier density variations in semiconductor components
DE60106555T2 (en) Sensor using attenuated total reflection
WO2005116578A2 (en) Shape measurement method
DE3020044C2 (en)
DE60132757T2 (en) Total reflection sensor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase