[go: up one dir, main page]

WO1993015212A1 - Mutant attenue de listeria monocytogenes; souche recombinante de listeria monocytogenes, utilisation comme vecteurs heterologues d'antigene vaccinal et utilisation comme vaccin ou composition diagnostique - Google Patents

Mutant attenue de listeria monocytogenes; souche recombinante de listeria monocytogenes, utilisation comme vecteurs heterologues d'antigene vaccinal et utilisation comme vaccin ou composition diagnostique Download PDF

Info

Publication number
WO1993015212A1
WO1993015212A1 PCT/FR1993/000105 FR9300105W WO9315212A1 WO 1993015212 A1 WO1993015212 A1 WO 1993015212A1 FR 9300105 W FR9300105 W FR 9300105W WO 9315212 A1 WO9315212 A1 WO 9315212A1
Authority
WO
WIPO (PCT)
Prior art keywords
listeria monocytogenes
gene
mutant
antigen
recombinant strain
Prior art date
Application number
PCT/FR1993/000105
Other languages
English (en)
Inventor
Pascale Cossart
Christine Kocks
Pierre Goossens
Geneviève Milon
Original Assignee
Institut Pasteur
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut Pasteur filed Critical Institut Pasteur
Publication of WO1993015212A1 publication Critical patent/WO1993015212A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/0208Specific bacteria not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/52Bacterial cells; Fungal cells; Protozoal cells
    • A61K2039/522Bacterial cells; Fungal cells; Protozoal cells avirulent or attenuated

Definitions

  • Attenuated mutant of Listeria monocytogenes recombinant monocytogenic strain of Listeria, use as heterologous vectors of vaccine antigen and use as vaccine or diagnostic composition
  • the present invention relates to an attenuated mutant strain of Listeria monocytogenes and its immunotherapeutic and diagnostic applications, in particular for the manufacture of a recombinant strain which can be used as a vaccine.
  • Listeria monocytogenes is an optional aerobic, non-sporulating, gram-positive bacillus widely distributed in the environment and responsible for human and animal listeriosis.
  • the disease manifests itself by opportunistic infections, either by meningitis and / or encephalitis, septicemia or by abortions, with a high mortality rate in newborns and adults whose defense mechanisms are weakened by pregnancy, therapeutically induced immunosuppression, underlying disease or old age. Listeriosis can also affect apparently healthy people.
  • Listeria monocytogenes is capable of infecting a wide variety of cell types, in vivo and in vitro, including macrophages, fibroblasts, epithelial cells and enterocytes.
  • the bacteria After entering the infected cell, the bacteria lyses the phagosome membrane with a hemolysin that it secretes. At the end of this stage, the bacteria is in the cytoplasm of the host cell.
  • Listeria monocytogenes is characterized by its ability to spread through tissues by direct cell-to-cell infection without leaving the cytoplasm (Racz et al., 1970 (9)).
  • actin F filamentous actin
  • Polymerized actin is made up of short, randomly oriented microfilaments that differ from the long actin filaments usually observed in muscle cells.
  • the bacteria are mobile and leave behind F-actin "comets" several microns in length. Some are incorporated into finger-shaped cytoplasmic protrusions, which can be internalized by neighboring cells. The two plasma membranes surrounding the bacteria are then lysed. Once in the cytoplasm of the new host cell, the bacteria can reproduce and start a new cycle of dissemination.
  • act A The gene coding for this protein, called act A, is part of an operon (Mengaud et al., 1991 (b) (8)) whose complete nucleotide sequence has recently been described (Vazquez-Boland et al., 1992 (12 )).
  • the present invention thus relates to a strain of listeria monocytogenes with attenuated virulence, characterized in that it comprises, in the act A gene or in the promoter thereof, a mutation capable of blocking or substantially modifying the expression of the protein encoded by the act A gene.
  • the mutation can be carried out according to the known techniques, in particular by insertion into the act A gene or its promoter, of a sequence of one or more bases, preferably a stable transposon, deletion of one or more bases, mutations such as mutations by site-directed mutagenesis, for example by PCR and in particular missense mutations.
  • the mutation can in particular be carried out by insertion of a transposon, such as the transposon Tn 917-lac, as described by Mengaud et al., 1991 (a) (7).
  • a transposon such as the transposon Tn 917-lac
  • the mutation is preferably carried out in the DNA fragment coding for the peptide sequence with repeating motifs comprised between amino acids 235 to 315, 350 to 360, 367 to 385 and 389 to 393 of the peptide sequence SEQ ID No. 1.
  • Another advantageous mutation site in particular for insertion, is located downstream of adenosine at position 497 of the nucleotide sequence of the act A gene.
  • This position corresponds to that between amino acids 61 and 62 of the peptide sequence SEQ ID No. 1.
  • a particularly preferred strain according to the present invention is the strain of Listeria monocytogenes LUT 12 deposited in the National Collection of Cultures of Microorganisms (C ⁇ CM) on January 30, 1992 under the number 1-1167.
  • mutants according to the invention are capable of conferring on hosts to which they have been administered protection against a subsequent infection by a pathogenic strain of Listeria monocytogenes.
  • the invention therefore also relates to a human or veterinary vaccine comprising as active component an attenuated strain of Listeria monocytogenes, as defined above.
  • This vaccine is capable of providing effective protection to humans or animals, in particular cattle and sheep against listeriosis.
  • the immune response generated by the administration of an attenuated mutant as defined results in the proliferation essentially of T lymphocytes of the CD8 subclass.
  • CD8 subclass T cells are activated by peptides linked to class antigens
  • the attenuated mutants of Listeria monocytogenes according to the invention are capable of stimulating the immune system by the route which uses MHC class I molecules.
  • the invention thus also relates to a recombinant mutant of Listeria monocytogenes characterized in that it comprises a heterologous DNA, either inserted into the genome of an attenuated mutant as defined above, or carried by a plasmid replicating in the mutant mitigated.
  • the heterologous DNA preferably consists of a heterologous gene coding for a target protective antigen of T lymphocytes of the CD8 subclass.
  • This antigen may be of bacterial origin
  • LCMV lymphocytic choriomeningitis virus
  • HAV AIDS virus
  • a recombinant mutant of Listeria monocytoge particularly interesting born contains the genes coding for the gag antigen and / or the HIV nef antigen or all or part of the gp 120 envelope of HIV 1 or gp 140 of HIV 2 or by a peptide as defined in US- 4,943,628.
  • the construction of the recombinant mutant can be carried out by transformation of an attenuated mutant as defined above, in particular of the mutant LUT 12 using an appropriate plasmid, and for example electroporation.
  • the cloning of the heterologous DNA will be carried out in E. Coli and a shuttle plasmid E. Coli - Listeria monocytogenes will be used to carry out the transformation.
  • plasmids As plasmids, mention may be made of pMKA 4 (Sullivan et al., (14)) or PHT 320 (Leredus et al., (15)).
  • the gene of interest (heterologous gene) it is advantageous to insert upstream of the gene of interest a strong Listeria promoter, such as the hly promoter.
  • the translation product of the gene of interest can be secreted, it is preferable to merge the gene of interest at the start of hly in order to use the "signal sequence" of listeriolysin O to release the protein of interest encoded by the heterologous gene in the cytoplasm of a host cell.
  • the recombinant mutants of Listeria monocytogenes as defined above are advantageously suitable for the preparation of a recombinant human or veterinary vaccine against an infection caused by a microorganism producing an antigen corresponding to the protein encoded by the heterologous DNA inserted into the recombinant Listeria monocytogenes genome.
  • the vaccines according to the invention can be administered intravenously, subcutaneously, intramuscularly or orally.
  • An appropriate dose is between 5.10 4 and 10 9 cells / kg of weight.
  • This dose varies depending on the route of administration and the sensitivity of the host.
  • the administration is preferably repeated in order to confer effective protection on the host.
  • the recombinant mutants of Listeria monocytogenes defined above are also suitable for the preparation of a diagnostic composition intended for monitoring the protective state of a human or animal host against an infection caused by a microorganism producing an antigen corresponding to the protein encoded by heterologous DNA inserted into the genome of Listeria monocytogenes recombinant or expressed in this strain when carried by a plasmid.
  • P indicates the promoter, the dotted lines the transcript and a potential transcription termination signal.
  • the potential signal sequence and the transmembrane segment are underlined.
  • the repeating pattern region is surrounded.
  • the arrow corresponds to the insertion of Tn 917-lac into the actA gene of the LUT 12 mutant.
  • the numbering begins at the NH 2 end of the mature protein.
  • the residues determined by microsequencing of the 90 kDa band are printed in bold type and marked with an asterisk.
  • the chromosomal DNA of Listeria monocytogenes was prepared as described by Mengaud et al., 1991 (b) (8).
  • the Southern blot probes were prepared by PCR, purified from agarose gels using the Geneclean kit (Bio 101, Inc, La Jolla, CA), and labeled using the Amersham Multiprime system.
  • Hybridizations according to Southern were carried out using the rapid hybridization system (Amersham) on Nylon N membranes (Amersham) in an oven for Hybaid hybridization. II - Isolation of the LUT 12 strain and determination of the transposon insertion point
  • a library of Tn 917-lac mutants produced from the wild type strain L028 and from the plasmid p TV32 carrying the Tn 917-Lac transposon as described by Mengaud et al., 1991 a (7), was screened on plates of egg yolk agar prepared from fresh egg yolk diluted 1: 2 in 150 mM NaCl solution, and adding 12.5 ml of this mixture to 250 ml of agar with added a brain and heart infusion (BHI) at 56 ° C.
  • BHI brain and heart infusion
  • LUT 12 A lecithinase-negative mutant that did not produce egg yolk clouding even after prolonged incubation and exhibited a wild-type phenotype for all other traits examined was called LUT 12.
  • This mutant had both hemolytic activity and an in vitro growth rate identical to the wild type, but was found to be very attenuated in virulence in mice.
  • Tests were carried out on 3T3 fibroblasts (ECA CC88031146). according to the technique described by Kuhn et al., 1990 (5), except that the infections were carried out at various concentrations of inoculum: 1 to 25 ⁇ l of bacterial subcultures of 2 hours (At 600nm of 0.45) either undiluted or diluted 1/10.
  • This test reveals the ability of Listeria monocytogenes to multiply intracellularly and to disseminate on single layers of fibroblasts coated with an agar layer containing gentamicin at a lethal concentration for extracellular bacteria but not for intracellular bacteria . After several days, areas of dead cells destroyed by the bacterial infection are visible to the naked eye in the form of "patches".
  • the mutant LUT 12 bacteria were unable to form plaques on single layers of 3T3 fibroblasts.
  • Suspensions containing macrophages have. were prepared from bone marrow of a C57BL / 6 female mouse aged 7 weeks, and cultured in RPMI medium containing 10% fetal calf serum in the presence of supernatant L. 4.10 5 macrophages derived from bone marrow obtained on the day 6 were sown in round glass strips (diameter 12 mm) the day before use. The macrophages were infected with an MI (multiply of infection) of 0.04 (one bacterium for 25 macrophages, resulting in approximately 1% of infected cells), so as to be able to observe individual points of infection, generated by the offspring of a single bacterium. The infection was carried out as described for a macrophage J774.
  • MI multiply of infection
  • This test was carried out on single layers of J774 in 25 cm 3 plastic tissue culture flasks.
  • the cells were infected with an MDI of 10 bacteria per cell.
  • the number of intracellular bacteria was calculated after 2, 6 and 10 hours of growth on a medium containing gentamicin (5 ⁇ g / ml) by lysis of the cell monolayers, washing with cold distilled water and spreading of appropriate dilutions. on plates containing BHI medium.
  • the intracellular behavior of the LUT 12 mutant was observed under the electron microscope. Macro J774 phages were infected with wild-type bacteria or the mutant strain for 30 minutes, followed by incubation for 60 to 210 minutes in medium containing gentamicin. For the mutant and the wild type, free bacteria could be observed in the cytoplasm at 1.5 hours of infection. At that time, the wild type and the mutant were surrounded by a thin layer of creped granular material, but only the wild type had filamentary material assembled on its surface, consisting of actin filaments. At 4 h after infection, the wild-type bacteria were surrounded by thick layers of actin F filaments. On the contrary, the LUT 12 mutant bacteria were almost naked. Even the thin creped coating observed at the early time of infection was gone.
  • This mutant was analyzed by Southern blot to determine the number of transposons inserted in its chromosome.
  • the chromosomal DNA was digested with Bam HI, Eco RO, Hind III, Kpn I and Pst I.
  • Two different probes corresponding to Tn 917-lac were used (Shaw and Clewell, 1985 (11)): a probe covering 515 base pairs of the erythromycin resistance gene, obtained by PCR with the oligonucleotides 5'-TTG GAA CAG GTA AAG GGC ATT TAA-3 '(position 821 to 844) and 5'-AGT AAA CAG TTG ACG ATA TTC TCG-3' (position 1313 to 1336), and a probe covering the internal Hind III fragment of the transposon obtained by PCR with the oligonucleotides 5'-ACA ATT AAT GTC TCC CAT ATT-3 '(position 3082 to 3102) and 5' (ACT GAT AAT TAA CCA AAA CAG-3 '(position 4295-4315).
  • the transposon-chromosome junction was cloned from a chromosomal DNA library obtained by restriction with Eco RI / Kpn I in pUC 18.
  • a clone comprising an insertion segment, corresponding to the chromosome-transposon junction was isolated and sequenced directly from the plasmid by using an oligonucleotide hybridizing with the right end of the transposon (5'-CTA AAC ACT TAA GAG AAT TG-3 ', position 5244 to 5263).
  • the transposon was inserted after adenine
  • the LUT 12 mutant lecithinase-negative phenotype is probably due to a polar effect of the insertion mutation in act A, since the 3rd gene of the operon plcB codes for lecithinase.
  • Mutants were produced by homologous recombination between the chromosome of Listeria monocytogenes and fragments corresponding to parts of the plcB gene and open reading frames ORFX / Y and ORFZ (fig. (A)) located downstream of the act A gene by insertion of plasmids at various sites.
  • a transformation of the mutant LUT 12 carried out with act A also shows that the wild type phenotype is restored, which excludes the possibility of a spontaneous mutation at another site of the chromosome.
  • the nucleotide sequence of the act A gene suggests that the gene codes for a protein of 639 amino acids with a signal sequence and a transmembrane region (Vazquez Boland et al., 1992 12 ().
  • the bacterial isolates were cultured in 200 ml of brain-heart infusion broth (BHI, DIFCO Laboratories, Detroit, Michigan) supplemented with erythomycin at 5 ⁇ g / ml for LUT 12, with stirring at 160 rpm on a Gyrotory G10 agitator. (New Brunswick Scientific) at 37 ° C for 18 h.
  • the bacteria were collected by centrifugation (5000 g for 20 minutes) and washed three times in a saline solution of phosphate buffer (PBS).
  • PBS phosphate buffer
  • the pellet obtained was resuspended in 4 ml of PBS and SDS was added to a final concentration of 1%. At this concentration of SDS, the cells of L. monocytogenes do not lyse. The absence of bacterial lysis was checked under the microscope. After 5 minutes of stirring at room temperature, the bacteria were centrifuged (50,000 g for 10 minutes) and the supernatant concentrated by ultrafiltration on microconcentrators (Centricom 30, Araicon) and stored at -20 ° C.
  • the protein concentration was determined using the bicinchoninic acid method (Pierce). The protein concentration was adjusted to 300 ⁇ g / ml for electrophoresis. 10 ⁇ l of extract were mixed with 10 ⁇ l of buffer (2% SDS, 10% glycerol, 5% mercaptoethanol, 0.002% bromophenol blue and 0.02 M Tris HCl), boiled for 3 minutes at 100 ° C. The electrophoresis was carried out at 60 mA for 120 minutes through discontinuous polyacrylamide gels
  • the bacteria were then treated with sulfosuccinimido biotin (sulfo-NHS-biotin; Pierce) at a final concentration of 0.5 mg / ml for 2 minutes with moderate agitation.
  • sulfosuccinimido biotin sulfo-NHS-biotin; Pierce
  • the cells were washed three times with PBS at pH 7.4 and extracted by extraction with SDS.
  • the extracts corresponding to 7 ⁇ g of protein per lane were deposited on SDS gels and transferred as described by De Rycke et al., 1989 (2) on nitrocellulose (BA 85, Schleicher and Sch ⁇ ll.
  • the nitrocellulose filters were saturated for overnight in PBS 0.5% gelatin and incubated for 1.5 hours with streptavidin conjugated to peroxidase (Jackson) in PBS containing 0.5% gelatin and 0.1 M Tween 20. After different washes in the same buffer, the reaction bands were revealed with 0.5 mg / ml of 4-chloro-1-naphthol (Biorad) and 0.03% v / v of H 2 O 2 in water. Analyzes of the electrophoresis gels show a 90 kDa band for the wild type which is absent in the LUT 12 strain. This band is also found in the plcB mutants and the LUT 12 mutants transformed by act A mentioned above.
  • the 90 kDA band was isolated and the sequence of the 6 amino acids of the NH 2 end was determined and compared with the amino acid sequence deduced from the nucleotide sequence of the act A gene.
  • the extracts on SDS corresponding to 100 ⁇ g of proteins per channel were boiled in an SDS sampling buffer containing 7% (w / v) of urea before performing electrophoresis on 7.5% SDS gels .
  • the separated proteins were transferred to a Problott membrane (Applied Biosystems) in 50 mM Tris - 50 mM borate for 17 hours at 4 to 5 volts / cm.
  • the proteins were stained for 5 seconds using 0.1% amido black in a solution of 1% acetic acid and 40% methanol, and rinsed thoroughly with water.
  • a 90 kDa strip was cut in several lanes.
  • the membrane proteins were sequenced by degradation according to Edman in a 740 A sequencer from Applied Biosystems, with an on-line HPLC PTH 120 A analyzer programmed by the manufacturer for the Problott membrane.
  • the amino acid sequences were analyzed on a Data General MV 10000 computer at the Scientific Computing Unit of the Institut Pasteur.
  • the Ala-Thr-Asp-Ser-Glu-Asp sequence of the isolated protein corresponds exactly to the amino acids of the cleavage site of the predicted signal sequence according to the peptide-predicted sequence from the act A gene (fig. B).
  • A is a protein of 610 amino acids with a calculated molecular weight of 67 kDA. It has an apparent molecular weight of 90 kDA and is expressed on the surface of the bacteria.
  • LUT 12 has been studied, after intravenous injection, in the spleen and liver of mice, which are the main target organs where L. monocytogenes of wild type express their pathogenicity.
  • the clinical trials used were as follows: the livers and spleens of infected mice were harvested at various times after infection, and homogenized to allow the release of bacteria, and live bacteria were counted in vitro.
  • the LD 50 of the actA LUT 12 mutant, after intravenous injection in C3H pure line mice was a factor 3 log 10 higher than that of wild-type Listeria monocytogenes (2.5 ⁇ 10 7 versus 2.5 ⁇ 10 4 ).
  • the growth kinetics of the actA mutant and the virulent wild-type strain in the liver and spleen were compared. After intravenous injection of a maximum sublethal dose of the actA mutant (1.5 ⁇ 10 7 organisms) or two different doses of virulent L. monocytogenes (7 ⁇ 10 3 or 6 ⁇ 10 4 ), the number of bacteria in the liver and in the spleen of infected mice was determined at varying durations during infection.
  • the persistence of the actA mutant at a stable level for 4 days in the liver may reflect either a balance between bacterial multiplication and bacterial death, or survival of the bacteria without multiplication.
  • the bacterial growth curves in the liver and spleen of mice treated with ampicillin one were compared to those of control mice.
  • Ampicillin inhibits the synthesis of peptidoglycan and is bactericidal on bacteria in the active multiplication phase.
  • the infected mice were treated twice with 15 mg of ampicillin intraperitoneally from day 1, 2 or 3 of the infection; the liver and spleen were removed a day later, and the number of remaining bacteria was determined and compared with that obtained from mice not treated with the antibiotic.
  • actA mutants are deficient in cell-to-cell dissemination in vitro, the persistence of actA in the liver is likely due to infection of neighboring cells after lysis of the first infected host cells; consequently, Listeria monocytogenes can be exposed to bactericidal effectors present in an extracellular medium and its capacity for local dissemination can be reduced.
  • extra-cellular Listeria monocytogenes are phagocytosed by macrophages activated by interferon ⁇ , they may be unable to reach the cytosol and to continue their intracellular cycle.
  • actA mutants were eliminated from the spleen and liver sooner than the wild-type strain, suggesting that the protective effectors of the host are rapidly induced in mice infected with the actA mutant.
  • the inventors determined when the non-specific resistance stopped expressing.
  • mice injected intravenously an unrelated intracellular pathogen, Yersinia enterocolitica Ye8081 0: 8 (16,17) either in naive mice or in mice infected with the mutant actA, 4, 6.5, and 8, 5 weeks before the injection. They compared the number of bacteria in the spleen and in the liver in these two groups of mice. No difference was observed between the two groups at any time during the test. They then performed the following experiments,
  • the LD 50 of wild-type L. monocytogenes was determined in mice infected 6 weeks previously with the actA mutant, and in control mice: a difference of around 100 was observed between the two groups (2 , 2 ⁇ 10 6 and 2.5 ⁇ 10 4 respectively).
  • the growth curves of wild-type L. monocytogenes were compared in the liver and spleen of naive mice and of mice immunized for 6 weeks, during the first 3 days of infection. A significant slowdown in bacterial growth was observed from day 1 in the spleen, and from days 2 to 3 in the liver.
  • this specific inhibition of the growth of wild-type L. monocytogenes was still effective 8.5 weeks after infection with the actA mutant (decrease of 4.01 log 10 in the bacterial count of the spleen 48 hours after an inoculum 5 ⁇ 10 4 ).
  • a protection transfer was carried out in naive syngeneic "receptors" using spleen cells harvested 7 days after an intravenous injection of 1.5 ⁇ 10 7 actA mutant bacteria.
  • the "receptors” were exposed to intravenous infection with a lethal dose of wild-type L. monocytogenes for 1 hour, and the number of bacteria was determined in the liver and in the spleen of the "receptors" two days after infection.
  • the immune splenic cell population namely Thy-1 + lymphocytes, either CD4% or CD8 ⁇ before passive transfer (Table 1 below).
  • the transfer of untreated splenocytes resulted in a 3-4 log 10 reduction in the number of bacteria in the spleen.
  • This protection was transferred by T lymphocytes because a depletion of Thy-1 + lymphocytes abolished the reduction in the burden of bacteria in the spleen.
  • the high level of protection conferred by immune splenocytes after 7 days was only slightly affected by the depletion of the CD4 subpopulation.
  • the majority of the protective effect conferred by the immune splenocytes after 7 days was sensitive to depletion of the CD8 subpopulation, but could not be attributed solely to the CD8 + lymphocyte subpopulation.
  • the actA mutant of L. monocytogenes is thus capable of inducing the generation of specific CD8 + lymphocytes, protecting against Listeria.
  • the actA mutant has a functional listeriolysin-O gene which allows it to escape from the phagosome and enter the cytosol; it is likely that the actA mutant is capable of stimulating the production of CD8 + T lymphocytes which protect against Listeria, recognized arising from natural peptides of L. monocytogenes.
  • the ability of the actA mutant to transiently multiply in the organs of infected mice and to secrete a sufficient amount of bacterial proteins is probably critical to allow efficient production of protective CD8 + lymphocytes.
  • the transposon Tn917-lac is inserted into actA, the second gene of the operon lecithinase, and has a polar effect on the expression of the plcB gene coding for a lecithinase.
  • the results obtained in the present invention indicate that lecithinase does not play an essential role in the induction of protective immunity against L. monocytogenes.
  • the results of the present invention show that actA attenuated mutants are capable of inducing protective CD8 + T lymphocytes against Listeria, and that a state of protective immunity against wild-type L. monocytogenes can be established by a single infection.
  • actA mutants enter the cytosol of infected cells and multiply in this compartment, we can consider their use as a living vector to deliver heterologous proteins in the cytosol and promote the production of CD8 + T lymphocytes; such living vectors capable of transiently multiplying are supposed to deliver a sufficient charge of heterologous proteins in the cytosol, for a short period of time.
  • these Listeria of attenuated virulence can be useful for the screening and characterization of bacterial or parasitic peptides specific for alleles of the locus encoding the molecules of CMH class 1.
  • Some bacteria and parasites reside in the vacuo- laires; in addition, the growth kinetics may be low.
  • this tool could be very useful for defining the specificity of CD8 + lymphocytes which are produced in response to infection.
  • Spleen cells were isolated from C3H mice on day 7 after intravenous injection of 1.5 ⁇ 10 7 actA mutants. Thy-1 + , CD4 + or CD8 + cells were removed in vitro before adoptive transfer.
  • the monoclonal antibodies used here were Anti-Thy-1, 2 J1j (ATCC TIB 184), anti-CD4 RL1724 (Ceredig, R. Lowenthal, JW Nabholz M. and MacDonald, HR, 1985, Nature 314 98), and anti- CD8 31M (Sarmiento M. Glasebrook. AL and Fitch FW, 1980, J. Immunol. 125-2665).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Immunology (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Plant Pathology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Mycology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

L'invention a pour objet un mutant atténué de Listeria monocytogènes comportant dans le gène act A ou dans le promoteur de celui-ci une mutation apte à bloquer ou modifier l'expression de la protéine codée par le gène act A. Ce mutant peut être utilisé en tant que vecteur vivant pour l'expression d'un ADN hétérologue, notamment d'un gène codant pour un antigène viral, bactérien ou parasitaire protecteur cible de lymphocytes T de la sous-classe CD8. Les souches mutantes recombinantes ainsi obtenues ont des applications en tant que vaccin ou composition de diagnostic pour le contrôle de l'état de protection d'un hôte.

Description

Mutant atténué de Listeria monocytogénes; souche recombinante de Listeria monocytogènes, utilisation comme vecteurs hètèrologues d'antigène vaccinal et utilisation comme vaccin ou composition diagnostique
La présente invention concerne une souche mutante atténuée de Listeria monocytogenes et ses applications immuno-thérapeutiques et diagnostiques, notamment pour la fabrication d'une souche recombinante utilisable en tant que vaccin.
Listeria monocytogenes est un bacille aérobie facultatif, non sporulant, à gram-positif très répandu dans l'environnement et responsable de la listériose humaine et animale. La maladie se manifeste par des infections opportunistes, soit par une méningite et/ou encephalite, des septicémies ou par des avortements, avec un taux de mortalité élevé chez les nouveau-nés et les adultes dont les mécanismes de défense sont affaiblis par la grossesse, une immunosuppression thérapeutiquement induite, une maladie sous-jacente ou la vieillesse. La listériose peut aussi atteindre des sujets apparemment sains.
Listeria monocytogenes est capable in vivo comme in vitro d'infecter une grande variété de types cellulaires, notamment les macrophages, les fibroblastes, les cellules épithéliales et les entérocytes.
Après sa pénétration dans la cellule infectée, la bactérie lyse la membrane du phagosome grâce à une hémolysine qu'elle secrète. Au terme de cette étape, la bactérie est dans le cytoplasme de la cellule hôte.
En outre, Listeria monocytogenes se caractérise par son aptitude à se propager dans les tissus par infection directe de cellule à cellule sans quitter le cytoplasme (Racz et al., 1970 (9)).
Peu de temps après son entrée dans la cellule hôte, la bactérie s'entoure d'actine filamenteuse (actine F) qui est ultérieurement se réarrange en "comète" derrière la bactérie dans la direction opposée au mouve ment (Tilney et al., 1989, (13); Mounier et al., (1990) (1). L'actine polymérisée est constituée de microfilaments courts, orientés au hasard qui diffèrent des filaments d' actine longs habituellement observés dans les cellules musculaires.
Les bactéries sont mobiles et laissent derrière elles des "comètes" d'actine F de plusieurs μm de longueur. Certaines sont incorporées dans des protubérances cytoplasmiques en forme de doigt, qui peuvent être internalisées par les cellules voisines. Les deux membranes plasmiques entourant la bactérie sont alors lysées. Une fois dans le cytoplasme de la nouvelle cellule hôte, la bactérie peut se reproduire et commencer un nouveau cycle de dissémination.
Pendant ce processus de dissémination, les cellules de Listeria monocytogenes sont protégées du système immunitaire de l'hôte, et la dissémination de cellule à cellule représente par conséquent un facteur clé de virulence.
En isolant et analysant un mutant Tn 917-Lac inapte à se disséminer de cellule à cellule, les inventeurs ont pu identifier une protéine de Listeria monocytogenes impliquée dans l'assemblage de l'actine induit par la bactérie.
Le gène codant pour cette protéine dénommée act A, fait partie d'un opéron (Mengaud et al., 1991 (b) (8)) dont la séquence nucléotidique complète a été récemment décrite (Vazquez-Boland et al., 1992 (12)).
La présente invention a ainsi pour objet une souche de listeria monocytogenes à virulence atténuée, caractérisée en ce qu'elle comporte, dans le gène act A ou dans le promoteur de celui-ci, une mutation capable de bloquer ou de modifier sensiblement l'expression de la protéine codée par le gène act A.
La mutation peut être réalisée selon les techniques connues, notamment par insertion dans le gène act A ou son promoteur, d'une séquence d'une ou plusieurs bases, de préférence un transposon stable, délétion d'une ou plusieurs bases, mutations telles que mutations par mutagénèse dirigée, par exemple par PCR et notamment mutations faux-sens.
La mutation peut notamment être réalisée par insertion d'un transposon, tel que le transposon Tn 917-lac, comme décrit par Mengaud et al., 1991 (a) (7).
La mutation est effectuée de préférence dans le fragment d'ADN codant pour la séquence peptidique à motifs répétés comprise entre les aminoacides 235 à 315, 350 à 360, 367 à 385 et 389 à 393 de la séquence peptidique SEQ ID N° 1.
Un autre site de mutation avantageux, notamment d'insertion est situé en aval de l'adénosine en position 497 de la séquence nucléotidique du gène act A.
Cette position correspond à celle entre les aminoacides 61 et 62 de la séquence peptidique SEQ ID N° 1.
Une souche particulièrement préférée selon la présente invention est la souche de la Listeria monocytogenes LUT 12 déposée à la Collection Nationale de Cultures de Micro-organismes (CΝCM) le 30 janvier 1992 sous le numéro 1-1167.
Les mutants selon l'invention sont aptes à conférer à des hôtes auxquels ils ont été administrés une protection contre une infection ultérieure par une souche pathogène de Listeria monocytogenes.
L'invention a donc également pour objet un vaccin humain ou vétérinaire comprenant en tant que composant actif une souche atténuée de Listeria monocytogenes, telle que définie précédemment.
Ce vaccin est apte à conférer une protection efficace à l'homme ou à l'animal notamment aux bovins et ovins contre la listériose.
La réponse immunitaire générée par l'administration d'un mutant atténué tel que défini se traduit par la prolifération essentiellement de lymphocytes T de la sous-classe CD8.
Les lymphocytes T de la sous-classe CD8 sont activés par des peptides liés à des antigènes de classe
I du CMH (complexe majeur d'histocompatibilité) générés par la protéolyse de protéines synthétisées ou libérées dans le cytoplasme d'une cellule présentant l'antigène.
Ainsi, les mutants atténués de Listeria monocytogenes selon l'invention, sont aptes à stimuler le système immunitaire par la voie qui utilise les molécules de classe I du CMH.
II est par conséquent possible en transformant Listeria monocytogenes à l'aide d'un plasmide approprié d'introduire un gène hétérologue provenant de n'importe quel organisme et d'utiliser les souches recombinantes obtenues comme système d'expression d'ADN hétérologue.
L'invention a ainsi également pour objet un mutant recombinant de Listeria monocytogenes caractérisé en ce qu'il comporte un ADN hétérologue, soit inséré dans le génome d'un mutant atténué tel que défini précédemment, soit porté par un plasmide se répliquant dans le mutant atténué.
l'ADN hétérologue consiste de préférence en un gène hétérologue codant pour un antigène protecteur cible de lymphocytes T de la sous-classe CD8.
Cet antigène peut être d'origine bactérienne
(par exemple de mycobactéries), parasitaire, (par exemple de Leishmania, Tripanosoma ou Toxoplasma) ou viral (virus de la grippe, virus de la chorioméningite lymphocytaire (LCMV) ou virus du Sida (VIH)).
Un mutant recombinant de Listeria monocytoge nés particulièrement intéressant comporte les gènes codant pour l'antigène gag et/ou l'antigène nef du VIH ou tout ou partie de l'enveloppe gp 120 du VIH 1 ou gp 140 du VIH 2 ou par un peptide tel que défini dans US-4 943 628.
La construction du mutant recombinant peut être réalisée par transformation d'un mutant atténué tel que défini ci-dessus, notamment du mutant LUT 12 à l'aide d'un plasmide approprié, et par exemple électroporation.
Avantageusement, le clonage de l'ADN hétérologue sera réalisé chez E. Coli et on utilisera un plasmide navette E. Coli - Listeria monocytogenes pour réaliser la transformation.
Comme plasmides, on peut citer pMKA 4 (Sullivan et al., (14)) ou PHT 320 ( Leredus et al., (15)).
Pour permettre l'expression du gène d'intérêt (gène hétérologue), il est avantageux d'insérer en amont du gène d'intérêt un promoteur fort de Listeria, tel que le promoteur hly.
Pour que le produit de traduction du gène d'intérêt puisse être sécrété, il est préférable de fusionner le gène d'intérêt au début de hly afin d'utiliser "la séquence signal" de la listériolysine O pour libérer la protéine d'intérêt codée par le gène hétérologue dans le cytoplasme d'une cellule d'hôte.
Les mutants recombinants de Listeria monocytogenes tels que définis ci-dessus conviennent de manière avantageuse pour la préparation d'un vaccin recombinant humain ou vétérinaire, contre une infection provoquée par un microorganisme produisant un antigène correspondant à la protéine codée par l'ADN hétérologue inséré dans le génome de Listeria monocytogenes recombinant.
Les vaccins selon l'invention peuvent être administrés par voie intra-veineuse, sous-cutanée, intramusculaire ou orale. Une dose appropriée se situe entre 5.104 et 109 cellules/kg de poids.
Cette dose varie en fonction de la voie d ' administration ainsi que de la sensibilité de l'hôte.
L'administration est de préférence répétée afin de conférer une protection efficace à l'hôte.
Les mutants recombinants de Listeria monocytogenes définis ci-dessus sont également appropriés à la préparation d'une composition de diagnostic destinée au contrôle de l'état de protection d'un hôte humain ou animal contre une infection provoquée par un microorganisme produisant un antigène correspondant à la protéine codée par l'ADN hétérologue inséré dans le génome de Listeria monocytogenes recombinant ou exprimé dans cette souche lorsque porté par un plasmide.
Il suffira d'injecter localement la composition de diagnostic selon l'invention par voie souscutanée par exemple et d'observer après un certain temps de latence si une réaction inflammatoire a lieu ou non, à la manière du test à la tuberculine utilisé pour contrôler l'état de protection d'un hôte contre le bacille de la tuberculose.
On décrira ci-après l'obtention de la souche mutante LUT 12 de Listeria monocytogenes ainsi que ses propriétés en se référant à la fig. annexée représentant:
A : l'opéron lécithinase de Listeria monocytogenes (Vasquez - Boland et al., 1992 (12) avec la position du transposon dans le mutant LUT 12.
B : la séquence d'aminoacides de la protéine codée par le gène act A. Les traits noirs renforcés représentent des gènes dont les produits ont été caractérisés (mpl : metalloprotéase, Domann et al., 1991, (3) act A :
(présente invention), pic B : lécithinase) ORFX, ORFY et ORFZ sont des cadres de lecture ouverte.
P : indique le promoteur, les lignes en pointillées le produit de transcription et un signal de terminaison de transcription potentiel.
La séquence signal potentielle et le segment transmembranaire sont soulignés. La région de motifs répétés est entourée. La flèche correspond à l'insertion de Tn 917-lac dans le gène actA du mutant LUT 12.
La numérotation débute à l'extrémité NH2 de la protéine mature. Les résidus déterminés par microséquençage de la bande de 90 kDa sont imprimés en caractères gras et marqués par un astérisque.
I - Techniques générales de clonage et d'analyse d'ADN Toutes les techniques de clonage et d'analyse ont été effectuées conformément aux protocoles standards (Sambrook et al. 1989 (10)) ou suivant les instructions du fabricant.
l'ADN chromosomique de Listeria monocytogenes a été préparé comme décrit par Mengaud et al., 1991 (b) (8). Les sondes pour Southern blot ont été préparées par PCR, purifiées à partir des gels d'agarose en utilisant le kit Geneclean (Bio 101, Inc, La Jolla, CA), et marquées en utilisant le système Multiprime d'Amersham.
Les hybridations selon Southern ont été réalisées à l'aide du système d'hybridation rapide (Amersham) sur des membranes de Nylon N (Amersham) dans un four pour hybridation Hybaid. II - Isolement de la souche LUT 12 et détermination du point d'insertion du transposon
Une banque de mutants Tn 917-lac, produits à partir de la souche de type sauvage L028 et du plasmide p TV32 portant le transposon Tn 917-Lac comme décrit par Mengaud et al., 1991 a (7), a été criblée sur des plaques de gélose au jaune d'oeuf préparée à partir de jaune d'oeuf frais dilué au 1:2 dans une solution de NaCl 150 mM, et d'addition de 12,5 ml de ce mélange à 250 ml de gélose additionnée d'une infusion de cerveau et de coeur (BHI) à 56°C.
Un mutant lécithinase-négatif ne produisant pas d' opacification du jaune d'oeuf même après une incubation prolongée et montrant un phénotype de type sauvage pour tous les autres caractères examinés a été appelée LUT 12.
A - Caractéristigues biologigues de ce mutant
Ce mutant avait à la fois une activité hémolytique et un taux de croissance in vitro identiques au type sauvage, mais se révélait de virulence très atténuée chez la souris.
TOXICITE
La DL50 était plus élevée d'un facteur 4 log
10 que la DL50 des bactéries du type sauvage (108,55 bactéries au lieu de 104,25).
TESTS DE FORMATION DE PLAGES SUR CULTURES DE FIBROBLASTES
Des essais ont été effectués sur des fibroblastes 3T3 (ECA CC88031146). selon la technique décrite par Kuhn et al., 1990 (5), sauf que les infections étaient réalisées à des concentrations variées d'inoculum : 1 à 25 μl de sous-cultures bactériennes de 2 heures (A600nm de 0,45) soit non diluées soit diluées au 1/10. Cet essai révèle l'aptitude de Listeria monocytogenes à se multiplier de manière intracellulaire et à se disséminer sur des couches simples de fibroblastes revêtues d'une couche de gélose contenant de la gentamicine à une concentration létale pour les bactéries extracellulaires mais non pour les bactéries intracellulaires. Après plusieurs jours, des zones de cellules mortes détruites par l'infection bactérienne sont visibles à l'oeil nu sous forme de "plages".
Les bactéries LUT 12 mutantes étaient inaptes à former des plages sur des couches simples de fibroblastes 3T3.
ESSAI DE DISSEMINATION SUR DES MACROPHAGES DE MOELLE OSSEUSE
Une observation au microscope optique de la dissémination de Listeria monocytogenes sur des couches simples de macrophages primaires de moelle osseuse a en outre été réalisée comme suit.
Des suspensions contenant des macrophages ont. été préparées à partir de moelle osseuse d'une souris femelle C57BL/6 âgée de 7 semaines, et cultivées dans un milieu RPMI contenant 10% de sérum foetal de veau en présence de surnageant L. 4.105 macrophages dérivés de moelle osseuse obtenus au jour 6 ont été ensemencés dans les lamelles en verre rondes (diamètre 12 mm) la veille de l'utilisation. Les macrophages ont été infectés avec une MI (multiplicte d'infection ) de 0,04 (une bactérie pour 25 macrophages, résultant en à peu près 1% de cellules infectées), de manière à pouvoir observer des points individuels d'infection, générés par la progéniture d'une seule bactérie. L'infection a été réalisée comme décrit pour un macrophage J774.
Après 30 minutes et après 8 heures, ces monocouches cellulaires ont été fixées et colorées avec une solution de Giemsa. Après 8 heures, la progéniture des bactéries de type sauvage s'était disséminée à de nombreuses cellules hôtes nouvelles, et des bactéries portant des protubérances à leur extrémité pouvaient être observées. Au contraire, la progéniture du mutant LUT 12 est restée enfermée à l'intérieur d'une seule cellule infectée. Les bactéries mutantes ont, soit formé des microcolonies ou étaient disséminées dans le cytoplasme des cellules hôtes, mais aucune protubérance contenant des bactéries ne pouvait être détectée.
Ce résultat indique que la bactérie mutante se multiplie à l'intérieur des cellules infectées, mais est incapable d'infecter des cellules adjacentes par dissémination de cellule à cellule.
TEST DE CROISSANCE SUR DES MACROPHAGES J774
Un essai démontrant que la bactérie mutante LUT 12 était apte à se multiplier de manière intracellulaire a été réalisé au moyen d'un test de croissance sur des macrophages J774.
Cet essai a été réalisé sur des couches simples de J774 dans des flacons de culture de tissus en matière plastique de 25 cm3. Les cellules étaient infectées avec une MDI de 10 bactéries par cellule. Le nombre de bactéries intracellulaires était calculé après 2, 6 et 10 heures de croissance sur un milieu contenant de la gentamicine (5 μg/ml) par lyse des mono-couches cellulaires, lavage avec de l'eau distillée froide et étalement de dilutions appropriées sur des plaques contenant un milieu BHI.
Après une durée de 10 heures, les courbes de croissance des bactéries de type sauvage et LUT 12 étaient identiques.
OBSERVATIONS AU MICROSCOPE ELECTRONIQUE
Le comportement intracellulaire du mutant LUT 12 a été observé au microscope électronique. Des macro phages J774 étaient infectés avec des bactéries de type sauvage ou la souche mutante pendant 30 minutes, suivie par une incubation de 60 à 210 minutes dans un milieu contenant la gentamicine. Pour le mutant et le type sauvage, on pouvait observer des bactéries libres dans le cytoplasme à 1 h 1/2 d'infection. A ce moment, le type sauvage et le mutant étaient entourés par une couche mince de matériel granulaire crêpelé, mais seul le type sauvage comportait du matériel filamentaire assemblé à sa surface, constitué de filaments d'actine. A 4 h après l'infection, les bactéries de type sauvage étaient entourées par d'épaisses couches de filaments d'actine F. Au contraire, les bactéries mutantes LUT 12 étaient presque nues. Même le revêtement fin crêpelé observé au moment précoce de l'infection avait disparu.
Pour visualiser l'association d'actine F bactérienne de manière spécifique, les auteurs ont réalisé des colorations en double fluorescence à l'aide de FITC-phalloïdine, une toxine fongique se liant à l'actine F, et avec un sérum anti-L.monocytogenes. suivi par un second anti-corps couplé à la rhodamine, pour détecter les bactéries. Les macrophages J774 étaient infectés depuis 4h avec les bactéries de type sauvage ou mutant. Tandis que les bactéries de type sauvage se coloraient positivement avec la FITC-phalloidine, les bactéries mutantes LUT 12, bien que détectables avec le sérum anti-L.monocytogenes restaient invisibles avec la coloration de l'actine.
Ces résultats démontrent que les bactéries LUT 12 s'échappent des phagosomes aussi efficacement que les bactéries de type sauvage et se multiplient dans le cytoplasme. Cependant, les bactéries mutantes ne sont jamais associées avec de l'actine F, sont incapables de se déplacer à l'intérieur de la cellule, et ne peuvent infecter des cellules voisines par dissémination directe. Ces observations suggèrent que le mutant LUT 12 est déficient en un composant nécessaire pour le procédé de formation de filaments d'actine induit par Listeria monocytogenes.
B - DETERMINATION DU POINT D'INSERTION DU TRANSPOSON
Ce mutant a été analysé par Southern blot pour déterminer le nombre de transposons insérés dans son chromosome.
L'ADN chromosomique a été digéré par Bam HI, Eco RO, Hind III, Kpn I et Pst I.
On a utilisé deux sondes différentes correspondant à Tn 917-lac (Shaw et Clewell, 1985 (11)): une sonde recouvrant 515 paires de bases du gène de résistance à l'érythromycine, obtenue par PCR avec les Oligonucléotides 5'-TTG GAA CAG GTA AAG GGC ATT TAA-3' (position 821 à 844) et 5'-AGT AAA CAG TTG ACG ATA TTC TCG-3' (position 1313 à 1336), et une sonde recouvrant le fragment interne Hind III du transposon obtenue par PCR avec les oligonucléotides 5'-ACA ATT AAT GTC TCC CAT ATT-3' (position 3082 à 3102) et 5' (ACT GAT AAT TAA CCA AAA CAG-3' (position 4295-4315).
La jonction transposon-chromosome a été clonée à partir d'une banque d'ADN chromosomique obtenue par restriction avec Eco RI/Kpn I dans pUC 18. Un clone comportant un segment d'insertion, correspondant à la jonction chromosome-transposon a été isolé et séquence directement à partir du plasmide par utilisation d'un oligonucléotide s'hybridant avec l'extrémité droite du transposon ( 5'-CTA AAC ACT TAA GAG AAT TG-3', position 5244 à 5263).
Le transposon était inséré après l'adénine
497 dans la séquence nucléotidique du fragment Hind III - Eco RI du gène act A de l'opéron identifié par Mengaud et al., 1991 (b) (8), dont la séquence nucléotidique a été décrite par Vazquez-Boland et al., 1992 (12). Le point d'insertion du transposon Tn 917-lac est représenté sur le shcéma de la fig. (A).
Le phénotype lecithinase-négatif du mutant LUT 12 est vraisemblablement dû à un effet polaire de la mutation par insertion dans act A, dans la mesure où le 3ème gène de l'opéron plcB code pour la lécithinase.
Des études complémentaires ont été réalisées qui ont démontré que la perte de l'activité de polymérisation de l'actine était bien due à une perte d'exprèssion du gène Act A.
Des mutants ont été réalisés par recombinaison homologue entre le chromosome de Listeria monocytogenes et des fragments correspondant à des parties du gène plcB et des cadres de lecture ouverte ORFX/Y et ORFZ (fig. (A)) situés en aval du gène act A par insertion de plasmides en divers sites.
Des études d'immunofluorescence par utilisation de FITC-phalloïdine et marquage à la rhodamine de bactéries dans des macrophages J 774 infectés ont montré que les mutants plcB, ORFX/Y et ORFZ étaient associés à des filaments d'actine F tout comme les bactéries de type sauvage. Ces études ont été complétées par des études de microscopie électronique qui ont montré que ces mutants étaient aptes à stimuler l'assemblage de l'actine de la même manière que le type sauvage.
Ces analyses montrent par conséquent que des mutations en aval de act A n'affectent pas l'assemblage de l'actine A et suggèrent que l'incapacité du mutant LUT
12 à polymériser l' actine cellulaire est due à l'absence d'expression du gène act A.
Une transformation du mutant LUT 12 réalisée avec act A montre par ailleurs que le phénotype de type sauvage est restauré, ce qui exclut la possibilité d'une mutation spontanée en un autre site du chromosome.
Ces résultats démontrent ainsi que le produit du gène act A est nécessaire pour l' assemblage de l'actine de Listeria monocytogenes et par conséquent pour son pouvoir pathogène.
Le produit du gène act A a été déterminé comme décrit ci-après :
III - Analyse du produit du gène act A
La séquence nucléotidique du gène act A laisse supposer que celui-ci code pour une protéine de 639 aminoacides avec une séquence signal et une région transmembranaire (Vazquez Boland et al., 1992 12().
Des études complémentaires ont été réalisées d'une part par analyse comparée des protéines de surface de Listeria monocytogenes de type sauvage et de la souche LUT 12.
Les isolats bactériens ont été cultivés dans 200 ml de bouillon d'infusion cerveau-coeur (BHI, Laboratoires DIFCO, Détroit, Michigan) additionné d'érythomycine à 5 μg/ml pour LUT 12, sous agitation à 160 tpm sur un agitateur Gyrotory G10 (New Brunswick Scientific) à 37° C pendant 18 h.
Les bactéries ont été récoltées par centrifugation (5000 g pendant 20 minutes) et lavées à trois reprises dans une solution saline de tampon phosphate (PBS).
Le culot obtenu a été remis en suspension dans 4 ml de PBS et du SDS a été ajouté à une concentration finale de 1 %. A cette concentration de SDS, les cellules de L. monocytogenes ne se lysent pas. L'absence de lyse bactérienne a été vérifiée au microscope. Après 5 minutes d'agitation à température ambiante, les bactéries ont été centrifugées (50.000 g pendant 10 minutes) et le surnageant concentré par ultrafiltration sur des microconcentrateurs (Centricom 30, Araicon) et conservé à -20 ° C .
La concentration en protéines a été déterminée à l' aide de la méthode à l'acide bicinchoninique (Pierce). La concentration en protéines a été ajustée à 300 μg/ml pour l'électrophorèse. 10 μl d'extrait ont été mélangés avec 10 μl de tampon (SDS à 2 %, glycérol à 10 %, mercaptoéthanol à 5 %, bleu de bromophénol à 0,002 % et Tris HCl 0,02 M), bouillis pendant 3 minutes à 100° C. L'électrophorèse a été effectuée à 60 mA pendant 120 minutes à travers des gels discontinus de polyacrylamide
(Laemmli, 1970 (6)). les bandes ont été visualisées par coloration à l'argent (Heukeshoven et Dernick, 1985 (4)).
Pour le marquage de la surface cellulaire, on a centrifugé 400 ml d'une culture de 18 heures de L. monocytogenes; les bactéries ont été lavées à 3 reprises avec PBS à pH 7,4 et remises en suspension dans 8 ml de PBs PH 8,0 à 4º C.
Les bactéries ont ensuite été traitées avec de la sulfosuccinimido biotine (sulfo-NHS-biotine; Pierce) à une concentration finale de 0,5 mg/ml pendant 2 minutes sous agitation modérée.
Les cellules ont été lavées à trois reprises avec PBS à pH 7,4 et extraites par extraction au SDS.
Les extraits correspondant à 7 μg de protéinés par couloir ont été déposés sur des gels SDS et transférés comme décrit par De Rycke et al., 1989 (2) sur nitrocellulose (BA 85, Schleicher et Schϋll. Les filtres de nitrocellulose ont été saturés pendant une nuit dans PBS à 0,5 % de gélatine et incubés pendant 1, 5 heure avec de la streptavidine conjuguée à de la peroxydase (Jackson) dans du PBS contenant 0,5 % de gélatine et 0,1 M de Tween 20. Après différents lavages dans le même tampon, les bandes réactives ont été révélées avec 0, 5 mg/ml de 4-chloro-1-naphtol (Biorad) et 0,03 % v/v d'H2O2 dans l'eau. Les analyses des gels d'électrophorèse montrent un bande de 90 kDa pour le type sauvage qui est absente chez la souche LUT 12. Cette bande est également retrouvée chez les mutants plcB et les mutants LUT 12 transformés par act A mentionnés ci-dessus.
Les analyses de marquage de surface par la sulfosuccinimido-biotine montrent de façon directe une protéine biotinylée de 90 kA chez les bactéries du type sauvage qui est absente chez la souche mutante LUT 12.
Pour identifier sans ambiguïté la protéine 90 kDA, la bande de 90 kDA a été isolée et la séquence des 6 aminoacides de l'extrémité NH2 a été déterminée et comparée avec la séquence d'aminoacides déduite de la séquence nucléotidique du gène act A.
Les extraits sur SDS correspondant à 100 μg de protéines par canal ont été mis à bouillir dans un tampon d'échantillonage SDS contenant 7 % (p/v) d'urée avant de réaliser une électrophorèse sur des gels au SDS à 7,5 %.
Les protéines séparées ont été transférées sur une membrane Problott (Applied Biosystems) dans du Tris 50 mM - borate 50 mM pendant 17 heures à 4 à 5 volts/cm. Les protéines ont été colorées pendant 5 secondes à l'aide de noir amido à 0,1 % dans une solution d'acide acétique à 1 % et de méthanol à 40 %, et rincées soigneusement à l'eau. Une bande de 90 kDa a été découpée dans plusieurs couloirs. Les protéines de la membrane ont été séquencées par dégradation selon Edman dans un séquenceur 740 A d'Applied Biosystems, avec, en ligne un analyseur HPLC PTH 120 A programmé par le fabricant pour la membrane Problott. Les séquences d'aminoacides ont été analysées sur un ordinateur Data General MV 10000 à l'Unité d' Informatique Scientifique de l'Institut Pasteur.
La séquence Ala-Thr-Asp-Ser-Glu-Asp de la protéine isolée correspond exactement aux amino-acides du site de clivage de la séquence signal de prédite d'après la séquence peptidique-prédite à partir du gène act A (fig. B).
Par conséquent, le produit mature du gène act
A est une protéine de 610 aminoacides avec un poids moléculaire calculé de 67 kDA. Elle a un poids moléculaire apparent de 90 kDA et est exprimée à la surface de la bactérie.
Cette protéine est nécessaire à l'assemblage de l'actine F et son absence conduit à une atténuation très importante de la virulence de Listeria monocytognes. Par conséquent, toute mutation affectant le gène act A ou son promoteur et modifiant sensiblement ou empêchant l'expression de son produit permettra l'obtention d'une souche atténuée non pathogène conformément à l'invention.
On rapportera ci-après les résultats obtenus in vivo avec la souche LUT 12 sur la protection de souris contre une infection par Listeria monocytogenes.
IV - Effets, in vivo, de la souche LUT 12 : étude chez la souris
A/ Multiplication du mutant actA dans le foie et la rate de souris infectées.
Le comportement de LUT 12 a été étudié, après injection intraveineuse, dans la rate et le foie de souris, qui sont les principaux organes cibles où L. monocytogenes de type sauvage expriment leur pathogénicité. Les essais cliniques utilisés étaient les suivants : les foies et rates des souris infectées étaient récoltés à différents moments après l'infection, et homogénéisés pour permettre la libération de bactéries, et les bactéries vivantes étaient comptées in vitro.
La DL50 du mutant actA LUT 12, après injection intraveineuse chez des souris C3H de lignée pure était plus élevée d'un facteur 3 log10 que celle de Listeria monocytogenes de type sauvage (2,5 × 107 contre 2,5 × 104).
Les cinétiques de croissance du mutant actA et de la souche virulente de type sauvage dans le foie et la rate ont été comparées. Après injection intraveineuse d'une dose maximum sublétale du mutant actA (1,5 × 107 organismes) ou de deux doses différentes de L. monocytogenes virulentes (7 × 103 ou 6 × 104), le nombre de bactéries dans le foie et dans la rate des souris infectées a été déterminé à des durées variables au cours de l'infection.
Une augmentation du nombre de mutant actA a été observée dans la rate pendant les 24 premières heures, mais cette augmentation était limitée (1 log10) en comparaison avec l'augmentation d'un facteur 4 log10 observée avec la souche de type sauvage. A partir du jour 1, le nombre de bactéries mutantes actA a rapidement diminué et au jour 5, presqu'aucune bactérie ne pouvait être récoltée à partir de la rate. Au contraire, la souche sauvage de Listeria monocytogenes pouvait toujours être détectée dans cet organe aux jours 9 à 10 de l'infection. Dans le foie, le nombre de bactéries mutantes actA a persisté à un niveau stable jusqu'au jour 4, et après cela a diminué rapidement ; au contraire, le nombre de Listeria monocytogenes de type sauvage a augmenté d'un facteur de 2 log10 avant d'atteindre un plateau pendant 6 à 7 jours.
La persistance du mutant actA à un niveau stable pendant 4 jours dans le foie peut refléter soit un équilibre entre la multiplication bactérienne et la mort bactérienne, ou une survie des bactéries sans multiplication. Pour faire la différence entre ces deux possibilités, les courbes de croissance bactérienne dans le foie et dans la rate de souris traitées par l'ampicil- une ont été comparées à celles de souris témoins. L'ampicilline inhibe la synthèse du peptidoglycane et est bactéricide sur des bactéries en phase de multiplication active. Les souris infectées ont été traitées à deux reprises avec 15 mg d'ampicilline par voie intrapéritonéale à partir du jour 1, 2 ou 3 de l'infection ; le foie et la rate ont été prélevés un jour plus tard, et le nombre de bactéries restantes a été déterminé et comparé avec celui obtenu à partir de souris non traitées par l'antibiotique.
Après un tel traitement, le nombre de bactéries actA a diminué brutalement dans la rate au jour 2, et dans le foie aux jours 2 et 3, mais aucune différence entre la courbe de croissance témoin n'a été trouvée aux jours 3 et 4 dans la rate, ou au jour 4 dans le foie.
Ces résultats suggèrent que la persistance du mutant actA dans le foie est due à un équilibre entre la multiplication bactérienne et la mort. Etant donné que les mutants actA sont déficients en ce qui concerne la dissémination de cellule à cellule, in vitro, la persistante de actA dans le foie est vraisemblablement due à une infection de cellules voisines après lyse des premières cellules hôtes infectées ; par conséquent, Listeria monocytogenes peut être exposée à des effecteurs bactéricides présents dans un milieu extracellulaire et sa capacité de dissémination locale peut être diminuée.
En outre, si des Listeria monocytogenes extra-cellulaires sont phagocytées par des macrophages activés par l'interféron γ, elles peuvent être incapables d'atteindre le cytosol et de poursuivre leur cycle intracellulaire.
Finalement, les mutants actA ont été éliminés de la rate et du foie plus tôt que la souche de type sauvage, suggérant que les effecteurs protecteurs de l'hôte sont rapidement induits chez la souris infectée avec le mutant actA.
B/ Effets d'une infection unique avec le mutant actA sur l'induction d'une immunité persistante.
L'existence d'une résistance non spécifique due à l'activation des macrophages est un phénomène bien connu, survenant rapidement et de manière transitoire chez des souris "récupérant" d'une infection sublétale.
Dans le but d'éviter de détecter simultanément des effets de l'immunité non spécifique et spécifique, les inventeurs ont déterminé à quel moment la résistance non spécifique cessait de s'exprimer.
Ils ont injecté par voie intraveineuse un pathogène intra-cellulaire non apparenté, Yersinia enterocolitica Ye8081 0:8 (16,17) soit chez des souris naïves, soit chez des souris infectées avec le mutant actA, 4, 6,5, et 8,5 semaines avant l'injection. Ils ont comparé le nombre de bactéries dans la rate et dans le foie dans ces deux groupes de souris. Aucune différence n'a été observée entre les deux groupes à chaque moment du test. Ils ont alors réalisé les expériences suivantes,
6 semaines ou plus après l'infection avec le mutant actA.
Premièrement, la DL50 de L. monocytogenes de type sauvage a été déterminée chez des souris infectées 6 semaines auparavant avec le mutant actA, et chez des souris témoins : une différence d'un ordre de 100 a été observée entre les deux groupes (2,2 × 106 et 2,5 × 104 respectivement).
Deuxièmement, les courbes de croissance de L. monocytogenes de type sauvage ont été comparées dans le foie et la rate de souris naïves et de souris immunisées depuis 6 semaines, ce pendant les 3 premiers jours de l'infection. Un ralentissement significatif de la croissance bactérienne a été observé à partir du jour 1 dans la rate, et à partir des jours 2 à 3 dans le foie. Troisièmement, cette inhibition spécifique de la croissance de L. monocytogenes de type sauvage était encore efficace 8,5 semaines après l'infection avec le mutant actA (diminution de 4,01 log10 dans la numération bactérienne de la rate 48 heures après un inoculum bactérien de 5 × 104).
Ces résultats montrent qu'une infection unique avec le mutant actA atténué est suffisante pour induire une immunité contre L. monocytogenes de type sauvage.
C/ Génération de lymphocytes T CD8+ protecteurs contre Listeria.
Un transfert de protection a été effectué chez des "récepteurs" syngéniques naïfs en utilisant des cellules de rate récoltées 7 jours après une injection intra-veineuse de 1,5 × 107 bactéries mutantes actA. Les "récepteurs" ont été exposés à une infection intraveineuse avec une dose létale de L. monocytogenes de type sauvage pendant 1 heure, et le nombre de bactéries a été déterminé dans le foie et dans la rate des "récepteurs" deux jours après l'infection.
Premièrement, l'injection de splénocytes de souris infectées avec le mutant actA a provoqué une diminution importante du nombre de L. monocytogenes de type sauvage récoltées à partir de la rate des "récepteurs" ayant reçu les cellules, et cet effet était dosedépendant. La diminution du nombre de bactéries a également été observée dans le foie des "récepteurs", mais à un degré moindre (diminution de 1,00 ± 0,45 log10, n = 4, pour des transferts de 5 × 107 à 2,5 × 10e cellules, P < 0,02).
Dans le but de caractériser le phénotype des cellules de rate protectrices, on a soustrait dans la population cellulaire splénique immunitaire, soit des lymphocytes Thy-1+, soit CD4% soit CD8\ avant le transfert passif (Tableau 1 ci-dessous). Le transfert des splénocytes non soustraits a résulté en une réduction de 3 à 4 log10 du nombre de bactéries dans la rate. Cette protection était transférée par les lymphocytes T, car une déplétion en lymphocytes Thy-1+ a aboli la diminution de la charge des bactéries dans la rate. Le niveau élevé de protection conférée par des splénocytes immuns après 7 jours n'était que peu affecté par la déplétion de la sous-population CD4. La majorité de l'effet protecteur conféré par les splénocytes immuns après 7 jours était sensible à une déplétion de la sous-population de CD8, mais ne pouvait pas être mis sur le compte uniquement de la sous-population de lymphocytes CD8+.
Dans la mesure où la déplétion en Thy-1 a supprimé la protection, et où la déplétion en CD4 n'a eu qu'un effet marginal, on peut considérer qu'une partie du rôle protecteur non CD8 dépendant est due aux lymphocytes T doublement négatifs, comme cela a déjà été observé par DUNN et NORTH ( 18). Des expériences publiées auparavant de déplétion/protection sur des cellules lymphoïdes isolées de souris récupérant d'une infection avec L. monocytogenes de type sauvage ont montré que L. monocytogenes de type sauvage était capable d' induire une protection qui était presque exclusivement due à des lymphocytes CD8+, et que ces lymphocytes CD8+ protégeaient sans la participation de lymphocytes CD4+.
Le mutant actA de L. monocytogenes est ainsi capable d'induire la génération de lymphocytes CD8+ spécifiques, protégeant contre Listeria.
Le mutant actA possède un gène de la listériolysine-O fonctionnel qui lui permet de s'échapper du phagosome et d'entrer dans le cytosol ; il est probable que le mutant actA est capable de stimuler la production de lymphocytes T CD8+ protecteurs contre Listeria, recon- naissant des peptides naturels de L. monocytogenes. En outre, la capacité du mutant actA à se multiplier de manière transitoire dans les organes des souris infectées et de sécréter une quantité suffisante de protéines bactériennes est probablement critique pour permettre une production efficace des lymphocytes CD8+ protecteurs.
Le transposon Tn917-lac s'est inséré dans actA, le second gène de l'opéron lécithinase, et a un effet polaire sur l'expression du gène plcB codant pour une lécithinase. Les résultats obtenus dans la présente invention indiquent que la lécithinase ne joue pas un rôle essentiel dans l'induction d 'une immunité protectrice contre L. monocytogenes.
En conclusion, les résultats de la présente invention montrent que des mutants atténués actA sont capables d'induire des lymphocytes T CD8+ protecteurs contre Listeria, et qu'un état d'immunité protectrice contre L. monocytogenes de type sauvage peut être établi par une infection unique. Comme les mutants actA pénètrent dans le cytosol des cellules infectées et se multiplient dans ce compartiment, on peut considérer leur utilisation comme vecteur vivant pour délivrer des protéines heterologues dans le cytosol et favoriser la production de lymphocytes T CD8+ ; de tels vecteurs vivants capables de se multiplier de façon transitoire sont supposés délivrer une charge suffisante de protéines heterologues dans le cytosol, ce pendant une durée de temps courte. En plus de leur utilisation potentielle comme modèle pour le développement de vaccins mettant en oeuvre des vecteurs vivants, ces Listeria de virulence atténuée peuvent être utiles pour le criblage et la caractérisation de peptides bactériens ou parasitaires spécifiques d'allèles du locus codant pour les molécules de classe 1 du CMH. En effet, certaines bactéries et certains parasites résident dans les compartiments vacuo- laires ; en outre, la cinétique de croissance peut être faible. Ainsi, pour les espèces de Leishmania ou les espèces de Mycobacterium, cet outil pourrait être très utile pour définir la spécificité des lymphocytes CD8+ qui sont produits en réponse à l'infection.
Figure imgf000027_0001
Les cellules spléniques ont été isolées à partir de souris C3H au jour 7 après injection intraveineuse de 1,5 × 107 mutants actA. Les cellules Thy-1+, CD4+ ou CD8+ ont été soustraites in vitro avant le transfert adoptif. Les anticorps monoclonaux utilisés ici étaient Anti-Thy-1, 2 J1j (ATCC TIB 184), anti-CD4 RL1724 (Ceredig, R. Lowenthal , J.W. Nabholz M. and MacDonald, H.R. , 1985, Nature 314 98 ) , et anti-CD8 31M ( Sarmiento M. Glasebrook. A. L. et Fitch F.W. , 1980 , J. Immunol . 125-2665) . La déplétion était < 90% après chaque traitement cytotoxique par des anticorps monoclonaux (résultats non représentés). Les populations cellulaires non déplétées [complément (C)] ou déplétées ont été transférées chez des "récepteurs" naïfs syngéniques 1 heure après injection de 4 à 8 × 104 L. monocytogenes de type sauvage. Les groupes témoins comprenaient des récepteurs de cellules non déplétées (c'est-à-dire incubées seulement avec C) et des récepteurs recevant seulement une injection de L. monocytogenes de type sauvage (c'est-à-dire pas de cellules). 48 heures après l'injection, les bactéries ont été comptées (moyenne + ET) dans la rate des "récepteurs" (3 à 5 souris par groupe). La signification statistique (test de Student) est rapportée pour l'efficacité du transfert (cellules traitées contre pas de cellules) et pour l'effet du traitement de déplétion sur l'efficacité du transfert (cellules déplétées contre cellules traitées par C').

Claims

REFERENCES BIBLIOGRAPHIQUES
1. Mounier, J., Ryter, A., Coquis-Rondon, M. and Sansonetti, P. J. (1990). Intracellular and cell-to-cell spread of Listeria monocytogenes involves interaction with F-actin in the enterocyte-like cell une Caco-2. Infect. Immun. 59, 1048-1058.
2. De Rycke, J., Phan-Thanh, L. and Bernard, S. (1989). Immunochemical identification and biological characetrization of cytotoxic necrotizing factor from Escherichia coli. J. Clin. Microbiol. 27, 983-988. 3. Domann, E., Leimeister-Wâchter, M. Goebel, W. and Chakraborty, T. (1991). Molecular cloning, sequencing, and identification of a métalloprotease gène from listeria monocytogenes that is species spécifie and physically linked to the listeriolysin gène. Infect. Immun. 59, 65-72.
4. Heukeshoven, J. and Dernick, R. (1985). Simplified method for silver staining of proteins in polyacrylamide gels and the mechanism of silver staining. Electrophoresis 6, 103-112.
5. Kuhn, M., Prévost, M.-C, Mounier, J. and Sansonetti, P.J. (1990). A nonvirulent mutant of Listeria monocytogenes does not move intracellularly but still induces polymérisation of actin. Infect, immun. 58, 3477-3486.
6. Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the heads of bacteriophage T4. Nature 227, 680-685.
7. Mengaud, J., Dramsi, S., Gouin, E., Vazquez-Boland, J.-A., Milon, G. and Cossart, P. (1991a). Pleiotropic control of Listeria monocytogenes virulence factors by a gène which is autoregulated. Mol. Microbiol. 5, 2273-2283.
8. Mengaud, J., Geoffroy, C. and Cossart, P. (1991b). Identification of a novel operon involved in virulence of Listeria monocytogenes; its first gène encodes a protein homologous to bacterial metalloproteases. Infect. Immun. 59, 1043-1049.
9. Racz, P., Tenner, K. and Szivessy, K. (1970). Electron microscopic studies in expérimental keratoconjunctivitis listeriosa. I. Pénétration of Listeria monocytogenes into corneal epithelial cells. Acta Microbiol. Acad. Sci. Hung. 17, 221-236.
10. Sambrook, J., Fritsch, E. F. and Maniatis, T. (1989). Molecular cloning: a laboratory manual. (Cold Spring
Habour, New York: Cold Spring Habour Laboratory Press).
11. Shaw, J.H. and Clewell, D.B. (1985). Complète nucleotide séquence of macrolide-lincosamide-stretogramin- B-resistance transposon Tn917 in Streptococcus faecalis. J. Bact. 164, 782-796.
12. Vazquez-Boland, J.-A., Kocks, C, Dramsi, S., Ohayon, H., Geoffroy, C, Mengaud J., and Cossart, P. (). Nucleotide séquence of the lécithinase operon of Listeria monocytogenes and possible rôle of lécithinase in cell-to-cell spread. Infect. Immun., Jan. 1992, p. 219-230.
13. Tilney, L.G. Connelly, P.S. and Portnoy, D. A. (1990). Actin filament nucleation by the bacterial pathogen, Listeria monocytogenes, J. Cell. Biol. 111, 2979-2988.
14. Sullivan et al., Gène, 1984, 29, p. 21-26.
15. Leredus et al., Gène, 1991, 108, p. 115-129.
16. North, R.J. and Deissler, J.F., 1975, Nature of "memory" in T-cell mediated antibacterial immunity cellular parameters that distinguish between the active immune response and a state of "memory". Infect immun. 12 761.
17. Alonso J.M. Vilmer, E. Mazigh D. and Mollaret, H.M., 1980, Yersinia enterocolitica 03 Curr. Microbiol . 4 117.
18. Dunn P.L. and North R.J., 1991, Resolution of primary murine listeriosis and acquired résistance to lethal secondary infection can be mediated predominantly by Thy 1+ CD4- CD8- cells, J. Inf. Dis 164 869-871.
LISTE DES SEQUENCES
- - - - - - - - - - - - - - - - - - - I - INFORMATION GENERALE
(1) DEMANDEUR : INSTITUT PASTEUR
(2) TITRE DE L'INVENTION :
Mutant atténué de Listeria monocytogenes.
souche recombinante de Listeria monocytogenes. utilisation comme vecteurs heterologues d'antigène vaccinal et utilisation comme vaccin ou composition diagnostique.
(3) NOMBRE DE SEQUENCES : 1 INFORMATION POUR SEQ ID N° 1
CARACTERISTIQUES DES SEQUENCES TYPE : protéine
LONGUEUR : 610 aminoacides
TYPE DE MOLECULE : protéine de surface
ORIGINE
ORGANISME : Listeria monocytogenes LIGNEE CELLULAIRE : LO 28
CARACTERISTIQUE
NOM DE LA PROTEINE : produit du gène Act A
Figure imgf000032_0001
SYMBOLES DES ACIDES AMINES - - - - - - - - - - - - - - - - - - - - - - - - - -
A Ala alanine
C Cys citéine
D Asp acide aspartique
E Glu acide glutamique
F Phe phénylalanine
G Gly glycine
H His histidine
I Ile isoleucine
K Lys lysine
L Leu leucine
M Met méthionine
N Asn asparagine
P Pro proline
Q Gin glutamine
R Arg arginine
S Ser serine
T Thr thréonine
V Val valine
W Trp tryptophane
Y Tyr tyrosine
REVENDICATIONS
1. Mutant atténué de Listeria monocytogenes comportant, dans le gène act A ou dans le promoteur de celui-ci, une mutation apte à bloquer ou modifier sensiblement l'expression de la protéine codée par le gène act A.
2. Mutant atténué de Listeria monocytogenes selon la revendication 1, caractérisé en ce que la mutation consiste en une insertion, une délétion ou une mutation par mutagénèse dirigée.
3. Mutant atténué de Listeria monocytogenes selon la revendication 1 ou la revendication 2, caractérisé en ce que la mutation consiste en l'insertion d'un transposon stable.
4. Mutant atténué de Listeria monocytogenes selon la revendication 3, caractérisé en ce que le transposon stable est le transposon Tn917-lac.
5. Mutant atténué de Listeria monocytogenes selon l'une quelconque des revendications précédentes, caractérisé en ce que la mutation est effectuée dans le fragment d'ADN codant pour la séquence peptidique à motifs répétés comprise entre les aminoacides 235 à 315, 350 à 360, 367 à 385 et 389 à 393 de la séquence SEQ ID n°1.
6. Mutant atténué selon l'une des revendications 1 à 4, caractérisé en ce que la mutation consiste en une insertion entre les aminoacides 61 et 62 de la séquence peptidique SEQ ID n° 1.
7. Mutant atténué de Listeria monocytogenes selon la revendication 6, dénommé LUT 12, déposé à la
CNCM le 30 janvier 1992 sous le n° 1-1167.
8. Vaccin humain ou vétérinaire, caractérisé en ce qu'il comprend en tant que composant actif une souche mutante atténuée de Listeria monocytogenes selon l'une des revendications précédentes.
9. Souche recombinante de Listeria monocytogenes. caractérisée en ce qu'elle comporte un ADN hétérologue, soit inséré dans le génome d'un mutant atténué selon l'une des revendications précédentes, soit porté par un plasmide qui se réplique dans le mutant atténué.
10. Souche recombinante selon la revendication 9, caractérisée en ce que l'ADN hétérologue consiste en un gène hétérologue codant pour un antigène protecteur cible de lymphocytes T de la sous-classe CD8.
11. Souche recombinante selon la revendication 10, caractérisée en ce que l'antigène est un antigène bactérien, notamment de mycobactéries.
12. Souche recombinante selon la revendication 10, caractérisée en ce que l'antigène est un antigène parasitaire, notamment de Leishmania. de Trypanosoma ou de Toxoplasma. Theileria.
13. Souche recombinante selon la revendication 10, caractérisée en ce que l'antigène est un antigène viral, notamment du VIH, du virus de la chorioméningite lymphocytaire ou du virus de la grippe.
14. Souche recombinante selon la revendication 13, caractérisée en ce que l'antigène est l'antigène gag et/ou l'antigène nef du VIH et/ou tout ou partie de l'enveloppe gp 120 du VIH1 ou gp 140 du VIH2.
15. Souche recombinante l'une des revendications 9 à 14, caractérisée en ce qu'elle comporte un promoteur de Listeria en amont de l'ADN hétérologue.
16. Souche recombinante selon la revendication 15, caractérisée en ce que le promoteur est le promoteur hly.
17. Souche recombinante selon la revendication 16, caractérisée en ce que l'ADN hétérologue est fusionné avec le début du gène hly, de manière à utiliser la séquence signal de la listeriolysine O pour sécréter le produit de l'ADN hétérologue dans le cytoplasme de la cellule hôte.
18. Vaccin humain ou vétérinaire recombinant, caractérisé en ce qu'il comprend en tant que composant actif une souche recombinante selon l'une des revendications 9 à 17.
19. Composition de diagnostic comprenant une souche recombinante de Listeria monocytogenes selon l'une des revendications 10 à 17, pour le contrôle de l'état de protection d'un hôte humain ou animal contre une infection provoquée par un microorganisme comprenant un antigène sensiblement identique à celui codé par le gène hétérologue inséré dans la souche mutante recombinante ou porté par un plasmide se répliquant dans la souche mutante recombinante.
PCT/FR1993/000105 1992-01-31 1993-02-01 Mutant attenue de listeria monocytogenes; souche recombinante de listeria monocytogenes, utilisation comme vecteurs heterologues d'antigene vaccinal et utilisation comme vaccin ou composition diagnostique WO1993015212A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9201128A FR2686896B1 (fr) 1992-01-31 1992-01-31 Mutant attenue de listeria monocytogenes; souche recombinante de listeria monocytogenes, utilisation comme vecteurs heterologues d'antigenes vaccinal et utilisation comme vaccin ou composition diagnostique.
FR92/01128 1992-01-31

Publications (1)

Publication Number Publication Date
WO1993015212A1 true WO1993015212A1 (fr) 1993-08-05

Family

ID=9426237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1993/000105 WO1993015212A1 (fr) 1992-01-31 1993-02-01 Mutant attenue de listeria monocytogenes; souche recombinante de listeria monocytogenes, utilisation comme vecteurs heterologues d'antigene vaccinal et utilisation comme vaccin ou composition diagnostique

Country Status (2)

Country Link
FR (1) FR2686896B1 (fr)
WO (1) WO1993015212A1 (fr)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5830702A (en) * 1990-10-31 1998-11-03 The Trustees Of The University Of Pennsylvania Live, recombinant listeria monocytogenes and production of cytotoxic T-cell response
WO1999029884A3 (fr) * 1997-12-11 1999-08-12 Von Eichel Streiber Christoph Procede de conditionnement genetique cible pour l'induction d'une transgenese ciblee somatique
US6051237A (en) * 1994-11-08 2000-04-18 The Trustees Of The University Of Pennsylvania Specific immunotherapy of cancer using a live recombinant bacterial vaccine vector
DE19949594A1 (de) * 1999-10-14 2001-04-26 Deutsches Krebsforsch Rekombinante attenuierte Listerien zur Immuntherapie
US6504020B1 (en) 1997-11-18 2003-01-07 The Trustees Of The University Of Pennsylvania Isolated nucleic acids comprising Listeria dal and dat genes
JP2007503846A (ja) * 2003-02-06 2007-03-01 シーラス コーポレイション 非食細胞中への侵入について減弱化されているリステリア、そのリステリアを含むワクチン、およびそれらの使用法
JP2007518405A (ja) * 2003-12-24 2007-07-12 シーラス コーポレイション 抗原および細菌分泌シグナルポリペプチドを含む融合タンパク質をコードする組換え核酸分子、発現カセット、および細菌、ならびにこれらを使用する方法
WO2009024426A1 (fr) * 2007-07-27 2009-02-26 INSERM (Institut National de la Santé et de la Recherche Médicale) Compositions d'immunisation pour induire la mort de voisinage de pathogènes
US7588930B2 (en) 2000-03-29 2009-09-15 The Trustees Of The University Of Pennsylvania Compositions and methods for enhancing the immunogenicity of antigens
US7662396B2 (en) 2001-03-26 2010-02-16 The Trustees Of The University Of Pennsylvania Compositions and methods for enhancing the immunogenicity of antigens
US7695725B2 (en) 2003-02-06 2010-04-13 Aduro Biotech Modified free-living microbes, vaccine compositions and methods of use thereof
US7700344B2 (en) 2001-03-26 2010-04-20 The Trustees Of The University Of Pennsylvania Compositions and methods for enhancing the immunogenicity of antigens
US7794729B2 (en) 1994-11-08 2010-09-14 The Trustees Of The University Of Pennsylvania Methods and compositions for immunotherapy of cancer
US7820180B2 (en) 2004-09-24 2010-10-26 The Trustees Of The University Of Pennsylvania Listeria-based and LLO-based vaccines
US7833775B2 (en) 2003-02-06 2010-11-16 Aduro Biotech Modified free-living microbes, vaccine compositions and methods of use thereof
US7842289B2 (en) 2003-12-24 2010-11-30 Aduro Biotech Recombinant nucleic acid molecules, expression cassettes, and bacteria, and methods of use thereof
US7935804B2 (en) 2006-03-01 2011-05-03 Aduro Biotech Engineered Listeria and methods of use thereof
US8114414B2 (en) 1994-11-08 2012-02-14 The Trustees Of The University Of Pennsylvania Compositions and methods for treatment of cervical cancer
US8241636B2 (en) 2006-08-15 2012-08-14 The Trustees Of The University Of Pennsylvania Compositions comprising HMW-MAA and fragments thereof, and methods of use thereof
US8268326B2 (en) 2006-08-15 2012-09-18 The Trustees Of The University Of Pennsylvania Compositions comprising HMW-MAA and fragments thereof, and methods of use thereof
US8771702B2 (en) 2001-03-26 2014-07-08 The Trustees Of The University Of Pennsylvania Non-hemolytic LLO fusion proteins and methods of utilizing same
US8791237B2 (en) 1994-11-08 2014-07-29 The Trustees Of The University Of Pennsylvania Compositions and methods for treatment of non-hodgkins lymphoma
US8956621B2 (en) 1994-11-08 2015-02-17 The Trustees Of The University Of Pennsylvania Compositions and methods for treatment of cervical dysplasia
US9012141B2 (en) 2000-03-27 2015-04-21 Advaxis, Inc. Compositions and methods comprising KLK3 of FOLH1 antigen
US9226958B2 (en) 2010-10-01 2016-01-05 University Of Georgia Research Foundation, Inc. Use of Listeria vaccine vectors to reverse vaccine unresponsiveness in parasitically infected individuals
US9463227B2 (en) 2011-03-11 2016-10-11 Advaxis, Inc. Listeria-based adjuvants
US9644212B2 (en) 2008-05-19 2017-05-09 Advaxis, Inc. Dual delivery system for heterologous antigens
US9650639B2 (en) 2008-05-19 2017-05-16 Advaxis, Inc. Dual delivery system for heterologous antigens
US9919038B2 (en) 2009-03-04 2018-03-20 The Trustees Of The University Of Pennsylvania Compositions comprising angiogenic factors and methods of use thereof
US10016617B2 (en) 2009-11-11 2018-07-10 The Trustees Of The University Of Pennsylvania Combination immuno therapy and radiotherapy for the treatment of Her-2-positive cancers
US10058599B2 (en) 2012-03-12 2018-08-28 Advaxis, Inc. Suppressor cell function inhibition following Listeria vaccine treatment
US10064898B2 (en) 2011-03-11 2018-09-04 Advaxis, Inc. Listeria-based adjuvants
CN109735477A (zh) * 2018-12-03 2019-05-10 扬州大学 单核细胞增生李斯特菌三基因缺失减毒突变株制备及其应用
CN117701565A (zh) * 2023-12-01 2024-03-15 中国农业大学 一种单核细胞增生李斯特氏菌强组成型启动子及其应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004507217A (ja) * 2000-04-11 2004-03-11 アンスティテュ・パストゥール リステリア菌ゲノム、ポリペプチドおよびその使用
CA2551644C (fr) * 2003-12-24 2014-03-04 Cerus Corporation Molecules d'acides nucleiques recombinantes, cassettes d'expression, et bacteries, et leurs methodes d'utilisation

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
CELL. vol. 68, 7 Février 1992, CAMBRIDGE, NA US pages 521 - 531 C. KOCKS ET AL 'L. monocytogenes-induced Actin assembly requires the ActA gene product , asurface protein' *
EMBO JOURNAL. vol. 11, no. 5, Mai 1992, EYNSHAM, OXFORD GB pages 1981 - 1990 E. DOMANN ET AL 'A novel bacterial virulence gene in Listeria monocytogenes required for host cell microfilament interaction with homology to the proline-rich region of vinculin' *
INFECTION AND IMMUNITY. vol. 58, no. 11, Novembre 1990, WASHINGTON US pages 3477 - 3486 M. KUHN ET AL 'A non-virulent mutant of Listeria monocytogenes does not move intracellularly but still induces polymerization of actin' cité dans la demande *
INFECTION AND IMMUNITY. vol. 58, no. 11, Novembre 1990, WASHINGTON US pages 3770 - 3778 A. N. SUN ET AL 'Isolation of listeria monocytogenes Small-plaque mutants defective for intracellular growth and cell-to-cell spread' *
INFECTION AND IMMUNITY. vol. 60, no. 1, Janvier 1992, WASHINGTON US pages 219 - 230 JOSÉ-ANTONIO VAZQUEZ-BOLAND ET AL 'Nucleotide sequence of the lecithinase operon of Listeria monocytogenes and possible role of lecithinase in cell-to-cell spread' cité dans la demande *
JOURNAL OF BACTERIOLOGY vol. 174, no. 2, Janvier 1992, pages 568 - 574 TRINAD CHAKRABORTY ET AL 'Coordinate regulation of virulence genes in Listeria monocytogenes requires the product of the prfA gene' *
MOLECULAR MICROBIOLOGY vol. 5, no. 9, 1991, pages 2273 - 2283 MENGAUD J. ET AL 'Pleiotropic control of Listeria monocytogenes virulence factors by a gene that is autoregulated' cité dans la demande *

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5830702A (en) * 1990-10-31 1998-11-03 The Trustees Of The University Of Pennsylvania Live, recombinant listeria monocytogenes and production of cytotoxic T-cell response
US8114414B2 (en) 1994-11-08 2012-02-14 The Trustees Of The University Of Pennsylvania Compositions and methods for treatment of cervical cancer
US6051237A (en) * 1994-11-08 2000-04-18 The Trustees Of The University Of Pennsylvania Specific immunotherapy of cancer using a live recombinant bacterial vaccine vector
EP0790835A4 (fr) * 1994-11-08 2000-07-26 Univ Pennsylvania Immunotherapie specifique contre le cancer a l'aide d'un vecteur de vaccin bacterien de recombinaison vivant
US8791237B2 (en) 1994-11-08 2014-07-29 The Trustees Of The University Of Pennsylvania Compositions and methods for treatment of non-hodgkins lymphoma
US8956621B2 (en) 1994-11-08 2015-02-17 The Trustees Of The University Of Pennsylvania Compositions and methods for treatment of cervical dysplasia
US7794729B2 (en) 1994-11-08 2010-09-14 The Trustees Of The University Of Pennsylvania Methods and compositions for immunotherapy of cancer
EP0790835B2 (fr) 1994-11-08 2010-06-23 The Trustees Of The University Of Pennsylvania Immunotherapie specifique contre le cancer a l'aide d'un vecteur de vaccin bacterien de recombinaison vivant
US6504020B1 (en) 1997-11-18 2003-01-07 The Trustees Of The University Of Pennsylvania Isolated nucleic acids comprising Listeria dal and dat genes
WO1999029884A3 (fr) * 1997-12-11 1999-08-12 Von Eichel Streiber Christoph Procede de conditionnement genetique cible pour l'induction d'une transgenese ciblee somatique
DE19949594A1 (de) * 1999-10-14 2001-04-26 Deutsches Krebsforsch Rekombinante attenuierte Listerien zur Immuntherapie
US9012141B2 (en) 2000-03-27 2015-04-21 Advaxis, Inc. Compositions and methods comprising KLK3 of FOLH1 antigen
US9549973B2 (en) 2000-03-27 2017-01-24 The Trustees Of The University Of Pennsylvania Compositions and methods comprising KLK3 or FOLH1 antigen
US7588930B2 (en) 2000-03-29 2009-09-15 The Trustees Of The University Of Pennsylvania Compositions and methods for enhancing the immunogenicity of antigens
US7655238B2 (en) 2000-03-29 2010-02-02 The Trustees Of The University Of Pennsylvania Compositions and methods for enhancing the immunogenicity of antigens
US7635479B2 (en) 2000-03-29 2009-12-22 The Trustees Of The University Of Pennsylvania Composition and methods for enhancing immunogenecity of antigens
US7662396B2 (en) 2001-03-26 2010-02-16 The Trustees Of The University Of Pennsylvania Compositions and methods for enhancing the immunogenicity of antigens
US9499602B2 (en) 2001-03-26 2016-11-22 Advaxis, Inc. Non-hemolytic LLO fusion proteins and methods of utilizing same
US7700344B2 (en) 2001-03-26 2010-04-20 The Trustees Of The University Of Pennsylvania Compositions and methods for enhancing the immunogenicity of antigens
US8771702B2 (en) 2001-03-26 2014-07-08 The Trustees Of The University Of Pennsylvania Non-hemolytic LLO fusion proteins and methods of utilizing same
US7691393B2 (en) 2003-02-06 2010-04-06 Anza Therapeutics, Inc. Listeria attenuated for entry into non-phagocytic cells, vaccines comprising the Listeria, and methods of use thereof
US7927606B2 (en) 2003-02-06 2011-04-19 Aduro Biotech Modified free-living microbes, vaccine compositions and methods of use thereof
US7833775B2 (en) 2003-02-06 2010-11-16 Aduro Biotech Modified free-living microbes, vaccine compositions and methods of use thereof
US7695725B2 (en) 2003-02-06 2010-04-13 Aduro Biotech Modified free-living microbes, vaccine compositions and methods of use thereof
JP2007125040A (ja) * 2003-02-06 2007-05-24 Cerus Corp 非食細胞中への侵入について減弱化されているリステリア、そのリステリアを含むワクチン、およびそれらの使用法
JP2007503846A (ja) * 2003-02-06 2007-03-01 シーラス コーポレイション 非食細胞中への侵入について減弱化されているリステリア、そのリステリアを含むワクチン、およびそれらの使用法
US7842289B2 (en) 2003-12-24 2010-11-30 Aduro Biotech Recombinant nucleic acid molecules, expression cassettes, and bacteria, and methods of use thereof
JP2007518405A (ja) * 2003-12-24 2007-07-12 シーラス コーポレイション 抗原および細菌分泌シグナルポリペプチドを含む融合タンパク質をコードする組換え核酸分子、発現カセット、および細菌、ならびにこれらを使用する方法
US7820180B2 (en) 2004-09-24 2010-10-26 The Trustees Of The University Of Pennsylvania Listeria-based and LLO-based vaccines
US7935804B2 (en) 2006-03-01 2011-05-03 Aduro Biotech Engineered Listeria and methods of use thereof
US8580939B2 (en) 2006-03-01 2013-11-12 Aduro Biotech Engineered Listeria and methods of use thereof
US10166276B2 (en) 2006-05-02 2019-01-01 The Trustees Of The University Of Philadelphia Compositions and methods for treatment of non-hodgkins lymphoma
US8268326B2 (en) 2006-08-15 2012-09-18 The Trustees Of The University Of Pennsylvania Compositions comprising HMW-MAA and fragments thereof, and methods of use thereof
US8241636B2 (en) 2006-08-15 2012-08-14 The Trustees Of The University Of Pennsylvania Compositions comprising HMW-MAA and fragments thereof, and methods of use thereof
US11446369B2 (en) 2007-05-10 2022-09-20 Advaxis, Inc. Compositions and methods comprising KLK3 or FOLH1 antigen
WO2009024426A1 (fr) * 2007-07-27 2009-02-26 INSERM (Institut National de la Santé et de la Recherche Médicale) Compositions d'immunisation pour induire la mort de voisinage de pathogènes
US9644212B2 (en) 2008-05-19 2017-05-09 Advaxis, Inc. Dual delivery system for heterologous antigens
US9650639B2 (en) 2008-05-19 2017-05-16 Advaxis, Inc. Dual delivery system for heterologous antigens
US10189885B2 (en) 2008-06-23 2019-01-29 The Trustees Of The University Of Pennsylvania Non-hemolytic LLO fusion proteins and methods of utilizing same
US10695410B2 (en) 2009-03-04 2020-06-30 The Trustees Of The University Of Pennsylvania Compositions comprising angiogenic factors and methods of use thereof
US9919038B2 (en) 2009-03-04 2018-03-20 The Trustees Of The University Of Pennsylvania Compositions comprising angiogenic factors and methods of use thereof
US10016617B2 (en) 2009-11-11 2018-07-10 The Trustees Of The University Of Pennsylvania Combination immuno therapy and radiotherapy for the treatment of Her-2-positive cancers
US9943590B2 (en) 2010-10-01 2018-04-17 The Trustees Of The University Of Pennsylvania Use of Listeria vaccine vectors to reverse vaccine unresponsiveness in parasitically infected individuals
US9226958B2 (en) 2010-10-01 2016-01-05 University Of Georgia Research Foundation, Inc. Use of Listeria vaccine vectors to reverse vaccine unresponsiveness in parasitically infected individuals
US10064898B2 (en) 2011-03-11 2018-09-04 Advaxis, Inc. Listeria-based adjuvants
US9463227B2 (en) 2011-03-11 2016-10-11 Advaxis, Inc. Listeria-based adjuvants
US10058599B2 (en) 2012-03-12 2018-08-28 Advaxis, Inc. Suppressor cell function inhibition following Listeria vaccine treatment
CN109735477A (zh) * 2018-12-03 2019-05-10 扬州大学 单核细胞增生李斯特菌三基因缺失减毒突变株制备及其应用
CN109735477B (zh) * 2018-12-03 2022-07-05 扬州大学 单核细胞增生李斯特菌三基因缺失减毒突变株制备及其应用
CN117701565A (zh) * 2023-12-01 2024-03-15 中国农业大学 一种单核细胞增生李斯特氏菌强组成型启动子及其应用

Also Published As

Publication number Publication date
FR2686896B1 (fr) 1995-01-06
FR2686896A1 (fr) 1993-08-06

Similar Documents

Publication Publication Date Title
WO1993015212A1 (fr) Mutant attenue de listeria monocytogenes; souche recombinante de listeria monocytogenes, utilisation comme vecteurs heterologues d&#39;antigene vaccinal et utilisation comme vaccin ou composition diagnostique
US7115269B2 (en) Attenuated Salmonella strain used as a vehicle for oral immunization
US5830702A (en) Live, recombinant listeria monocytogenes and production of cytotoxic T-cell response
KR20120083899A (ko) 마이코박테리아 백신들
US20030147897A1 (en) M. tuberculosis antigens
JP2003144180A (ja) 遺伝子の同定
JPH04504204A (ja) 病原性のないphoP型微生物を含有するワクチン
WO2004078949A2 (fr) Genes d&#39;un isolat de l&#39;otite moyenne de haemophilus influenzae non typable
KR20180085064A (ko) 캄필로박터 감염을 감소시키기 위한 백신 및 방법
EP0389347B1 (fr) Vaccins contre les bactéries septicémiques
FR2687410A1 (fr) Beta-lactamase recombinante, utilisable en tant que molecule porteuse pour la preparation de compositions immunogenes.
KR102224897B1 (ko) 신규한 폴리펩타이드 및 이를 포함하는 그람음성균에 대한 항생제
US20040110269A1 (en) Protection against mycobacterial infections
WO1993008284A1 (fr) Promoteur de m. paratuberculosis et son utilisation pour l&#39;expression de sequences immunogenes
Liu et al. The regulation of DLTA gene in bacterial growth and biofilm formation by Parvimonas micra.
JPH03505970A (ja) 遺伝子工学によるコクシジウム症ワクチン
EP1169465B1 (fr) Procedure d&#39;immunisation en deux etapes contre l&#39;infection par chlamydia
EP0991663B1 (fr) Souches de mycobacterium dont le gene erp est modifie et composition vaccinale la contenant
EP1015579B2 (fr) Toxine de clostridium et procede de preparation de compositions immunogenes
FR2898276A1 (fr) Nouveaux vaccins destines au traitement ou a la prevention des infections par parasites de la famille des taenidae et en particulier du genre echinococcus
JP2001518781A (ja) マイコバクテリウム組換えワクチン
CA2597512A1 (fr) Moyens pour l&#39;obtention de promastigotes de leishmanies avirulents, promastigotes obtenus et leurs applications
BE1022553A1 (fr) Mutants de spy0269
BE1022553B1 (fr) Mutants de spy0269
T-all I EndoH

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
CFP Corrected version of a pamphlet front page
CR1 Correction of entry in section i

Free format text: PAT.BUL.19/93 UNDER INID (51) "IPC" REPLACE "C12N 1:01" BY "C12R 1:01"

XX Miscellaneous:

Free format text: IN PCT GAZETTE NO.07/94,PAGE 4101,UNDER "CORRECTIONS OF ENTRIES IN SECTION 1",DELETE THE INFORMATION RELATING TO"WO93/14136" AND "WO93/15212"

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA