[go: up one dir, main page]

WO1993018399A1 - Dispositif pour detecter la presence de gaz dans des liquides - Google Patents

Dispositif pour detecter la presence de gaz dans des liquides Download PDF

Info

Publication number
WO1993018399A1
WO1993018399A1 PCT/DE1993/000193 DE9300193W WO9318399A1 WO 1993018399 A1 WO1993018399 A1 WO 1993018399A1 DE 9300193 W DE9300193 W DE 9300193W WO 9318399 A1 WO9318399 A1 WO 9318399A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
sensor
arrangement according
material layer
arrangement
Prior art date
Application number
PCT/DE1993/000193
Other languages
German (de)
English (en)
Inventor
Hans Meixner
Josef Gerblinger
Uwe Lampe
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO1993018399A1 publication Critical patent/WO1993018399A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0011Sample conditioning

Definitions

  • a safety-related application of a sensor that detects gases in liquid would be e.g. the detection of the concentration of hydrogen dissolved in the insulating oil of a transformer.
  • Electro-chemical cells are usually used to detect gases in liquids. These electrochemical cells consist of two electrodes and a liquid electrolyte, which is separated from the liquid to be measured by a semipermeable membrane.
  • a semipermeable membrane One example is the Clark cell. for measuring the oxygen content of water and other liquids.
  • a major disadvantage of the electrochemical cells is that the gas to be measured reacts with the electrolyte during the measurement, so that the electrolyte must be replaced at short intervals and the measuring arrangement must be re-calibrated.
  • the problem on which the invention is based consists in specifying a further arrangement by means of which gases in liquids can be detected.
  • a particular advantage of the arrangement according to the invention is that sensors, which are already known from the field of gas ororics, can also be used for the detection of gases in liquids due to the invented arrangement.
  • the advantage which is achieved by separating the material layer and the sensor from one another by means of a gas layer is that this material layer is not exposed to the operating temperature of the sensor and thus has a significantly lower temperature.
  • a further advantage of the arrangement according to the invention is achieved in that the layer which separates the liquid from the gas layer and the sensor is made permeable to the gas to be detected only in one direction, so that the measurement does not pass through the gas layer. which is located between the sensor and the separating material layer, can be influenced by gas re-entering the liquid from the gas layer.
  • Another advantage of the arrangement according to the invention is achieved if the gas which is located between the sensor and the separating material layer is moved. In this way it is achieved that a slow desorption behavior of the sensor material does not affect the measuring speed. The sensor is then used again for a lower gas concentration in the liquid sensitive.
  • a transport gas in the arrangement according to the invention which transports the gas to be detected, which enters the transport gas via the separating material layer, to the sensor.
  • Sensors which consist of SrTiO, SnO or ZnO prove to be particularly advantageous with regard to their detection behavior of the arrangement according to the invention.
  • the detection behavior of the sensor is independent of that of the shape of the metal oxide.
  • an inexpensive manufacturing process can be used to manufacture the sensors.
  • the separating material layer which separates the sensor from the liquid, from a metal oxide, because then there is no need for a different operating temperature for the separating material layer and the sensor.
  • Polymers for the separating material layer are particularly favorable in the arrangement according to the invention to use a polymer for the separating material layer.
  • Polymer properties can be specifically determined beforehand and can thus be matched to the gas to be detected.
  • Polymers which consist of Teflon, polyethylene or silicone are favorable for use in the arrangement according to the invention, since they have particularly favorable material properties with regard to the permeability to certain gases.
  • Methods for applying the separating material layer to the sensor such as e.g. CVD-PVD processes or screen printing processes. They can also be used cost-effectively for large production quantities of detection arrangements.
  • FIG. 1 shows an arrangement according to the invention in which the separating material layer is applied directly to the sensor.
  • FIG. 2 shows an arrangement according to the invention in which there is a gas layer between the sensor and the separating material layer.
  • Figure 3 shows an arrangement according to the invention, in which for the transport of the gas to be detected from the separating
  • FIG. 1 shows an example with the arrangement according to the invention. shown. It shows a sensor S, a separating material layer TM and a liquid F. It should be noted that the separating material layer TM is applied directly to the sensor and the liquid F is underneath.
  • the detection gas can penetrate through the separating material layer in the direction of the sensor S and causes a detection process there. Other gases dissolved in the liquid cannot penetrate the separating material layer TM. This means that only the detection gas effects a detection process at sensor S. It should be noted that the metal oxides frequently used for the sensor material of sensor S only show a detection behavior towards gases to be measured in a temperature range of approx. 500 ⁇ C. In the case of the arrangement as shown in FIG. 1, this means that the liquid containing the gas to be measured is subjected to this temperature.
  • Figure 2 shows another example of the arrangement according to the invention.
  • a gas volume G is introduced here between the sensor S and the separating material layer TM.
  • the liquid F is located below the separating material layer TM.
  • This has the advantage that the liquid F and the separating material layer TM are not exposed to the operating temperature of the sensor S.
  • separating layers of material can also be used which do not withstand the temperatures of 500 ° C., which are usually considered as operating temperatures for sensors made of metal oxides.
  • the gas volume G can be moved. This movement is represented by arrows in FIG. If there is a liquid in the liquid sets a lower gas concentration, a sensor that is saturated on its surface with the measuring gas would not respond to this lower gas concentration.
  • the gas volume G is therefore moved and molecules which are adsorbed on the surface of the sensor S can enter the gas volume. In this way, the sensor S ' becomes detectable again more quickly.
  • FIG. 3 shows a further example of the arrangement according to the invention. Separating material layers TM, a sensor S, a transport gas G and the liquid F are shown.
  • the pipe R2 is made of the separating material layer TM.
  • the liquid F containing the gas to be detected flows through the pipe R1 and a transport gas G flows through the pipe R2.
  • the pipe R2 contains the sensor S attached at any point. The gas to be detected emerges from the liquid F at the transition point in Intersection with the pipe R2 into the transport gas G via the separating material layer TM.
  • the transport gas G flows through the pipe R2 in the direction of the sensor and transports the gas to be detected from the point of intersection of the two pipes R1 and R2 in the direction of the sensor S.
  • the detection gas effects the detection process.
  • the advantage of the arrangement according to the invention shown in FIG. 3 is that the temperature range in which the sensor is operated and the temperature of the separating one
  • Material layer are independent of each other.
  • By appropriately dimensioning the position of the sensor S in the pipe R2 and its Different distances to the separating material layer TM can be used to set different operating temperatures for the sensor on one side and for the separating material layer on the other side.
  • would melt in particular can Kunststoff ⁇ materials find for the separating layer of material use, at an operating temperature of a sensor from Metall ⁇ oxide of about 500 * C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

Dans le domaine technique, on fait souvent appel à des capteurs pour détecter la présence de gaz dans des liquides. L'invention décrit un dispositif permettant d'utiliser les capteurs connus en oxydes métalliques pour détecter la présence de gaz dans des liquides. Le dispositif prévoit un capteur en oxyde métallique, qui est séparé du liquide dans lequel le gaz à détecter est dissous, par une couche qui n'est perméable qu'à ce gaz. Comparé au procédé électrochimique de détection de gaz dans des liquides utilisé jusqu'ici, ce dispositif présente l'avantage que le gaz ne réagit pas avec le liquide avec ce type de système, objet de la présente description. Cela signifie qu'il n'est plus nécessaire de procédér fréquemment à des étalonnages, tout comme au remplacement de l'électrolyte. Une conception appropriée, en ce qui concerne la structure du dispositif réalisé selon l'invention, permet d'isoler la température élevée de service de la couche du matériau de séparation, qui n'est perméable qu'au gaz sortant du liquide.
PCT/DE1993/000193 1992-03-06 1993-03-04 Dispositif pour detecter la presence de gaz dans des liquides WO1993018399A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4207170 1992-03-06
DEP4207170.4 1992-03-06

Publications (1)

Publication Number Publication Date
WO1993018399A1 true WO1993018399A1 (fr) 1993-09-16

Family

ID=6453426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1993/000193 WO1993018399A1 (fr) 1992-03-06 1993-03-04 Dispositif pour detecter la presence de gaz dans des liquides

Country Status (1)

Country Link
WO (1) WO1993018399A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6037592A (en) * 1997-02-14 2000-03-14 Underground Systems, Inc. System for measuring gases dissolved in a liquid

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2100859A (en) * 1981-06-18 1983-01-06 Instrumentarium Oy Method of and apparatus for determining and controlling the gas content of the blood
DE3126648A1 (de) * 1981-07-07 1983-01-20 Hans Dr. 2000 Hamburg Fuhrmann Verfahren und vorrichtung zur unmittelbaren und kontinuierlichen messung organischer loesemittel in einer fluessigkeit unter verwendung eines gas-halbleiters
EP0115183A2 (fr) * 1982-12-28 1984-08-08 New Cosmos Electric Co., Ltd. Capteur sensible à l'hydrogène

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2100859A (en) * 1981-06-18 1983-01-06 Instrumentarium Oy Method of and apparatus for determining and controlling the gas content of the blood
DE3126648A1 (de) * 1981-07-07 1983-01-20 Hans Dr. 2000 Hamburg Fuhrmann Verfahren und vorrichtung zur unmittelbaren und kontinuierlichen messung organischer loesemittel in einer fluessigkeit unter verwendung eines gas-halbleiters
EP0115183A2 (fr) * 1982-12-28 1984-08-08 New Cosmos Electric Co., Ltd. Capteur sensible à l'hydrogène

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6037592A (en) * 1997-02-14 2000-03-14 Underground Systems, Inc. System for measuring gases dissolved in a liquid

Similar Documents

Publication Publication Date Title
DE3411501A1 (de) Vorrichtung zur feststellung eines stoffes unter messung seiner konzentration
DE2219718A1 (de) Verfahren und Vorrichtung zum Feststellen ausgewählter Komponenten in Medien
DE10044565B4 (de) Elektrolytische Zelle, deren Verwendung und Verfahren zum Ätzen einer in der Zelle eingespannten Membran sowie Verfahren zum Schalten einer geätzten, in der Zelle eingespannten Membran von Durchgang auf Sperrung und umgekehrt
DE4432729C1 (de) Gassensor
DE4341278B4 (de) Grenzstromsensor zur Bestimmung des Lambdawertes in Gasgemischen
EP0938668A1 (fr) Detecteur de gaz
EP0525593A1 (fr) Tuyau capteur pour le monitorage d'un milieu
EP1448982B1 (fr) Capteur pour detecter des particules dans un flux de gaz
DE2851447C2 (de) Elektroanalytische Zelle für amperometrische Messungen
DE19503802C1 (de) Vorrichtung zur Bestimmung des Wasserstoffgehalts in Trafoöl
DE102019129430A1 (de) Verfahren und Vorrichtung zur kontinuierlichen Bestimmung des Mischungsverhältnisses von brennbaren und oxidativen Gasen in einer explosionsgefährdeten Hochdruckumgebung und Anordnung
WO1993018399A1 (fr) Dispositif pour detecter la presence de gaz dans des liquides
WO1999032873A1 (fr) Systeme de mesure et de prelevement d'echantillon a plusieurs canaux destine a l'analyse automatique de longue duree de fluides
EP1377818A2 (fr) Procede et dispositif de detection de la concentration d'un compose contenant de l'oxygene dans un gaz de mesure
DE3783127T2 (de) Elektrochemischer gassensor.
DE19853595C1 (de) Verfahren und Meßwandler zur Detektion des Sauerstoffgehaltes in einem Gas
EP3839444A1 (fr) Ensemble de securite intelligent comprenant une soupape et une unite de capteurs et procede de commande d'un ensemble de securite intelligent
WO2006037689A1 (fr) Element de detection et procede pour determiner la concentration de composants gazeux dans un melange gazeux
DE19708529C1 (de) Fluidsensor für flüssige und gasförmige organische Verbindungen sowie Verfahren zu seiner Herstellung
DE19828093A1 (de) Einrichtung zum Messen physikalischer Größen von ein- oder mehrkomponentigen Flüssigkeiten
DE3900942C2 (de) Mehrfachsensorik
WO2004048915A1 (fr) Transducteur de mesure presentant un systeme de surveillance de fuite
DE19755183C2 (de) Mikro-Spaltzelle
EP1837632A2 (fr) Dispositif destiné à la détection de la présence d'une ou plusieurs matières dans un fluide s'écoulant dans une canalisation
DE4413197A1 (de) Vorrichtung zur Extraktion mit anschließendem Nachweis der in Flüssigkeiten enthaltenen Gase und deren Verwendung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): NO

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase