[go: up one dir, main page]

WO1993017280A1 - Procede de fusion de residus de combustion dans des scories - Google Patents

Procede de fusion de residus de combustion dans des scories Download PDF

Info

Publication number
WO1993017280A1
WO1993017280A1 PCT/CH1993/000035 CH9300035W WO9317280A1 WO 1993017280 A1 WO1993017280 A1 WO 1993017280A1 CH 9300035 W CH9300035 W CH 9300035W WO 9317280 A1 WO9317280 A1 WO 9317280A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
slag
combustion
gases
air
Prior art date
Application number
PCT/CH1993/000035
Other languages
German (de)
English (en)
Inventor
Hans Künstler
Original Assignee
Kuenstler Hans
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuenstler Hans filed Critical Kuenstler Hans
Priority to EP93902029A priority Critical patent/EP0581918B1/fr
Priority to JP5514420A priority patent/JPH06507232A/ja
Priority to DE59309121T priority patent/DE59309121D1/de
Publication of WO1993017280A1 publication Critical patent/WO1993017280A1/fr
Priority to US08/580,960 priority patent/US6199492B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/027Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
    • F23G5/0276Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage using direct heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/006General arrangement of incineration plant, e.g. flow sheets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/027Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2202/00Combustion
    • F23G2202/10Combustion in two or more stages
    • F23G2202/101Combustion in two or more stages with controlled oxidant supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2202/00Combustion
    • F23G2202/10Combustion in two or more stages
    • F23G2202/104Combustion in two or more stages with ash melting stage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2203/00Furnace arrangements
    • F23G2203/20Rotary drum furnace
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2206/00Waste heat recuperation
    • F23G2206/10Waste heat recuperation reintroducing the heat in the same process, e.g. for predrying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2900/00Special features of, or arrangements for incinerators
    • F23G2900/00001Exhaust gas recirculation

Definitions

  • the invention relates to a method and a device for degassing, gasifying, burning and melting down waste and melting down solid residues, for example from domestic waste incineration plants, using waste as an energy source.
  • the aim of the invention is to contribute to the relief of the environment. Its task is to specify a process for the effective inerting of slag, fly dusts, kettle ash and similar toxic substances and to create a device with which this process can be carried out.
  • the material which is condensed and binds environmentally harmful substances in accordance with the inventive process is said to have a landfill form which is harmless to the environment (for example as a TVA inert residue according to the Swiss requirements of the Technical Ordinance for Waste) or is to be used instead of being disposed of for a useful purpose can.
  • slags, dusts and boiler ash can be melted down solely by the energy content of the waste.
  • the heavy metal compounds are immobilized, the glow loss is reduced to a minimum, the organic hydrocarbon compounds are reduced below the current detection limit and the specific volumes are greatly reduced.
  • the basic idea of the invention is that instead of a complete incineration of waste, as has been sought up to now, only a substoichiometric carbonization of the process material is carried out beforehand in a low-temperature unit and then using the sulfurized materials or gases obtained in a high-temperature unit, complete combustion (for example in a rotary kiln) is carried out with subsequent slag liquefaction.
  • the material remaining from the charring contains more combustion energy than the usual, burned-out residues and can be fed to a slag liquefaction process in the high-temperature unit, for example a rotary kiln. Part or all of the energy obtained by the gasification can be supplied to the slag liquefaction in gas form, so that the process can be controlled or regulated in a relatively simple manner.
  • the end product of the process is a completely burned-out, liquefied slag that can be solidified in any form.
  • Figure 1 shows schematically an overall system according to the invention, the waste-operated reactor with boiler and flue gas cleaning. The inventive method and also the essential parts of a device according to the invention can be discussed in this reactor.
  • FIG. 2 shows the temperature profile in the reactor, measured in a test facility.
  • FIG. 3 shows a diagram of the course, for example, of an addition of foreign matter for melting into the slag, here it is recirculated filter dust from our own plant, but it can also be foreign matter from other plants.
  • FIG. 4 shows an example of the composition of the residual materials from a ton of waste (Vehlow literature).
  • the reactor according to FIG. 1 is constructed using tried and tested plant components available on the market. In terms of process engineering, the components are coupled and connected in series so that the desired process can be carried out.
  • the reactor points in the process direction, that is from left to right, the essential parts of the device: a feed point 1, for receiving the process material with devices for placing it on the smoldering grate (for example a feed grate); a generator 2 in which, with a u ⁇ terstoichiometric air supply, garbage garbage as an energy source or is gassed;
  • the following essential equipment parts are present: a feed grate 3, nozzles 4 and addition devices 5 and 6; then follows a rotary kiln 7 with a gas / air hood 8, for the combustion of the generated generator gases and for the burning out and melting of the slag; this is followed by an afterburning chamber 9 with an addition device 10, for example air supply for lingering and afterburning still combustible parts and then an empty draft for the flue gases to be discharged
  • the waste is conveyed to a feed grate via a feed device in a generator. Partial degassing and gasification and partial combustion take place here in a substoichiometric environment.
  • the garbage is soaked and preheated. Since the processes in the generator (grate), in contrast to the most widespread grate systems, with much smaller amounts of air, especially with a smaller amount of underwind resp. smaller (substoichiometric) excess air, much less so-called "hot combustion nests" (hot spots) are formed in the micro or local area. This causes a strong reduction in NOx emissions (probably 50% -70%).
  • the rotary kiln is connected to the generator for melting its own and foreign substances into the slag.
  • a transition of the generator to the rotary tube is well distributed into the air under controlled conditions Rotating tube injected.
  • foreign matter, recirculated dusts, dusts and slag from other plants and so on can also be abandoned.
  • a combustion of the carbonization gases generated in the generator and a burnout of the solid feed material then occur.
  • the temperature in the rotary tube is raised above the slag melting point and the entire solids (self-slag and foreign substances) are liquefied.
  • the circulation of the slag in the rotary tube leads to thorough mixing, homogenization and good burnout.
  • the slag flows out of the slightly inclined rotary tube into a pre-cooler and then into a detoxifier.
  • the reactor can be equipped with the gas cleaning components currently on the market, such as dust filters, laundry, denox and dioxin separation.
  • these components can be designed for * significantly lower gas volume flows compared to conventional waste incineration plants. Since the final temperatures of the combustion process are lower in a standard system than in the process discussed here, correspondingly larger gas volumes result. For this reason, in the method according to the invention Efficiency of the plant higher than with conventional waste incineration plants.
  • Plants of this size cannot simply be set up on a trial basis or existing plants can be converted on a trial basis.
  • the trials were not pre-sorted and shredded for the trials. In any case, it would make sense to separate certain fractions such as metals.
  • the filter dust was added as recirculate via a specially made, water-cooled lock construction, which was attached close to the rotary tube (feed point 6, FIG. 1).
  • the filter dust was introduced into the system in batches. During a certain period, an average of about 10%, later 20% of the amount of waste given during the main test was put into the plant and melted down (see FIG. 3).
  • FIG. 6 roughly shows the composition of the amount of residual material when 1 ton of waste is incinerated.
  • the concentration of the most important exhaust gas emitters was determined in addition to the regular measurements on the system in addition to the temperatures and moisture contents.
  • the dust concentration in the raw gas after the boiler which in normal operation is in the middle of the usual range, increased somewhat during the test phase. This is due to an increased waste task due to poor control options.
  • the clean gas meets the requirements of the TVA of the 17th BImSchV.
  • the nitrogen oxide or NOx emissions during the test with filter dust additives were 2.5 times lower than in normal operation and below the regulation in Switzerland.
  • the average daily value reached was approx. 141 mg / m 3 n based on 11% 0 2 .
  • the sulfur oxide or SOx concentration in the clean gas rose during the experiment. This is probably due to the temperature-related decomposition of metal sulfates.
  • the method according to the invention discussed here offers the possibility of melting slags, ashes and fly dusts without the supply of energy from the outside. As the eluate tests show, heavy metal compounds are practically insoluble in the slag. The molten slag also has a very low loss of ignition, and the dioxin values are not below the detection limits. In contrast to other processes, the melt does not only take place without external energy supply; it is even expected to be more efficient than conventional incinerators. The system offers the possibility of discharging waste incineration residues in an environmentally friendly manner and reducing the costs of disposal.
  • the diagram in FIG. 2 shows the temperature profile measured in the test in the reactor.
  • the temperature control is reduced to lower temperatures in order to lower it completely in a subsequent boiler group for the purpose of heat recuperation and recirculation.
  • the solid line shows the thermal course of a theoretical (ideal) combustion and the dashed line shows the temperature course of the system in standard operation. The course shown with dots shows the melting operation.
  • FIGS. 3 and 4 Two flow diagrams are shown in FIGS. 3 and 4, which, based on the process, essentially show the mass flow and the associated energy flow. It is clear that these diagrams with absolute numbers indicate a very specific course and composition, which depends on the plant and combustion material, but essentially show the effectiveness of the method according to the invention. Discussion:
  • the reactor presented here essentially consists of a combination of a closed gas generation generator 2 with a mechanical feed grate 3 and a downstream rotary kiln 7 and a plurality of process-engaging connections (for example additions, recirculation etc.).
  • the usual flue gas cleaners and a device for discharging the liquid slag are connected downstream. From these modules, process-engaging returns (feedbacks) lead back to the generator / rotary tube group.
  • the process path begins at entry 1, into which solid and liquid waste RG, additives AD, recycled rust diarrhea RD and foreign matter FR (for example slag from other domestic waste incineration plants for melting) are introduced. These substances reach the moving grate 3, where they are smeared but not gasified with the addition of other substances such as rust air RL, vapors BR, smoldering air VL, foreign substances FR and oxygen-containing gases 02. This is achieved by blowing in a substoichiometric amount of rust air RL very slowly after being heated by the grate. Recirculated flue gas RR, vapor BR and smoldering air VL can be added through a plurality of air nozzles 4.
  • the solid residues boiler ash KA and filter dusts FS as recirculation RZ or from domestic waste incineration plants as foreign matter FR can be added to the plant close to the rotary tube and melted with the residues of the generator.
  • Such foreign substances and residues can also be added as dietary fiber for the targeted change in the composition of the carbonization material as soon as it is introduced.
  • an immobilization of their pollutants, in particular the heavy metals is achieved.
  • the A 1 '-.. "Tung on the side walls of the Genera ⁇ tors addition points 4 for feeding ⁇ > ..
  • combustion air VL, vapors BR or recirculated flue gas RR In the area of transition from the grate firing capture zone to the rotary tube is a plant 6 is provided, which is used to add a preheated gas / air mixture from the area of a (provided) hood 8 above the rotary tube, and of combustion air VL, vapor BR or oxygen 02.
  • afterburner 9 is after the rotary tube a further system 10 for adding combustion air VL or vapors BR is provided, as well as minimizing the heat losses, in particular in the rotary tube operated with negative pressure, which practically always has leaks, with the consequent and targeted return of unprocessed , Energy-containing substances and thermal energy, a very high process yield can be achieved.
  • boiler 5 KA and filter dusts FS from the company's own plant or from external incineration plants FR can also be added via the device 5. An addition is advisable at this point so that the dust does not from the generator air guided through the grate are immediately discharged into the flue gas.
  • the preheated and partially degassed solid residues of the generator get into the rotary tube.
  • the air VL, 02 introduced in the area of the transition from the generator to the rotary tube causes the generator gases to burn in the rotary tube.
  • the temperature reached in the rotary tube leads to a complete burnout and to the melting of the solid reaction products, which are melted away from the rotary tube.
  • the melting process destroys all organic compounds at a temperature of 1300 ° C - 1400 ° C and heavy metals are permanently integrated into the glass structure of the slag.
  • the glazed slag only releases little of the bound heavy metals on the surface.
  • the afterburning chamber 9 behind the rotary tube there can be a supply of combustion air VL or vapors.
  • the combustion air leads to the final combustion of the combustible substances of the flue gas as well as the temperature control of the flue gases.
  • Thermal energy can be obtained from the boiler group 11 after the afterburning chamber by utilizing the energy content of the flue gases in the form of steam (electricity) and district heating.
  • FIG. 2 now shows the approximate temperature profile of the process in the reactor.
  • the process begins with task 1, where the temperature is still that of the environment. Seen in the process direction, in the generator at the beginning of the grate, the temperature is a few 100 ° C and increases with increasing swelling (gasification) at the end of the grate to about 1000 ° C, but without forming significant heat spots or hot spots.
  • the temperature of the swelling is controlled by the targeted addition of rust air RL under the grate and by the addition of vapors BR and / or smoldering air VL.
  • the temperature rises quickly through ignition of the carbonization gases to the high temperature range between 1200 ° C and 140Q ° C. Burning out and melting take place at this temperature.
  • the temperature remains essentially the same due to the action of further supplied combustion air and then gradually drops again in the direction of the low temperature range to 1100 ° C. by the targeted addition of further (cooling) combustion air VL and / or vapors BR.
  • the flue gases are cooled to 200 ° C. in the boiler 11.
  • FIG. 3 shows a diagram for the addition of filter dust within the test series, which was briefly discussed above. For a little over two hours, the fractions were added in two proportions: initially about 10% based on the amount of rubbish, then about 20%. With automated addition, the task can be staggered in finer steps.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

Au lieu de réaliser la combustion totale des déchets longtemps recherchée, on ne fait que carboniser les matières à traiter dans une unité à basse température (2) dans un premier temps, puis la température requise pour fusionner les scories et les consumer entièrement est atteinte dans une unité à haute température (7) à l'aide de substances ou de gaz carbonisants. Des matières étrangères (métaux lourds) peuvent ainsi être absorbés par les scories et s'y lier de manière durable. Pour ce qui est des équipements requis, la zone originelle classique de combustion est remplacée par un générateur de gaz carbonisants combustibles, de sorte que les matières introduites sont uniquement gazéifiées et non brûlées. La gazéification ou carbonisation peuvent être commandées d'une manière quelconque. Les matières carbonisées (résidus) contiennent davantage d'énergie de combustion que les résidus usuels consumés et peuvent tre fluidifiées dans l'unité à haute température, par exemple un four rotatif. Le produit final est constitué de scories fluidifiées entièrement consumées que l'on peut faire solidifier sous n'importe quelle forme.
PCT/CH1993/000035 1992-02-26 1993-02-11 Procede de fusion de residus de combustion dans des scories WO1993017280A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP93902029A EP0581918B1 (fr) 1992-02-26 1993-02-11 Procede de fusion de residus de combustion dans des scories
JP5514420A JPH06507232A (ja) 1992-02-26 1993-02-11 焼却残留物を溶融しスラグにする方法
DE59309121T DE59309121D1 (de) 1992-02-26 1993-02-11 Verfahren zum einschmelzen von verbrennungsrückständen in schlacke
US08/580,960 US6199492B1 (en) 1992-02-26 1995-12-29 Process for melting down combustion residues into slag

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH59192 1992-02-26
CH591/92-4 1992-02-26

Publications (1)

Publication Number Publication Date
WO1993017280A1 true WO1993017280A1 (fr) 1993-09-02

Family

ID=4190545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH1993/000035 WO1993017280A1 (fr) 1992-02-26 1993-02-11 Procede de fusion de residus de combustion dans des scories

Country Status (6)

Country Link
EP (1) EP0581918B1 (fr)
JP (1) JPH06507232A (fr)
AT (1) ATE173332T1 (fr)
CA (1) CA2108677A1 (fr)
DE (1) DE59309121D1 (fr)
WO (1) WO1993017280A1 (fr)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0610114A1 (fr) * 1993-02-04 1994-08-10 T.I.R.U.- Traitement Industriel Des Residus Urbains Procédé d'incinération de combustibles solides, notamment résidus urbains, à rejets solides et gazeux sensiblement neutres vis-à-vis de l'environnement
EP0651204A1 (fr) * 1993-11-03 1995-05-03 Hans Dr. Reimer Combustion à haute température et à plusieurs étages de matières résiduaires avec constituants inertes et dispositif pour la mise en oeuvre de ce procédé
WO1995014885A1 (fr) * 1993-11-29 1995-06-01 AUVINEN, Kyösti Procede d'incineration de dechets urbains et utilisation des cendres resultantes
EP0767342A1 (fr) * 1995-10-06 1997-04-09 Von Roll Umwelttechnik AG Procédé d'élimination des déchets irréguliers
US5749309A (en) * 1994-05-16 1998-05-12 Von Roll Umwelttechnik Ag Process and apparatus for the thermal production of energy from waste material, particulary refuse
EP0862019A1 (fr) * 1997-02-28 1998-09-02 Abb Research Ltd. Procédé et dispositif pour le traitement thermique des cendres volantes des incinérateurs à grille
EP0908673A1 (fr) 1997-10-13 1999-04-14 Asea Brown Boveri AG Procédé de traitement de scories provenants du traitement thermique de déchets
RU2162987C1 (ru) * 1999-11-01 2001-02-10 Государственное унитарное предприятие "Институт сорбционной и экологической техники" Способ термического обезвреживания и деметаллизации жидких нефтеотходов
WO2001054800A1 (fr) * 2000-01-25 2001-08-02 Paul Scherrer Institut Procede de traitement de matieres premieres secondaires metalliferes se trouvant dans un composite combustible
EP1039221A4 (fr) * 1998-10-12 2002-12-04 Nippon Kokan Kk Dispositif d'evacuation des dechets
DE10213787C1 (de) * 2002-03-27 2003-11-27 Martin Umwelt & Energietech Verfahren zum Minimieren der Konzentration an toxischen organischen Schadstoffen in Flugstäuben
RU2278175C2 (ru) * 2004-08-05 2006-06-20 Институт Проблем Химической Физики Российской Академии Наук (Ипхф Ран) Способ извлечения соединений металлов при термической переработке металлсодержащего сырья
DE102006026434B3 (de) * 2006-06-07 2007-12-13 Forschungszentrum Karlsruhe Gmbh Verfahren zur Verbesserung der Schlackequalität von Rostfeuerungsanlagen
RU2509168C1 (ru) * 2012-11-06 2014-03-10 ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ Государственный геологический музей им. В.И. Вернадского Российской академии наук (ГГМ РАН) Способ комплексной переработки хвостов флотационного обогащения молибденовольфрамовых руд
CN108224437A (zh) * 2018-04-18 2018-06-29 北京亚高科能源科技有限公司 一种回转窑气化焚烧炉及其运行方法
CN110631052A (zh) * 2019-10-25 2019-12-31 浙江森炉节能环保科技有限公司 一种节能环保锅炉及其操作方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100535196B1 (ko) * 1997-02-28 2006-02-28 마틴 게엠베하 퓌르 움벨트-운트 에네르기에테크닉 화격자소각로로부터의플라이더스트를열적처리하기위한방법및장치
JP2004020071A (ja) * 2002-06-18 2004-01-22 Jfe Engineering Kk 廃棄物焼却炉およびその操業方法
DE102004050098B4 (de) * 2004-10-14 2007-05-31 Martin GmbH für Umwelt- und Energietechnik Verbrennungsanlage, insbesondere Abfallverbrennungsanlage
RU2415339C2 (ru) * 2008-05-29 2011-03-27 Мартин ГмбХ Фюр Умвельт-Унд Энергитехник Установка для сжигания и способ регулирования установки для сжигания
WO2020019141A1 (fr) * 2018-07-23 2020-01-30 深圳市能源环保有限公司 Procédé de commande de combustion à basse teneur en azote, pour four d'incinération de déchets
CN115727319A (zh) * 2021-08-27 2023-03-03 中国石油化工股份有限公司 一种炼油厂三泥的处理方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH428062A (de) * 1963-05-15 1967-01-15 Basf Ag Verfahren und Vorrichtung zur Verbrennung fester, flüssiger oder teigiger Stoffe
FR2175914A1 (fr) * 1972-03-13 1973-10-26 Air Preheater
GB2002501A (en) * 1977-08-04 1979-02-21 Kernforschungsanlage Juelich Refuse incinerator
DE2946774A1 (de) * 1979-11-20 1981-05-27 Bruun & Soerensen AB, Farsta Verfahren und anlage zum verbrennen von brennmaterial verschiedenartiger beschaffenheit
DE3345867A1 (de) * 1983-12-19 1985-06-27 Wärmetechnik Dr. Pauli GmbH, 8035 Gauting Verfahren und vorrichtung zur thermischen verwertung von rueckstaenden
DE3815187A1 (de) * 1988-05-04 1989-11-16 Siemens Ag Temperaturgeregelte anlage zur thermischen abfallentsorgung
EP0382673A2 (fr) * 1989-02-07 1990-08-16 F.L. Smidth & Co. A/S Procédé et dispositif de combustion simultanée des déchets dangereux dans des fours rotatifs industriels
EP0302310B1 (fr) * 1987-08-03 1990-08-29 Siemens Aktiengesellschaft Procédé et dispositif pour l'élimination thermique de déchets
US5022329A (en) * 1989-09-12 1991-06-11 The Babcock & Wilcox Company Cyclone furnace for hazardous waste incineration and ash vitrification
FR2660415A1 (fr) * 1990-03-28 1991-10-04 Stein Industrie Procede et dispositif de traitement de dechets toxiques ou polluants solides ou liquides.
WO1992001197A1 (fr) * 1990-07-03 1992-01-23 Vølund Miljøteknik A/S Procede et appareil d'incineration de divers types de dechets solides et eventuellement liquides

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH428062A (de) * 1963-05-15 1967-01-15 Basf Ag Verfahren und Vorrichtung zur Verbrennung fester, flüssiger oder teigiger Stoffe
FR2175914A1 (fr) * 1972-03-13 1973-10-26 Air Preheater
GB2002501A (en) * 1977-08-04 1979-02-21 Kernforschungsanlage Juelich Refuse incinerator
DE2946774A1 (de) * 1979-11-20 1981-05-27 Bruun & Soerensen AB, Farsta Verfahren und anlage zum verbrennen von brennmaterial verschiedenartiger beschaffenheit
DE3345867A1 (de) * 1983-12-19 1985-06-27 Wärmetechnik Dr. Pauli GmbH, 8035 Gauting Verfahren und vorrichtung zur thermischen verwertung von rueckstaenden
EP0302310B1 (fr) * 1987-08-03 1990-08-29 Siemens Aktiengesellschaft Procédé et dispositif pour l'élimination thermique de déchets
DE3815187A1 (de) * 1988-05-04 1989-11-16 Siemens Ag Temperaturgeregelte anlage zur thermischen abfallentsorgung
EP0382673A2 (fr) * 1989-02-07 1990-08-16 F.L. Smidth & Co. A/S Procédé et dispositif de combustion simultanée des déchets dangereux dans des fours rotatifs industriels
US5022329A (en) * 1989-09-12 1991-06-11 The Babcock & Wilcox Company Cyclone furnace for hazardous waste incineration and ash vitrification
FR2660415A1 (fr) * 1990-03-28 1991-10-04 Stein Industrie Procede et dispositif de traitement de dechets toxiques ou polluants solides ou liquides.
WO1992001197A1 (fr) * 1990-07-03 1992-01-23 Vølund Miljøteknik A/S Procede et appareil d'incineration de divers types de dechets solides et eventuellement liquides

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0610114A1 (fr) * 1993-02-04 1994-08-10 T.I.R.U.- Traitement Industriel Des Residus Urbains Procédé d'incinération de combustibles solides, notamment résidus urbains, à rejets solides et gazeux sensiblement neutres vis-à-vis de l'environnement
EP0651204A1 (fr) * 1993-11-03 1995-05-03 Hans Dr. Reimer Combustion à haute température et à plusieurs étages de matières résiduaires avec constituants inertes et dispositif pour la mise en oeuvre de ce procédé
RU2133408C1 (ru) * 1993-11-29 1999-07-20 Биоуорк Ой Способ сжигания городских отходов и применение образующейся при сжигании золы
WO1995014885A1 (fr) * 1993-11-29 1995-06-01 AUVINEN, Kyösti Procede d'incineration de dechets urbains et utilisation des cendres resultantes
US5749309A (en) * 1994-05-16 1998-05-12 Von Roll Umwelttechnik Ag Process and apparatus for the thermal production of energy from waste material, particulary refuse
EP0767342A1 (fr) * 1995-10-06 1997-04-09 Von Roll Umwelttechnik AG Procédé d'élimination des déchets irréguliers
CH691404A5 (de) * 1995-10-06 2001-07-13 Von Roll Umwelttechnik Ag Verfahren zur thermischen Entsorgung von losem Müll.
EP0862019A1 (fr) * 1997-02-28 1998-09-02 Abb Research Ltd. Procédé et dispositif pour le traitement thermique des cendres volantes des incinérateurs à grille
US6036484A (en) * 1997-10-13 2000-03-14 Asea Brown Boveri Ag Process for reprocessing slag and/or ash from the thermal treatment of refuse
EP0908673A1 (fr) 1997-10-13 1999-04-14 Asea Brown Boveri AG Procédé de traitement de scories provenants du traitement thermique de déchets
EP1039221A4 (fr) * 1998-10-12 2002-12-04 Nippon Kokan Kk Dispositif d'evacuation des dechets
RU2162987C1 (ru) * 1999-11-01 2001-02-10 Государственное унитарное предприятие "Институт сорбционной и экологической техники" Способ термического обезвреживания и деметаллизации жидких нефтеотходов
WO2001054800A1 (fr) * 2000-01-25 2001-08-02 Paul Scherrer Institut Procede de traitement de matieres premieres secondaires metalliferes se trouvant dans un composite combustible
DE10213787C1 (de) * 2002-03-27 2003-11-27 Martin Umwelt & Energietech Verfahren zum Minimieren der Konzentration an toxischen organischen Schadstoffen in Flugstäuben
RU2278175C2 (ru) * 2004-08-05 2006-06-20 Институт Проблем Химической Физики Российской Академии Наук (Ипхф Ран) Способ извлечения соединений металлов при термической переработке металлсодержащего сырья
DE102006026434B3 (de) * 2006-06-07 2007-12-13 Forschungszentrum Karlsruhe Gmbh Verfahren zur Verbesserung der Schlackequalität von Rostfeuerungsanlagen
US8210112B2 (en) 2006-06-07 2012-07-03 Forschungszentrum Karlsruhe Gmbh Method for improving the slag quality of grate firing systems
RU2509168C1 (ru) * 2012-11-06 2014-03-10 ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ Государственный геологический музей им. В.И. Вернадского Российской академии наук (ГГМ РАН) Способ комплексной переработки хвостов флотационного обогащения молибденовольфрамовых руд
CN108224437A (zh) * 2018-04-18 2018-06-29 北京亚高科能源科技有限公司 一种回转窑气化焚烧炉及其运行方法
CN110631052A (zh) * 2019-10-25 2019-12-31 浙江森炉节能环保科技有限公司 一种节能环保锅炉及其操作方法
CN110631052B (zh) * 2019-10-25 2023-12-12 浙江森炉节能环保科技有限公司 一种节能环保锅炉及其操作方法

Also Published As

Publication number Publication date
EP0581918A1 (fr) 1994-02-09
DE59309121D1 (de) 1998-12-17
JPH06507232A (ja) 1994-08-11
CA2108677A1 (fr) 1993-08-27
ATE173332T1 (de) 1998-11-15
EP0581918B1 (fr) 1998-11-11

Similar Documents

Publication Publication Date Title
WO1993017280A1 (fr) Procede de fusion de residus de combustion dans des scories
EP0302310B1 (fr) Procédé et dispositif pour l'élimination thermique de déchets
EP0841968B1 (fr) Procede d'elimination de mercure
DE1943776C3 (de) Anlage zum Vernichten von festem Müll
EP0767342B1 (fr) Procédé d'élimination des déchets irréguliers
DE4107200A1 (de) Verfahren und anlage zur thermischen abfallbehandlung
EP0394391B1 (fr) Procede et dispositif de traitement de scories et autres residus de combustion provenant d'installations d'incineration de dechets
DE60128337T2 (de) Verfahren und vorrichtung zur verbrennung von festen brennstoffen
EP0106258A2 (fr) Procédé pour l'utilisation continue de déchets plus particulièrement d'ordures ménagères et des boues résiduaires
EP0262291A1 (fr) Dispositif pour la pyrolyse des déchets
DE2141171A1 (de) Verfahren und Vorrichtung zur Mull beseitigung
US6199492B1 (en) Process for melting down combustion residues into slag
EP0908673A1 (fr) Procédé de traitement de scories provenants du traitement thermique de déchets
WO1986006151A1 (fr) Procede et installation d'incineration de dechets
EP1960711A2 (fr) Dispositif de valorisation energetique de dechets solides
EP2264368B1 (fr) Procédé de préparation de matériaux fragmentés pour routes
DE4435166C1 (de) Verfahren zur Verglasung von Reststoffen
EP0340537B1 (fr) Installation pour éliminer des déchets
EP0940166B1 (fr) Traitement de matière residuelle et des fumées
WO1989001505A1 (fr) Procede et installation de recuperation par pyrolyse de gaz reutilisables contenus dans des dechets
DE4337421C1 (de) Mehrstufige Hochtemperaturverbrennung von Abfallstoffen mit Inertbestandteilen und Vorrichtung zur Durchführung dieses Verfahrens
DE4024303C1 (en) Carburation of carbonaceous materials - by pyrolytic decomposition, putting impurities through low viscosity bath made of old molten glass
WO2005068908A1 (fr) Procede pour l'exploitation energetique de combustibles de substitution, installation de pyrolyse pour combustibles de substitution, et combinaison d'une installation de pyrolyse et d'une installation de combustion pour la combustion de gaz de pyrolyse
DE69520236T2 (de) Verfahren und anlage zur verbrennung von krankenhausabfällen
EP0495766A2 (fr) Procédé pour l'utilisation de la matière résiduelle de pyrolyse et du gaz de pyrolyse

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1993902029

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2108677

Country of ref document: CA

WWP Wipo information: published in national office

Ref document number: 1993902029

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1993902029

Country of ref document: EP