WO1993011668A1 - Procedes et compositions destines a reduire la multiresistance aux medicaments - Google Patents
Procedes et compositions destines a reduire la multiresistance aux medicaments Download PDFInfo
- Publication number
- WO1993011668A1 WO1993011668A1 PCT/US1992/010563 US9210563W WO9311668A1 WO 1993011668 A1 WO1993011668 A1 WO 1993011668A1 US 9210563 W US9210563 W US 9210563W WO 9311668 A1 WO9311668 A1 WO 9311668A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- approximately
- human
- fatty acid
- composition
- acid
- Prior art date
Links
- 230000036457 multidrug resistance Effects 0.000 title claims abstract description 50
- 239000000203 mixture Substances 0.000 title claims abstract description 49
- 238000000034 method Methods 0.000 title claims abstract description 46
- 235000014113 dietary fatty acids Nutrition 0.000 claims abstract description 59
- 229930195729 fatty acid Natural products 0.000 claims abstract description 59
- 239000000194 fatty acid Substances 0.000 claims abstract description 59
- 150000004665 fatty acids Chemical class 0.000 claims abstract description 55
- 206010028980 Neoplasm Diseases 0.000 claims abstract description 39
- 239000002246 antineoplastic agent Substances 0.000 claims abstract description 38
- 229940127089 cytotoxic agent Drugs 0.000 claims abstract description 36
- 201000011510 cancer Diseases 0.000 claims abstract description 32
- 241001465754 Metazoa Species 0.000 claims abstract description 25
- 150000002148 esters Chemical class 0.000 claims abstract description 21
- -1 polyoxyethylene Polymers 0.000 claims description 48
- 150000001875 compounds Chemical class 0.000 claims description 38
- 229920001451 polypropylene glycol Polymers 0.000 claims description 33
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 claims description 32
- IAKHMKGGTNLKSZ-INIZCTEOSA-N (S)-colchicine Chemical compound C1([C@@H](NC(C)=O)CC2)=CC(=O)C(OC)=CC=C1C1=C2C=C(OC)C(OC)=C1OC IAKHMKGGTNLKSZ-INIZCTEOSA-N 0.000 claims description 30
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 27
- 229920001577 copolymer Polymers 0.000 claims description 21
- 239000003795 chemical substances by application Substances 0.000 claims description 19
- 239000002202 Polyethylene glycol Substances 0.000 claims description 16
- 229920001223 polyethylene glycol Polymers 0.000 claims description 16
- 229960001338 colchicine Drugs 0.000 claims description 15
- 125000004432 carbon atom Chemical group C* 0.000 claims description 14
- 229960004679 doxorubicin Drugs 0.000 claims description 14
- JXLYSJRDGCGARV-WWYNWVTFSA-N Vinblastine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@](O)(CC)C[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C JXLYSJRDGCGARV-WWYNWVTFSA-N 0.000 claims description 13
- 229960003048 vinblastine Drugs 0.000 claims description 13
- JXLYSJRDGCGARV-XQKSVPLYSA-N vincaleukoblastine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-XQKSVPLYSA-N 0.000 claims description 13
- ULQISTXYYBZJSJ-UHFFFAOYSA-N 12-hydroxyoctadecanoic acid Chemical compound CCCCCCC(O)CCCCCCCCCCC(O)=O ULQISTXYYBZJSJ-UHFFFAOYSA-N 0.000 claims description 12
- 230000004048 modification Effects 0.000 claims description 11
- 238000012986 modification Methods 0.000 claims description 11
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical group C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 claims description 10
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 claims description 10
- 229960005420 etoposide Drugs 0.000 claims description 10
- 230000003389 potentiating effect Effects 0.000 claims description 9
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 claims description 8
- 108010092160 Dactinomycin Proteins 0.000 claims description 7
- 229940114072 12-hydroxystearic acid Drugs 0.000 claims description 6
- 229960004528 vincristine Drugs 0.000 claims description 6
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 claims description 6
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 claims description 6
- 229930012538 Paclitaxel Natural products 0.000 claims description 5
- 229960001592 paclitaxel Drugs 0.000 claims description 5
- WBHHMMIMDMUBKC-XLNAKTSKSA-N ricinelaidic acid Chemical compound CCCCCC[C@@H](O)C\C=C\CCCCCCCC(O)=O WBHHMMIMDMUBKC-XLNAKTSKSA-N 0.000 claims description 5
- 229960003656 ricinoleic acid Drugs 0.000 claims description 5
- FEUQNCSVHBHROZ-UHFFFAOYSA-N ricinoleic acid Natural products CCCCCCC(O[Si](C)(C)C)CC=CCCCCCCCC(=O)OC FEUQNCSVHBHROZ-UHFFFAOYSA-N 0.000 claims description 5
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 claims description 5
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 claims description 4
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 claims description 4
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 claims description 4
- 239000005642 Oleic acid Substances 0.000 claims description 4
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 claims description 4
- 235000021314 Palmitic acid Nutrition 0.000 claims description 4
- 235000021355 Stearic acid Nutrition 0.000 claims description 4
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 claims description 4
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 claims description 4
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 claims description 4
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 claims description 4
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 claims description 4
- 229960002969 oleic acid Drugs 0.000 claims description 4
- 125000000963 oxybis(methylene) group Chemical group [H]C([H])(*)OC([H])([H])* 0.000 claims description 4
- 229940098695 palmitic acid Drugs 0.000 claims description 4
- 239000008117 stearic acid Substances 0.000 claims description 4
- 229960004274 stearic acid Drugs 0.000 claims description 4
- 231100000135 cytotoxicity Toxicity 0.000 claims description 3
- 230000003013 cytotoxicity Effects 0.000 claims description 3
- 230000001747 exhibiting effect Effects 0.000 claims description 2
- 150000004670 unsaturated fatty acids Chemical class 0.000 claims 6
- 235000021122 unsaturated fatty acids Nutrition 0.000 claims 6
- STQGQHZAVUOBTE-UHFFFAOYSA-N 7-Cyan-hept-2t-en-4,6-diinsaeure Natural products C1=2C(O)=C3C(=O)C=4C(OC)=CC=CC=4C(=O)C3=C(O)C=2CC(O)(C(C)=O)CC1OC1CC(N)C(O)C(C)O1 STQGQHZAVUOBTE-UHFFFAOYSA-N 0.000 claims 4
- WEAHRLBPCANXCN-UHFFFAOYSA-N Daunomycin Natural products CCC1(O)CC(OC2CC(N)C(O)C(C)O2)c3cc4C(=O)c5c(OC)cccc5C(=O)c4c(O)c3C1 WEAHRLBPCANXCN-UHFFFAOYSA-N 0.000 claims 4
- 229930183665 actinomycin Natural products 0.000 claims 4
- STQGQHZAVUOBTE-VGBVRHCVSA-N daunorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(C)=O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 STQGQHZAVUOBTE-VGBVRHCVSA-N 0.000 claims 4
- 150000001720 carbohydrates Chemical class 0.000 claims 3
- 235000003441 saturated fatty acids Nutrition 0.000 claims 3
- 150000004671 saturated fatty acids Chemical class 0.000 claims 3
- 241000282412 Homo Species 0.000 abstract description 2
- 210000004027 cell Anatomy 0.000 description 40
- 230000000694 effects Effects 0.000 description 33
- 239000003814 drug Substances 0.000 description 23
- 229940079593 drug Drugs 0.000 description 21
- SGTNSNPWRIOYBX-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-{[2-(3,4-dimethoxyphenyl)ethyl](methyl)amino}-2-(propan-2-yl)pentanenitrile Chemical compound C1=C(OC)C(OC)=CC=C1CCN(C)CCCC(C#N)(C(C)C)C1=CC=C(OC)C(OC)=C1 SGTNSNPWRIOYBX-UHFFFAOYSA-N 0.000 description 16
- 229960001722 verapamil Drugs 0.000 description 16
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 13
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 12
- 229920000642 polymer Polymers 0.000 description 11
- 230000002441 reversible effect Effects 0.000 description 11
- 238000002512 chemotherapy Methods 0.000 description 10
- 238000001727 in vivo Methods 0.000 description 10
- 231100000419 toxicity Toxicity 0.000 description 10
- 230000001988 toxicity Effects 0.000 description 10
- 230000007246 mechanism Effects 0.000 description 9
- 108090000623 proteins and genes Proteins 0.000 description 9
- 102000004169 proteins and genes Human genes 0.000 description 9
- 102100033350 ATP-dependent translocase ABCB1 Human genes 0.000 description 8
- 108010047230 Member 1 Subfamily B ATP Binding Cassette Transporter Proteins 0.000 description 8
- 238000009825 accumulation Methods 0.000 description 8
- TUFFYSFVSYUHPA-UHFFFAOYSA-M rhodamine 123 Chemical compound [Cl-].COC(=O)C1=CC=CC=C1C1=C(C=CC(N)=C2)C2=[O+]C2=C1C=CC(N)=C2 TUFFYSFVSYUHPA-UHFFFAOYSA-M 0.000 description 8
- 230000008499 blood brain barrier function Effects 0.000 description 7
- 210000001218 blood-brain barrier Anatomy 0.000 description 7
- 210000004556 brain Anatomy 0.000 description 7
- 230000002209 hydrophobic effect Effects 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- RJURFGZVJUQBHK-UHFFFAOYSA-N actinomycin D Natural products CC1OC(=O)C(C(C)C)N(C)C(=O)CN(C)C(=O)C2CCCN2C(=O)C(C(C)C)NC(=O)C1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)NC4C(=O)NC(C(N5CCCC5C(=O)N(C)CC(=O)N(C)C(C(C)C)C(=O)OC4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-UHFFFAOYSA-N 0.000 description 6
- 238000011282 treatment Methods 0.000 description 6
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- 244000005700 microbiome Species 0.000 description 5
- 238000004366 reverse phase liquid chromatography Methods 0.000 description 5
- 229920002685 Polyoxyl 35CastorOil Polymers 0.000 description 4
- 229920001400 block copolymer Polymers 0.000 description 4
- 238000000338 in vitro Methods 0.000 description 4
- QUANRIQJNFHVEU-UHFFFAOYSA-N oxirane;propane-1,2,3-triol Chemical compound C1CO1.OCC(O)CO QUANRIQJNFHVEU-UHFFFAOYSA-N 0.000 description 4
- 230000000144 pharmacologic effect Effects 0.000 description 4
- 239000008389 polyethoxylated castor oil Substances 0.000 description 4
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 4
- 229920000053 polysorbate 80 Polymers 0.000 description 4
- 239000004094 surface-active agent Substances 0.000 description 4
- 108010078791 Carrier Proteins Proteins 0.000 description 3
- 206010059866 Drug resistance Diseases 0.000 description 3
- 206010070863 Toxicity to various agents Diseases 0.000 description 3
- RJURFGZVJUQBHK-IIXSONLDSA-N actinomycin D Chemical compound C[C@H]1OC(=O)[C@H](C(C)C)N(C)C(=O)CN(C)C(=O)[C@@H]2CCCN2C(=O)[C@@H](C(C)C)NC(=O)[C@H]1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)N[C@@H]4C(=O)N[C@@H](C(N5CCC[C@H]5C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-IIXSONLDSA-N 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000002775 capsule Substances 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 229960000640 dactinomycin Drugs 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000003834 intracellular effect Effects 0.000 description 3
- 238000001990 intravenous administration Methods 0.000 description 3
- 230000001404 mediated effect Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 241000282472 Canis lupus familiaris Species 0.000 description 2
- 208000030453 Drug-Related Side Effects and Adverse reaction Diseases 0.000 description 2
- 206010015150 Erythema Diseases 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 2
- NTYJJOPFIAHURM-UHFFFAOYSA-N Histamine Chemical compound NCCC1=CN=CN1 NTYJJOPFIAHURM-UHFFFAOYSA-N 0.000 description 2
- 208000003251 Pruritus Diseases 0.000 description 2
- 229920002359 Tetronic® Polymers 0.000 description 2
- 208000024780 Urticaria Diseases 0.000 description 2
- 229940009456 adriamycin Drugs 0.000 description 2
- 230000001093 anti-cancer Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 231100000599 cytotoxic agent Toxicity 0.000 description 2
- 239000002619 cytotoxin Substances 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 231100000321 erythema Toxicity 0.000 description 2
- HHFAWKCIHAUFRX-UHFFFAOYSA-N ethoxide Chemical group CC[O-] HHFAWKCIHAUFRX-UHFFFAOYSA-N 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000005194 fractionation Methods 0.000 description 2
- 238000001802 infusion Methods 0.000 description 2
- 239000003999 initiator Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 229920001983 poloxamer Polymers 0.000 description 2
- 208000016691 refractory malignant neoplasm Diseases 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 229940124597 therapeutic agent Drugs 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 239000003053 toxin Substances 0.000 description 2
- 231100000765 toxin Toxicity 0.000 description 2
- 108700012359 toxins Proteins 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- SNICXCGAKADSCV-JTQLQIEISA-N (-)-Nicotine Chemical compound CN1CCC[C@H]1C1=CC=CN=C1 SNICXCGAKADSCV-JTQLQIEISA-N 0.000 description 1
- WHTVZRBIWZFKQO-AWEZNQCLSA-N (S)-chloroquine Chemical compound ClC1=CC=C2C(N[C@@H](C)CCCN(CC)CC)=CC=NC2=C1 WHTVZRBIWZFKQO-AWEZNQCLSA-N 0.000 description 1
- JVKUCNQGESRUCL-UHFFFAOYSA-N 2-Hydroxyethyl 12-hydroxyoctadecanoate Chemical compound CCCCCCC(O)CCCCCCCCCCC(=O)OCCO JVKUCNQGESRUCL-UHFFFAOYSA-N 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 206010009944 Colon cancer Diseases 0.000 description 1
- 241000699802 Cricetulus griseus Species 0.000 description 1
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 1
- 101150066553 MDR1 gene Proteins 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 108090000301 Membrane transport proteins Proteins 0.000 description 1
- 102000003939 Membrane transport proteins Human genes 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 206010034133 Pathogen resistance Diseases 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 206010038389 Renal cancer Diseases 0.000 description 1
- 229920001304 Solutol HS 15 Polymers 0.000 description 1
- 229940122803 Vinca alkaloid Drugs 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000007059 acute toxicity Effects 0.000 description 1
- 231100000403 acute toxicity Toxicity 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000003042 antagnostic effect Effects 0.000 description 1
- 239000005557 antagonist Substances 0.000 description 1
- 229940045985 antineoplastic platinum compound Drugs 0.000 description 1
- 150000001540 azides Chemical class 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 210000004782 brain capillary endothelium Anatomy 0.000 description 1
- 210000004958 brain cell Anatomy 0.000 description 1
- 210000001043 capillary endothelial cell Anatomy 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 229940044683 chemotherapy drug Drugs 0.000 description 1
- 229960003677 chloroquine Drugs 0.000 description 1
- WHTVZRBIWZFKQO-UHFFFAOYSA-N chloroquine Natural products ClC1=CC=C2C(NC(C)CCCN(CC)CC)=CC=NC2=C1 WHTVZRBIWZFKQO-UHFFFAOYSA-N 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 239000002254 cytotoxic agent Substances 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 238000009513 drug distribution Methods 0.000 description 1
- 230000000857 drug effect Effects 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- 210000003989 endothelium vascular Anatomy 0.000 description 1
- 238000000684 flow cytometry Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 231100000086 high toxicity Toxicity 0.000 description 1
- 229960001340 histamine Drugs 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 201000004792 malaria Diseases 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 230000017095 negative regulation of cell growth Effects 0.000 description 1
- SNICXCGAKADSCV-UHFFFAOYSA-N nicotine Natural products CN1CCCC1C1=CC=CN=C1 SNICXCGAKADSCV-UHFFFAOYSA-N 0.000 description 1
- 229960002715 nicotine Drugs 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 229940100691 oral capsule Drugs 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 150000003058 platinum compounds Chemical class 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000009790 rate-determining step (RDS) Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000015227 regulation of liquid surface tension Effects 0.000 description 1
- 201000010174 renal carcinoma Diseases 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 231100000161 signs of toxicity Toxicity 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 206010041823 squamous cell carcinoma Diseases 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 210000001550 testis Anatomy 0.000 description 1
- 210000001578 tight junction Anatomy 0.000 description 1
- 239000003104 tissue culture media Substances 0.000 description 1
- 231100000041 toxicology testing Toxicity 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- 229920000428 triblock copolymer Polymers 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/74—Synthetic polymeric materials
- A61K31/785—Polymers containing nitrogen
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/74—Synthetic polymeric materials
- A61K31/765—Polymers containing oxygen
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/74—Synthetic polymeric materials
- A61K31/765—Polymers containing oxygen
- A61K31/77—Polymers containing oxygen of oxiranes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/04—Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/56—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
- A61K47/59—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
- A61K47/60—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
Definitions
- the present invention relates to the use of resistance modification agents in vivo to reverse multidrug resistance in human or animal tumor cells. More particularly, the present invention relates to the use of certain non-ionic surfactants comprising certain amphipathic esters of fatty acids as resistance modification agents.
- Mdrl protein a cell membrane drug efflux transporter
- P- glycoprotein a cell membrane drug efflux transporter
- RMAs resistance modification agents
- metabolic poisons such as azide
- RMAs a highly effective RMA
- verapamil appear to work as competitive antagonists of a drug binding site on the Mdrl protein.
- Many of these agents also have toxicity which limits their usefulness in vivo. Consequently, there is a need to develop alternate pharmacological strategies for reversing multidrug resistance to provide RMAs with improved activity and lower overall toxicity.
- Decreased intracellular drug accumulation through overexpression of the drug efflux Mdrl protein is important to, but apparently not the only factor, in the multidrug resistance phenotype. Altered intracellular drug distribution and binding, among other possibilities, also seem to play a role.
- the mechanism of reversing doxorubicin resistance using verapamil appears to be more related to altered intracellular distribution of doxorubicin than increased accumulation in the cell, as detailed in Schuurhuis, G.J., et al., "Quantitative dete ⁇ nination of factors contributing to doxorubicin resistance in multidrug resistant cells," /. Natl. Cancer Inst., 81:1887-1892, 1989.
- doxorubicin is concentrated almost exclusively in the nucleus in drug sensitive cells, and mainly in the cytoplasm in drug resistant cells. With the addition of verapamil, doxorubicin is localized mainly in the nucleus in drug resistant cells. Thus, high affinity binding of drugs to Mdrl does not appear to be sufficient for optimal efflux, suggesting the existence of additional, rate limiting steps which may be susceptible to pharmacological intervention.
- Certain non-ionic amphipathic surfactants such as
- Tween 80 and Cremophor EL have evidenced RMA activity.
- RMA activity See Riehm H., et al. "Potentiation of drug effect by Tween 80 in Chinese hamster cells resistant to actinomycin D and Danomycin” Cancer Res. Vol. 32, pgs. 1195-1200, 1972 and Woodcock, D. B., et al., "Reversal of the multidrug resistance phenotype with
- Cremophore EL a common vehicle for water-insoluble vitamins and drugs
- Tween 80 potentiates drug toxicity in both parental and multidrug resistant cells, calling into question the specificity of the Tween 80 effect on multidrug resistance. An effect on drug efflux has not been demonstrated.
- Cremophor EL is a complicated mixture of polyoxyethylated esters of triglycerides of mainly ricinoleic acid (castor oil), the composition and active component of which have not been identified. Use of Cremophor EL in vivo is complicated by adverse histamine release in some patients.
- compositions that reverse multidrug resistance in vivo.
- the composition should have a low occurrence of adverse side-effects.
- the compositions should inhibit drug efflux by a mechanism different from antagonistic competition for a drug binding site on the Mdrl protein, thereby broadening the pharmacological repertoire which may be employed to reverse multidrug resistance.
- the present invention comprises certain compositions that exhibit substantial RMA activity in cancers.
- a composition is a non-ionic amphipathic surfactant, known by the trade name SOLUTOL® HS 15 (BASF Corporation, Parsippany, New Jersey).
- SOLUTOL® HS 15 BASF Corporation, Parsippany, New Jersey.
- This composition increases the cytotoxicity of chemotherapeutic drugs in multidrug resistant cell lines, but not in drug sensitive cell lines, indicating that the potentiating effect is not due to the additive toxicity of the agent itself.
- the agent also promotes chemotherapeutic agent accumulation in multidrug resistant cells thereby potentiating the effect of the chemotherapeutic agent.
- the present invention also comprises a method for reversing multidrug resistance in human or animal cancer cells and a composition for eliminating multidrug resistant human or animal cancer cells.
- One composition that is an aspect of the present invention is a particular fraction of SOLUTOL® HS 15 collected by reverse phase liquid chromatography. It has been found that the RMA activity in the SOLUTOL® HS 15 resides in a narrow fraction from the reverse phase liquid chromatography.
- the present invention also includes a class of compounds which are ethoxylated fatty acids which exhibit strong
- RMA activity These compounds have been found to be a fatty acid with between approximately 8 and 60 carbon atoms and between approximately 4 to 100 ethoxy units.
- the fatty acid component of the present invention can be unsaturated and can have one or more hydroxyl group. In general, the fatty acids without the ethoxy units have little or no RMA activity.
- the present invention also includes compositions and methods for reducing the resistance of certain microorganisms to chemotherapeutic agents. It has been determined that certain microorganisms contain p-glycoprotein-like pumping mechanisms that are similar to those found in mammalian cells and it is believed that these mechanisms may be important in resistance to antmicrobial agents.
- Another embodiment of the present invention are the polyoxyethylene/polyoxypropylene copolymers with the following general formula:
- a is an integer such that the hydrophobe represented by (C 3 H 6 O) has a molecular weight of about 1200 to 9000, preferably 1750 to 4000, and b is an integer such that the hydrophile portion represented by (C2H4O) constitutes approximately 10% to 50% by weight of the compound.
- Another embodiment of the present invention are the polyoxyethylene/polyoxypropylene copolymers with the following general formula:
- the mean aggregate molecular weight of the portion of the octablock copolymer represented by the polyoxypropylene is between approximately 4500 and 7000 daltons; a is a number such that the portion represented by polyoxyethylene constitutes between approximately 10% to 20% of the compound by weight, and; b is a number such that the polyoxypropylene portion of the total molecular weight of the octablock copolymer constitutes between approximately 80% and 90% of the compound by weight.
- Yet another embodiment of the present invention are the polyoxyethylene/polyoxypropylene copolymers with the following general formula: (C 2 H 4 ⁇ ) a (C 3 H- ⁇ ) b ⁇ C 3 9 H ⁇ 6O) h (C,H.O).
- the mean aggregate molecular weight of the portion of the octablock copolymer represented by the polyoxypropylene is between approximately 4500 and 7000 daltons; a is a number such that the portion represented by polyoxyethylene constitutes between approximately 10% to 40% of the compound by weight, and; b is a number such that the polyoxypropylene portion of the total molecular weight of the octablock copolymer constitutes between approximately 60% and 90% of the compound by weight.
- Figure 1 shows fractionation of SOLUTOL® HS 15 using reverse phase liquid chromatography.
- the present invention comprises methods and compositions for reducing or eliminating multidrug resistance in cancers in humans or animals.
- a non-ionic amphipathic ester of a fatty acid is administered to a patient in which a human or animal cancer exhibits multidrug resistance to the chemotherapeutic agent.
- the method and composition of the present invention may be employed with particular efficacy where multidrug resistance to any chemotherapeutic agent has been conferred upon a cancer.
- multidrug resistance means resistance or acquired or natural resistance of tumor or other cells to chemotherapeutic agents.
- the multidrug resistance can be mediated by P-glycoprotein or can be mediated by other mechanisms.
- the present invention includes a method of treating a human or animal with a cancer that exhibits multidrug resistance to reduce or eliminate the multidrug resistance which includes administering to the human or animal an effective amount of a non-ionic amphipathic ester of a fatty acid.
- a preparation that exhibits the desired biologic activity is SOLUTOL® HS 15. This preparation is a mixture of various compounds with surfactant activities.
- the fatty acid component of the present invention can be unsaturated and can be hydroxylated and still exhibit activity.
- the fatty acid can be branched.
- the preferred fatty acids are straight chained.
- the fatty acids without the ethoxy units have little or no RMA activity.
- the preferred compounds are fatty acids which have ethoxy units esterified on the carboxy group.
- the fatty acids have between 8 and 60 carbon atoms and between approximately 4 to 100 ethoxy units. If the fatty acid is hydroxylated the ethoxy units may be esterified at the hydroxyl group.
- the ethoxy units can be attached to the carboxyl group and/or the hydroxyl group if a hydroxyl group is present.
- the more preferred compounds have a fatty acid with between 12 and 50 carbons with the most preferred compounds with between 15 and 25 carbon atoms and between approximately 15 and 60 ethoxy units with the most preferred compounds having between approximately 15 and 20 carbon atoms.
- the preferred compounds have between approximately 4 and 100 ethoxy units, with the more preferred compounds having between 15 and 60 ethoxy units and the most preferred compounds having between 25 and 50 ethoxy units.
- Preferred fatty acids are selected from the group consisting of stearic acid, 12-hydroxystearic acid, oleic acid, palmitic acid, and ricinoleic acid.
- the preferred number of ethoxy units are between approximately 5 and 50 units.
- Non-ionic amphipathic surfactants exhibit membrane surface activity and are characterized by having a hydrophilic head and hydrophobic tail.
- non-ionic amphipathic esters of fatty acids inhibit the formation of such protein polymers, and thereby inhibit drug efflux.
- the ester of the present invention has a hydrophilic head, which comprises polyethylene glycol, and a hydrophobic tail comprising a fatty acid.
- the fatty acid component of the ester of the composition of the present invention can be selected from a wide range of fatty acids. It may advantageously possess at least one hydroxyl group outside of the carboxyl group. Such fatty acids can easily be esterified with themselves, as is well known in the art, to produce polymers of the fatty acid.
- the RMA can be formed not just from esters of a fatty acid monomer with polyethylene glycol, but such polymers of hydroxylated fatty acids also can be esterified with polyethylene glycol to form the RMA.
- the non-ionic amphipathic ester comprises polyethylene glycol ester of 12-hydroxystearic acid.
- a formulation is a component of a commercially available preparation from BASF Corporation (Parsippany, New Jersey) under the trade name SOLUTOL® HS 15.
- the ester may be administered to a patient either alone or in combination with a treatment program of at least one chemotherapeutic agent to which the human cancer is resistant.
- chemotherapeutic agent typically includes, but is not limited to, doxorubicin, vincristine, vinblastine, Taxol, colchicine, VP-16 and actinomycin D.
- the present invention is useful for reducing resistance to platinum compounds by promoting accumulation of these compounds.
- At least one effective dose of the RMA of the present invention is administered for every dose of chemotherapeutic agent that is administered in treatment.
- an effective dose of the RMA may be administered at least daily throughout the period between administration of successive doses of chemotherapeutic agent.
- the treatment period typically lasts about four weeks, depending upon the cancer being treated and the chemotherapeutic agents being used.
- the RMA may be continuously infused throughout said period.
- the administration of the RMA may also commence prior to a session of chemotherapy, and continue throughout and after the chemotherapy session.
- the amount of the RMA per dose will depend on which particular non-ionic amphipathic fatty acid ester is employed according to the present invention. However it is preferable that the maximum dosage that may be tolerated with negligible toxic symptoms in vivo be used. At least some non- ionic amphipathic esters of fatty acids, such as SOLUTOL® HS 15, are tolerated extremely well in vivo, and may be employed with no acute toxicity at dosages which achieve equivalent or superior reversal of multidrug resistance to common chemotherapeutic agents as compared to dosages of the prototypical RMA verapamil which produce marked toxicity.
- the RMA of the present invention can be administered either intravenously or orally. It may be administered separately from the chemotherapeutic agent, as may be dictated by the chemotherapy, in which case the amount of time between commencing administration of the RMA and administration of the chemotherapeutic agent should not be substantial, e.g. typically within 24 hours, or as the chemotherapy permits.
- An exemplary treatment regimen comprises oral or intravenous administration of the chemotherapeutic agent, followed by continuous administration of the RMA throughout the period until the next session of chemotherapy, either by continuous infusion or oral time release capsules.
- a typical dose for a human of the SOLUTOL® HS 15 is between approximately 1 mg/kg and 250 mg/kg.
- a more preferred dose of SOLUTOL® HS 15 is between approximately 5 mg/kg and 100 mg/kg. If a purified esterified fatty acid is used to treat a human with multidrug resistant cancer, the preferred dose is between approximately 1 mg/kg and 200 mg/kg with the more preferred dose between approximately 15 mg/kg and 60 mg/kg.
- the RMA of the present invention may be administered in combination with the chemotherapeutic agent, comprising continuous infusion or daily oral consumption of time release capsules of the RMA commencing prior to the chemotherapy session, and continuing throughout and after the session, by way of example.
- the RMA may be infused together through the same needle with the chemotherapeutic agent, or combined in a single oral capsule, as the chemotherapeutic agent permits, in which cases the RMA of the present invention may be used as an emulsifier of the agent, since non-ionic amphipathic esters of fatty acids commonly possess emulsifying characteristics.
- Preparation of an emulsion of the chemotherapeutic agent with the RMA will depend on the particular agents used.
- the RMA and the chemotherapeutic agent are combined and heated above room temperature to a range in which both the RMA and the chemotherapeutic agent are still stable, but in which the RMA becomes fluid, about 50° to 80° C.
- Sterile water is heated to the same temperature and then added with vigorous agitation in a proper amount to achieve a viscosity appropriate for administration.
- Other components may be added to the emulsion as necessary to prepare it either for intravenous or oral administration, as is well known in the art.
- the RMA of the present invention can be administered together with other RMAs, such as verapamil.
- the RMA of the present invention and a second RMA can be infused separately or concurrently, or combined into one time release capsule for oral consumption, in effective doses typically administered in treatment using each RMA alone, as permitted by the toxicity of the second RMA.
- the method and composition of the present invention provide an important new means of overcoming multidrug resistance in human cancers.
- the method and composition have an efficacy equal to or better then best resistance modification agents known to the inventor.
- the agent used in the method and composition of the present invention has a lower toxicity than other RMAs and fewer side effects than other potential RMAs.
- the agent operates by a different mechanism on the complex phenotype of multidrug resistance, and thus can be combined with other RMAs to provide a more potent means of reversing multidrug resistance.
- SOLUTOL® HS 15 The structure of SOLUTOL® HS 15 is dissimilar to that of verapamil or other typical RMAs.
- the markedly greater potency of SOLUTOL® HS 15 than verapamil for reversing VP-16 or colchicine resistance relative to the ability of each to reverse vinblastine or doxorubicin resistance supports the hypothesis that SOLUTOL® HS 15 operates by a MDR-reversing mechanism different from competition for the drug-binding site on Mdrl protein found in verapamil.
- Colchicine is known to interact weakly with the identified drug-binding site on the Mdrl protein, since colchicine does not compete for vinblastine binding.
- SOLUTOL® HS 15 is a highly potent RMA for both colchicine and vinblastine, it may inhibit a second event necessary for efflux after drag binding, namely actual transport through the membrane. It is likely that SOLUTOL® HS 15, as a surfactant, inhibits formation of Mdrl protein polymers which may be necessary to achieve drag efflux.
- RMA of the present invention Another important advantage of the RMA of the present invention is the fact that the compounds which are contemplated as part of the present invention are highly effective against the multidrug resistance against the anticancer drag VP-16.
- the prior art RMAs, such as verapamil, are not effective against VP-16 multidrug resistance. (See Schested, M, et al. "Relationship of VP-16 to the Classical Multidrug Resistance Phenotype", Cancer Research, Vol. 52, pgs. 2874-2879, 1992.)
- the RMAs of the present invention have been found to be effective in reducing multidrug resistance against a broad spectrum of anticancer drags.
- microorganisms contain membrane proteins which are similar in structure and function to the P-glycoprotein that is expressed by the MDR1 gene in mammals. It is contemplated as part of the present invention that the methods and compositions that make up the present invention can be used to make certain microorganisms more susceptible to therapeutic drags. For example, it is likely that the present invention will reverse chloroquine resistance in malaria.
- Another embodiment of the present invention relates to the blood brain barrier. It has been reported that the P- glycoprotein pump exists in brain capillary endothelium. (See Tasuta, T., et al., Functional Involvement of P-glycoprotein in brain capillary endothelium. (See Tasuta, T., et al., Functional Involvement of P-glycoprotein in brain capillary endothelium. (See Tasuta, T., et al., Functional Involvement of P-glycoprotein in
- the brain is a pharmacologic sanctuary in that many drags administered systemically have Umited access to the tissue parenchyma.
- endothelial cells forming the capillary tube are joined by continuous tight junctions that prevent many substances from entering the organ.
- Nutrients needed for brain cells are selectively transported from the blood through specific channels or transporters in the capillary endothelial cells.
- the brain is a rigorously isolated compartment that is protected by a blood-brain barrier.
- Hydrophobic antitumor agents such as Vinca alkaloid and adriamycin (ADM) cannot enter the brain, although other hydrophobic molecules such as nicotine and ethanol readily pass through the blood-brain barrier. Therefore, some mechanisms of the barrier that selectively block the penetration of lipid-soluble antitumor agents into the brain could exist.
- the presence of P- glycoprotein in the capillary endothelium has been reported in both brain and testis but not in the other tissues. This suggests the functional involvement of P-glycoprotein in the blood-brain barrier. It is contemplated as part of the present invention that the methods and compounds described herein can be used to reduce the blood-brain barrier thereby allowing beneficial therapeutic agents to cross the barrier.
- Another embodiment of the present invention are compounds that are effective in reducing multidrug resistance in cancer cells that are polyoxyethylene/polyoxypropylene copolymers with the following general formula:
- the block copolymer comprises a polymer of hydrophilic polyoxyethylene (POE) built on an ethylene diamine initiator. Polymers of hydrophobic polyoxypropylene (POP) are then built on the block of hydrophilic polyethylene (POE). This results in an octablock copolymer with the following general formula: (C 3 H 6 0) b (c 2 H 4 ⁇ ) a (C 2 H 4 0) a (C 3 H 6 ⁇ ) b
- the mean aggregate molecular weight of the portion of the octablock copolymer represented by the polyoxypropylene is between approximately 4500 and 7000 daltons; a is a number such that the portion represented by polyoxyethylene constitutes between approximately 10% to 20% of the compound by weight, and; b is a number such that the polyoxypropylene portion of the total molecular weight of the octablock copolymer constitutes between approximately 80% and 90% of the compound by weight.
- the block copolymer comprises a polymer of hydrophobic polyoxypropylene (POP) built on an ethylenediamine initiator. Polymers of hydrophihc polyoxyethylene (POE) are then built on the block of hydrophobic polyoxypropylene (POP). This results in an octablock copolymer with the following general formula:
- the mean aggregate molecular weight of the portion of the octablock copolymer represented by the polyoxypropylene is between approximately 4500 and 7000 daltons; a is a number such that the portion represented by polyoxyethylene constitutes between approximately 10% to 40% of the compound by weight, and; b is a number such that the polyoxypropylene portion of the total molecular weight of the octablock copolymer constitutes between approximately 60% and 90% of the compound by weight.
- the octablock copolymers comprising the biologically active copolymers of the present invention include, but are not limited to, the block copolymers Tetronic® and reverse Tetronic® manufactured by the BASF Corporation (BASF Corporation, Parsippany, NJ).
- the triblock copolymers are sold under the trademark PLURONIC® and are available from BASF Corporation.
- cells from the three lines were plated as is well known in the art in 96-well plates, with increasing concentrations of cytotoxic drag along one axis of the plate and increasing concentrations of the RMA along the other axis of the plate. After incubation for five days, the plates were washed and dyed according to methods known in the art, and a cell count was determined. The mean concentration of the cytotoxic drug that caused 50% inhibition of cell growth compared to controls (IC50) was plotted at various concentrations of the RMA.
- SOLUTOL® HS 15 Complete reversal of the MDR phenotype in KB 8-5 and KB 8-5-11 cells was achieved by SOLUTOL® HS 15, while the RMA did not potentiate drug toxicity in drug-sensitive KB 3-1 cells, indicating the potentiating effect was not due to any toxicity of SOLUTOL® HS 15 itself.
- SOLUTOL® HS 15 produced a 35-, 28-, and 42-fold reduction in the resistance of KB 8-5-11 cells to colchicine, vinblastine, and doxorubicin, respectively.
- Example II Efflux of rhodamine 123 from MDR cells was also examined to provide direct information about the action of the transport protein Mdr 1. Briefly, prepared cells from the KB 8- 5-11 line were washed and incubated in 0.5 ⁇ g ml rhodamine 123 and 24 ⁇ M verapamil for 3 hours at 37° C. The cells were washed in ice cold DMEM, split into 3 aliquots, and incubated in either complete medium alone or complete medium with 24 ⁇ M verapamil or 70 ⁇ M SOLUTOL® HS 15 at 37°C. The rhodamine 123 fluorescence of the cells was measured periodically by flow cytometric analysis as described in Coon et al. The rhodamine 123 studies showed that SOLUTOL® HS 15 promotes drug accumulation in MDR cells, and furthermore that such accumulation is at least partly due to a pronounced decrease in the rate of drag efflux.
- SOLUTOL® HS 15 was fractionated using reverse phase liquid chromatography to determine where the activity resides in the preparation.
- An approximately 50% solution of SOLUTOL® HS 15 was prepared in 100% acetonitrile (ACN) and water.
- ACN acetonitrile
- One ml of the SOLUTOL® HS 15 solution was injected onto a Phenomenex IB-Sil reversed phase column. The column has 5 ⁇ m particles, and is 4.6 mm internal diameter by 150 mm.
- the flow rate was 2.0 mVrnin.
- the gradient was linear with 100% A to 100% B in 15 minutes, then was maintained at 100%
- the RMA activity is confined in a single peak which elutes at approximately 20 minutes into the chromatographic run.
- the toxicity is confined to another peak that elutes before the activity peak and slightly overlaps the RMA peak.
- most of the material that is responsible for the RMA activity is non-toxic.
- SOLUTOL® HS 15 is extremely well tolerated in vivo. Pure-bred beagle dogs received intravenous doses of 5, 25, 50 or 100 milligrams of SOLUTOL® HS 15 per kilogram body weight, daily over a period of 4 weeks. No signs of toxicity were found in doses up to 25 mg/kg. At 50 mg/kg, sporadic and transient pruritus, erythema, and/or urticaria were observed. After doses of 100 mg/kg, the dogs showed different degrees of pruritus, erythema, or urticaria, most pronounced 5 to 10 minutes after injection, and no longer detectable after 60 minutes. These studies indicate SOLUTOL® HS 15 is better tolerated in vivo than Cremophor EL. Example VI
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Molecular Biology (AREA)
- Gastroenterology & Hepatology (AREA)
- Immunology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Medicinal Preparation (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA002125279A CA2125279A1 (fr) | 1991-12-10 | 1992-12-09 | Methodes et compositions pour reduire la resistance polymedicamenteuse |
JP5511010A JPH07502274A (ja) | 1991-12-10 | 1992-12-09 | 多薬剤耐性を低下させる方法および組成物 |
EP19930900961 EP0616493A4 (fr) | 1991-12-10 | 1992-12-09 | Procedes et compositions destines a reduire la multiresistance aux medicaments. |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US80518691A | 1991-12-10 | 1991-12-10 | |
US805,186 | 1991-12-10 | ||
US98276692A | 1992-12-07 | 1992-12-07 | |
US982,766 | 1992-12-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1993011668A1 true WO1993011668A1 (fr) | 1993-06-24 |
Family
ID=27122756
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1992/010563 WO1993011668A1 (fr) | 1991-12-10 | 1992-12-09 | Procedes et compositions destines a reduire la multiresistance aux medicaments |
Country Status (8)
Country | Link |
---|---|
EP (1) | EP0616493A4 (fr) |
JP (1) | JPH07502274A (fr) |
CN (1) | CN1076358A (fr) |
AU (1) | AU3243393A (fr) |
CA (1) | CA2125279A1 (fr) |
IL (1) | IL104063A0 (fr) |
MX (1) | MX9207150A (fr) |
WO (1) | WO1993011668A1 (fr) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0643971A3 (fr) * | 1993-08-25 | 1996-05-29 | Lilly Co Eli | Compositions antifongiques contenant un agent antifongique, e.g. antibiotique R-106I, et un inhibiteur MDR fongique. |
WO1995031981A3 (fr) * | 1994-05-19 | 1996-07-18 | Rush Presbyterian St Luke | Procedes et compositions de reduction de la resistance a de multiples medicaments |
US5591715A (en) * | 1991-12-10 | 1997-01-07 | Rush Presbyterian-St. Luke's Medical Center | Methods and compositions for reducing multidrug resistance |
WO2000020036A1 (fr) * | 1998-10-02 | 2000-04-13 | Abbott Laboratories | Compositions pharmaceutiques a base de paclitaxel |
WO2000067802A1 (fr) * | 1999-05-10 | 2000-11-16 | Protarga, Inc. | Compositions d'acides gras -n-substituted indol-3-glyoxyl-amide et leur utilisation |
WO2000053231A3 (fr) * | 1999-03-09 | 2001-10-04 | Protarga Inc | Conjugues d'acides gras et d'agents anticancereux, et utilisations correspondantes |
US7199151B2 (en) | 1996-05-22 | 2007-04-03 | Luitpold Pharmaceuticals, Inc. | DHA-pharmaceutical agent conjugates of taxanes |
US7235583B1 (en) | 1999-03-09 | 2007-06-26 | Luitpold Pharmaceuticals, Inc., | Fatty acid-anticancer conjugates and uses thereof |
US9066990B2 (en) | 2001-03-26 | 2015-06-30 | Bayer Intellectual Property Gmbh | Preparation for restenosis prevention |
US9649476B2 (en) | 2002-09-20 | 2017-05-16 | Bayer Intellectual Property Gmbh | Medical device for dispersing medicaments |
US12251399B2 (en) | 2019-03-05 | 2025-03-18 | Dow Global Technologies Llc | Inducing caspase activity |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3919411A (en) * | 1972-01-31 | 1975-11-11 | Bayvet Corp | Injectable adjuvant and compositions including such adjuvant |
US4557934A (en) * | 1983-06-21 | 1985-12-10 | The Procter & Gamble Company | Penetrating topical pharmaceutical compositions containing 1-dodecyl-azacycloheptan-2-one |
US4563351A (en) * | 1983-08-01 | 1986-01-07 | Forsyth Dental Infirmary For Children | Self-gelling therapeutic compositions for topical application |
US4753965A (en) * | 1987-04-09 | 1988-06-28 | Merrell Dow Pharmaceuticals, Inc. | Method of treating multiple sclerosis with chalcone derivatives |
US4803081A (en) * | 1986-04-11 | 1989-02-07 | Aktiebolaget Hassle | New pharmaceutical preparations with extended release |
US4863968A (en) * | 1987-04-09 | 1989-09-05 | Merrell Dow Pharmaceuticals Inc. | Methods of treating gout with chalcone derivatives |
US4889525A (en) * | 1982-08-17 | 1989-12-26 | Adamantech, Inc. | Sensitization of hypoxic tumor cells and control of growth thereof |
US4904697A (en) * | 1987-04-09 | 1990-02-27 | Merrell Dow Pharmaceuticals Inc. | Controlling the growth of certain tumor tissue with chalcone derivatives |
US4923862A (en) * | 1986-12-18 | 1990-05-08 | Daiichi Seiyaku Co., Ltd. | Topical preparation containing ofloxacin |
US4978622A (en) * | 1986-06-23 | 1990-12-18 | Regents Of The University Of California | Cytophaga-derived immunopotentiator |
US4978332A (en) * | 1987-09-28 | 1990-12-18 | Matrix Pharmaceutical, Inc. | Treatments employing vasoconstrictive substances in combination with cytotoxic agents for introduction into cellular lesion areas |
US5108989A (en) * | 1990-04-04 | 1992-04-28 | Genentech, Inc. | Method of predisposing mammals to accelerated tissue repair |
-
1992
- 1992-12-09 CA CA002125279A patent/CA2125279A1/fr not_active Abandoned
- 1992-12-09 EP EP19930900961 patent/EP0616493A4/fr not_active Withdrawn
- 1992-12-09 AU AU32433/93A patent/AU3243393A/en not_active Abandoned
- 1992-12-09 JP JP5511010A patent/JPH07502274A/ja active Pending
- 1992-12-09 WO PCT/US1992/010563 patent/WO1993011668A1/fr not_active Application Discontinuation
- 1992-12-10 CN CN92115397A patent/CN1076358A/zh active Pending
- 1992-12-10 MX MX9207150A patent/MX9207150A/es unknown
- 1992-12-10 IL IL104063A patent/IL104063A0/xx unknown
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3919411A (en) * | 1972-01-31 | 1975-11-11 | Bayvet Corp | Injectable adjuvant and compositions including such adjuvant |
US4889525A (en) * | 1982-08-17 | 1989-12-26 | Adamantech, Inc. | Sensitization of hypoxic tumor cells and control of growth thereof |
US4557934A (en) * | 1983-06-21 | 1985-12-10 | The Procter & Gamble Company | Penetrating topical pharmaceutical compositions containing 1-dodecyl-azacycloheptan-2-one |
US4563351A (en) * | 1983-08-01 | 1986-01-07 | Forsyth Dental Infirmary For Children | Self-gelling therapeutic compositions for topical application |
US4803081A (en) * | 1986-04-11 | 1989-02-07 | Aktiebolaget Hassle | New pharmaceutical preparations with extended release |
US4978622A (en) * | 1986-06-23 | 1990-12-18 | Regents Of The University Of California | Cytophaga-derived immunopotentiator |
US4923862A (en) * | 1986-12-18 | 1990-05-08 | Daiichi Seiyaku Co., Ltd. | Topical preparation containing ofloxacin |
US4753965A (en) * | 1987-04-09 | 1988-06-28 | Merrell Dow Pharmaceuticals, Inc. | Method of treating multiple sclerosis with chalcone derivatives |
US4863968A (en) * | 1987-04-09 | 1989-09-05 | Merrell Dow Pharmaceuticals Inc. | Methods of treating gout with chalcone derivatives |
US4904697A (en) * | 1987-04-09 | 1990-02-27 | Merrell Dow Pharmaceuticals Inc. | Controlling the growth of certain tumor tissue with chalcone derivatives |
US4978332A (en) * | 1987-09-28 | 1990-12-18 | Matrix Pharmaceutical, Inc. | Treatments employing vasoconstrictive substances in combination with cytotoxic agents for introduction into cellular lesion areas |
US5108989A (en) * | 1990-04-04 | 1992-04-28 | Genentech, Inc. | Method of predisposing mammals to accelerated tissue repair |
Non-Patent Citations (5)
Title |
---|
COON, "Solutol HS 15, Nontoxic Polyoxyethylene Esters of 12-Hydroxystearic Acid, Reverses Multidrug Resistance", Cancer Research, Vol. 51, pages 897-902, published 01 February 1991, see the Abstract and Results sections. * |
LELONG, "Fluorescent Verapamil Derivative for Monitoring Activity of the Multidrug Transporter", Molecular Pharmacology, Vol. 40, pages 490-494, published 28 June 1991, see the Summary. * |
RIEHM, "Potentiation of Drug Effect by Tween 80 in Chinese Hamster Cells Resistant to Actinomycin D and Daunomycin", Cancer Research, Vol. 32, pages 1195-1200, published June 1972, see the entire document. * |
See also references of EP0616493A4 * |
WOODCOCK, "Reversal of the Multidrug Resistance Phenotype with Cremophor EL, a Common Vehicle for Water-insoluble Vitamins and Drugs", Cancer Research, Vol. 50, pages 4199-4203, published 15 July 1990, see the entire document. * |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5591715A (en) * | 1991-12-10 | 1997-01-07 | Rush Presbyterian-St. Luke's Medical Center | Methods and compositions for reducing multidrug resistance |
US5681812A (en) * | 1991-12-10 | 1997-10-28 | Rush Presbyterian-St. Luke's Medical Center | Methods and compositions for reducing multidrug resistance |
US5776891A (en) * | 1991-12-10 | 1998-07-07 | Rush Prebyterian-St. Luke Medical Center | Compositions for reducing multidrug resistance |
EP0643971A3 (fr) * | 1993-08-25 | 1996-05-29 | Lilly Co Eli | Compositions antifongiques contenant un agent antifongique, e.g. antibiotique R-106I, et un inhibiteur MDR fongique. |
WO1995031981A3 (fr) * | 1994-05-19 | 1996-07-18 | Rush Presbyterian St Luke | Procedes et compositions de reduction de la resistance a de multiples medicaments |
US7199151B2 (en) | 1996-05-22 | 2007-04-03 | Luitpold Pharmaceuticals, Inc. | DHA-pharmaceutical agent conjugates of taxanes |
AU759034B2 (en) * | 1998-10-02 | 2003-04-03 | Abbott Laboratories | Pharmaceutical compositions containing paclitaxel |
WO2000020036A1 (fr) * | 1998-10-02 | 2000-04-13 | Abbott Laboratories | Compositions pharmaceutiques a base de paclitaxel |
WO2000053231A3 (fr) * | 1999-03-09 | 2001-10-04 | Protarga Inc | Conjugues d'acides gras et d'agents anticancereux, et utilisations correspondantes |
US7235583B1 (en) | 1999-03-09 | 2007-06-26 | Luitpold Pharmaceuticals, Inc., | Fatty acid-anticancer conjugates and uses thereof |
WO2000067802A1 (fr) * | 1999-05-10 | 2000-11-16 | Protarga, Inc. | Compositions d'acides gras -n-substituted indol-3-glyoxyl-amide et leur utilisation |
US9066990B2 (en) | 2001-03-26 | 2015-06-30 | Bayer Intellectual Property Gmbh | Preparation for restenosis prevention |
US9649476B2 (en) | 2002-09-20 | 2017-05-16 | Bayer Intellectual Property Gmbh | Medical device for dispersing medicaments |
US12251399B2 (en) | 2019-03-05 | 2025-03-18 | Dow Global Technologies Llc | Inducing caspase activity |
Also Published As
Publication number | Publication date |
---|---|
CA2125279A1 (fr) | 1993-06-24 |
MX9207150A (es) | 1993-12-01 |
AU3243393A (en) | 1993-07-19 |
CN1076358A (zh) | 1993-09-22 |
IL104063A0 (en) | 1993-05-13 |
JPH07502274A (ja) | 1995-03-09 |
EP0616493A4 (fr) | 1994-11-09 |
EP0616493A1 (fr) | 1994-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5776891A (en) | Compositions for reducing multidrug resistance | |
US5541232A (en) | Treatment of multidrug resistant diseases | |
ES2258566T3 (es) | Combinaciones de farmacos (por ejemplo, clorpromacina y pentamidina) para el tratamiento de trastornos neoplasicos. | |
WO1993011668A1 (fr) | Procedes et compositions destines a reduire la multiresistance aux medicaments | |
US6248752B1 (en) | Azabicyclooctane compositions and methods for enhancing chemotherapy | |
US5635515A (en) | Therapeutic agents for the treatment of multiple drug resistance of cancers | |
EP0491018A1 (fr) | Utilisation de taurolidine et/ou de taurultame pour le traitement des tumeurs | |
WO1994008578A2 (fr) | Activite tumoricide des ansamycines benzoquinonoides contre le cancer de la prostate et les malignites neurales primitives | |
DE60111352T2 (de) | Podophyllotoxin-zusammensetzungen | |
EP0355604B1 (fr) | Potentialisateur contre l'activité anticancéreuse | |
EP2254570B1 (fr) | Combinaison comprenant du paclitaxel destinée au traitement du cancer des ovaires | |
JPH0357081B2 (fr) | ||
US20040213757A1 (en) | Water soluble wortmannin derivatives | |
Borchmann et al. | Phase I study of BBR 2778, a new aza-anthracenedione, in advanced or refractory non-Hodgkin’s lymphoma | |
JP2014196324A (ja) | メトトレキサートをオロチン酸誘導体として投与することでその副作用と毒性を下げる組成物及び方法 | |
EP0923371B1 (fr) | Compositions pharmaceutiques contenant des tyrphostines | |
Berry et al. | Enantiomeric interaction of flurbiprofen in the rat | |
JP2003514025A (ja) | ガンのアプリジン治療 | |
EP0784474A2 (fr) | Compositions pharmaceutiques parenterales contenant gf120918a | |
WO2001026467A1 (fr) | Procedes permettant d'ameliorer la chimiotherapie | |
US20110082193A1 (en) | Taxane derivative containing pharmaceutical composition with improved therapeutic efficacy | |
WO1995017192A1 (fr) | Procede permettant de reduire la resistance multiple aux anti-cancereux | |
JPS6185320A (ja) | 抗腫瘍剤効果増強剤 | |
WO1995031981A2 (fr) | Procedes et compositions de reduction de la resistance a de multiples medicaments | |
Malviya et al. | Pharmacokinetics of intraperitoneal doxorubicin in combination with systemic cyclophosphamide and cis-platinum in the treatment of stage III ovarian cancer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AT AU BB BG BR CA CH CS DE DK ES FI GB HU JP KP KR LK LU MG MN MW NL NO PL PT RO RU SD SE |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR SN TD TG |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
EX32 | Extension under rule 32 effected after completion of technical preparation for international publication | ||
LE32 | Later election for international application filed prior to expiration of 19th month from priority date or according to rule 32.2 (b) | ||
LE32 | Later election for international application filed prior to expiration of 19th month from priority date or according to rule 32.2 (b) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2125279 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1993900961 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1993900961 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1993900961 Country of ref document: EP |