[go: up one dir, main page]

WO1993019404A1 - Electronic machine with vibratory alarm - Google Patents

Electronic machine with vibratory alarm Download PDF

Info

Publication number
WO1993019404A1
WO1993019404A1 PCT/JP1993/000324 JP9300324W WO9319404A1 WO 1993019404 A1 WO1993019404 A1 WO 1993019404A1 JP 9300324 W JP9300324 W JP 9300324W WO 9319404 A1 WO9319404 A1 WO 9319404A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
pulse
coil
electronic device
vibration alarm
Prior art date
Application number
PCT/JP1993/000324
Other languages
English (en)
French (fr)
Inventor
Norio Miyauchi
Tatsuo Nitta
Tomomi Murakami
Original Assignee
Citizen Watch Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co., Ltd. filed Critical Citizen Watch Co., Ltd.
Priority to DE69313763T priority Critical patent/DE69313763T2/de
Priority to EP93906791A priority patent/EP0585470B1/en
Priority to HK98101853A priority patent/HK1002736A1/en
Publication of WO1993019404A1 publication Critical patent/WO1993019404A1/ja

Links

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04GELECTRONIC TIME-PIECES
    • G04G13/00Producing acoustic time signals
    • G04G13/02Producing acoustic time signals at preselected times, e.g. alarm clocks
    • G04G13/021Details
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B25/00Indicating the time by other means or by combined means
    • G04B25/02Indicating the time by other means or by combined means by feeling; Clocks or watches for blind persons
    • G04B25/04Alarm clocks or watches with devices stimulating the skin

Definitions

  • the present invention relates to an electronic device with a vibration alarm, and more particularly to a step motor incorporated in an electronic device with a vibration alarm that notifies an alarm by transmitting vibration to an arm.
  • a conventional wristwatch with a vibration alarm as an electronic device that generates vibration by rotating an eccentric weight with a motor is disclosed in Japanese Utility Model Laid-Open No. 2-62991 and Japanese Utility Model Application Laid-Open No. 2-107107. As disclosed in U.S. Pat. Was transmitted to the wrist through the watch case, and this was notified as a vibration alarm.
  • the ultrasonic motor 5 disclosed in Japanese Utility Model Laid-Open Publication No. 2-6291 and Japanese Utility Model Laid-Open Publication No. 2-107080 has a vibrator to which a piezoelectric element is bonded is supported by a support pin, and a rotor and the vibrator are connected to each other. Is pressed by a pressure spring.
  • the principle of operation is that the vibration of the piezoelectric element is deflected and expanded by the comb teeth provided on the vibrating body, a traveling wave is generated at the comb teeth, and the vibration is generated by the mutual pressure friction between the comb teeth and the rotor. It is to rotate overnight.
  • the rotor always rotates while being pressed against the comb teeth of the vibrating body by the pressurizing panel, and wear of the contact portion between the rotor and the comb teeth is inevitable, resulting in poor durability.
  • the comb teeth of the vibrating body for expanding and deviating the amplitude are particularly required to have high processing accuracy.
  • the processing accuracy and assembly accuracy of each component such as piezoelectric element and rotor must be strict. There was a disadvantage that there was no.
  • the present invention provides a stepping motor that is durable for rotation of a rotor, easy to assemble, consumes low power, stably starts even when an acceleration force s' is applied by swinging an arm, and can rotate at high speed. It is intended to provide a reliable electronic device with a small vibration alarm (for example, a wrist watch) using the as a drive source.
  • a small vibration alarm for example, a wrist watch
  • a vibration alarm-size electronic device in which an eccentric weight having a center of gravity at a position eccentric to a rotation axis is rotated by a motor to generate vibration, the motor has two poles. And a drive coil magnetically coupled to the flat stator, wherein the eccentric weight is directly fixed to the rotor shaft of the rotor.
  • An electronic device with a vibration alarm comprising: an overnight type two-pole step motor, wherein the eccentric weight is rotated by generating a vibration by rotating the rotor of the flat stay one-time type two-pole step motor. Is provided.
  • the position of the center of gravity of the eccentric weight when the rotor is at rest is represented by 0 when the angle between the eccentric weight and the vertical direction of gravity along the rotation direction of the eccentric weight around the rotatable axis is 0. ° ⁇ ⁇ 90 ° or 180. ⁇ ⁇ 270 °.
  • the angle from the center of gravity of the eccentric weight to the magnetic pole of the rotor magnet is set to 3 along the rotation direction of the eccentric weight around the rotor shaft, and the flat stay-single-type two-pole step motor is used.
  • the eccentric weight and the rotor magnet are fixed to the rotor shaft such that a and / 3 are approximately the same angle when the angle between the slit of the current stage and the vertical direction of gravity is ⁇ .
  • the electronic device with the vibration alarm is a wristwatch
  • the angle between the slit of the pole step motor and the angle of 12 o'clock from the center of the dial of the clock is ⁇
  • the eccentric weight and the rotor magnet are connected so that ⁇ and 3 are almost the same angle. It is fixed to the shaft.
  • the electronic device with vibration alarm is a wristwatch, and has a main plate constituting a timepiece module and a dial having a time scale, and an eccentric weight on the dial side with the ground plate as a boundary is opposite to the dial.
  • the rotor magnet is arranged on the side.
  • the electronic device with vibration alarm is a wristwatch, comprising a main plate constituting a clock module, and a dial having a time scale, wherein the eccentric weight is disposed adjacent to the preceding zero-recording base plate;
  • a through hole is provided in the dial to expose a part of the eccentric weight.
  • the rotation drive circuit device for the rotor of the flat stay evening two-pole step motor drives the step motor based on an alarm signal output at an alarm time.
  • Driving pulse generating means for outputting a pulse signal; a driving circuit for supplying a driving current to the driving coil based on the pulse signal from the driving pulse generating means; and a magnetomotive force generated in the driving coil applied to the rotor. Transmitting the flat stay, transmitting a back electromotive force generated by the rotation of the mouth, detecting a back electromotive voltage, and 0 detecting the back electromotive voltage generated in the back electromotive voltage detection coil. Detecting the magnetic pole position of the rotating rotor with respect to the night, and controlling the output timing of the pulse signal from the drive pulse generating means.
  • the electronic device of the present invention uses a flat-steer-type two-pole step motor, which is a flat-steer-single-type, two-pole step motor, which is established in Prior Art 5.
  • Straight eccentric weight on rotor shaft The eccentric weight is rotated by rotating the rotor by contacting and fixing, generating vibrations associated with the rotational movement of the center of gravity of the eccentric weights, so that the user can be notified by the vibrations.
  • an electronic device with a vibration alarm using a flat stay / single-pole type two-pole step motor that can make full use of the conventional technology with which the processing technology is mastered, and is eccentric to the rotor shaft.
  • the weight is directly fixed and the eccentric weight is rotated to generate vibration by rotating the rotor of a flat stator two-pole step motor, so the rotor has rotation durability and is easy to assemble. Therefore, it is possible to provide a reliable electronic device with a vibration alarm that consumes low power and can rotate stably.
  • the angle from the center of gravity of the eccentric weight to the magnetic pole of the rotor magnet is set to 3 along the rotation direction of the eccentric weight around the rotor axis, and the angle of the flat, stay-single-type two-pole step motor is set.
  • the angle between the slit and the vertical direction of gravity 0 is ⁇
  • the eccentric weight and the rotor magnet are fixed to the rotor shaft so that ⁇ and 13 are almost the same angle, so that the arm's swing acceleration and gravity It is possible to provide an electronic device with a vibration alarm having a good start-up property even when receiving acceleration at the same time.
  • the angle ⁇ between the slit in the stay and the vertical direction ⁇ of gravity is measured in advance, and a part of the eccentric weight at an angle
  • a mark is provided to indicate the direction of the magnetic pole of the rotor magnet. It is possible to provide an electronic device with a vibration alarm that has a good start-up performance even when the acceleration mark and the gravitational acceleration of the arm are simultaneously received simply by fixing the mark of the eccentric weight and the mark of the eccentric weight together.
  • the worst condition that affects the activation of the electronic device with a vibration alarm is when the electronic device with the vibration alarm is running while wearing it on the wrist, and at 12 o'clock on the dial of the watch. Since the direction almost coincides with the vertical direction of the gravitational acceleration, ⁇ is the angle between the slit of the flat stay and two-pole step motor and the 12 o'clock direction from the center of the dial of the watch, and ⁇ If the eccentric weight and the rotor magnet are fixed to the mouth shaft so that 3 and 3 are at substantially the same angle, a vibration alarm with good start-up performance even if the arm swing acceleration and gravitational acceleration are received at the same time. Can be provided.
  • the eccentric weight is placed on the dial side and the rotor magnet is arranged on the opposite side of the dial with respect to the main plate constituting the timepiece module, so that a flat stay-single-pole type 2-pole step excluding the completed coil is provided.
  • the thickness of the module around the motor can be reduced, flat batteries can be stacked, and a thin watch module can be constructed.
  • the eccentric weight is disposed adjacent to the base plate constituting the timepiece module, and the base plate and the dial are provided with through holes for exposing a part of the eccentric weight. It is possible to visually notify the rotation of the eccentric weight in addition to the vibration 0 accompanying the rotational movement of the weight's center of gravity.
  • the present invention it is possible to provide a small and reliable electronic device with a vibration alarm, which is equipped with a step motor that has low power consumption, is durable, is easy to assemble, stably starts, and rotates at high speed.
  • a small and reliable electronic device with a vibration alarm which is equipped with a step motor that has low power consumption, is durable, is easy to assemble, stably starts, and rotates at high speed.
  • the magnetic pole position of the rotor during rotation with respect to the flattening step is detected by magnetic pole position detection means. Said pulse based on the detection signal from the means Since the signal output timing is controlled, a high-speed rotating step motor required for a vibration alarm can be realized.
  • FIG. 1 is a plan view of a rotor constituting a flat step-and-go two-pole step motor of an electronic device with a vibration alarm according to the present invention.
  • Fig. 3 is a plan view when the electronic device with vibration alarm of the present invention is a wristwatch.
  • FIG. 4 is a plan view showing the module of the wristwatch shown in FIG. 3
  • FIG. 5 is a cross-sectional view of the module of the wristwatch shown in FIG.
  • Figure 6 is a sectional view of the module of the wristwatch shown in Figure 4,
  • FIG. 7 is an external view showing the relationship between the electronic device with vibration alarm of the present invention and the arm.
  • FIG. 8 is a diagram showing the relationship between the angle between the stationary position of the center of gravity of the eccentric weight of the present invention and the vertical direction of gravity and the startability of the rotor
  • FIGS. 9A to 9D are diagrams showing the relationship between the rotational direction of the rotor of the present invention and the rest position of the center of gravity of the eccentric weight, respectively.
  • FIG. 10 is a plan view showing a relationship between a slit angle of a flat stator type two-pole step motor of the present invention and a mounting angle of the eccentric weight on a rotor shaft,
  • FIG. 11 is a plane showing the relationship between the notch angle of the stator and the angle of the eccentric weight mounted on the mouth and the shaft of the flat stay-single-pole type 2-pole step motor of the present invention.
  • FIG. 12 is a cross-sectional view of a wristwatch module showing another embodiment in which the electronic device with vibration alarm of the present invention is a wristwatch.
  • FIG. 13 is a sectional view of a module of a wristwatch showing still another embodiment in which the electronic device with vibration alarm of the present invention is a wristwatch,
  • FIG. 14 is a block diagram of an embodiment of a high-speed rotation drive circuit of a step motor rotor having a separation type coil.
  • FIGS. 15 (a) to 15 (h) are explanatory diagrams for driving a high-speed rotation of a step motor rotor having a separation type coil.
  • Fig. 16A is a plan view of a vibration alarm drive step motor having a separate coil.
  • FIG. 168 is a cross-sectional view taken along line XVIB in FIG. 16A
  • FIG. 16C is a plan view of
  • FIGS. 17A and 17B are circuit configuration diagrams of a differential amplifier of a high-speed rotation drive circuit of a step motor having a separation type coil, respectively.
  • Figure 18 is a block diagram of a circuit that digitally masks spike pulses.
  • FIG. 19 is a functional flowchart of a circuit for digitally masking a spike pulse.
  • FIG. 20 shows a time change of a driving pulse of the stepping motor of the present invention
  • FIG. 21 shows a step having a tapped coil.
  • FIG. 3 is a block diagram of an embodiment of a high-speed rotation drive circuit of a motor rotor
  • FIGS. 22 (a) to 22 (h) are explanatory diagrams for driving a rotor of a step motor having a tapped coil at high speed.
  • FIG. 23A is a plan view of a vibration alarm drive step motor having a tapped coil.
  • FIG. 23B is a cross-sectional view taken along XXIB-XXIB in FIG. 23A, and
  • FIGS. 24A and 24B are differential amplifiers of a high-speed rotation drive circuit of a step motor having a coil with a tap.
  • FIG. 24A is a plan view of a vibration alarm drive step motor having a tapped coil.
  • FIG. 24A and 24B are differential amplifiers of a high-speed rotation drive circuit of a step motor having a coil with a tap.
  • FIG. 25 is a block diagram of an embodiment of a high-speed rotation drive circuit of a step motor rotor having a cancel coil.
  • FIGS. 26 (a) to 26 (h) are explanatory views of still another embodiment for driving the mouth of the step motor having the cancel coil at a high speed.
  • Figure 27A is a plan view of a vibration alarm drive step motor having a cancel coil.
  • FIG. 27B is a cross-sectional view taken along ⁇ ⁇ -XXVIIB in FIG. 27A,
  • FIG. 28 is a circuit configuration diagram of an adder without a low-pass filter.
  • FIG. 29 is an explanatory diagram for high-speed rotation driving of a step motor having a cancel coil. Is a circuit configuration diagram of an adder having a low-pass filter,
  • FIG. 31 is an explanatory diagram for recovering a time delay of an adder output, and
  • FIG. 32 is a circuit diagram of a step motor having a cancel coil.
  • FIG. 9 is a block diagram of another embodiment of the high-speed rotation drive circuit,
  • FIGS. 33 (a) to 33 (h) are explanatory views of another embodiment for driving the rotor of the step mode having a cancel coil at a high speed
  • FIG. 34 is a diagram showing a drive having a cancel coil. It is an explanatory view of a winding method of a coil
  • FIG. 35 shows the first embodiment of the vibration modulation of the vibration alarm.
  • FIG. 36 shows a second embodiment of the vibration modulation of the vibration alarm.
  • Fig. 37 shows a simulation calculation of the change over time in the rotation speed of the step motor. The result, and
  • FIGS. 38A to 38D are plan views each showing a specific example of a flat bipolar stay that can be used in the present invention.
  • FIG. 1 is a plan view of a rotor driven by a flat step-and-step two-pole step motor of an electronic device with a vibration alarm according to the present invention
  • FIG. 2 is a cross-sectional view taken along a line II-III of FIG.
  • 3 is a rotor magnet
  • 4 is a rotor shaft
  • 5 is a magnet holding member
  • 2 is an eccentric weight having a center of gravity eccentric with respect to the rotor shaft 4 which is the rotation axis 0, and an eccentric weight 2, a rotor magnet 3, and a rotor shaft 4.
  • the rotor 1 is composed of the magnet holding member 5.
  • 2a is a print mark provided on the eccentric weight
  • 3a is a print mark provided on the rotor magnet
  • 5a is a cutout mark provided on the magnet holding member.
  • FIG. 3 is a plan view showing an embodiment in which the electronic device with a vibration alarm of the present invention is a wristwatch
  • FIG. 4 is a plan view showing a module of the wristwatch of FIG. 3
  • FIGS. 5 and 6 are modules of the wristwatch of FIG. FIG.
  • the same elements in the drawings will be assigned the same reference numerals, and explanation 5 will be omitted.
  • buttons 11 1 b and 11 c for designating the mode to be operated are operation buttons built into the exterior 11 of the watch.
  • Switch Maki 3 1 is linked with switch panel 3 2, mode switching lever 3 3, mode jump control lever 3 4, switch winding return panel 3 5, mode car 3 6, and button 1 1 a is pressed once Pressing and mode wheel 36 turns one tooth.
  • Reference numeral 12 denotes a clock dial having a time scale 12a.
  • the dial 12 has a mode mark 12c and an alarm on / off mark 12d printed thereon.
  • 1 3 is the hour hand
  • 14 is the minute hand
  • 15 is the second hand
  • 16 is the mode hand.
  • Figure 3 shows the mode hand in the time mode, and the time is displayed using the hour hand 13, minute hand 14 and second hand 15. Is displayed. In FIGS. 5 and 6, the cross-sections of the hour hand 13, the minute hand 14, and the second hand 15 are omitted and not shown.
  • the hour hand 13 is pushed into the hour wheel 49, the minute hand 14 is pushed into the second wheel 47, the second hand 15 is pushed into the fourth wheel 55, and the mode hand 16 is pushed into the mode wheel 36.
  • Each time 1 1a is pressed, the mode wheel 36 rotates by one tooth, and the mode hand 16 pushed into the 5 mode wheel 36 shows the next mode, depending on each mode.
  • the hour hand 13 and the minute hand 14 indicate the alarm time and calendar date, and the second hand 15 indicates the alarm on / off.
  • the vibration alarm electronic device 10 of the present embodiment has a configuration 5 in which a part of the eccentric weight 2 can be seen from a part of the dial 12 in a completed wristwatch state.
  • the pole step motor 8 is constituted.
  • a slit type stay having the slits 6a and 6b is used as the stay 6 to secure the driving torque of the eccentric weight 2.
  • the size is larger than that of a flat stay-single-type 2-pole step motor for watches, and a thicker stay 6 and coil core 7a, which are approximately twice as thick, are used.
  • the present embodiment shows an example in which the stay 6 and the coil core 7a are each constituted by two sheets. Was. Of course, it is also possible to form a single piece of each piece by breathing it while keeping it thick.
  • 0 9 is the main plate that constitutes the watch module 20
  • 9 a and 9 b are the tubes pushed into the main plate 9
  • 21 is the upper support
  • the tubes 9 a and 9 b are the upper support 2 1 and the lower support 2 2
  • the bearings 21 and 22 support the rotor shaft 4 of the rotor 1.
  • the bearing 5 of the rotor shaft 4 of the rotor 1 is performed by the upper bearing 21 and the lower bearing 22.However, the bearing of the rotor shaft 4 of the rotor 1 is formed by the bearing 21 and the base plate 9. Alternatively, the eccentric weight 2 may be fixed to the rotor shaft 4 exposed from the main plate 9.
  • the rotor 1 is disposed so that the eccentric weight 2 is provided on the dial 12 side with the base plate 9 as a boundary, and the rotor magnet 3 is provided on the opposite side to the dial 12, and the through hole 2 provided in the support 22 is provided.
  • the eccentric weight 2 can be rotated about the rotor shaft 4 so that a part of the eccentric weight 2 can be seen through 2a.
  • ⁇ 4 1 is the stay
  • 4 2 is the finished coil
  • 4 3 is the mouth
  • 4 3a is the rotor magnet
  • the hour hand 13 and the minute hand are shown by the stay 41, the finished coil 42, and the rotor 43.
  • the flat stator type two-pole step motor 40 for driving 14 is constituted.
  • 4 4, 4 5, 4 6 are flat, dry and dry type 2-pole step motor 40 rotor A vehicle constituting a wheel train for decelerating the rotation of 43, which is matched with the second wheel 47, and drives the minute hand 14.
  • Reference numeral 48 denotes a minute wheel, which is engaged with the second wheel 47 and the hour wheel 49 and drives the hour hand 13.
  • 5 1 is a stay
  • 5 2 is a completed coil
  • 5 3 is a rotor
  • 5 3 a is a rotor magnet
  • Reference numeral 54 denotes a car for reducing the rotation of the rotor 53 of the flat stay-in-one type 2-pole step motor 50, which is in mesh with the 4th wheel 56, and by driving the second hand 15 I have.
  • the tenon of each vehicle in each wheel train driven by the flat stay / single-pole, two-pole step motors 40 and 50 is held by the main plate 9 and the wheel train receiver 30.
  • Reference numeral 23 denotes a circuit board on which ICs 25, transistors 26, boost coils 27, chip resistors 28, crystal oscillators 29, etc. are mounted, and each of the three flat stay, two-pole step motors 8, 4 0, 50 are driving.
  • the flexible printed circuit board is electrically connected to the upper surface of the circuit board 23 by thermocompression bonding.
  • the circuit board 23 and the coil terminal board 7c of the completed coil 7 are electrically connected by overlapping the coil terminal board 7c of the completed coil 7 of the motor 8 with the screws 38b.
  • Reference numeral 24 denotes a circuit support base
  • reference numeral 18 denotes a flat type battery
  • reference numeral 17 denotes a battery holding panel
  • a circuit support base 24 is superimposed on a circuit board 23
  • a flat type battery 18 is mounted on the circuit support base 24.
  • Power is supplied from the flat type battery 18 to the circuit board 23 by the battery holding panel 17 and a battery receiving panel (not shown) on the battery storage section 24 a that does not overlap with the completed coil 7 in cross section.
  • 17 a and 17 b are switch panels that are linked to buttons 11 b and 11 c.
  • the circuit board 23 is used as a switch input means.
  • the clock module 20 is configured.
  • the present embodiment has a structure in which the eccentric weight 2 is disposed on the dial 12 side and the rotor magnet 3 is disposed on the side opposite to the dial 12 with the base plate 9 constituting the timepiece module 20 as a boundary. ing. Therefore, the module thickness around the flat stage single-pole two-pole step motor 8 excluding the completed coil 7 is almost twice as large as the flat stator two-pole step motors 40 and 50 for watches. Despite the use of a thicker stay 6 and a coil core 7a, it is made thinner so that the completed coil 7 and flat battery 18 do not overlap in cross section 0 Flat stator type 2-pole step A flat battery 18 can be stacked around the motor 8 to constitute a thin watch module.
  • the switching of the vibration alarm mode is performed by the IC 25 determining the contact between the mode switch switching panel (not shown) interlocked with the mode wheel 36 and the pattern of the circuit board 23, and the IC 25 is in a flat state.
  • One-night type Two-pole stepper Sends a drive signal to 40 and fast-forwards the hour hand 0 13 and minute hand 14 until the alarm time.
  • the IC 25 sends a drive signal to the flat stay / single-pole type 2-pole step motor 50 to quickly feed the second hand 15 to the on / off mark 1 2 d of the alarm printed on the dial 12.
  • the vibration alarm is off, the second hand 15 is stopped at the position of the off mark, and if it is on, the second hand 15 is stopped at the position of the on mark. 5
  • the vibration alarm is switched on and off, and the second hand 15 is fast-forwarded to indicate the current state.
  • pressing button 1 1b allows forward transfer of hour hand 13 and minute hand 14; pressing button 1 1c allows forward transfer of hour hand 13 and minute hand 14 with two buttons.
  • Use 1 1b and 1 1c to set the vibration alarm time. After setting the time of the vibration alarm, press button 1 1a to complete the setting of the time of the vibration alarm.
  • the drive signal is sent to the completed coil 7 of the flat stay evening 2-pole step model overnight 8, and the mouth 1 starts rotating at high speed. That is, since the eccentric weight 2 rotates, a vibration force is generated due to the rotational movement of the center of gravity of the eccentric weight 2, and the user can be notified by the vibration of the exterior 11 of the wristwatch.
  • the peak current at 600 rpm when driving under the optimal driving conditions was 2 mA at a power supply voltage of 3 V, and the vibration using an ultrasonic motor It was confirmed that the motor could be driven with a current consumption of 5% or less of the alarm.
  • the mode wheel 36 rotates by two or six teeth in conjunction with the switch winding stem 31 and the mode hand 16 Indicates the sound alarm mode.
  • Switching of the vibration alarm mode is similar to switching of the vibration alarm mode, and the IC 25 determines whether the mode switch panel (not shown) linked to the mode car 36 and the pattern on the circuit board 23 are in contact with each other.
  • the IC 25 sends a drive signal to the flat stay / single-pole, two-pole step motor 40, and quickly moves the hour hand 13 and minute hand 14 until the alarm time.
  • the IC 25 is driven by a flat stator type 2-pole step motor 50 Send a signal and fast-forward the second hand 15 to the alarm on / off mark 1 2 d printed on the dial 12. At this time, if the sound alarm is off, the second hand 15 is stopped at the position of the off mark, and if it is on, the second hand 15 is stopped at the position of the on mark.
  • a drive signal is sent to the booster coil 27 via the transistor 26 to excite a piezoelectric element adhered to the back cover of a wristwatch (not shown). This causes the back cover to bend and vibrate so that an alarm can be sounded.
  • the rotor 1 uses a flat stay that is normally used as a timepiece so that the user can be notified of an alarm by using the vibration accompanying the rotational movement of the center of gravity of the eccentric weight 2.
  • Type 2 pole step motor Unlike rotors 40 and 50, rotor 1 with heavy eccentric weight 2 must be used.Especially, when starting rotor 1, it is necessary to consider the effect of gravity. .
  • FIG. 7 is an external view showing the relationship between the electronic 5 device 10 with vibration alarm 10 and the arm 19 of the present invention, which was used to investigate the effect of gravity.
  • FIG. 8 is the center of gravity of the eccentric weight 2 of the present invention showing the effect of gravity.
  • FIG. 9 is a diagram showing the relationship between the rotation direction of the rotor 1 of the present invention and the rest position of the center of gravity of the eccentric weight 2.
  • the electronic device with vibration alarm 10 is a wristwatch mainly used while worn on an arm, and takes various postures when it is carried.
  • the worst condition that affects the activation of the electronic device with vibration alarm 10 of the present invention in FIG. 7 is that the wearer is running with the electronic device with vibration alarm 10 attached to the arm 19. It is time. It has been confirmed that the acceleration caused by swinging the arm 19 at this time is about 3 Hz, about 1.3 G.
  • FIGS. 9A to 9D show the states in which the starting is easy.
  • the combination of FIG. 9A and FIG. 9B and the combination of FIG. 9C and FIG. 9D have a reverse rotation relationship of C and D
  • the relationship of 9D is a relationship determined by the characteristics of a flat stay-single-pole, two-pole step motor. This is because the stationary stable point of the rotor 1 due to the holding torque is at two points 180 ° apart, so that every time a drive pulse is input, the eccentric weight 2 changes from Fig. 9A to Fig. 9B, Fig. 9B From Fig. 9A to the position shown in Fig. 9A.
  • Fig. 9A The state that is easy to start up is described below using Fig. 9A.
  • the eccentric weight 2 when the rotation direction of the eccentric weight 2 is C (that is, 0 ° ⁇ ⁇ 90 °), the eccentric weight 2 is activated before gravity because the gravitational force acts in the same direction as the rotation direction as moment. Easier to do.
  • the rotation direction of the eccentric weight 2 becomes C (that is, 180 ° ⁇ ⁇ 270 °) in Fig. 9 ⁇
  • the eccentric weight 2 has the gravitational direction opposite to the rotation direction before starting. Force acting as a moment
  • the eccentric weight 2 is moved to the position of ⁇ ⁇ 180 ° by the drive pulse, and subsequent rotation can be started because gravity acts as a moment in the same direction as the rotation direction.
  • FIG. 10 is a plan view showing the relationship between the slit angle of the stator 6 and the angle of assembling the eccentric weight 2 on the rotor shaft 4 when the slit type is used as the flat stay-single type two-pole step motor of the present invention. It is.
  • 2a is a printed mark provided on the eccentric weight 2, 3a,
  • Reference numeral 3b denotes a printed mark provided on the rotor magnet 3.
  • 3a and 3b indicate the directions of the magnetic poles of the magnet 3.
  • is the slit of the stator 6.
  • the angle between a and the vertical direction B of gravity, 3 is the angle from the center of gravity 2 b of the eccentric weight 2 to the magnetic pole 3 a of the rotor magnet 3 along the rotation direction C of the eccentric weight 2 around the rotor shaft 4. It is.
  • the eccentric weight 2 and the rotor magnet 3 may be fixed to the mouth shaft 4 such that a and / 3 have substantially the same angle. Therefore, the angle ⁇ between the slit 6 a of the stay 5 and the vertical direction B of gravity is measured in advance, and it is printed on a part of the eccentric weight 2 at an angle J3 along the rotation direction C from the center of gravity 2 b of the eccentric weight 2. If the mark 2a is provided and the print mark 3a indicating the direction of the magnetic pole of the rotor magnet 3 and the print mark 2a of the eccentric weight 2 are fixed together, the acceleration of the swing of the arm 19 and the gravitational acceleration can be reduced. An electronic device 10 with a vibration alarm that can be started easily even when received at the same time can be configured.
  • the mark 2a is not limited to printing, but may be engraved or projected.
  • One of the angles J3 of the eccentric weight 2 is set to be the same as the angle ⁇ between the slit 6a of the stay 6 and the vertical direction B of gravity.
  • Mark 2a is marked in advance by printing, engraving, etc., and then assembled into the rotor shaft so that the mark 3a of the rotor magnet 3 is aligned, and the swing acceleration of the arm 19 and the gravitational acceleration are simultaneously received.
  • FIG. 11 shows the notch angle of the stator 56 and the eccentric weight applied to the rotor shaft when the notch drive shown in Japanese Patent Publication No.
  • 59-17613 is used as the flat stay-single-type two-pole step motor of the present invention. It is a top view which shows the relationship with a built-in angle. Note that ⁇ is the angle between the notch 56a of the stator 56 and the vertical direction B of gravity.
  • the stationary stable point of the rotor 1 due to the holding torque of a notch type flat stay / single-pole two-pole step motor is, as shown in JP-B-59-17613, as shown in FIG. Since it is approximately 90 °, a relational expression such as equation (3) holds between ⁇ and; 3.
  • Equation (3) becomes as shown in equation (4).
  • the worst condition that affects the activation of the electronic device with vibration alarm 10 of the present invention is to attach the electronic device with vibration alarm 10 to the arm 19 and Was running.
  • the 12 o'clock direction of the dial 12 of the clock 10 with respect to the arm 19 substantially coincides with the vertical direction of the gravitational acceleration as shown in FIG.
  • the angle between the slit 6a of the flat stay 1-step type 2-pole step motor 8 and the slit 6a of the stay 6 and the center of the dial 12 of the clock 10 and the direction of 12 o'clock, and ⁇ and ⁇ are If the eccentric weight 2 and the rotor magnet 3 are fixed to the shaft 4 so that they are at substantially the same angle, vibration with good startability can be obtained even if the acceleration of the arm 19 and the gravitational acceleration are received at the same time as described above.
  • Electronic device with alarm 10 can be configured.
  • the angle between the notch 56 of the notch type flat stay one-step type two-pole step motor and the notch 56 of the watch 56 and the center of the dial 12 of the watch 1 at 12 o'clock is denoted by ⁇ , If the eccentric weight 2 and the magnet 3 are fixed to the rotor shaft 4 so that the angle is approximately the same as that of the notch type, the swing acceleration and the gravitational acceleration of the arm 19 can be simultaneously performed for the notch type.
  • An electronic device with a vibration alarm 10 that can be easily activated even when received can be configured.
  • FIG. 12 is a wristwatch showing an embodiment in which the electronic device with vibration alarm of the present invention is a wristwatch.
  • FIG. 13 is a cross-sectional view of a module of a wristwatch showing still another embodiment.
  • 6 2 and 7 2 are clock dials with a time scale (not shown), 6 9 and 7 9 are pressed into the base plate of the clock module, 6 9 b and 6 9 c are pressed into the base plates 6 9 and 7 9 Tubes 69 b and 69 c guide the bearing 21, and the bearing 21 and the base plates 69 and 79 support the rotor shaft 4 of the mouth 1.
  • FIG. 13 shows an embodiment in which a part of the eccentric weight 2 is not exposed.
  • the flat stay / single-pole two-pole step motors 68 and 78 of the fifth embodiment have the same size as the embodiment of FIG.
  • the large, almost twice as thick stays 6 6 and 7 6 and the coil cores 6 7 a and 7 7 a are adopted.
  • the stators 66, 76 and the coil cores 67 are used.
  • An example was shown in which a and 77a were each composed of two layers. Of course, it may be formed by pressing each sheet while it is thick.
  • Reference numeral 63 denotes a circuit board on which an IC, a transistor, a step-up coil, a chip resistor, and the like (not shown) are mounted, and each of the flat step-and-go two-pole step motors 568 and 788 is driven.
  • 6 1 is an insulating sheet
  • 65 is a second circuit board
  • the second circuit board 65 and the coil terminal board 67 c of the completed coil 67 are not connected.
  • the second circuit board 65 and the coil terminal board 67 c of the completed coil 67 are electrically connected by fixing with the screw 38 c.
  • the circuit board 63 and the second circuit board 65 are electrically connected to each other by a flexible printed circuit board.
  • the coil terminal board 67 c and the circuit board 63 are electrically connected to each other.
  • the flat coiled two-pole step motor 7 8 The completed coil 7 7 of the step motor 7 8
  • the coil terminal board and the circuit board 63 that are not shown are a flat stay-two-pole step motor 40 and 50. Are electrically connected by a method of superposing the conventional coil terminal board and the zero circuit board 63 employed in the above.
  • Reference numeral 6 4 denotes a circuit support base.
  • the circuit support base 6 4 is superimposed on the circuit board 6 3, and the flat type battery 18 is placed on the battery storage section of the circuit support base 6 4, and the battery holding spring 17 is provided. Power is supplied to the circuit board 63 from the flat battery 18 by a battery receiving panel (not shown).
  • the electronic device with a vibration alarm is a wristwatch.
  • the present invention can be applied to a small electronic device such as a card-type bocket with a vibration alarm.
  • the vibration alarm stepper motor of the present invention will be described in more detail with reference to FIGS.
  • the stepping motor for the vibrating alarm of the present invention can be arranged without generating an unused space between the watch case and the watch module.
  • a high-speed rotation drive system for a flat stay-single-pole type 2-pole step motor that reliably transmits vibration to the arm will be described.
  • a flat step-and-stop type 2-pole step motor is simply referred to as a step motor.
  • Fig. 16A is a plan view of a stepper motor for driving a vibration alarm in a separate coil.
  • Fig. 16B is a cross-sectional view of XVIB-XVIB of Fig. 16A.
  • the step motor 301 has a rotor 303 provided with an eccentric weight 302, a stator 304, a drive coil 305, and a counter electromotive voltage detection coil 3056.
  • One back electromotive voltage detection coil 306 is separated from the drive coil 305, and is wound around the coil core 307 on the inner periphery of the drive coil 305, as shown in FIG. 16B. .
  • the back electromotive voltage generated in the back electromotive voltage detection coil will be described.
  • the back electromotive voltage Va generated in the back electromotive voltage detection coil can reduce the current ia flowing through the back electromotive voltage detection coil 0 to zero, and the voltage drop R a * ia due to the DC resistance Ra of the back electromotive voltage detection coil If the back electromotive voltage -La ⁇ (dia / dt) due to the time change of the current ia is ignored (La is the self-inductance of the back electromotive voltage detection coil 306), it can be obtained by the following equation (5).
  • V a -M ⁇ (di / dt) -K a ⁇ sin ( ⁇ + ⁇ 0 ) ⁇ (d ⁇ / dt) 5... (5)
  • M k ⁇ na 0 ⁇ na / "Rm, where na0 and na are the number of turns of the drive coil 305 and the back electromotive force detection coil 306, respectively.
  • k is the proportionality constant
  • Rm is the sign of the product of the time change of the driving current i (hereinafter also referred to as the current when the driving pulse is off) and the driving current i (the magnetic resistance of the magnetic circuit of the step motor). It is caused by the time change of the drive current i, and one Ka ⁇ si ⁇ ( ⁇ + ⁇ .) ⁇ (D ⁇ dt dt) is the mechanical coupling coefficient Ka with the Stepmo ( ⁇ + ⁇ 0 ) and the sign of the product of the time change of the rotation angle ⁇ , that is, the angular velocity of the mouth 303, that is, the sign of the product of the angular velocity is reversed.
  • V ga -Ga-M- (d i / d-t) -Ga
  • V ga in equation (6) is the difference in the block diagram of the 0 FIG. 16C shows that the differential amplification output F of the operational amplifier 108 detects when ⁇ Ga ⁇ K a ⁇ si ⁇ ( ⁇ + ⁇ .) ⁇ (D ⁇ / dt) becomes zero.
  • the rotation angle ⁇ (- ⁇ , one ⁇ . + ⁇ ) of the port 303 can be detected from the position of the magnetic pole N (S) of the port magnet 308 of the stationary rotor 303 by the detent torque shown in FIG. become.
  • Ga is the gain of the differential amplifier 108 (hereinafter also including the sign!). Note that one Ga ⁇ M ⁇ (di / dt) in Equation (6) is ignored. It does not affect detection.
  • FIG. 14 shows a vibration alarm set / reset circuit 105 that outputs a vibration alarm generation pulse A at the vibration alarm time.
  • the alarm generation pulse A is input, the drive is turned on.
  • the Z-off signal B is output.
  • Generating circuit 106 when battery voltage detection instruction signal D is input 0 Battery voltage detection circuit 111 that detects battery voltage and outputs battery voltage rank signal I, phase matching pulse C and battery voltage detection instruction signal D , A start pulse E that outputs a start pulse E and a subsequent drive pulse generation signal J, and a subsequent drive pulse H that outputs a subsequent drive pulse H
  • the stepping motor 3 0 1 is applied to each battery voltage even if the acceleration caused by the swing of the arm etc. is applied to the stepping motor 3 0 1.
  • Pulse width setting means for outputting phase matching pulse width 0 signal, start pulse width signal L, subsequent drive pulse width signal M, pulse interval signal N 1 1 5, pulse interval setting circuit 1 for outputting start pulse generation signal 0
  • a driving pulse generator microcomputer 109 having a driving pulse power supply comprising: a driving pulse force comprising a driving pulse force comprising a driving pulse generator comprising a driving pulse generator comprising a starting pulse E and a subsequent driving pulse H; 0, separated from the drive coil 3 05 that drives the step motor 3 0 1, and the rotor generated back electromotive force generated by the rotation of the rotor 3 0 3
  • Counter voltage detecting coil 306 for detecting the voltage
  • a differential amplifier 108 for differentially amplifying the back electromotive voltage Va generated in the back electromotive voltage detecting coil 306 and outputting a differential
  • FIG. 15 (a) to FIG. 15 (h) are explanatory diagrams for high-speed driving of the mouth of the step 0 motor having the separation type coil shown in FIG. 15 (h).
  • a description will be given with reference to a block diagram of an embodiment of a high-speed rotation drive circuit.
  • the vibration alarm generation pulse A shown in Fig. 15 (a) is output from the vibration alarm set / reset circuit 105, and the drive-on Z-off generation circuit 1065 is turned on as shown in Fig. 15 (b).
  • the drive-on Z-off signal B shown in) is output.
  • the synchronizing pulse generating means 1 1 2 outputs a synchronizing pulse C shown in FIG.
  • the driving circuit 110 supplies a starting current to the driving coil 101.
  • the rotor magnet 308 of the rotor 303 is stationary at a position where it can be activated by the synchronizing pulse 0C.
  • the polarity of the magnetic pole generated on the stator 304 excited by the matching pulse C is the same as the polarity of the magnetic pole of the rotor magnet 308 of the rotor 303 opposite to the magnetic pole of the stay 304. If the polarity is the same, the rotor 303 rotates, but if the polarity is different, the rotor 303 does not rotate.
  • the synchronizing pulse C causes a subsequent drive pulse, that is, a step 304 excited by a start pulse E and a subsequent drive pulse H.
  • a subsequent drive pulse that is, a step 304 excited by a start pulse E and a subsequent drive pulse H.
  • the polarity of the same magnetic pole is the same as the polarity of the magnetic pole of the rotor magnet 308 of the rotor 303, which faces the magnetic pole of the stator 304, so that the following drive The pulse enables the rotor 303 to rotate.
  • the synchronizing pulse generating means 111 is t from the rising of the synchronizing pulse C. Later, a battery voltage detection instruction signal D shown in FIG. 15 (d) is output to the battery voltage detection circuit 111, and the battery voltage detection circuit 111 detects the battery voltage and outputs the battery voltage rank signal. I is output to the pulse width setting means 1 15, and the pulse width setting means 1 15 applies an acceleration to the stepping motor 3 ⁇ 1 to such an extent that the arm is shaken with respect to the battery voltage. Even in this case, the phase matching pulse width, starting pulse width, subsequent driving pulse width, and the phase matching pulse are set so that the step motor 301 can be started stably and can be rotated at a high speed stably.
  • the synchronizing pulse width signal K, the starting pulse width signal L, the subsequent driving pulse width signal M, and the pulse interval signal N are matched with the starting pulse interval, and the synchronizing pulse generating means 1 1 2 and the starting pulse generating means 1 1 3, Subsequent drive pulse generation means 1 1 4 Output to pulse interval setting means 1 16.
  • the synchronizing pulse generating means 112 generates a synchronizing pulse C having a pulse width (tc) corresponding to the battery voltage detected by the battery voltage detecting circuit 111 based on the synchronizing pulse width signal K to the driving circuit. Output to 110.
  • the pulse interval setting means 113 outputs a starting pulse generating signal ⁇ ⁇ formed from the matching pulse C and the pulse interval signal N to the starting pulse generating means 113.
  • the start pulse generating means 113 generates, based on the start pulse width signal L, a start pulse E having a pulse width (te) corresponding to the battery voltage detected by the battery voltage detection circuit 111 and the start pulse E.
  • a start pulse E having a pulse width (te) corresponding to the battery voltage detected by the battery voltage detection circuit 111 and the start pulse E.
  • An auxiliary start pulse 201 (hereinafter, the start pulse E includes an auxiliary start pulse unless otherwise specified) is generated by the start pulse generation signal 0 by “td” after the falling of the synchronizing pulse C by td.
  • 15 (f) shows the differential amplifier output F of the differential amplifier 108 connected to the back electromotive voltage detection coil 306.
  • the differential amplifier output F has a spike noise 202 ( Hereinafter, unless otherwise specified, the noise corresponding to the falling edge of the subsequent drive pulse H is superimposed.)
  • the input of the differential amplifier output F causes the zero-cross comparator 107 to have the configuration shown in FIG.
  • the output G of the zero-cross comparator is output to the subsequent drive pulse generating means 114.
  • the output G of the zero-cross comparator has a spike pulse 204 corresponding to the spike noise 202 superimposed thereon.
  • the subsequent drive pulse generating means 114 has a function of digitally masking a spike pulse 204 corresponding to the spike noise 202 shown in FIG.
  • the battery voltage detected by the battery voltage detection circuit 0 1 1 1 1 in synchronization with the time excluding the rise and fall times of the spike pulse 204 during the fall time The stepping motor 301 outputs the subsequent driving pulse H having a pulse width (t ah) smaller than the matching pulse width (tc) and the starting pulse width (te) corresponding to the following.
  • the rotor 303 can be rotated at a high speed at a rotational speed balanced with the frictional resistance acting on the constant acceleration drive Ri good rotor 303.
  • the subsequent drive pulse generating means 114 reduces the pulse width (t ah) of the subsequent drive pulse H with an increase in the rotation speed of the step motor. Then, the pulse width (tah) is optimized for the rotation speed of the step motor.
  • This embodiment uses a low-pass filter composed of a resistor R1 and a capacitor C1 shown in Fig. 17G, because the differential amplifier 108 does not have a single-pass filter shown in Fig. 17A. Since the output F of the differential amplifier 108 is not delayed with respect to time due to the following (hereinafter referred to as R 1 C 1-port one-pass filter 1), the output of the zero-cross comparator excluding the spike pulse 204 is not generated.
  • the rotation angle ⁇ corresponding to the rise and fall of the force G is almost 1 ⁇ . Or 71 — ⁇ . become.
  • the function of the circuit for digitally masking spike pulses shown in FIG. 18 will be described with reference to the flowchart shown in FIG.
  • the starting pulse composed of the synchronizing pulse and the starting pulse is output from the synchronizing pulse generating means and the starting pulse generating means independently of the zero-crossing comparator output G, and is shown in Fig. 19 (a). Indicates the subsequent drive pulse after the start pulse.
  • the spike pulse 204 may not be generated when the rotation speed of the step motor increases, and FIG. 190 (b) shows the zero-cross comparator in which the spike pulse 204 is generated.
  • the evening output G and the zero-crossing contrast evening output G where no spike pulse 204 was generated are shown.
  • Figure 18 masks the inversion of the zero-cross comparator output G generated by the start pulse E against the zero-cross comparator output G (here, the start pulse E is the start pulse E excluding the auxiliary start pulse 5).
  • the start pulse E is the start pulse E excluding the auxiliary start pulse 5.
  • Spike pulse Block 204 to mask back edge of 204 4 002, Spike pulse It comprises a block 503 for masking the front edge 601 of 204 and also for the zero-cross comparator output G in which the spike pulse 204 is not generated.
  • the zero-cross comparator output G is input to a waveform shaping circuit that makes the rising and falling of the pulse of the zero-cross comparator output G a single rising and falling edge.
  • the zero-cross comparator output G is passed through a delay circuit 504 to invert the output of the delay circuit 504. , F4 to generate F3 CI (d) and F4Q (e), and then AND and A1 to generate an AND output of the F3 Q (d) and F4 Q (e), Al (f).
  • the flip-flops F3 and F4 are reset by the whisker pulse output M2Q (g) of the pulse generator M2 due to the rise of the subsequent drive pulse H (a).
  • Block 503 generates the outputs F 1 Q (j) and F2 3 ⁇ 4 (k) of the flip-flops F 1 and F 2 by the inverting (c) and non-inverting (b) inputs of the zero-cross comparator output G.
  • the OR output C12 (1) of CI (j) and F 2 Q (k) is output to generate the subsequent drive pulse H.
  • the pulse generator generated by the fall of the subsequent drive pulse H (a) for masking the front edge 601 and the output pulse Ml Gl (h) of Ml
  • the flip-flops F 1 and F 2 are reset by the OR output Q l (i) of Al (f) for masking the back edge 602.
  • Fig. 23A is a plan view of a stepping motor for driving a vibration alarm in a coil with tap
  • Fig. 23B is a cross-sectional view of XXI1IB-XMB of Fig. 23A
  • the plan view of the stator and rotor is the same as Fig. 16C.
  • the step motor 1101 includes a mouth 303 provided with an eccentric weight 302, a stay 304, and a drive coil 1102.
  • the back electromotive voltage detection coil 1103 is a coil made up of the entire drive coil 1102 or a tap taken out from a part.
  • the back electromotive voltage generated in the back electromotive voltage detection coil 1103 will be described.
  • the back electromotive voltage Vb generated in the back electromotive voltage detection coil is expressed by the following formula, including the voltage drop Rb * ib due to the DC resistance Rb of the back electromotive voltage detection coil, where ib is the current flowing through the back electromotive voltage detection coil. Required by (7).
  • Vb -Lb-(dib / dt) -Kb sin ( ⁇ + ⁇ 0 )-
  • one Lb * (d ib / dt) is the equivalent self-inductance L b (reverse The equivalent self-inductance Lb is (nb2 + nbnbO) no Rm, where nb is the number of turns of the electromotive voltage detection coil 1103 and nbO is the number of turns of the coil section not used for the back electromotive voltage detection coil 1103 of the driving coil.
  • Rm is the inverse of the sign of the product of the time change of the drive current ib and the time change of the drive current ib, where Rm is generated by the time change of the drive current ib, and one Kb • sin ( ⁇ + ⁇ 0 ) ⁇ (d ⁇ / dt) is the product of the mechanical coupling coefficient Kb, sin ( ⁇ + ⁇ .) with the step motor 1101, and the time change of the rotation angle ⁇ of the rotor 3 ⁇ 3, that is, the angular velocity.
  • Kb • sin ( ⁇ + ⁇ 0 ) ⁇ (d ⁇ / dt) with the step motor 1101, and the time change of the rotation angle ⁇ of the rotor 3 ⁇ 3, that is, the angular velocity.
  • the state is determined from the position of the magnetic pole N (S) of the rotor magnet 308 of the rotor 303 stopped by the detent torque. It is the angle from the slit 309 of the tab 304 to a position almost 90 degrees. Further, the output V gb of the differential amplifier described later is obtained by the following equation (8).
  • Vgb -Gb-Lb-(d ib d t) -GbKb sin (S + ⁇ o)-(d ⁇ / d t) -GbRb
  • V gb in equation (8) is the differential amplification force F of the differential amplifier 908 in the block diagram of the high-speed rotation drive circuit of the step motor rotor shown in FIG. ( ⁇ + ⁇ .) ⁇
  • the magnetic pole N S
  • the rotation angle ⁇ ( ⁇ 6, one ⁇ . + TC) of the rotor 303 from the position can be detected.
  • Gb is the gain of the differential amplifier 908.
  • the output V gb of the differential amplifier in the tapped coil contains 1 GbLb (d ib / dt) -GbRbib due to the time change of the drive current 5 ib of the drive coil, but it is negligible. Things.
  • FIG. 21 is a block diagram of an embodiment of the high-speed rotation drive circuit of the rotor of the step motor shown in FIG. 14, a drive coil 305, a connection method between the drive coil 305 and the drive circuit 110, and a drive coil 305.
  • the driving coil 1102 in FIG. 21 is connected to the driving circuit 110, and the back electromotive voltage detecting coil 1103 is connected to the differential amplifier 908. are doing. Otherwise, it is the same as Fig. 14, so the explanation is omitted.
  • FIG. 21 is a block diagram of an embodiment of a high-speed rotation drive circuit for a rotor of a stepping motor having a coil with an evening light as shown in FIG. 21.
  • FIGS. 22 (a) to 22 (e) are the same as FIGS. 15 (a) to 15 (e), and a description thereof will be omitted.
  • FIG. 22 (f) shows the differential amplifier output F of the differential amplifier 908 connected to the back electromotive voltage detection coil 1103. A spike noise 1002 is superimposed on the differential amplifier output F.
  • the zero-cross comparator 107 In response to the input of the differential amplifier output F, the zero-cross comparator 107 outputs a zero-cross comparator output G to the subsequent drive pulse generating means 114 as shown in FIG. A spike pulse 1004 corresponding to the spike noise 1002 is superimposed on the zero-cross comparator output G.
  • the subsequent driving pulse generating means 114 is not capable of generating the spike noise as shown in FIG.
  • the subsequent drive pulse generating means 114 receives the subsequent drive pulse generation signal J from the starting pulse generating means 113 after the input thereof.
  • the rising and falling times of the spike pulse 1004 are excluded from the rising and falling times of the output G of the cross-cross comparator shown in FIG. 22 (g).
  • the step motor 1101 is constantly accelerated by the subsequent drive pulse H, and can rotate the rotor 303 at a high speed at a rotational speed balanced with the frictional resistance acting on the rotor 303.
  • the subsequent drive pulse generating means 114 reduces the pulse width (tbh) of the subsequent drive pulse H with an increase in the rotation speed of the step motor. Make the pulse width (tbh) optimal for the motor speed.
  • This embodiment is different from the above-described differential amplifier using the low-pass filter in that the differential amplifier 908 shown in FIG. 24A does not have the R 2 C 2 and R 3 C 3 low-pass filters shown in FIG. 12B. Since there is no time delay of the output F of 908, the rotation angle S corresponding to the rise and fall of the output of the zero-cross comparator excluding the spike pulse 1004 is substantially 1 ⁇ . Or ⁇ 1 ⁇ 0.
  • the rotor can accelerate sufficiently. Can be increased.
  • FIG. Fig. 27 ⁇ is a plan view of the stepping motor for driving the vibration alarm in the cancel type coil.
  • Fig. 27 ⁇ is a sectional view taken along the line ⁇ - ⁇ in Fig. 27 ⁇ .
  • the step motor 1501 includes a rotor 303 provided with an eccentric weight 302, a stator 304, and a drive coil 1502.
  • the drive coil 1502 is connected in series to the active drive coil 1503 and the active drive coil to detect the magnetic pole positions of the rotor 303, and has the same DC resistance and self-inductance but different winding directions. It consists of rotor-generated counter electromotive voltage detection coils 0 1 504 and 15 ° 5.
  • the back electromotive voltage generated in the back electromotive voltage detection coils 1504 and 1505 will be described.
  • the back electromotive voltage V c generated in the rotor generated back electromotive voltage detection coil 1 504 is calculated by the following equation (including the voltage drop R c ⁇ i C due to the DC resistance R c of the rotor generated back electro voltage detection coil 1 504). 9).
  • V c -L c-(diedt) one K c sin ( ⁇ + ⁇ o) (d ⁇ / dt)-R c ⁇ ic ⁇ ⁇ ⁇ (9)
  • the back electromotive voltage V d generated in the rotor generated back electromotive voltage detection coil 1505 is represented by the following equation (including the voltage drop R d ⁇ id due to the DC resistance R d of the rotor generated back electromotive voltage detection coil 1505). 1 0).
  • V d - L d - ( di a / dt) - ⁇ - ⁇ + ⁇ ) ⁇ 0 (d ⁇ / dt + R d ⁇ i -. (10)
  • the equivalent self-inductance Lc and one Ld, and the mechanical coupling coefficients Kc and Kd are respectively equal to i (-i), R, L (one L), and 5K. The difference is that only the sign of R ⁇ i is different. Further, the output V of the adder described later is obtained by the following equation (11).
  • V -2GL (d i / d t)-2GK
  • V in equation (11) is the adder 1308 in the block diagram of the high-speed rotation drive circuit of the step motor shown in FIG.
  • the voltage drop due to the DC resistance is canceled out, and the time difference of the drive current i causes the change of 12 ⁇ GL ⁇ (di / dt) and the rotor 303.
  • the back electromotive voltage generated by rotation is the sum of 1 2 ⁇ G ⁇ K ⁇ si ⁇ ( ⁇ + ⁇ )-( ⁇ ⁇ / dt).
  • the rotor magnet of the rotor 303 stopped by the detent torque as shown in FIG.
  • FIG. 26 fa A switch with a cancel coil shown in Fig. 26 fa) to Fig. 26 (h)
  • FIG. 26 (h) An explanatory diagram of an embodiment for driving a rotor of a stepping motor at high speed will be described with reference to a block diagram of an embodiment of a high speed rotation driving circuit of a rotor of a step motor having a cancel coil shown in FIG.
  • the starting pulse generating means 113 generates a pulse composed of a starting pulse E and an auxiliary starting pulse 201, and an adder 1308 shown in FIG. , C3, R4, C4, R5, C5 do not have a low-pass filter, while the subsequent drive pulse generating means 114 is described in detail in the configuration diagram of the digitally masking spike pulse circuit in FIG.
  • a function of digitally masking a spike pulse generated by spike noise superimposed on the back electromotive voltage added by the adder is provided. It also has the function of calculating the number of revolutions and narrowing the subsequent drive pulse width (th) as the number of revolutions of the step motor increases.
  • FIG. 26 (f) shows the adder output F 'of the adder 1308 connected to the rotor-generated counter-electromotive voltage detection coils 1504, 1505.
  • a spike noise 1402 is superimposed on the adder output F '.
  • the zero cross comparator 107 outputs a zero cross comparator output G as shown in FIG. 26 (g) to the preceding driving pulse generating means 114.
  • a spike pulse 1404 corresponding to the spike noise 1402 is superimposed on the zero-cross comparator output G.
  • the subsequent drive pulse generation means 114 has a function of digitally masking the pulse 1404 corresponding to the spike noise 1402
  • the subsequent drive pulse generation means 114 has the function of generating the start pulse as shown in FIG.
  • the zero crossing 1403 shown in Fig. 26 (f) Corresponding to the rising and falling times of the zero-cross comparator output G shown in FIG. 26 (g) and the rising and falling times of the spike pulse 1404, synchronized with the time excluding the falling time As shown in (h), after the pulse width (th) smaller than the phase matching pulse width (tc) and the starting pulse width (te) corresponding to the battery voltage detected by the battery voltage detection circuit 111, Outputs drive pulse H.
  • the stepping motor 1501 is constantly driven to accelerate by the subsequent driving pulse H, and can rotate the rotor 303 at a high speed at a rotational speed balanced with the frictional resistance acting on the rotor 303.
  • the subsequent drive pulse generation means 114 reduces the pulse width (th) of the subsequent drive pulse H as the rotation speed of the step motor increases, and sets the pulse width (th ).
  • the adder 1308 does not include the 1 ⁇ 3, C3, R4, C4, R5, C 5-pass one-pass filter shown in FIG. Since the output F of 13058 does not occur in time, the rotation angle ⁇ ⁇ corresponding to the rise and fall of the zero-cross comparator output is approximately 100 or ⁇ - ⁇ 0.
  • the applied voltage to the step motor driver is 3 'and the pulse width of the subsequent drive pulse is about 3 ms
  • the number of rotations of the rotor 303 per minute is about 6000 rpm
  • the drive current (peak Value) was as small as about 2 mA.
  • FIGS. 26 (a) to 26 (e) are explanatory diagrams of an embodiment for driving the rotor of the step motor shown in FIGS. 29 (a) to 29 (h) at high speed. ) And the explanation is omitted.
  • FIG. 30 shows a circuit configuration diagram of the adder 1708.
  • the adder 1708 is connected to the output terminals of the differential amplifiers 1601, 1602 and the differential amplifiers 1601, 1602, respectively, which are connected to the coil 1504, 1505 for detecting the back electromotive force generated in the mouth.
  • the output of the adder 1 ⁇ 08 is also represented by the following equation (11) (gain G has a frequency characteristic by a single pass filter).
  • the output of the differential amplifiers 1601 and 1602 is The outputs corresponding to the generation time of the subsequent drive pulse H have the same sign, and cannot be removed by the adder / amplifier 1903, so that they appear as so-called spike noise overlapping with the adder output F '.
  • the spike noise refers to not only the noise corresponding to the fall of the subsequent drive pulse H but also the noise corresponding to the rise and fall of the subsequent drive pulse H. If the adder output F ′ is zero-crossed at any time due to the spike noise, an unnecessary subsequent drive pulse H is output from the drive pulse generation microcomputer 109, and the rotor 303 cannot rotate normally. Therefore, in order to remove the spike noise, a low-pass filter R4, C4, R5, C5 and a single-pass filter formed by R3, C3 are required.
  • f1 and f2 f3 range from fr to 4 fr, where fr is the maximum rotation frequency of the step motor. Must be set to 0.
  • the cut-off frequency is lower than fl, f2, and f3. Since the frequency spike noise cannot be removed, a clamp 1802 force is generated at the adder output F 'shown in Fig. 295 (f) within the generation time of the synchronizing pulse (:, start pulse E, and subsequent drive pulse H).
  • the zero cross output of the cross-cross comparator 107 due to the spike pulse corresponding to the fall of the subsequent drive pulse ⁇ ⁇ ⁇ ⁇ is eliminated, and the subsequent drive pulse ⁇ can be generated only by the zero cross of the rotor-generated back electromotive force. No problem occurs in the stability of the high-speed rotation.
  • the rotation angle ⁇ is determined in order to effectively use the detent torque and the excitation torque generated by the drive current flowing through the drive coil 1502 for the rotation drive of the rotor 303, and to optimize the start-up characteristics and the rotation speed of the rotor 303. Is between the magnetic equilibrium point corresponding to the detent torque and the excitation equilibrium point corresponding to the excitation torque. Is desirable, as shown in Figure 16C from 0 to 1 ⁇ . , Or 71 — ⁇ . It is desirable to be between ⁇ and ⁇ .
  • the delay of the rotation angle ⁇ is ⁇ .
  • Fig. 31 (f) (Fig. 31 (a) to Fig. 31 (e) are the same as Fig. 29 (a) to Fig.
  • the zero cross level of the mouth cross shift is shifted from the zero level to the positive side (zero cross level 200 1), and shifted to the minus side (zero cross level 200 2).
  • the zero-cross comparator 107 is operated in the time-advancing direction, and the rising and falling of the zero-cross comparator output G is advanced in time 0 as shown in Fig. 31 (g).
  • FIG. 31 (h) it is necessary to make the generation of the subsequent drive pulse H temporally advance to recover the delay of the rotation angle ⁇ of the rotor 303.
  • FIG. 32 the configuration different from that of FIG. 16. This is the addition of the rotation non-rotation detection circuit 2 1 17 which outputs to the start pulse generation means 2 1 1 3. Except for this, the configuration is the same as that of FIG.
  • Fig. 33 is an explanatory view of another embodiment for driving the mouth of the step motor having the cancel type coil at high speed at a high speed
  • Fig. 32 shows the high speed of the rotor of the step motor having the cancel type coil shown in Fig. 32.
  • the difference is that the starting pulse generating means 2 113 uses the starting pulse width signal L to detect the battery voltage.
  • auxiliary start pulse pulse width is tgr, when the rotor 303 rotates, tgn when it does not rotate, as shown in Fig. 33 Ce) (In FIGS. 33 (f), 33 (g) and 33 (h) shown below, a solid line is shown when the mouth 303 is rotated, and a broken line is shown when it is not rotated.
  • the output of the starting pulse generation means 2113 The output time and pulse width of the start pulse E can be set.However, in order for the rotation non-rotation detection circuit 21175 to detect the rotation and non-rotation of the mouth 303, from the falling of the matching pulse C, Since a predetermined time is required, a start pulse E having a pulse width wider than that of the subsequent drive pulse H is required even if the row 303 is rotated by the synchronizing pulse.
  • FIG. 33 (f) shows the adder output F 'of the adder 1308 before connection to the rotor-generated counter electromotive voltage detection coils 1504 and 1505. Due to the input of the adder output F ', the zero-cross comparator 10 outputs a zero-cross comparator output G to the subsequent driving pulse generating means 114 as shown in FIG. After the input 5 of the subsequent drive pulse generation signal J from the start pulse generation means 2113, the subsequent drive pulse generation means 114 receives the zero cross comparator output G corresponding to the zero cross 2203 shown in FIG.
  • the matching pulse width (tc) and the starting pulse width (tc) corresponding to the battery voltage detected by the battery voltage detection circuit 111 based on the subsequent pulse width signal M ter, ten) Output a subsequent drive pulse with a pulse width (th) smaller than (th).
  • the step motor 1501 is constantly accelerated and driven by the subsequent drive pulse H, and can rotate the rotor 303 at a high speed at a rotational speed balanced with the frictional resistance acting on the rotor 303.
  • the actual drive coil 1503, the back electromotive voltage detection that occurs over the mouth 0 The drive coil 1502 consisting of the coils 1504 and 1505, and the wire 2306 shown in Fig. 34 According to (1), the bow is pulled out from the wire guide 2307, and the wire 2306 is hooked on the coil bobbin 2305. Wind the wire 1505, then pull the wire 2306 to the wire hooking pin 230 by (2), and pull the wire 2306 to the coil bobbin 230 by (3). Hook the coil and return the back electromotive voltage detection coil 1504 around the coil core 307 in the opposite direction to the back electromotive voltage detection coil 1505.
  • the drive ON / OFF generator circuit 106 in FIGS. 14, 21, 25, 29, and 32 is a vibration alarm set / reset circuit 105.
  • the vibration alarm generation pulse A shown in the following is input, the drive ON time ton corresponding to the drive ON of the stepping motor and the drive OFF time B corresponding to the drive OFF are output.
  • the step motor is rotationally driven within the drive-on time "ton” and stops at the drive-off time "off", whereby the vibration of the vibration alarm is modulated.
  • the vibration of the eccentric weight of the step motor can be transmitted more strongly to the tactile organ of the arm through the watch case than the modulation and constant vibration.
  • FIG. 36 The drive on / off generation circuit 106 in Fig. 14, Fig. 21, Fig. 25, Fig. 29, and Fig. 32 is shown in Fig. 36 (a) from the vibration alarm set Z reset circuit 105.
  • a drive ON / OFF signal B consisting of a pulse with the drive ON time “ton” corresponding to the drive ON of the step motor is output.
  • the zero-pulse generating means generates a subsequent drive pulse having a constant pulse width ("h) for the time tcon, then gradually reduces the width of the subsequent drive pulse, measures the interval of the subsequent drive pulse, When the subsequent drive pulse interval becomes "ts”, gradually increase the subsequent drive pulse width. And, after the subsequent drive pulse interval becomes "t bundle", the pulse width is constant for the time of tcon 5 (th) is generated. Thereafter, the above is repeated. As a result, the rotation speed of the rotor in the step mode increases or decreases, The vibration of the vibration alarm is modulated, and the vibration of the eccentric weight of the stepper can be transmitted to the tactile organ of the arm more strongly through the watch case than the constant vibration without modulation.
  • the rotor is driven by detecting the rotor position from the back electromotive voltage (hereinafter referred to as rotor generated back electromotive voltage) induced in the drive coil by the magnetic flux generated by the rotating rotor, and detecting the rotor position.
  • rotor generated back electromotive voltage back electromotive voltage
  • the rotation angle ⁇ of the rotor is obtained by equation (15).
  • the rotation angle ⁇ of the mouth-to-mouth angle is 0 ° with the magnetic equilibrium point of Fig. 16C being 0, and the clockwise rotation is positive. Degrees.
  • the rotor back-emf voltage, one K ⁇ sin ( ⁇ + ⁇ .) ⁇ (D0 / dt) is the rotation angle of the rotor ⁇ [one ⁇ 0 , one ⁇ in 0 + [pi) or time to the subsequent drive pulse (pulse width Te)
  • the mouth Isseki acceleration drive the simulation calculation results (number of revolutions of the time variation of the rotor per minute) in FIG. 37.
  • the applied voltage is 3.0 (V)
  • the DC resistance (R + R.) of the drive coil including the 0 ⁇ resistance of the motor driver is 200 ( ⁇ )
  • self-inductance L is 200 meters H
  • the moment of inertia J is 2. 8x 10 "9 (k gm 2)
  • the electromechanical coupling coefficient K 5.
  • detent torque T s is 5.
  • the load torque is 0. 0 (Nm)
  • due to gravity moment Mg of the eccentric weight is 6.0
  • X 10- 6 is (Nm).
  • the rotational speed of the rotor is detected from the back electromotive voltage generated by the rotor, and the position of the rotor is detected.
  • the drive current was supplied to the drive coil and the rotor was accelerated and driven.
  • the drive current (peak value) at constant high-speed rotation can be reduced to about 3 mA.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electric Clocks (AREA)
  • Electromechanical Clocks (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Description

明細書
振動アラーム付電子機器
発明の技術分野
本発明は、 振動アラーム付電子機器に関し、 特に振動を腕に伝えるこ とによってアラームを知らせる振動アラーム付電子機器に内蔵したス テツプモータに関する。
発明の背景技術
偏心重りをモータで回転させて振動を発生させる電子機器としての従 来の振動アラーム付腕時計は、 実開平 2— 6 2 9 1号公報や実開平 2 - 〇■ 1 0 7 0 8 9号公報に開示されているように、 超音波モ一夕を内蔵し、 前記超音波モー夕の口一タの回転を重心位置の偏つた偏心おもり車に伝 達し、 偏心おもり車の回転によって生じた振動を時計ケースを介して腕 に伝え、 振動アラームとして知らせるものであった。
実開平 2 - 6 2 9 1号公報や実開平 2— 1 0 7 0 8 9号公報における 5 超音波モータは、 圧電素子を接着した振動体を支持ピンにより支持し、 ロータと前記振動体とを加圧バネで圧接する構造となっている。 その動 作原理は、 圧電素子の振動を振動体に設けたくし歯部で偏位拡大し、 該 くし歯部に進行波を発生させ、 くし歯部とロータの相互の加圧摩擦力に よって口一夕を回転させるものである。
0 すなわち、 ロータは常に加圧パネで振動体のくし歯部に圧接されなが ら回転することになり、 ロータとくし歯部の接触部の摩耗は避けられ ず、 耐久性に乏しいという欠点があった。
又、 前記圧電素子の振動の振幅は小さい為、 その振幅を偏位拡大する ための振動体のくし歯部は、 特に加工精度が要求される為、 加工が難し 5 く、 安定的にロータを回転させるためには、 振動体ばかりでなく、 圧電 素子やロータ等の各部品の加工精度や組立精度を厳しくしなければなら ないという欠点があった。
本発明は、 ロータの回転耐久性があり、 組立が容易で、 消費電力が小 さく、 腕を振るなどによって加速度力 s '加わっても安定に起動し、 かつ高 速回転できるように、 ステップモータを駆動源とした、 信頼性のある小 型振動アラーム付電子機器 (例えば腕時計) を提供することを目的とす る。
発明の概要
前記目的を達成するために、 本発明によれば、 回転軸に対し偏心した 位置に重心を有する偏心重りをモータで回転させて振動を発生させる振 動アラームィ寸電子機器において、 前記モータが 2極の偏平ステ一夕と 2 極の永久磁石を有するロータと前記偏平ステ一タに対して磁気的に結合 した駆動コイルとからなり、 前記ロータのロータ軸に前記偏心重りを直 接固着した偏平ステ一夕型 2極ステップモータであり、 該扁平ステ一夕 型 2極ステップモータの前記ロータを回転させることにより前記偏心重 りを回転させて振動を発生させることを特徴とする振動アラーム付電子 機器が提供される。
上記振動アラーム付電子機器において、 ロータの静止時における偏心 重りの重心の位置は、 ロー夕軸を中心として偏心重りの回転方向に沿つ て重力の鉛直方向までの角度を Θとしたとき、 0 ° < θ < 9 0 ° 又は 1 8 0。 < θ < 2 7 0 ° の位置になるように配置されている。
又、 上記振動アラーム付電子機器において、 ロータ軸を中心として偏 心重りの回転方向に沿って偏心重りの重心からロータ磁石の磁極までの 角度を 3とし、 扁平ステ一夕型 2極ステップモー夕のステ一夕のスリッ 卜と重力の鉛直方向との角度を σとしたとき、 aと /3が略同一角度とな る様に偏心重りとロータ磁石とがロータ軸に固着されている。
又、 前記振動アラーム付電子機器が腕時計であり、 扁平ステ一夕型 2 極ステップモータのステ一夕のスリツ 卜と時計の文字板中心から 1 2時 方向との角度を αとし、 αと 3が略同一角度となる様に偏心重りとロー 夕磁石とが口一夕軸に固着されている。
又、 前記振動アラーム付電子機器が腕時計であり、 時計モジュールを 構成する地板と、 時刻目盛を有する文字板とを有し、 前記地板を境とし て文字板側に偏心重りが、 文字板と反対側にロータ磁石が配置されてい る。
さらに、 前記振動アラーム付電子機器が腕時計であり、 時計モジユー ルを構成する地板と、 時刻目盛を有する文字板とを有し、 偏心重りが前 0 記地板に隣接するように配置され、 前記地板及び文字板に偏心重りの一 部を露出させるための貫通孔が設けられている。
さらにまた、 上記振動アラーム付電子機器において、 前記偏平ステー 夕型 2極ステップモータの前記ロータの回転駆動回路装置がアラーム時 刻に出力されたアラーム信号に基づいて前記ステップモータを駆動する 5 ためのパルス信号を出力する駆動パルス発生手段と、 該駆動パルス発生 手段からのパルス信号に基づき、 前記駆動コイルに駆動電流を供給する ための駆動回路と、 前記駆動コィルに生じた起磁力を前記ロータに伝え る前記扁平ステ一夕と、 前記口一夕の回転によって生じる逆起電圧を検 出する逆起電圧検出コイルと、 そして前記逆起電圧検出コイルに生じる 0 逆起電圧に基づいて前記扁平ステ一夕に対する回転中のロータの磁極位 置を検出し、 かつ前記駆動パルス発生手段からの前記パルス信号の出力 タイミングを制御するための検出信号を前記駆動パルス発生手段に出力 する磁極一検出手段とを具備する。
上記各態様から明らかな通り、 本発明における電子機器は、 従来技術 5 で確立されている偏平ステ一タ型 2極ステップモータを利用し、 偏平ス テ一夕型 2極ステップモータ構成するロータのロータ軸に偏心重りを直 接固着し、 ロータを回転させることにより偏心重りを回転させ、 偏心重 りの重心の回転移動に伴う振動を発生させ、 使用者に振動で報知できる ようにしている。
上記の如く本発明によれば、 加工技術の習熟した従来技術を駆使でき る扁平ステ一夕型 2極ステップモータを使って振動アラーム付電子機器 を構成することができ、 且つ、 ロータ軸に偏心重りを直接固着し、 扁平 ステ一タ型 2極ステップモータのロー夕を回転させることにより偏心重 りを回転させて振動を発生させているため、 ロータの回転耐久性があ り、 組立が容易で、 消費電力が小さく、 安定して回転できる信頼性のあ 0 る振動アラーム付電子機器を提供することができる。
又、 本発明によれば、 ロータの静止時における偏心重りの重心の位置 を、 ロータ軸を中心として偏心重りの回転方向に沿って重力の鉛直 方向までの角度を Sとしたとき、 0 ° < θ < 9 0 ° 又は 1 8 0 ° く Θく 2 7 0 ° となるように配置しているために腕を振る等の加速度が加わつ δ た時にも、 安定して起動、 回転できる信頼性のある振動アラーム ^寸電子 機器を提供することができる。
又、 本発明によれば、 ロータ軸を中心として偏心重りの回転方向に 沿って偏心重りの重心からロータ磁石の磁極までの角度を 3とし、 扁平 ステ一夕型 2極ステップモータのステ一夕のスリットと重力の鉛直方向 0 との角度を αとしたとき、 αと 13が略同一角度となる様に偏心重りと ロータ磁石をロータ軸に固着することによって、 腕の振りの加速度と重 力加速度を同時に受けても起動性の良い振動アラーム付電子機器を提供 することができる。
又、 本発明によれば、 あらかじめステ一夕のスリットと重力の鉛直方 δ 向との角度 αを測定し、 偏心重りの重心から回転方向 Cに沿った角度 |3 の偏心重りの一部にマークを設けておき、 ロータ磁石の磁極の方向を示 すマークと偏心重りのマークを合わせて固着するだけで、 腕の振りの加 速度と重力加速度を同時に受けても起動性の良い振動アラーム付電子機 器を提供することができる。
又、 本発明によれば、 振動アラーム付電子機器の起動に影響を及ぼす 最悪の状態は、 振動アラーム付電子機器を腕につけてランニングを行つ ている時で、 時計の文字板の 1 2時方向が重力加速度の鉛直方向と略一 致する為、 扁平ステ一夕型 2極ステップモータのステ一夕のスリッ トと 時計の文字板の中心から 1 2時方向との角度を αとし、 αと )3が略同一 角度となる様に偏心重りとロータ磁石を口一夕軸に固着すれば、 腕の振 0 りの加速度と重力加速度を同時に受けても起動性の良い振動アラーム付 電子機器を提供することができる。
又、 本発明によれば、 時計モジュールを構成する地板を境として文字 板側に偏心重り、 文字板と反対側にロータ磁石を配置することにより、 完成コイルを除く扁平ステ一夕型 2極ステップモータの周辺のモジュ一 5 ル厚をおさえ、 偏平型電池を重ねることができ、 薄型の時計モジュール を構成することができる。
又、 本発明によれば、 偏心重りを時計モジュールを構成する地板に隣 接するように配置し、 地板及び文字板に偏心重りの一部を露出させるた めの貫通孔を設けているため、 偏心重りの重心の回転移動に伴なう振動 0 以外に偏心重りの回転を目視で知らせることができる。
さらに、 本発明によれば、 低消費電力で耐久性があり、 組立の容易 な、 安定に起動、 高速回転するステップモータを搭載した、 信頼性のあ る小型振動アラーム付電子機器を提供できる効果がある。 特に逆起電圧 検出コイルに生じる逆起電圧に基づいて、 偏平ステ一夕に対する回転中 5 のロータの磁極位置を検出磁極位置検出手段とを備えており、 駆動パル ス発生手段は、 磁極位置検出手段からの検出信号に基づいて前記パルス 信号の出力タイミングを制御するので、 振動アラームに必要な高速回転 するステップモー夕を実現できる。
前記ならびに他の本発明の目的、 態様、 そして利点は本発明の原理に 合致する好適な具体例力 s実施例として示されている以下の記述および添 付の図面に関連して説明されることにより、 当該技術の熟達者にとって 明らかになるであろう。
図面の簡単な説明
図 1は本発明の振動アラーム付電子機器の扁平ステ一夕型 2極ステツ プモータを構成するロータの平面図であり、
0 図 2は図 1の Π— ϋ線に沿った断面図であり、
図 3は本発明の振動アラーム付電子機器が腕時計の場合の平面図であ 9、
図 4は図 3に示した腕時計のモジュールを示す平面図であり、 図 5は図 4に示した腕時計のモジユールの断面図であり、
5 図 6は図 4に示した腕時計のモジュールの断面図であり、
図 7は本発明の振動アラーム付電子機器と腕の関係を示す外観図であ 、
図 8は本発明の偏心重りの重心の静止位置と重力の鉛直方向とのなす 角度とロータの起動性との関係図であり、
0 図 9 Α乃至図 9 Dはそれぞれ本発明のロータの回転方向と偏心重りの 重心の静止位置との関係図であり、
図 1 0は本発明の扁平ステ一タ型 2極ステップモータのステ一夕のス リッ卜角度と偏心重りのロータ軸への組み込み角度との関係を示す平面 図であり、
5 図 1 1は本発明の扁平ステ一夕型 2極ステップモータのステ一タの ノッチ角度と偏心重りの口一夕軸への組み込み角度との関係を示す平面 図であり、
図 1 2は本発明の振動アラーム付電子機器が腕時計の場合の他の実施 例を示す腕時計のモジュールの断面図であり、
図 1 3は本発明の振動アラーム付電子機器が腕時計の場合のさらに他 の実施例を示す腕時計のモジュールの断面図であり、
図 1 4は分離型コイルを有するステップモータのロータの高速回転駆 動回路の実施例のプロック図であり、
図 1 5 ( a ) 乃至図 1 5 ( h ) は分離型コイルを有するステップモー 夕のロータを高速回転駆動するための説明図であり、
0 図 1 6 Aは分離型コイルを有する振動アラーム駆動用ステップモータ の平面図であり、
図 1 6 8は図1 6 Aにおける線 ΠΒ— XVIBに沿った断面図であり、 図 1 6 Cはステ一夕及びロー夕の組立体の平面図でぁ理、
図 1 7 A及び図 1 7 Bはそれぞれ分離型コイルを有するステップモー 5 タの高速回転駆動回路の差動増幅器の回路構成図であり、
図 1 8はディジタル的にスパイクパルスをマスクする回路の構成図で あり、
図 1 9はディジタル的にスパイクパルスをマスクする回路の機能フ ローチャー卜であり、 〇 図 2 0は本発明のステツプモータの駆動パルスの時間変化であり、 図 2 1はタップ付きコイルを有するステップモータのロータの高速回 転駆動回路の実施例のプロック図であり、
図 2 2 ( a ) 乃至図 2 2 ( h ) はタップ付きコイルを有するステップ モータのロータを高速回転駆動するための説明図であり、
5 図 2 3 Aはタップ付きコイルを有する振動アラーム駆動用ステップ モータの平面図であり、 図 2 3 Bは図 2 3 Aにおける XXIB - XXIB に沿った断面図であり、 図 2 4 A及び図 2 4 Bはそれぞれ夕ップ付きコイルを有するステップ モータの高速回転駆動回路の差動増幅器の回路構成図であり、
図 2 5はキャンセルコイルを有するステップモータのロータの高速回 転駆動回路の実施例のブロック図であり、
図 2 6 ( a ) 乃至図 2 6 ( h ) はキャンセルコイルを有するステップ モータの口一夕を高速回転駆動するためのさらに他の実施例の説明図で あり、
図 2 7 Aはキャンセルコイルを有する振動アラーム駆動用ステップ モータの平面図であり、
図 2 7 Bは図 2 7 Aにおける Χ ΧΧΠΙΒ - XXVIIB に沿った断面図 であり、
図 2 8はローパスフィルターを有しない加算器の回路構成図であり、 図 2 9はキャンセルコイルを有するステップモー夕の口一夕を高速回 転駆動するための説明図であり、 ' 図 3 0はローパスフィル夕一を有する加算器の回路構成図であり、 図 3 1は加算器出力の時間的遅れを取り戻すための説明図であり、 図 3 2はキャンセルコイルを有するステップモー夕のロータの高速回 転駆動回路の他の実施例のプロック図であり、
図 3 3 ( a ) 乃至図 3 3 ( h ) はキャンセルコイルを有するステップ モ一夕のロータを高速回転駆動するための他の実施例の説明図であり、 図 3 4はキャンセルコイルを有する駆動コイルの巻回方法の説明図で あり、
図 3 5は振動アラームの振動変調の第 1の実施例であり、
図 3 6は振動アラームの振動変調の第 2の実施例であり、
図 3 7はステップモータの回転数の時間変化のシミュレーション計算 結果であり、 そして
図 3 8 A乃至図 3 8 Dはそれぞれ本発明で使用できる扁平 2極ステ一 夕の具体例を示す平面図である。
発明を実施するための最良の形態
以下、 添付の図面により本発明の幾つかの好ましい実施例を詳述す る。 図 1は本発明の振動アラーム付電子機器の扁平ステ一夕型 2極ス テップモー夕によって駆動されるロータの平面図、 図 2は図 1の Π— Π 線に沿った断面図を示す。
3はロータ磁石、 4はロータ軸、 5は磁石保持部材、 2はその回転軸 0 であるロータ軸 4に対し偏心した位置に重心を有する偏心重りで、 偏心 重り 2、 ロータ磁石 3、 ロータ軸 4、 磁石保持部材 5よりロータ 1が構 成されている。 なお、 2 aは偏心重り 2に設けられた印刷マーク、 3 a はロータ磁石 3に設けられた印刷マーク、 5 aは磁石保持部材に設けら れた切り欠きマークである。
5 上記ロータ 1の組立手順を説明すると以下のようになる。 まず、 偏心 重り 2がロータ軸 4に直接固着される。 次にマーク 3 aとマーク 5 a力 略一致するように、 ロータ磁石 3が磁石保持部材 5に固着される。 そし て最後にマーク 5 aとマーク 2 aが略一致するように口一夕軸 4に磁石 保持部材 5を固着し、 ロータ 1が完成している。
〇 次に上記ロータ 1を使用した振動アラーム付電子機器の一実施例につ いて図 3乃至図 6に関連して説明する。 図 3は本発明の振動アラーム付 電子機器が腕時計の場合の一実施例を示す平面図、 図 4は図 3の腕時計 のモジュールを示す平面図、 図 5、 図 6は図 4の腕時計のモジュールの 断面図を示す。 なお、 以降、 図面の同一要素には同一番号を付して説明 5 を省略する。
1 1は腕時計の外装、 1 1 aはスィツチ巻真 3 1にネジ固定されてい るモード指定のボタン、 1 1 b、 1 1 cは時計の外装 1 1に組み込まれ た操作ボタンである。 スィッチ巻真 3 1はスィッチパネ 3 2、 モード切 替えレバ一 3 3、 モード躍制レバー 3 4、 スィッチ巻真戻しパネ 3 5、 モード車 3 6と連動しており、 ボタン 1 1 aを 1回押し込と、 モード車 3 6が 1歯分だけ回るようになつている。
1 2は時刻目盛 1 2 aを有する時計の文字板で、 文字板 1 2には、 モ一ドマーク 1 2 cやアラームのオン ·オフマーク 1 2 dが印刷されて いる。 1 3は時針、 1 4は分針、 1 5は秒針、 1 6はモード針で、 図 3 は、 モード針が時刻モードを示し、 時針 1 3と分針 1 4と秒針 1 5を使 0 つて時刻を表示している状態を示している。 なお、 図 5、 図 6では、 時 針 1 3、 分針 1 4、 秒針 1 5の断面部は省略し、 表示していない。
時針 1 3は筒車 4 9に、 分針 1 4は 2番車 4 7に、 秒針 1 5は 4番車 5 5に、 モード針 1 6はモード車 3 6にそれぞれ押し込まれており、 ボ タン 1 1 aを 1回押し込む毎に、 モード車 3 6が 1歯分だけ回転し、 5 モード車 3 6に押し込まれたモード針 1 6が次のモードを示すようにな り、 各モードに応じて時針 1 3と分針 1 4はアラーム時刻やカレンダー の月日等を示したり、 秒針 1 5はアラームのオン ·オフ等を示すように なっている。
1 2 bは文字板 1 2に設けられた見切り板で、 下受 2 2の止めネジ 0 3 7 a , 3 7 bを隠すと共に、 偏心重り 2の一部を露出させるための貫 通孔 1 2 eが設けられている。 2 2 aは下受 2 2に設けられた貫通孔 で、 見切り板 1 2 bと同様に偏心重り 2の一部を露出させるために設け られている。 この結果、 本実施例の振動アラーム付電子機器 1 0は、 完 成腕時計状態で文字板 1 2の一部から偏心重り 2の一部が見えるように 5 なっている。
6はステ一夕、 7は完成コイルで、 ロータ 1と共に扁平ステ一夕型 2 極ステップモータ 8を構成している。 本実施例の扁平ステ一タ型 2極ス テツプモータ 8では、 ステ一夕 6としてはスリッ ト 6 a、 6 bを有する スリ ッ トタイプのステ一夕を使用し、 偏心重り 2の駆動トルクの確保と 磁気回路の磁束の飽和防止の為、 時計用の扁平ステ一夕型 2極ステップ モータよりサイズも大きく、 略 2倍の厚いステ一夕 6やコイル巻芯 7 a を採用している。 特に、 厚いステ一夕 6やコイル巻芯 7 aのプレス加工 の容易化を図るため、 本実施例ではステ一夕 6やコイル巻芯 7 aをそれ ぞれ 2枚重ねで構成した例を示した。 もちろん厚いままブレス加工し各 1枚で構成しても良い。
0 9は時計モジュール 2 0を構成する地板、 9 a、 9 bは地板 9に押し 込まれたチューブ、 2 1は上受で、 チューブ 9 a、 9 bで上受 2 1、 下 受 2 2をガイ ドし、 上受 2 1 と下受 2 2でロータ 1のロー夕軸 4の軸受 けを行なっている。
なお、 本実施例では上受 2 1 と下受 2 2でロータ 1のロータ軸 4の軸 5 受けを行なっているが、 上受 2 1 と地板 9とでロータ 1のロータ軸 4の 軸受けを行ない、 偏心重り 2を地板 9から露出したロータ軸 4に固着し ても良い。
ロータ 1は、 地板 9を境として文字板 1 2側に偏心重り 2、 文字板 1 2と反対側にロータ磁石 3となるように配置され、 下受 2 2に設けら 〇 れた貫通孔 2 2 aを介して偏心重り 2の一部が見えるようにロータ軸 4 を中心に回転できるようになつている。
― 4 1はステ一夕、 4 2は完成コイル、 4 3は口一夕、 4 3 aはロータ 磁石であり、 ステ一夕 4 1、 完成コイル 4 2、 ロータ 4 3により時針 1 3と分針 1 4の駆動用の扁平ステータ型 2極ステップモータ 4 0を構 5 成している。
4 4、 4 5、 4 6は扁平ス干一夕型 2極ステップモータ 4 0のロータ 4 3の回転を減速するための輪列を構成する車で、 前記 2番車 4 7と嚙 み合っており、 分針 1 4を駆動している。 4 8は日の裏車で、 前記 2番 車 4 7と前記筒車 4 9と嚙み合っており、 時針 1 3を駆動している。
5 1はステ一夕、 5 2は完成コイル、 5 3はロータ、 5 3 aはロータ 磁石であり、 ステ一夕 5 1、 完成コイル 5 2、 ロータ 5 3により秒針 1 5の駆動用の扁平ステ一夕型 2極ステップモー夕 5 0を構成してい る。
5 4は扁平ステ一夕型 2極ステップモー夕 5 0のロータ 5 3の回転を 減速するための車で、 前記 4番車 5 6と嚙み合っており、 秒針 1 5を駆 動している。 なお扁平ステ一夕型 2極ステップモータ 4 0及び 5 0で駆 動される各輪列の各車のホゾは地板 9と輪列受 3 0とで保持されてい る。
2 3は回路基板で、 I C 2 5、 トランジスタ 2 6、 昇圧コイル 2 7、 チップ抵抗 2 8、 水晶振動子 2 9等が実装され、 3つの各扁平ステ一夕 型 2極ステップモータ 8、 4 0、 5 0を駆動している。 なお、 図 して いないが回路基板 2 3の上面にフレキシブルプリン卜基板力 s熱圧着によ り電気的に接続されており、 図示されていないフレキシブルプリント基 板と扁平ステ一夕型 2極ステップモータ 8の完成コイル 7のコイル端子 基板 7 cと重ねてネジ 3 8 bで固定することにより、 回路基板 2 3と完 成コイル 7のコイル端子基板 7 cとは電気的に接続されている。
2 4は回路支持台、 1 8は扁平型電池、 1 7は電池押えパネで、 回路 基板 2 3の上に回路支持台 2 4が重ねられ、 扁平型電池 1 8を回路支持 台 2 4の完成コイル 7と断面的に重ならない電池収納部 2 4 aにのせ、 電池押えパネ 1 7と図示されていない電池受パネとにより扁平型電池 1 8から電源を回路基板 2 3に供給している。 1 7 a、 1 7 bはボタン 1 1 b、 1 1 cに連動するスィッチパネで、 電池押えバネ 1 7の一部を 利用して構成され、 回路基板 2 3のスィツチ入力手段として使用され る。 こうして時計モジュール 2 0が構成されている。
以上のように、 本実施例では、 時計モジュール 2 0を構成する地板 9 を境として文字板 1 2側に偏心重り 2、 文字板 1 2と反対側にロータ磁 石 3を配置する構造となっている。 従って、 完成コイル 7を除く扁平ス テ一夕型 2極ステップモータ 8の周辺のモジュール厚は、 時計用の扁平 ステ一タ型 2極ステップモータ 4 0、 5 0よりサイズも大きく、 略 2倍 の厚いステ一夕 6やコイル巻芯 7 aを採用しているにもかかわらず薄く できており、 完成コイル 7と偏平型電池 1 8を断面的に重ねないように 0 扁平ステータ型 2極ステップモータ 8の周辺に偏平型電池 1 8を重ねる ことができ、 薄型の時計モジュールを構成している。
次に時計モジュール 2 0の振動アラームの動作について説明する。 図 3の状態で、 ボタン 1 1 &を 1回、 又は 5回押し込むと、 スィッチ巻真 3 1に連動してモード車 3 6が 1歯、 又は 5歯分だけ回転し、 モード針5 1 6が振動アラームモードを示す。
振動アラームモードの切替えは、 モード車 3 6に連動する図示されて いないモードスィツチ切り換えパネと回路基板 2 3のパターンとの接触 を I C 2 5が判定することによって行われ、 I C 2 5は扁平ステ一夕型 2極ステツプモ一夕 4 0に駆動信号を送り、 アラーム時刻まで時針 0 1 3、 分針 1 4を早送りさせる。 又、 同時に I C 2 5は扁平ステ一夕型 2極ステップモータ 5 0に駆動信号を送り、 秒針 1 5を文字板 1 2に印 刷したアラームのオン 'オフマーク 1 2 dまで早送りさせる。 この時、 振動アラームがオフ状態であれば、 オフマークの位置で秒針 1 5を停止 させ、 オン状態であればオンマークの位置で秒針 1 5を停止させる。 5 この状態で、 ボタン 1 l bを押し込む毎に、 振動アラームのオン 'ォ フの切替えが行われ、 秒針 1 5は早送されて現在の状態を示すアラーム のオン ·オフマーク 1 2 dの位置を往復する。 又、 この状態でボタン 1 1 aを引き出すと振動アラームの時刻の設定状態となる。 ここでボタ ン 1 1 bを押せば時針 1 3、 分針 1 4を正転送りでき、 ボタン 1 1 cを 押せば時針 1 3、 分針 1 4を逆転送りできるようになつており、 2つの ボタン 1 1 b、 1 1 cを使って振動アラームの時刻の設定を行う。 振動 アラームの時刻の設定が終了したらボタン 1 1 aを押し込むと、 振動ァ ラームの時刻の設定が終了する。
さて、 振動アラームのオン状態でアラーム時刻になると、 扁平ステー 夕型 2極ステ プモ一夕 8の完成コイル 7に駆動信号が送られ口一夕 1 が高速で回転を始める。 すなわち、 偏心重り 2が回転する為、 偏心重 り 2の重心の回転移動に伴なう振動力発生し、 腕時計の外装 1 1の振動 によつて使用者に報知できるようにしている。
この時の消費電流を測定したところ、 最適駆動条件で駆動した場合の 6 0 0 0 r p mでのピーク電流は、 電源電圧 3 Vの時、 2 m Aであり、 超音波モータ一を用いた振動アラームの 5 %以下の消費電流で駆動でき る事が確認された。
次に時計モジュール 2 0の有音アラームの動作について説明する。 図 3の状態で、 ボタン 1 1 aを 2回、 又は 6回押し込むと、 スィッチ巻真 3 1に連動してモード車 3 6が 2歯、 又は 6歯分だけ回転し、 モード針 1 6が有音アラームモードを示す。
振動アラームモードの切替えは、 振動アラームモードの切替えと同様 に、 モード車 3 6に連動する図示されていないモ一ドスィツチ切り換え パネと回路基板 2 3のパターンとの接触を I C 2 5が判定することに よって行われ、 I C 2 5は扁平ステ一夕型 2極ステップモータ 4 0に駆 動信号を送り、 アラーム時刻まで時針 1 3、 分針 1 4を早送りさせる。 又、 同時に、 I C 2 5は扁平ステ一タ型 2極ステップモータ 5 0に駆動 信号を送り、 秒針 1 5を文字板 1 2に印刷したアラームのオン ·オフ マーク 1 2 dまで早送りさせる。 この時有音アラームがオフ状態であれ ばオフマークの位置で秒針 1 5を停止させ、 オン状態であればオンマー クの位置で秒針 1 5を停止させる。
この状態で、 ボタン 1 1 bを押し込む毎に、 有音アラームのオン ·ォ フの切替えが行われ、 秒針 1 5は早送りされて現在の状態を示すアラー ムのオン 'オフマーク 1 2 dの位置を往復する。 又、 この状態でボタン 1 1 aを引き出すと有音アラームの時刻の設定状態となる。 ここでボタ ン 1 1 bを押せば時針 1 3、 分針 1 4を正転送りでき、 ボタン 1 1 cを 押せば時針 1 3、 分針 1 4を逆転送りできるようになつており、 2つの ボタン 1 l .b、 1 1 cを使って有音アラームの時刻の設定を行う。 有音 アラームの時刻の設定が終了したらボタン 1 1 aを押し込むと、 有音ァ ラームの時刻の設定が終了する。
さて、 有音アラームのオン状態でアラーム時刻になると、 トランジス 5 タ 2 6を介して昇圧コイル 2 7に駆動信号が送られ、 図示されていない 腕時計の裏蓋に接着された圧電素子が励振することで裏蓋を屈曲振動さ せ、 音によってアラームを報知できるようにしている。
本実施例のロータ 1は、 偏心重り 2の重心の回転移動に伴なう振動を 利用して使用者にアラームを報知できるようにする為、 通常時計用とし 0 て使用される扁平ステ一夕型 2極ステップモータ 4 0、 5 0のロータと 違い、 どうしても重い偏心重り 2を有するロータ 1を使用しなければな らず、 特に、 ロータ 1の起動に当たっては重力の影響を考慮する必要が ある。
図 7は重力の影響を調べるために行った本発明の振動アラーム付電子 5 機器 1 0と腕 1 9の関係を示す外観図、 図 8は重力の影響を示す本発明 の偏心重り 2の重心の静止位置と重力の鉛直方向とのなす角度とロータ 1の起動性との関係図、 図 9は本発明のロータ 1の回転方向と偏心重り 2の重心の静止位置との関係図である。
本実施例においては、 振動アラーム付電子機器 10は主に腕に装着し た状態で使用される腕時計であり、 携帯時にはいろいろな姿勢を取るこ とになる。 しカ し、 通常の携帯においては扁平ステ一夕型 2極ステップ モ一夕 8の起動に対しては重力の影響はほとんどなく、 使用者が通常の 生活をしている場合、 モータの起動に対する重力の影響は少ないが、 図 7において本発明の振動アラーム付電子機器 10の起動に影響を及ぼす 最悪の状態は、 振動アラーム付電子機器 10を腕 19につけて、 携帯者 がランニングを行っている時である。 この時の腕 19を振ることによつ て生じる加速度は、 おおよそ 3Hz、 1. 3 G前後である事が確認され ている。 そこで、 この腕 19の振りによって生じる加速度と重力加速度 との関係を調べた結果、 腕 19の振り方向 Aと重力加速度の鉛直方向 B とが略一致したとき力 s—番起動性力 s悪くなること力確認された。
そこで、 図 9のように、 ロー夕 1の静止時における偏心重り 2 重心 の位置 2 bから口一夕軸 4を中心として偏心重り 2の回転方向 C、 Dに 沿って重力加速度の鉛直方向 Bまでの角度を Θとし、 該 Sを変化させ て、 ロータ 1の起動しない確率を実験で求めた結果、 図 8のようになつ た。
図 8から、 起動しない確率が一番低い角度、 すなわち起動しやすい角 度 Θは、 0= く Θく 9 CT 、 又は 18 CT < Θ < 270 ° であること力 確認された。 特に、
Figure imgf000018_0001
45' + 180° ) 付近では確実に起動することが確認された。
この起動しやすい状態を示したものが図 9 A乃至図 9 Dである。 図 9Aと図 9 Bの組み合わせと、 図 9 Cと図 9 Dの組み合わせとは回転方 向が Cと Dという逆回転の関係にあり、 図 9 Aと図 9 B、 図 9 Cと図 9 Dの関係は扁平ステ一夕型 2極ステップモータの特性で決定される関 係にある。 これは、 保持トルクによるロータ 1の静止安定点が 180° 離れた位置に 2力所ある為で、 駆動パルスの入力される毎に、 偏心重り 2が図 9 Aから図 9 B、 図 9 Bから図 9 Aの位置に移動することを示し ている。
起動しやすい状態を、 図 9 Aを使って解説すると次のようになる。 つ まり、 偏心重り 2の回転方向が C (即ち、 0° <θ<90° ) の時は、 偏心重り 2は起動前から重力が回転方向と同じ向きにモ一メントとして 作用するため、 起動しやすくなる。 同様に、 図 9 Βで、 偏心重り 2の回 転方向が C (即ち、 180° <θ<270° ) となった時は、 偏心重り 2は起動前から重力が回転方向とは逆向きにモーメントとして作用して いる力 駆動パルスによって θ≤ 180° の位置まで偏心重り 2を移動 させることにより、 その後の回転は重力が回転方向と同じ向きにモーメ ントとして作用するため、 起動できている。
逆に起動しにくい状態を、 図 9 Αを使って解説すると次のようにな る。 つまり、 偏心重り 2の回転方向が D (即ち、 回転方向 Cと逆回転 で、 270° ≤θ≤360° ) となった時は、 偏心重り 2は起動前から 重力が回転方向とは逆向きにモ一メン卜として作用している状態で、 駆 動パルスによって偏心重り 2を半回転させるに等しい 90〜 180° 回 転させ、 θ≤ 180° の位置まで偏心重り 2を動かさなければ重力が回 転方向と同じ向きにモーメントとして作用しないため、 起動しにく く なっている。
同様に、 図 9 Βで、 偏心重り 2の回転方向が D (即ち、 回転方向じと 逆回転で、 90° ≤θ≤ 180° ) となった時は、 偏心重り 2は起動前 から重力が回転方向と同じ向きにモーメントとして作用し、 1パルス目 は起動する。 しカゝし、 2パルス目の時には 180= 反転し、 上記記載の 図 9 Aの偏心重り 2の回転方向が D方向という全く同じ状態となり、 Θ ≤ 1 80c の位置まで偏心重り 2を動かさなければ重力が回転方向と同 じ向きにモーメントとして作用しないため、 起動しにく くなつてい る。
図 1 0は本発明の扁平ステ一夕型 2極ステップモー夕としてスリッ卜 タイプを使用した時のステータ 6のスリット角度と偏心重り 2のロータ 軸 4への組み込み角度との関係を示す平面図である。
図 2と同様に、 2 aは偏心重り 2に設けられた印刷マーク、 3 a、
3 bはロータ磁石 3に設けられた印刷マークで、 特に 3 a、 3 bは口一 0 夕磁石 3の磁極の方向を示している。 又、 αはステ一タ 6のスリッ ト
6 aと重力の鉛直方向 Bとの角度、 3はロータ軸 4を中心として偏心重 り 2の回転方向 Cに沿って偏心重り 2の重心 2 bからロータ磁石 3の磁 極 3 aまでの角度である。
一般に、 スリツ卜タイプの扁平ステ一夕型 2極ステップモータの保持 5 トルクによるロータ 1の静止安定点は図 1 0のようにスリット 6 aに対 し略 45° となるため、 αと の間には式 ( 1 ) のょぅな関係式が成立 する。
α + θ = 3 +45° … は) - ここで、 口一夕 1力 s確実に起動する角度は、 前述の如く θ 45° で 0 あり、 これを式 ( 1 ) に入力すると、 式 ( 1 ) は式 (2 ) のようにな る。
α = β - (2 ) すなわち、 aと /3が略同一角度となる様に偏心重り 2とロータ磁石 3 を口一夕軸 4に固着すれば良いことになる。 従って、 あらかじめステー 5 夕 6のスリット 6 aと重力の鉛直方向 Bとの角度 αを測定し、 偏心重り 2の重心 2 bから回転方向 Cに沿った角度 J3の偏心重り 2の一部に印刷 マ一ク 2 aを設けておき、 ロータ磁石 3の磁極の方向を示す印刷マーク 3 aと偏心重り 2の印刷マーク 2 aを合わせて固着すれば、 腕 19の振 りの加速度と重力加速度を同時に受けても起動性の良い振動アラーム付 電子機器 10を構成できる。
マーク 2 aは印刷に限らず、 彫り込みでも突起でも良く、 ステ一夕 6 のスリッ ト 6 aと重力の鉛直方向 Bとの角度 αと同一角度となるよう に、 偏心重り 2の角度 J3の一部の位置にマーク 2 aをあらかじめ印刷や 彫り込み等で印をつけて、 ロータ磁石 3のマーク 3 aを合わせるように ロータ軸に組み込むだけで、 腕 19の振りの加速度と重力加速度を同時 に受けても起動性の良い振動アラーム付電子機器 10を構成できる。 図 1 1は本発明の扁平ステ一夕型 2極ステップモータとして特公昭 59 - 1 7613号公報に示されるノツチ夕イブを使用した時のステー タ 56のノツチ角度と偏心重りのロータ軸への組み込み角度との関係を 示す平面図である。 なお、 丫はステ一タ 56のノッチ 56 aと重力の鉛 直方向 Bとの角度である。
一般に、 ノツチタイプの扁平ステ一夕型 2極ステップモータの保持ト ルクによるロータ 1の静止安定点は、 特公昭 59 - 1 7613号公報に 示される如く、 図 1 1のようにノッチ 56 aに対しおおよそ 90° とな るため、 丫と; 3の間には式 (3) のような関係式が成立する。
了 + θ = /3 + 90° ·'· (3) ここで、 ロータ 1が確実に起動する角度は、 前述の如く Θ = 45° で あり、 これを式 ( 3 ) に入力すると、 式 ( 3) は式 (4) のようにな る。
了 = 3 + 45° … (4) すなわち、 (丫ー 45° ) と 3が略同一角度となる様に偏心重り 2と ロータ磁石 3をロータ軸 4に固着すれば良いことになる。 従って、 あら かじめステ一夕 5 6のノツチ 5 6 aと重力の鉛直方向 Bとの角度丫を測 定し、 偏心重り 2の重心 2 bから回転方向 Cに沿った角度 3 ( = τ - 4 5 ° ) の位置に当たる偏心重り 2の一部に印刷マーク 2 aを設けてお き、 ロータ磁石 3の磁極の方向を示す印刷マーク 3 aと偏心重り 2の印 刷マーク 2 aを合わせて固着すれば、 腕 1 9の振りの加速度と重力加速 度を同時に受けても起動性の良い振動アラーム付電子機器 1 0を構成で きる。
さて、 図 7を使って説明したように、 本発明の振動アラーム付電子機 器 1 0の起動に影響を及ぼす最悪の状態は、 振動アラーム付電子機器 1 0を腕 1 9につけて、 携帯者がランニングを行っている時であった。 この時は、 図 7のように腕 1 9に対し時計 1 0の文字板 1 2の 1 2時方 向が重力加速度の鉛直方向と略一致する。
従って、 扁平ステ一夕型 2極ステップモー夕 8のステ一夕 6のスリツ 卜 6 aと時計 1 0の文字板 1 2の中心から 1 2時方向との角度をひと し、 αと βが略同一角度となる様に偏心重り 2とロータ磁石 3を'口一夕 軸 4に固着すれば、 前述の如く腕 1 9の振りの加速度と重力加速度を同 時に受けても起動性の良い振動アラーム付電子機器 1 0を構成でき る。
又、 ノツチタイプの扁平ステ一夕型 2極ステップモー夕のステ一タ 5 6のノッチ 5 6 aと時計 1◦の文字板 1 2の中心から 1 2時方向との 角度を丫とし、 (丫ー4 5 ° ) と が略同一角度となる様に偏心重り 2 と口一夕磁石 3をロータ軸 4に固着すれば、 同様にしてノツチタイプで も腕 1 9の振りの加速度と重力加速度を同時に受けても起動性の良い振 動アラーム付電子機器 1 0を構成できる。 次に上記口一夕 1を使用し た振動アラーム付電子機器の他の実施例について説明する。 図 1 2は本 発明の振動アラーム付電子機器が腕時計の場合の一実施例を示す腕時計 のモジュールの断面図、 図 1 3はさらに他の実施例を示す腕時計のモ ジュールの断面図である。 6 2、 7 2は図示されていない時刻目盛を 有する時計の文字板、 6 9、 7 9は時計モジュールを構成する地板、 6 9 b , 6 9 cは地板 6 9、 7 9に押し込まれたチューブで、 チューブ 6 9 b , 6 9 cで上受 2 1をガイ ドし、 上受 2 1 と地板 6 9、 7 9で 口一夕 1のロータ軸 4の軸受けを行なっている。
6 2 aは文字板 6 2に設けられた貫通孔、 6 9 aは地板 6 9に設けら れた貫通孔で、 偏心重り 2の一部を露出させるために設けられており、 ロータ 1の偏心重り 2を地板 6 9に隣接するように配置することによ0 り、 図 1 2の実施例では完成腕時計状態で文字板 6 2の一部から偏心重 り 2の一部が見えるようになつている。 逆に、 図 1 3は、 偏心重り 2の 一部を露出させない実施例となっている。
6 6、 7 6はステ一夕、 6 7、 7 7は完成コイルで、 ロータ 1と共に 扁平ステータ型 2極ステップモータ 6 8、 7 8を構成している。 本実施5 例の扁平ステ一夕型 2極ステップモータ 6 8、 7 8は、 偏心重り 2の駆 動トルクの確保と磁気回路の磁束の飽和防止の為、 図 4の実施例と同様 にサイズの大きい、 略 2倍の厚いステ一夕 6 6、 7 6やコイル巻芯 6 7 a、 7 7 aを採用している。 特に、 厚いステータ 6 6、 7 6やコイル巻 芯 6 7 a、 7 7 aのプレス加工の容易化を図るため、 本実施例でもス 0 テ一タ 6 6、 7 6やコイル巻芯 6 7 a、 7 7 aをそれぞれ 2枚重ねで構 成した例を示した。 もちろん厚いままプレス加工し各 1枚で構成しても 良い。
6 3は回路基板で、 図示されていない I C、 トランジスタ、 昇圧コィ ル、 チップ抵抗等が実装され、 各扁平ステ一夕型 2極ステップモータ 5 6 8、 7 8を駆動している。 6 1は絶縁シート、 6 5は第 2回路基板 で、 第 2回路基板 6 5と完成コイル 6 7のコイル端子基板 6 7 cとはネ ネジ 3 8 cで固定することにより、 第 2回路基板 6 5と完成コイル 6 7 のコイル端子基板 6 7 cとは電気的に接続されている。 なお、 図示して いないが、 回路基板 6 3と第 2回路基板 6 5とはフレキシブルプリン卜 基板により電気的に接続されており、 扁平ステ一夕型 2極ステップモー タ 6 8の完成コイル 6 7のコイル端子基板 6 7 cと回路基板 6 3とは電 気的に接続されている。
—方、 扁平ステ一夕型 2極ステップモータ 7 8の完成コイル 7 7の図 示されていないコイル端子基板と回路基板 6 3とは、 扁平ステ一夕型 2 極ステップモータ 4 0や 5 0で採用されている従来のコイル端子基板と 0 回路基板 6 3とを重ね合わせる方法により電気的に接続されている。
6 4は回路支持台で、 回路基板 6 3の上に回路支持台 6 4が重ねら れ、 扁平型電池 1 8を回路支持台 6 4の電池収納部にのせ、 電池押えバ ネ 1 7と図示されていない電池受パネとにより扁平型電池 1 8より電源 を回路基板 6 3に供給している。
5 以上のように構成された振動アラームの動作は、 図 4の時計モジユー ル 2 0と同様であり、 振動アラームのオン状態でアラーム時刻になる と、 扁平ステ一夕型 2極ステップモータ 6 8、 7 8の完成コイル 6 7、 7 7に駆動信号が送られ、 ロータ 1が高速で回転を始める。 すなわち、 . 偏心重り 2が回転する為、 偏心重り 2の重心 2 aの回転移動に伴なう振 0 動が発生し、 腕時計の外装 1 1の振動によってアラームを使用者に報知 できるようにしている。
なお、 本実施例では振動アラーム付電子機器が腕時計の場合を示した が、 カードタイプの振動アラーム付ボケットベル等の小型の電子機器に 応用できることは明らかである。
5 次に、 本発明の振動アラーム用ステップモータに関し、 図 1 4以降に 基づいて、 さらに詳細に説明する。 図 4に基づいた前述の説明からも明らかなとおり、 本発明の振動ァ ラーム用ステップモータは時計ケースと腕時計モジュールとの間に未使 用スペースを発生させることなく配置できる。 さらに、 確実に振動を腕 に伝えるための偏平ステ一夕型 2極ステップモータの高速回転駆動シス テムを説明する。
なお、 以下において、 偏平ステ一夕型 2極ステップモー夕を単にス テツプモータと略称する。
まず、 図 14に示される分離型コイル 305, 306における、 ロー 夕の毎分当たりの回転数を 3000 r pm程度以上にするための本発明 0 のロー夕の高速回転駆動方法を説明する。 図 16 Aは、 分離型コイルに おける、 振動アラーム駆動用ステップモータの平面図、 図 1 6 Bは図 1 6 Aの XVIB— XVIB断面図であり、 ステ一タ、 口一夕平面図は図 16 C であり、 ステップモータ 30 1は偏心重り 302が設けられたロータ 303、 ステータ 304、 駆動コイル 305、 逆起電圧検出コイル 30 5 6から構成されている。 1個の逆起電圧検出コイル 306は、 該駆動コ ィル 305と分離しており、 図 16Bに示すように、 コイル巻芯 307 に対し、 該駆動コイル 305の内周に巻回されている。
前記逆起電圧検出コイルに発生する逆起電圧について説明する。 逆起電圧検出コイルに発生する逆起電圧 V aは、 逆起電圧検出コイル 0 に流れる電流 i aをゼロにできるので、 逆起電圧検出コイルの直流抵抗 R aによる、 電圧降下 R a * i aと電流 i aの時間変化による逆起電圧 -La · (d i a/d t) を無視すると (Laは、 逆起電圧検出コイル 306の自己インダクタンス) 、 次の式 (5) によって求められる。
V a = -M · (d i/d t) -K a · sin ( θ + θ0) · (d θ/d t) 5 … (5) 式 ( 5) において、 一 Μ · (d i Zd t) は該逆起電圧検出コイル 306と駆動コイル 305の相互ィンダクタンス M (相互ィンダクタン ス Mは、 駆動コイル 305と逆起電圧検出コイル 306のそれぞれの巻 数を na0、 naとして、 M=k · n a 0 · na/"Rmと表される。 こ こで kは比例定数、 Rmはステップモータの磁気回路の磁気抵抗) と駆 動電流 i (以下、 駆動パルスオフ時の電流も意味する) の時間変化の積 の符号を逆にしたもので、 駆動電流 iが時間変化することによつて発生 し、 一 K a · s i η ( θ + θ。) · ( d θ Ζ d t ) はステツプモ一夕 301との機械結合係数 Ka、 s i n ( θ + θ 0)と口一夕 303の回転 角 Θの時間変化つまり角速度の積の符号を逆にしたもので、 ロー夕 0 303が回転することによって発生する。 θ。 はロータ 303の初期角 度で、 図 16 Cに示すステ一夕、 ロー夕平面図において、 ディテント卜 ルクによって静止したロー夕 303の口一夕磁石 308の磁極 N (S) 位置から、 ステ一夕 304のスリット 309からほぼ 90度の位置まで の角度である。
5 さらに、 後述する差動増幅器の出力 V g aは次の式 (6) によって求 められる。
V ga = -Ga - M-(d i/d-t) -Ga · Ka ·
sin(e + θ0) · (d θ/d t) ··· (6) 式 (6) の V g aは後述する図 14に示すステップモー夕のロータの 0 高速回転駆動回路のプロック図における差動増幅器 108の差動増幅出 力 Fで、 該ー Ga · K a · s i η (θ + θ。) · ( d θ/d t ) が零にな るときを検出することによって、 図 16 Cに示す、 ディテントトルクに よって静止したロータ 303の口一夕磁石 308の磁極 N (S) 位置か らの前記口一夕 303の回転角 θ (- θο 、 一 θ。 +π) を検出できる 5 ことになる。 ここで、 Gaは差動増幅器 108のゲイン (以下、 符号も 含む! である。 なお、 式 (6) 中の一 Ga · M · (d i/dt) は無視 できるので、 検出には影響しないものである。
図 1 4に示す分離型コイルを有するステップモータのロータの高速回 転駆動回路の実施例のブロック図の構成を説明する。 まず、 図 1 4の駆 動コイル 3 0 5は、 逆起電圧検出コイル 3◦ 6と分離し、 該駆動コイル 3 0 5は駆動回路 1 1 0と結線し、 該逆起電圧検出コイル 3 0 6は差動 増幅器 1 0 8と結線している。 図 1 4は振動アラーム発生パルス Aを振 動アラーム時刻に出力する振動アラームセッ 卜/リセッ ト回路 1 0 5、 該アラーム発生パルス Aを入力すると駆動オン Zオフ信号 Bを出力する 駆動オン/オフ発生回路 1 0 6、 電池電圧検出指示信号 Dを入力すると 0 電池電圧を検出して電池電圧ランク信号 Iを出力する電池電圧検出回路 1 1 1、 相合わせパルス Cと前記電池電圧検出指示信号 Dを出力する相 合わせパルス発生手段 1 1 2、 始動パルス Eと後続駆動パルス発生信号 Jを出力する始動パルス発生手段 1 1 3、 後続駆動パルス Hを出力する 後続駆動パルス発生手段 1 1 4、 前記電池電圧ランク信号 Iの入力によ 5 り、 各々の電池電圧に対して、 腕を振るなどによって発生する程度の加 速度がステップモータ 3 0 1に加わった場合でも、 該ステップモータ 3 0 1を安定に起動し、 安定に高速回転させることができるように設定 された、 相合わせパルス幅、 始動パルス幅、 後続駆動パルス幅、 該相合 わせパルスと始動パルス間のパルス間隔に対応して、 相合わせパルス幅 0 信号 、 始動パルス幅信号 L、 後続駆動パルス幅信号 M、 パルス間隔信 号 Nを出力するパルス幅設定手段 1 1 5、 始動パルス発生信号 0を出力 するパルス間隔設定回路 1 1 6を有する駆動パルス発生マイコン 1 0 9、 前記相合わせパルス (:、 始動パルス E、 後続駆動パルス Hから 成る駆動パルス力入力すると駆動コイル 3 0 5に駆動電流を供給する駆 5 動回路 1 1 0、 ステップモータ 3 0 1を駆動する駆動コイル 3 0 5と分 離し、 ロータ 3 0 3が回転することによって発生するロータ発生逆起電 圧を検出するための逆起電圧検出コイル 306、 該逆起電圧検出コイル 306に発生する逆起電圧 V aを差動増幅して差動増幅出力 Fを出力す る差動増幅器 108、 該差動増幅器 108の出力である差動増幅器出力 Fの入力によりゼロクロスコンパレータ出力 Gを前記後続駆動パルス発 生手段 1 14へ出力するゼロクロスコンパレータ 107から構成されて いる。 なお、 上記各パルス、 各信号、 並びに各出力の A乃至 Hがそれぞ れ図 15、 図 22、 図 26、 図 29図 31、 図 33のステップ (a) 乃 至 (b) にそれぞれ対応する。
図 15 (a) 乃至図 15 (h) に示す分離型コイルを有するステップ 0 モータの口一夕を高速回転駆動するための説明図を、 図 14に示す分離 型コィルを有するステップモータのロータの高速回転駆動回路の実施例 のブロック図にそって説明する。 まずセッ卜した振動アラーム時刻にな ると振動アラームセッ ト/リセッ ト回路 105から図 15 (a) に示す 振動アラーム発生パルス Aが出力され、 駆動オン Zオフ発生回路 106 5 は図 15 (b) に示す駆動オン Zオフ信号 Bを出力する。 前記相合わせ パルス発生手段 1 1 2は前記口一夕 303を起動するために図 1 5 (c) に示す相合わせパルス Cを出力し、 駆動回路 1 10によって起動 電流が駆動コイル 10 1供給されロータ 303を回転させようとする 力 この時に、 ロータ 303のロータ磁石 308は前記相合わせパルス 0 Cによって起動できる位置に静止しているかどうか分からない。 つま り、 該相合わせパルス Cによって励磁されたステ一タ 304に生じる磁 極の極性が、 該ステ一夕 304の磁極に対向する、 ロー夕 303の有す るロータ磁石 308の磁極の極性と同極性であれば、 前記ロータ 303 は回転するが、 異極性であれば、 前記ロータ 303は回転しない。 しか 5 し、 前記相合わせパルス Cによって、 後続する駆動パルス、 つまり、 始 動パルス Eと後続駆動パルス Hによって励磁されるステ一夕 304に生 - 2 1 - じた磁極の極性は該ステ一タ 3 0 4の磁極に対向する、 ロータ 3 0 3の 有するロータ磁石 3 0 8の磁極の極性と同極性になるので、 前記後続す る駆動パルスは、 前記ロータ 3 0 3を回転させることができるようにな る。
前記相合わせパルス発生手段 1 1 2は前記相合わせパルス Cの立ち上 がりから t。 後に図 1 5 ( d ) に示す電池電圧検出指示信号 Dを前記電 池電圧検出回路 1 1 1へ出力し、 該電池電圧検出回路 1 1 1は、 電池電 圧を検出して電池電圧ランク信号 Iを前記パルス幅設定手段 1 1 5へ出 力し、 該パルス幅設定手段 1 1 5は、 電池電圧に対して、 腕を振るなど によって発生する程度の加速度がステップモータ 3◦ 1に加わった場合 でも、 該ステップモー夕 3 0 1を安定に起動し、 安定に高速回転させる ことができるように設定された、 相合わせパルス幅、 始動パルス幅、 後 続駆動パルス幅、 該相合わせパルスと該始動パルス間隔に対応して相合 わせパルス幅信号 K、 始動パルス幅信号 L、 後続駆動パルス幅信号 M、 パルス間隔信号 Nをそれぞれ相合わせパルス発生手段 1 1 2、 始動パル ス発生手段 1 1 3、 後続駆動パルス発生手段 1 1 4、 パルス間隔設定手 段 1 1 6へ出力する。 前記相合わせパルス発生手段 1 1 2は前記相合わ せパルス幅信号 Kにより前記電池電圧検出回路 1 1 1が検出した電池電 圧に対応したパルス幅 ( t c ) の相合わせパルス Cを前記駆動回路 1 1 0へ出力する。 前記パルス間隔設定手段 1 1 6は、 前記相合わせパ ルス Cと前記パルス間隔信号 Nから形成された始動パルス発生信号〇を 始動パルス発生手段 1 1 3へ出力する。
前記始動パルス発生手段 1 1 3は、 前記始動パルス幅信号 Lにより、 前記電池電圧検出回路 1 1 1が検出した電池電圧に対応したパルス幅 ( t e ) の始動パルス Eと該始動パルス Eのたち下がりの" tでで、 ノ レ ス幅 t gの、 該始動パルス Eによるステップモータの駆動を補助する補 助始動パルス 201 (以下、 特に断わらない限り、 始動パルス Eは、 補 助始動パルスを含む) を、 前記始動パルス発生信号 0により、 前記相合 わせパルス Cの立ち下がりから" t d後に駆動回路 1 10へ出力する。 前 記逆起電圧検出コイル 306に接続する前記差動増幅器 108の差動増 幅器出力 Fを図 15 (f ) に示す。 該差動増幅器出力 Fにはスパイクノ ィズ 202 (以下、 特に断わらない限り、 後続駆動パルス Hの立ち下が りに対応するノイズを言う) が重畳している。 前記差動増幅器出力 Fの 入力により前記ゼロクロスコンパレータ 107は図 15 (g) に示すよ うにゼロクロスコンパレータ出力 Gを前記後続駆動パルス発生手段 1 14に出力する。 前記ゼロクロスコンパレータ出力 Gには前記スパイ クノイズ 202に対応するスパイクパルス 204力重畳している。 しか し、 後続駆動パルス発生手段 1 14は、 後述する図 18に示す、 前記ス パイクノイズ 202に対応するスパイクパルス 204をディジタル的に マスクする機能を有するので、 前記後続駆動パルス発生手段 1 14は前 5 記始動パルス発生手段 1 13からの後続駆動パルス発生信号の入 以後 に、 図 15 (f ) に示すゼロクロス 203に対応する、 図 15 ( g) に 示す前記ゼロクロスコンパレー夕出力 Gの立ち上がり、 立ち下がり時刻 の中で、 前記スパイクパルス 204の立ち上がり、 立ち下がり時刻を除 いた時刻に同期して図 15 (h) に示すように、 前記電池電圧検出回路 0 1 1 1が検出した電池電圧に対応した、 前記相合わせパルス幅 (tc) と始動パルス幅 (te) より狭いパルス幅 (t ah) の後続駆動パルス Hを出力する。 前記ステップモータ 301は前記後続,駆動パルス Hによ り常時加速駆動されロータ 303に作用する摩擦抵抗とつり合った回転 数でロータ 303を高速回転させることができる。
5 ここで、 前記後続駆動パルス発生手段 1 14は、 前記後続駆動パルス Hのパルス幅 (t ah) をステップモータの回転数の上昇とともに狭く し、 ステップモータの回転数に最適なパルス幅 (t a h ) にする。 本実 施例は、 図 1 7 Aに示す、 差動増幅器 1 0 8が口一パスフィルターを有 しないことによって、 図 1 7 Gに示す抵抗 R 1とコンデンサ C 1から構 成されるローパスフィルター (以下、 R 1 C 1口一パスフィルタ一と呼 ぶ) による前記差動増幅器 1 0 8の出力 Fの時間的おくれを生じないの で、 前記スパイクパルス 2 0 4を除いた前記ゼロクロスコンパレータ出 力 Gの立ち上がり、 立ち下がりに対応する回転角 Θは、 ほぼ一 θ。 また は 71 — θ。 になる。 R 1 C 1からなる口一パスフィルタ一があるときに くらべ、 ディテントトルクによるステップモータの口一夕の回転に対す 0 るブレーキ (θ = 0〜π / 2あるいは π ~ 3 π / 2のときブレーキがか かる) がかかるまえに十分加速でき、 ロータの回転数をあげることがで きる。
図 1 8に構成が示されるディジタル的にスパイクパルスをマスクする 回路の機能を、 図 1 9に示すフローチャートに沿って説明する。 相合わ 5 せパルスと始動パルスから構成される起動パルスは、 ゼロクロスコンパ レー夕出力 Gに独立してそれぞれ相合わせパルス発生手段、 始動パルス 発生手段から出力されるので、 図 1 9 ( a ) には、 起動パルス以後の後 続駆動パルスを示す。 また、 スパイクパルス 2 0 4は、 ステップモータ の回転数が大きくなると、 発生しなくなることがあるので、 図 1 9 0 ( b ) には、 スパイクパルス 2 0 4が発生しているゼロクロスコンパ レ一夕出力 Gとスパイクパルス 2 0 4が発生していないゼロクロスコン レー夕出力 Gを示した。 図 1 8は、 ゼロクロスコンパレータ出力 Gに 対して、 始動パルス Eによって発生するゼロクロスコンパレータ出力 G の反転をマスクする (ここでは、 始動パルス Eは補助始動パルスを除い 5 た始動パルス Eである) ブロック 5 0 1、 スパイクパルス 2 0 4のバッ クエッジ 6 0 2をマスクするためのブロック 5 0 2、 スパイクパルス 204のフロントエッジ 601をマスクし、 さらに、 スパイクパルス 204が発生していないゼロクロスコンパレータ出力 Gにも対応するた めのブロック 503から構成されている。 まずプロック 501で、 ゼロ クロスコンパレータ出力 Gは該ゼロクロスコンパレータ出力 Gのパルス の立ち上がり、 立ち下がりにおける、 多重立ち上がり、 立ち下がりを単 —の立ち上がり、 立ち下がりにする波形整形回路に入力し、 波形整形さ れ、 始動パルス Eと 0 Rをとることによって、 該始動パルス Eが終了す る前に発生するゼロクロスコンパレータ出力 Gの反転を回避する。 ブロック 502では、 スパイクパルス 204のパックエッジ 602を マスクするために、 まずゼロクロスコンパレータ出力 Gをディレ一回路 504に通して、 該ディレー回路 504の出力の反転、 非反転の入力に よるフリップフロップ F 3、 F4の出力 F3 CI (d) 、 F4Q (e) を 生成し、 次に AND、 A 1により該 F 3 Q (d) と F4 Q (e) の AND出力、 Al (f ) を発生する。 ここで、 後続駆動パルス H (a) の立ち上がりによる、 パルス発生器 M 2のひげパルス出力 M 2 Q ( g) により、 フリ ップフロップ F 3、 F 4はリセッ トされる。 ブロック 503では、 ゼロクロスコンパレータ出力 Gの反転 (c) 、 非反転 (b) の入力によるフリップフロップ F 1、 F 2の出力 F 1 Q ( j ) 、 F2 ¾ (k) を生成し、 該 F 1 CI ( j) と F 2 Q (k) の OR出力 C12 (1 ) は、 後続駆動パルス Hを発生するために出力される。 ここで、 前 記スパイクパルス 204をマスクするために、 フロン卜エツジ 601を マスクするための後続駆動パルス H (a) の立ち下がりによるパルス発 生器、 M lの出力パルス Ml Gl (h) と前記バックエッジ 602をマス クするための A l (f ) の OR出力 Q l ( i ) によってフリップフロッ プ F 1、 F 2はリセッ 卜される。
以下、 タップ付コイルを用いた実施例を図 21乃至図 24 Bを参照し て説明する。 図 23 Aは、 タップ付コイルにおける、 振動アラーム駆動 用ステップモータの平面図、 図 23 Bは図 23 Aの XXI1IB -XMB 断面 図であり、 ステ一タ、 ロータ平面図は図 16 Cと同様であり、 ステップ モータ 1 101は偏心重り 302が設けられた口一夕 303、 ステ一夕 304、 駆動コイル 1 1 02から構成されている。 図 2 1に示すよう に、 逆起電圧検出コイル 1 103は、 該駆動コイル 1 102全体からな る、 あるいは一部からタップをとり出してなるコイルである。
前記逆起電圧検出コイル 1 103に発生する逆起電圧について説明す る。 逆起電圧検出コイルに発生する逆起電圧 Vbは、 逆起電圧検出コィ ルに流れる電流を i bとして、 逆起電圧検出コイルの直流抵抗 Rbによ る電圧降下 Rb * i bを含めて次の式 (7) によって求められる。
Vb = -Lb - ( d i b / d t ) -Kb · sin ( Θ + Θ 0) -
(d θ/d t) -Rb · ib - (7) 式 (7) において、 一 Lb * (d ib /dt) は該逆起電圧検出コ ィル 1 1 03の等価自己ィンダクタンス L b (逆起電圧検出コイル 1 1 03の巻数を n b、 駆動コィルの逆起電圧検出コィル 1 103に使 用しないコイル部の巻数を nbO として、 等価自己インダクタンス Lb は (nb2 + n b · nbO ) ノ Rmとなる。 ここで Rmはステップモー タの磁気回路の磁気抵抗) と駆動電流 ib の時間変化の積の符号を逆に したもので、 駆動電流 ib が時間変化することによって発生し、 一 Kb • s i n (θ + θ0) · ( d θ/d t ) はステップモータ 1 1 01との機 械結合係数 Kb、 s i n (θ + θ。)とロータ 3◦ 3の回転角 Θの時間変 化つまり角速度の積の符号を逆にしたもので、 ロータ 303が回転する ことによって発生する。 θ。 はロータ 303の初期角度で、 図 16 Cに 示すステ—タ、 口一夕平面図において、 ディテントトルクによって静止 したロータ 303のロータ磁石 308の磁極 N (S) 位置から、 ステー タ 304のスリツ卜 309からほぼ 90度の位置までの角度である。 さらに、 後述する差動増幅器の出力 V gbは次の式 (8) によって求 められる。
Vgb=-Gb - Lb - (d ib d t) -Gb · Kb · sin(S + Θ o) - (d θ/d t) -Gb · Rb · ib
… (8) 式 (8) の V gbは後述する図 21に示すステップモータのロータの 高速回転駆動回路のプロック図における差動増幅器 908の差動増幅力 Fで、 該ー Gb ' Kb * s i n (θ + θ。) · (d θ/d t) が零になる 0 ときを検出することによって、 図 1 6 Cに示す、 ディテントトルクに よって静止した口一夕 303のロータ磁石 308の磁極 N (S) 位置か らの前記ロータ 303の回転角 Θ (—6。、 一 θ。 +TC) を検出できる ことになる。 ここで、 Gbは差動増幅 908のゲインである。 タップ付 コイルにおける差動増幅器の出力 V gbには、 駆動コイルの駆動電流 5 ib の時間変化による一 Gb · Lb · (d ib /dt) -Gb · Rb · ibが入るが、 無視できる程度のものである。
図 2 1に示す夕ップ付コイルを有するステップモータのロータの高速 回転駆動回路の実施例のブロック図の構成を説明する。 図 2 1は、 図 14に示すステ プモータのロータの高速回転駆動回路の実施例のプロ 0 ック図と、 駆動コイル 305、 該駆動コイル 305と駆動回路 1 10の 結線方法、 該駆動コイル 305と差動増幅器 108の結線方法、 さらに 差動増幅器 108において、 異なり、 図 21の駆動コイル 1 102は、 駆動回路 1 10と結線し、 該逆起電圧検出コイル 1 103は差動増幅器 908と結線している。 それ以外は、 図 14と同様なので、 説明を省略 5 する。
図 22 (a) 乃至図 22 (h) に示すタップ付コイルを有するステツ プモ一夕のロータを高速回転駆動するための説明図を、 図 2 1に示す 夕ップ付コィルを有するステツブモータのロータの高速回転駆動回路の 実施例のブロック図にそって説明する。 図 22 (a) 乃至図 22 (e) は、 図 1 5 (a) 乃至図 1 5 (e) と同様なので説明を省略する。 前記 逆起電圧検出コイル 1 1 03に接続する前記差動増幅器 908の差動增 幅器出力 Fを図 22 (f ) に示す。 該差動増幅器出力 Fにはスパイクノ ィズ 1 002が重畳している。 前記差動増幅器出力 Fの入力により前記 ゼロクロスコンパレータ 1 07は図 22 ( g) に示すようにゼロクロス コンパレータ出力 Gを前記後続駆動パルス発生手段 1 14に出力する。 前記ゼロクロスコンパレータ出力 Gには前記スパイクノイズ 1 002に 対応するスパイクパルス 1 004が重畳している。 しかし、 後続駆 動パルス発生手段 1 14は、 図 1 8に示すような前記スパイクノイズ
1 002に対応するスパイクパルス 1004をディジタル的にマスクす る機能を有するので、 前記後続駆動パルス発生手段 1 14は前記始動パ ルス発生手段 1 13からの後続駆動パルス発生信号 Jの入力以後に、 図
22 (f ) に示すゼロクロス 1003に対応して、 図 22 ( g) に示す 前記ゼ口クロスコンパレータ出力 Gの立ち上がり、 立ち下がり時刻の中 で、 前記スパイクパルス 1004の立ち上がり、 立ち下がり時刻を除い た時刻に同期して図 22 (h) に示すように、 前記電池電圧検出回路 1 1 1が検出した電池電圧に対応した、 前記相合わせパルス幅 (t c) と始動パルス幅 (t e) より狭いパルス幅 (tbh) の後続駆動パルス Hを出力する。 前記ステップモータ 1 101は前記後続駆動パルス Hに より常時加速駆動されロータ 303に作用する摩擦抵抗とつり合った回 転数でロータ 303を高速回転させることができる。 ここで、 前記 後続駆動パルス発生手段 1 1 4は、 前記後続駆動パルス Hのパルス幅 (tbh) をステップモータの回転数の上昇とともに狭くし、 ステップ モータの回転数に最適なパルス幅 (t b h) にする。 本実施例は、 図 24 Aに示す差動増幅器 9 08が図 1 2 Bに示す R 2 C 2、 R 3 C 3 ローパスフィルターを有しないことによって、 該ロ一パスフィルターに よる前記差動増幅器 908の出力 Fの時間的おくれを生じないので、 前 記スパイクパルス 1 004を除いた前記ゼロクロスコンパレータ出力の 立ち上がり、 立ち下がりに対応する回転角 Sは、 ほぼ一 θ。 または τι一 Θ 0 になる。 ローパスフィルターがあるときにくらべ、 ディテントトル クによるステップモータのロータの回転に対するブレーキ (θ = 0〜π /2あるいは π〜3 πΖ2のときブレーキがかかる) がかかるまえに、 0 十分加速でき、 ロータの回転数をあげることができる。
次にキャンセル型コイルを用いた実施例を図 2 5乃至図 3 1を参照し て説明する。 図 2 7Αは、 キャンセル型コイルにおける、 振動アラーム 駆動用ステップモータの平面図、 図 27 Βは図 27 Αの ΧΧΠΙΒ - Χ¾Τ ΙΙΒ断面図、 ステ一夕、 ロータ平面図は図 1 6 Cと同様であり、 ステツ 5 プモータ 1 50 1は偏心重り 302が設けられたロータ 303、 ステー タ 3 0 4、 駆動コイル 1 5 0 2から構成されている。 該駆動コイル 1 502は実働駆動コイル 1 503と前記ロー夕 303の磁極位置を検 出するために該実働駆動コイルに直列接続し、 直流抵抗と自己ィンダク タンスが同一で巻方向を異にする 2個のロータ発生逆起電圧検出コイル 0 1 504、 1 5◦ 5から構成されている。
前記口一夕発生逆起電圧検出コイル 1 504、 1 505に発生する逆 起電圧について説明する。 ロータ発生逆起電圧検出コイル 1 504に発 生する逆起電圧 V cは、 ロータ発生逆起電圧検出コイル 1 504の直流 抵抗 R cによる電圧降下 R c · i C を含めて、 次の式 (9) によって求 5 められる。
V c = - L c - ( d i e d t ) 一 K c · sin ( θ + θ o) · ( d θ/d t ) - R c · i c ··· ( 9 ) 式 (9) において、 — Lc · (d i e /d t) は該ロータ発生逆起電 圧検出コイル 1 504の等価自己ィンダクタンス L c (実働駆動コィ ル、 ロータ発生逆起電圧検出コイル Cの巻数を η0(:、 nc として等価自 己インダクタンス L cは L c = n。c · nc /Rm; ここで Rmはステツ プモータの磁気回路の磁気抵抗) と駆動電流 i C の時間変化の積の符 号を逆にしたもので、 駆動電流 i C が時間変化することによって発生 し、 一 K c ' s i n (e + S。 ) · ( d Θ / d t ) はステップモータ 1 501との機械結合係数 K、 s i n (θ + θ。 ) とロータ 303の回 0 転角 Θの時間変化つまり角速度の積の符号を逆にしたもので、 ロータ 303が回転することによって発生する。 θ。 は口一夕 303の初期角 度で、 図 16 Cに示すステ一タ、 ロータ平面図において、 ディテントト ルクによって静止したロータ 303のロータ磁石 308の磁極 N (S) 位置から、 ステータ 304のスリッ卜 309からほぼ 90度の位置まで 5 の角度である。
また、 ロータ発生逆起電圧検出コイル 1 505に発生する逆起電圧 V dは、 ロータ発生逆起電圧検出コイル 1 505の直流抵抗 R dによる 電圧降下 R d · i dを含めて、 次の式 ( 1 0) によって求められる。
V d = - L d - (d i a /dt) -Κά - εϊηίθ + θο) · 0 ( d θ/d t + R d · i。 - ( 10) 同様に式 ( 1 0 ) の V dは— L d ' ( d i。 Zd t) 、 - K d · s i n (θ + θ0) · (d θ/d t) と R d * i。 の和になり、 駆動電流 i cと一 i d、 直流抵抗 Rcと Rd、 等価自己インダクタンス Lcと一 Ld、 機械結合係数 Kcと Kdはそれぞれ i (― i ) 、 R、 L (一 L)、 5 Kと等しいので、 前記 Vcと異なるところは、 駆動電流 iの方向が異な ることによって R · iの符号のみが異なることである。 さらに、 後述する加算器の出力 Vは次の式 ( 1 1 ) によって求められ る。
V = - 2 · G · L · ( d i /d t) - 2 · G · K
•sin(S + 0。 ) · (dSZdt) - ( 1 1) 式 ( 1 1 ) の Vは後述する図 25に示すステップモータの口一夕の高 速回転駆動回路のプロック図における加算器 1308の加算出力 Fで、 前記 V cと V dを加算した結果、 直流抵抗による電圧降下がキヤンセル されて、 駆動電流 iの時間変化により一 2 · G · L · (d i/dt) と ロータ 303が回転することによって発生する逆起電圧、 一 2 · G · K · s i η (θ + θο ) - (ά θ/dt) の和になる。 該ー 2 · G · Κ · s i n (θ.+ θ。 ) · (dSZdt) 力零になる時を検出することによ つて、 図 16 Cに示す、 ディテントトルクによって静止したロータ 30 3のロータ磁石 308の磁極 N (S) 位置からの前記ロータ 303の回 転角 — Θ。 、 一 θ。 +π) を検出できることになる。 ここで、 Gは 加算器 1308のゲインである。 なお、 式 ( 1 1 ) 中の一 2 · G · L · (d i/dt) は無視できる値なので、 検出には影響しないものであ る。 前記ロータ発生逆起電圧検出コイル 1504、 1505は互いに駆 動電流 iの方向が異なるため、 ロータ 303の回転駆動には寄与せず、 直流抵抗 R cと R dのジュール損により電力を無効に消費する力 前記 0 ロータ発生逆起電圧検出コイル 1504、 1505のそれぞれの巻数は 駆動コイル 1502の 1/40程度でも前記加算器 1308からの出力 は後述する図 13に示すゼロクロスコンパレータ 107が充分ゼロクロ ス検出できるレベルになるので、 前記ロータ発生逆起電圧検出用コイル 1 504、 1505の無効消費電力は前記駆動コイル 1502の消費電 5 力に較べ無視できる。
図 26 fa) 乃至図 26 (h) に示すキャンセル型コイルを有するス テツプモータのロータを高速回転駆動するための実施例の説明図を、 図 25に示すキャンセルコイルを有するステップモータのロータの高速回 転駆動回路の実施例のブロック図にそって説明する。 本実施例において は、 始動パルス発生手段 1 1 3は、 始動パルス Eと補助始動パルス 201から構成されるパルスを発生し、 図 28に示めす加算器 1308 は、 後述する図 30に示す R 3 , C3、 R4, C4、 R 5, C 5ローパ スフィルターを有さず、 一方後続駆動パルス発生手段 1 14は、 図 28 のディジタル的にスパイクパルスをマスクする回路の構成図で詳細に説 明したように、 前記加算器によつて加算される逆起電圧に重畳するスパ 0 イクノイズによって発生するスパイクパルスをディジタル的にマスクす る機能を有し、 後続駆動パルス Hのパルス間隔からステップモータの回 転数を算出し、 ステップモータの回転数の上昇とともに後続駆動パルス 幅 (t h) を狭くする機能も有する。
始動パルス Eの発生までは、 図 1 5 (a) 乃至図 15 (e) と同一な 5 ので説明を省略する。 前記ロータ発生逆起電圧検出用コイル 1 504、 1 505に接続する前記加算器 1 308の加算器出力 F' を図 26 (f ) に示す。 該加算器出力 F' にはスパイクノイズ 1402が重畳し ている。 前記加算器出力 F' の入力により前記ゼロクロスコンパレータ 1 07は図 26 (g) に示すようなゼロクロスコンパレータ出力 Gを前 0 記後続駆動パルス発生手段 1 14に出力する。 前記ゼロクロスコンパ レ一タ出力 Gには前記スパイクノイズ 1402に対応するスパイクパル ス 1404が重畳している。 しかし、 後続駆動パルス発生手段 1 14は 前記スパイクノイズ 1402に対応するパルス 1404をディジタル的 にマスクする機能を有するので、 前記後続駆動パルス発生手段 1 14は 5 図 18に示すような前記始動パルス発生手段 1 13からの後続駆動パル ス発生信号 Jの入力以後に、 図 26 (f ) に示すゼロクロス 1403に 対応する、 図 26 (g) に示す前記ゼロクロスコンパレータ出力 Gの立 ち上がり、 立ち下がり時刻の中で、 前記スパイクパルス 1404の立ち 上力 り、 立ち下がり時刻を除いた時刻に同期して図 26 (h) に示すよ うに、 前記電池電圧検出回路 1 1 1が検出した電池電圧に対応した、 前 記相合わせパルス幅 (tc) と始動パルス幅 (t e) より狭いパルス幅 (t h) の後続駆動パルス Hを出力する。
前記ステップモータ 1501は前記後続駆動パルス Hにより常時加速 駆動されロー夕 303に作用する摩擦抵抗とつり合った回転数でロータ 303を高速回転させることができる。 ここで、 前記後続駆動パルス発 0 生手段 1 14は、 前記後続駆動パルス Hのパルス幅 (th) をステップ モータの回転数の上昇とともに狭くし、 ステップモータの回転数に最適 なパルス幅 (th) にする。 本実施例は、 加算器 1308が後述する図 30に示す1^3, C3、 R4, C4、 R 5, C 5口一パスフィルタ一を 有しないことによって、 該ロ一パスフィルターによる前記加算器 130 5 8の出力 Fの時間的おくれを生じないので、 前記ゼロクロスコンパレー タ出力の立ち上がり、 立ち下がりに対応する回転角 Θは、 ほぼ一 Θ 0ま たは π— Θ 0になる。 前記口一パスフィルタ一があるときにくらべ、 ディテントトルクによるステップモー夕のロータの回転に対するブレー キ (θ = 0〜πΖ2あるいは 71:〜 3πΖ2のときブレーキがかかる) が 0 かかるまえに、 十分加速でき、 ロータの回転数をあげることができる。
本実施例において、 ステップモータのドライバへの印加電圧が 3 '、 後 続駆動パルスのパルス幅が約 3msの条件で、 毎分当りのロータ 303 の回転数は約 6000 rpmとなり、 駆動電流 (ピーク値) は約 2mA と小さいものであった。
5 次に、 後続駆動パルス発生手段 1 14からディジタル的にスパイクパ ルスをマスクする回路を取外し、 加算器にローパスフィルタ一を取りつ けた実施例について説明する。 また、 図 29 (a) 乃至図 29 (h) に 示すステップモータのロータを高速回転駆動するための実施例の説明図 の図 29 ( e) までは、 図 26 (a) 乃至図 26 (e) と同一であり説 明を省略する。 図 30に、 加算器 1 708の回路構成図を示す。 該加算 器 1708は前記口一夕発生逆起電圧検出用コイル 1504、 1505 にそれぞれ接続する差動増幅器 1 60 1、 1 602と該差動増幅器 1 60 1、 1 602のそれぞれの出力端子に接続する R 4 , C 4、 R 5, C 5口一パスフィルタ一と該 R 4, C4、 R 5 , C 5口一パス フィルターに接続する R 3/R 6あるいは R 3ZR 7の增幅度の、0 R3、 C 3で形成するローパスフィルターを有する加算増幅器 1903 によって構成されている。 前記加算器 1 Ί 08の出力も式 ( 1 1 ) (ゲ ィン Gに口一パスフィルターによる周波数特性がはいる) で表される が、 実際は、 前記差動増幅器 1 601、 1 602の前記後続駆動パルス Hの発生時間に対応した出力は、 それぞれ同符号となり、 前記加算増幅 5 器 1 903で除去できないので、 いわゆるスパイクノイズとして、 加算 器出力 F' に重なって現われる。 ここでは、 スパイクノイズは、 後続駆 動パルス Hの立ち下がりに対応したノイズだけでなく、 後続駆動パルス Hの立ち上がりから立ち下がりにまでに対応したノイズを言う。 もし該 スパイクノィズによって任意の時刻に前記加算器出力 F ' がゼロクロス 0 すると、 不必要な後続駆動パルス Hが前記駆動パルス発生マイコン 109から出力され、 前記ロータ 303は正常に回転できなくなる。 そ こで、 該スパイクノイズを除去するために、 R 4, C4、 R 5 , C 5 ローパスフィルタ一と R 3、 C 3で形成する口一パスフィルタ一が必要 となる。
5 R 3 , C 3口一パスフィルタ一のカットオフ周波数は、 式 ( 12) に よって求められる。
Figure imgf000042_0001
R4, C 4口一パスフィルターの力ッ 卜オフ周波数は、 式 ( 13) に よって求められる。
f 2 = 1/ (2π · R4 · C4) - ( 13) R 5 , C 5で形成するローパスフィルターのカットオフ周波数は、 式
( 14) によって求められる。
f 3 = l/ (2 - R5 - C5) - ( 14) 前記スパイクノイズを除去するために、 前記 f 1、 f 2 f 3はス テツプモータの最大回転周波数を f rとして、 f rから 4 f rの範囲に 0 設定する必要がある。 前記口一パスフィルタ一によって前記スパイクノ ィズのなかで、 後続駆動パルス Ηの立ち上がりと立ち下がりに対応した 高周波数のスパイクノイズは除去できても、 カットオフ周波数 f l、 f 2、 f 3より低い周波数のスパイクノイズは除去できないので、 相合わ せパルス (:、 始動パルス E、 後続駆動パルス Hの発生時間内に、 図 29 5 (f ) に示す加算器出力 F' にクランプ 1802力 ^発生する。 しかし、 前記後続駆動パルス Ηの立ち下がりに対応したスパイクパルスによるゼ 口クロスコンパレータ 107のゼロクロス出力はなくなり、 後続駆動パ ルス Ηをロータ発生逆起電圧のゼロクロスのみで発生できるので、 ス テップモータの高速回転の安定性に問題は生じない。
0 前記口一パスフィルタ一によって、 前記加算出力 Fには時間的遅れが 生じ、 前記ゼロクロスコンパレータ出力 Gの立ち上がり、 立ち下がりに 対応する回転角 0は一 θ。 または π— θ。 からずれる。 該回転角 Θは、 ディテントトルク、 駆動コイル 1502に流れる駆動電流によって発生 する励磁トルクをロータ 303の回転駆動に有効に利用し、 口一夕 5 303の起動特性と回転数を最適化するためには、 ディテントトルクに 対応する磁気平衡点と励磁卜ルクに対応する励磁平衡点の間にあること が望ましく、 図 1 6 Cに示すように、 0から一 θ。 、 あるいは 71 — θ。 から πにあることが望ましい。 前記回転角 Θの遅れが θ。 より大きくな るときは、 図 3 1 ( f ) に示すように (図 3 1 ( a ) 乃至図 3 1 ( e ) は図 2 9 ( a ) 乃至図 2 9 ( e ) と同一なので説明を省略する。 ) 、 ゼ 口クロスコンパレー夕 1 0 7のゼロクロスレベルをゼロレベルからプラ ス側にシフト (ゼロクロスレベル 2 0 0 1 ) 、 マイナス側にシフト (ゼ 口クロスレベル 2 0 0 2 ) させて設定することによって、 ゼロクロスコ ンパレー夕 1 0 7を時間的に進み方向に動作させ、 図 3 1 ( g ) に示す ように、 ゼロクロスコンパレタ出力 Gの立ち上がり、 立ち下がりを時間 0 的に進ませ、 図 3 1 ( h ) に示すように、 後続駆動パルス Hの発生を時 間的に進ませて、 前記ロータ 3 0 3の回転角 Θの遅れを取り戻す必要が ある。
次に、 キャンセル型コイルを有するステップモー夕のロータの高速回 転駆動回路の他の実施例を図 3 2のプロック図の構成に基づいて説明す 5 る。 図 3 2において、 図 2 5と異なる構成は、 前記相合わせパルス Cの 駆動による前記口一夕 3 0 3の回転、 非回転を検出して、 回転非回転信 号をパルス間隔設定手段 2 1 1 6、 始動パルス発生手段 2 1 1 3へ出力 する回転非回転検出回路 2 1 1 7を追加した点である。 それ以外は図 2 5と同一構成なので重複部分は説明を省略する。
0 図 3 3にキャンセル型コイルを有する示すステップモータの口一夕を 高速回転駆動するための他の実施例の説明図を、 図 3 2に示すキャンセ ル型コイルを有するステップモータのロータの高速回転駆動回路の他の 実施例のブロック図にそって説明すると、 異なるのは、 前記始動パルス 発生手段 2 1 1 3は、 前記始動パルス幅信号 Lにより、 前 ^電池電圧検 5 出回路 1 1 1が検出した電池電圧に対応し、 さらに前記回転非回転検出 回路 2 1 1 7の回転非回転信号 Pに対応して、 始動パルス (パルス幅 が、 ロータ 303が回転した時 t e r、 回転しない時" ten) と補助始 動パルス (パルス幅が、 ロータ 303が回転した時 t g r、 回転しない 時 t gn) を、 図 33 Ce) に示すように (以下に示す図 33 (f ) 、 図 33 (g) 並びに図 33 (h) についても、 口一夕 303が回転した 時実線、 回転しない時破線で示す) 前記始動パルス発生信号 0により、 前記相合わせパルス Cの立ち下がりから tdr (ロータ 303が回転し た時) あるいは" t dn (ロータ 303が回転しない時) 後に駆動回路 1 10へ出力する点である。 ステップモータのロータの高速回転駆動回 路の本実施例では、 図 25に示すロータの高速回転駆動回路の前述の実 0 施例に前記回転非回転検出回路 21 17力 s追加されたことにより、 前記 電池電圧検出回路 1 1 1によって検出された電池電圧だけでなく、 前記 相合わせパルス Cの駆動による前記ロータ 303の回転、 非回転に対応 して、 前記始動パルス発生手段 21 13の出力する前記始動パルス Eの 出力時刻とパルス幅を設定できるが、 前記回転非回転検出回路 21 17 5 が前記口一夕 303の回転、 非回転を検出するには、 前記相合わせパル ス Cの立ち下がりから所定の時間を要するので、 該相合わせパルスじで ロー夕 303が回転したとしても、 前記後続駆動パルス Hよりパルス幅 の広い始動パルス Eは必要となる。
前記ロータ発生逆起電圧検出コイル 1504、 1505に接続する前 0 記加算器 1308の加算器出力 F' を図 33 (f ) に示す。 前記加算器 出力 F' の入力により前記ゼロクロスコンパレータ 1 0了は図 33 ( g ) に示すようにゼロクロスコンパレータ出力 Gを前記後続駆動パル ス発生手段 1 14に出力する。 前記後続駆動パルス発生手段 1 14は前 記始動パルス発生手段 21 13からの後続駆動パルス発生信号 Jの入力 5 以後に、 図 33 (f ) に示すゼロクロス 2203に対応する前記ゼロク ロスコンパレータ出力 Gの立ち上がり、 立ち下がり時刻に同期し、 図 3 3 ( h ) に示すように、 前記後続パルス幅信号 Mにより前記電池電圧 検出回路 1 1 1が検出した電池電圧に対応してた、 前記相合わせパ ルス幅 (t c ) と始動パルス幅 (t e r、 t e n ) より狭いパルス幅 ( t h ) の後続駆動パルスを出力する。 前記ステップモータ 1 5 0 1は 前記後続駆動パルス Hにより常時加速駆動されロータ 3 0 3に作用する 摩擦抵抗とつり合った回転数でロータ 3 0 3を高速回転させることがで きる。
次に図 3 4に示すキャンセル型コイルにおける駆動コイルの巻回方法 について説明する。 実働駆動コイル 1 5 0 3、 口一夕発生逆起電圧検出0 コイル 1 5 0 4、 1 5 0 5から構成される駆動コイル 1 5 0 2を、 図 3 4に示すワイヤ 2 3 0 6を①によって、 ワイヤガイド 2 3 0 7から弓 | きだし、 該ワイヤ 2 3 0 6をコイル巻枠 2 3 0 5に引っかけ、 まず、 コ ィル巻芯 3 0 7にロータ発生逆起電圧検出コイル 1 5 0 5を巻回し、 次 に、 ②によってワイヤ 2 3 0 6をワイヤ引っかけピン 2 3 0 8に引つ力、 5 け、 ③によってワイヤ 2 3 0 6をコイル巻枠 2 3 0 5に引っかけ、 コィ ル卷芯 3 0 7にロータ発生逆起電圧検出コイル 1 5 0 4を口一夕発生逆 起電圧検出コイル 1 5 0 5と逆に巻回し、 ④によってワイヤ 2 3 0 6を ワイヤ引っかけピン 2 3 0 8に引っかけ、 ⑤によってワイヤ 2 3 0 6を コイル巻枠 2 3 0 5に引っかけ、 コイル巻芯 3 0 7に実働駆動コイル 1 0 5 0 3をロータ発生逆起電圧検出コイル 1 5 0 5と逆に巻回し、 ⑥よつ てワイヤ 2 3 0 6をワイヤガイ ド 2 3 0 7に引っかける。 ロータ発生逆 起電圧検出コイル 1 5 0 5の 2個のコイル端子をそれぞれコイル端子 1、 2 3 0 1、 コイル端子 4、 2 3 0 4に、 ロータ発生逆起電圧検出コ ィル 1 5 0 4の 2個のコイル端子をそれぞれコイル端子 2、 2 3 0 2、 5 コィル端子 4、 2 3 0 4に、 該実働駆動コイル 1 5 0 3の 2個のコイル 端をそれぞれコィル端子 2、 2 3 0 2、 コィル端子 3、 2 3 0 3に圧接 し、 駆動コイル 1 5 0 2に不要なワイヤ 2 3 0 6をカットし、 該駆動コ ィル 1 5 0 2のコイル巻芯 3 0 7への自動巻きが完成する。
次に図 3 5に示す振動アラームの振動変調の第 1の実施例を説明す る。 図 1 4、 図 2 1、 図 2 5、 図 2 9、 図 3 2における駆動オン Zオフ 発生回路 1 0 6は、 振動アラームセヅ卜/リセッ卜回路 1 0 5力 らの図 3 5 ( a ) に示す振動アラーム発生パルス Aの入力によって、 ステップ モータの駆動オンに対応する駆動オン時間 t o nと駆動オフに対応する 駆動オフ時間" t o f fのパルスの列からなる駆動オン Zオフ信号 Bを出 力する。 該駆動オン Zオフ信号 Bによって、 ステップモータは、 駆動ォ 0 ン時間" t o n内に回転駆動され、 駆動オフ時間 " o f fに停止する。 こ れによって、 振動アラームの振動が変調されることになり、 変調のな レ、、 一定の振動にくらべ、 時計ケースを介してステップモータの偏心重 りの振動を、 腕の触覚器官に、 より強く伝えることができる。
次に図 3 6に示す振動アラームの振動変調の第 2の実施例を説明す5 る。 図 1 4、 図 2 1、 図 2 5、 図 2 9、 図 3 2における駆動オン/オフ 発生回路 1 0 6は、 振動アラームセッ 卜 Zリセット回路 1 0 5からの図 3 6 ( a ) に示す振動アラーム発生パルス Aの入力によって、 ステップ モータの駆動オンに対応する,駆動オン時間" t o nのパルスからなる駆動 オンノオフ信号 Bを出力する。 図 3 6 ( c ) に示すように、 後続駆動パ 0 ルス発生手段は、 t c o nの時間の間、 一定パルス幅 (" h ) の後続駆 動パルスを発生し、 その後、 徐々に後続駆動パルス幅を小さくしてい き、 後続駆動パルス間隔を測定し、 後続駆動パルス間隔が" t sになった ならば、 徐々に後続駆動パルス幅を大きくしていく。 そして、 後続駆動 パルス間隔が" t束になってから、 t c o nの時間の間、 一定のパルス幅 5 ( t h ) を発生する。 以後、 前記を繰り返す。 これによつて、 ステップ モー夕のロータの回転数は大きくなったり、 小さくなつたりするので、 振動アラームの振動が変調されることになり、 変調のない、 一定の振動 にくらべ、 時計ケースを介してステップモ一夕の偏心重りの振動を、 腕 の触覚器官に、 より強く伝えることができる。
次に、 ロータの毎分当たりの回転数の理論的にシミュレーションした 計算結果を説明する。 ロータの駆動方法は、 回転するロータが発生する 磁束によって、 駆動コイルに誘起される逆起電圧 (以下、 ロータ発生逆 起電圧と呼ぶ) からロータの位置を検出して、 ロータの位置を検出した 時刻と同期して、 駆動コイルに駆動電流を流し、 ロータを加速駆動する 最適駆動方法である。
まず、 ロータの回転角 Θは、 式 ( 1 5 ) によって求められる。 ここ で、 口一夕の回転角 Θは、 図 1 6 Cのステ一夕、 ロータ平面図に示すよ うに、 図 1 6 Cの磁気平衡点を 0 = 0として、 右回りがプラスとなる角 度である。
J - (d2 θ/d 12) + r - (ά θ/d t)
= K - i · sin ( θ + Θ。)一 T s · sin 2 θ - TL 一 M g ' cos Θ
… ( 1 5) 次に、 駆動電流 iは、 式 ( 1 6) によって求められる。
い (d i /d t) + K · s i η (θ + θ。 ) ·
( d θ/d t) + R · i = (u (t ) - u (t一 τ) ) ·
V - R。 ( i , V) · i
… ( 1 6) ここで、 Jはロータの慣性モーメント、 rはロータの流体抵抗係数、 Kは電気機械結合係数、 Θ。 はロータの初期角度、 T sはディテント ト ルクの最大値、 丁!^ は負荷トルク、 M gは偏心重りの最大重力モーメン ト、 Lは駆動コイルの自己インダクタンス、 Rは駆動コイルの直流抵 抗、 u ( t ) は時刻 tの単位関数、 ては駆動パルス幅、 Vはモータドラ ィバへの印加電圧、 R。 ( i, V) はモータドライバの〇 N抵抗であ る。
口一夕の初期角度は、 S。 (πΖ4 = 0. 785 r ad) として、 ロータ発生逆起電圧、 一 K · s i n (θ + θ。 ) · (d0/dt) がゼ 口となるロータの回転角 Θ [一 θ 0 、 一 θ0 +π) あるいは時刻に後続 駆動パルス (パルス幅て) で、 口一夕を加速駆動したシミュレーション の計算結果 (毎分当たりのロータの回転数の時間変化) を図 37に示 す。 ちなみに、 各パラメータ値については、 図 37に示すように印加電 圧は 3. 0 ( V ) 、 モータドライバの 0 Ν抵抗を含んだ駆動コィル直流 抵抗 (R + R。 ) は 200 (Ω) 、 自己インダクタンス Lは 200m H、 慣性モーメント Jは 2. 8x 10"9 (k gm2 ) 、 流体抵抗係数 r は 1 6. 0 X 1 0— 11 (Nm s/r a d) 、 電気機械結合係数 Kは 5. 3 X 10—3 (Nm/A) 、 ディテントトルク T sは 5. 3 x 10— 5 (Nm) 、 負荷トルク は 0. 0 (Nm) 、 偏心重りの重力による モーメント Mgは 6. 0 X 10— 6 (Nm) である。 口一夕の初期停止角 度位置 θ、 一 s i n-1 (Mg/2Ts) は約一 0. 06 r ad、 口一夕 の初期角速度 (dSZdt) は、 O r ad :初期駆動電流 iは OmAと して、 始動パルス幅が 20ms、 パルス幅て 4m sの後続駆動パルス力5' 1 14個の場合の毎分当たりの口一夕の回転数の時間変化において、 最 大回転数は 7000 r p m、 後続駆動パルス終了 (約 0. 55 s ) 後の ロータの停止時間は約 0. 1 5 sとなった。 また、 駆動電流は、 起動 時、 15mAで、 約◦. 5 s後の定高速回転時で、 約 3mAであった。 ロー夕の回転数の本シミュレーション計算によって、 口一夕の回転数 は、 ロータ発生逆起電圧から口一夕の位置を検出して、 口一夕の位置を 検出した時刻と同期して、 駆動コイルに駆動電流を流し、 ロータを加速 駆動する方法によって、 3000 r pm以上になることがわかった。 ま た、 定高速回転時の駆動電流 (ピーク値) は、 約 3 m Aと小さくできる ことがわかった。
次に本発明で使用できるステ一夕について説明する。 上記の各実施例 においては図 3 8 Aに示すスリツ 卜 2 6 1と段差 2 6 2を有する扁平 2 極ステ一夕を用いて説明したが、 本発明はこれに限定されるものではな く、 図 3 8 Bに示す様な段差無しで、 ノッチ 2 6 3を備えた扁平 2極ス テ一夕、 図 3 8 Cに示す様なスリットのみを有し、 段差はない扁平 2極 ステ一タ、 図 3 8 Dに示す様なスリットも段差もない扁平 2極ステ一夕 を用いても実現できる。 図 2 6 ( d ) の扁平 2極ステ一夕の場合は、 ノ 0 ルス幅の異なる始動パルスを複数用意して、 最適始動パルスを選択出力 することにより駆動できる。
5
0
5

Claims

請求の範囲
1 . 回転軸に対し偏心した位置に重心を有する偏:、重りをモータで回 転させて振動を発生させる振動アラーム付電子機器において、 前記モー 夕が 2極の扁平ステ一夕と 2極の永久磁石を有するロータと前記扁平ス テ一夕に対して磁気的に結合した駆動コイルとからなり、 前記口一夕の ロータ軸に前記偏心重りを直接固着した扁平ステ一タ型 2極ステップ モータであり、 該扁平ステ一タ型 2極ステップモータの前記ロータを回 転させることにより前記偏心重りを回転させて振動を発生させることを 0 特徴とする振動アラーム付電子機器。
2 . 前記ロータの静止時における前記偏心重りの重心の位置が、 ロー タ軸を中心として偏心重りの回転方向に沿って重力の鉛直方向までの角 度を Θとしたとき、 0 ° < θ < 9 0 ° 又は 1 8 0 ° く Θく 2 7 0 ° の位 置になるように前記偏心重りを配置したことを特徴とする請求項 1記載 5 の振動アラーム付電子機器。 '
3 . 前記ロータ軸を中心として前記偏心重りの回転方向に沿って偏心 重りの重心からロータ磁石の磁極までの角度を 3とし、 前記扁平ステー 夕型 2極ステップモ一夕のステ一夕のスリッ 卜と重力の鉛直方向との角 度を αとしたとき、 αと ]3が略同一角度となる様に前記偏心重りと前記 0 口一夕磁石とをロータ軸に固着したことを特徴とする請求項 1記載の振 動アラーム付電子機器。
4 . 前記振動ァラーム付電子機器が腕時計であることを特徴とする請 求項 1記載の振動アラーム付電子機器。
5 . 前記扁平ステ一夕型 2極ステップモータのステ一夕のスリットと 5 時計の文字板中心から 1 2 Β寺方向との角度をひとし、 αと 3が略同一角 度となる様に前記偏心重りとロータ磁石とをロータ軸に固着したことを 特徴とする請求項 4記載の振動ァラーム付電子機器。
6 . 時計モジュールを構成する地板と、 時刻目盛を有する文字板とを さらに具備し、 前記地板を境として前記文字板側に偏心重りを、 一方、 前記文字板と反対側にロー夕磁石を配置したことを特徴とする請求項 4 記載の振動アラーム付電子機器。
7 . 時計モジュールを構成する地板と、 時刻目盛を有する文字板とを さらに具備し、 前記偏心重りを前記地板に隣接するように配置し、 前記 地板及び前記文字板に前記偏心重りの一部を露出させるための貫通孔を 設けたことを特徴とする請求項 4記載の振動アラーム付電子機器。0
8 . 前記扁平ステ一タ型 2極ステップモ一夕の前記ロータの回転駆動 回路装置が、 アラーム時刻に出力されたアラーム信号に基づいて前記ス テツプモータを駆動するためのパルス信号を出力する駆動パルス発生手 段と、 該駆動パルス発生手段からのパルス信号に基づき前記駆動コイル に駆動電流を供給するための駆動回路と、 前記駆動コィルに生じた起磁 5 力を前記ロータに伝える前記扁平ステ一夕と、 前記ロータの回転によつ て生じる逆起電圧を検出する逆起電圧検出コイルと、 そして該逆起電圧 検出コイルに生じる逆起電圧に基づいて前記扁平ステ一夕に対する回転 中のロータの磁極位置を検出し、 かつ前記駆動パルス発生手段からの前 記パルス信号の出力タイミングを制御するための検出信号を前記駆動パ 0 ルス発生手段に出力する磁極位置検出手段とを具備することを特徴とす る請求項 1記載の振動アラーム付電子機器。
9 . 前記磁極位置検出手段が、 前記逆起電圧検出コイルに発生する逆 起電圧がゼロレベルに達したことを検出して検出信号を出力するゼロク ロスコンパレータを有することを特徴とする請求項 8記載の振動アラー 5 ム付電子機器。
1 0 . 前記駆動パルス発生手段からのパルス信号力 停止状態のロー タを回転起動させるための起動パルスと、 起動後のロー夕を継続して駆 動するための後続駆動パルスとを有することを特徴とする請求項 8記載 の振動アラーム付電子機器。
1 1 . 停止状態のロー夕を回転起動させるための前記起動パルスが、 前記扁平ステータに生じる磁極に対向する前記ロー夕の磁極を同一極性 に合わせるための相合わせパルスと、 該相合わせパルスの後に出力し、 ロータの磁極に対向する前記扁平ステ一夕に該ロ一夕磁石の磁極と同一 極性の磁極を発生させるための始動パルスとから構成されていることを 特徴とする請求項 1 0記載の振動アラーム付電子機器。
0 1 2 . 前記始動パルスが後続駆動パルスよりも広いパルス幅を有する ことを特徴とする請求項 1 1記載の振動アラーム付電子機器。 - 1 3 . 前記始動パルス力 S後続駆動パルスよりも広いパルス幅を有する 複数のパルス列であることを特徴とする請求項 1 2記載の振動アラーム 付電子機器。
5 1 4 . 前記複数のパルス列力 s後続駆動パルスよりも広いパルス幅を有 する第 1の始動パルスと、 後続駆動パルスよりも広いパルス幅を有し、 且つ第 1の始動パルスよりも狭いパルス幅を有する第 2の始動パルスと 力 ら構成されていることを特徴とする請求項 1 3記載の振動アラーム付 . 電子機器。
0 1 5 . 前記後続駆動パルスのパルス幅が、 ロータの回転数の上昇にと もなつて狭くすることを特徴とする請求項 1 0記載の振動アラーム付電 子機器。
1 6 . 前記逆起電圧検出コィルが、 前記駆動コィルの内周側に独立し て巻き回して構成したことを特徴とする請求項 8記載の振動アラーム付 5 電子機器。
1 7 . 前記駆動コイルが逆起電圧検出コイルを兼用することを特徴と する請求項 8記載の振動アラーム付電子機器。
1 8 . 前記駆動コイルの一部からタップを取り出すことにより、 前記 駆動コィルの一部が逆起電圧検出コイルを兼用することを特徴とする請 求項 1 7記載の振動アラーム付電子機器。
1 9 . 前記磁極位置検出手段が、 逆起電圧検出コィルに発生する逆起 電圧を差動 ·増幅する差動増幅器と、 該差動増幅器によって差動増幅し た前記逆起電圧がゼロレベルに達したことを検出して検出信号を出力す るゼロクロスコンパレータとを有することを特徴とする請求項 1 6また は請求項 1 7のいずれか 1項記載の振動アラーム付電子機器。
0 2 0 . 前記逆起電圧検出コイルが、 直流抵抗と自己インダクタンスカ s 略同一で、 巻き方向を異にする 2個の逆起電圧検出コイルとから構成さ れ、 前記駆動コィルに直列接続して構成したことを特徴とする請求項 8 記載の振動アラーム付電子機器。
2 1 . 前記磁極位置検出手段が、 2個の逆起電圧検出コイルにそれぞ 5 れ発生する逆起電圧を加算する加算器と、 該加算器によって加算された 逆起電圧がゼ口レベルに達したことを検出して前記検出信号を出力する ゼロクロスコンパレータとから構成されていることを特徴とする請求項
2 0記載の振動アラーム付電子機器。
2 2 . 前記逆起電圧検出コイルが、 駆動コイルの内周側に多層に巻き 0 回して構成したことを特徴とする請求項 2 0または請求項 2 1のいずれ か 1項記載の振動アラーム付電子機器。
2 3 . 前記加算器が逆起電圧に重畳するスパイクノイズをカツ 卜する ための口一パスフィルタを有することを特徴とする請求項 2 1記載の振 動アラーム付電子機器。
5 2 4 . 前記駆動パルス発生手段が、 前記加算器によって加算される逆 起電圧に重畳するスパイクノイズに対応し、 前記ゼロクロスコンパレ一 夕からの検出信号をディジタル的にマスクするマスク手段を有すること を特徴とする請求項 2 1記載の振動アラーム付電子機器。
2 5 . 前記差動増幅器は、 差動 ·増幅した逆起電圧に重畳するスパイ クノイズをカツトする口一パスフィルタを有することを特徴とする請求 項 1 9記載の振動アラーム付電子機器。
2 6 . 前記駆動パルス発生手段は、 前記差動増幅器によって差動 ·増 幅される逆起電圧に重畳するスパイクノィズに対応し、 前記ゼロクロス コンパレ一夕からの検出信号をディジタル的にマスクするマスク手段を 有することを特徴とする請求項 1 9記載の振動アラーム付電子機器。 0
5
0
5
PCT/JP1993/000324 1992-03-18 1993-03-18 Electronic machine with vibratory alarm WO1993019404A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE69313763T DE69313763T2 (de) 1992-03-18 1993-03-18 Elektronisches gerät mit vibrationsalarm
EP93906791A EP0585470B1 (en) 1992-03-18 1993-03-18 Electronic machine with vibration alarm
HK98101853A HK1002736A1 (en) 1992-03-18 1993-03-18 Electronic machine with vibration alarm

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP9147992 1992-03-18
JP4/91479 1992-03-18
JP4/354452 1992-12-16
JP35445292 1992-12-16

Publications (1)

Publication Number Publication Date
WO1993019404A1 true WO1993019404A1 (en) 1993-09-30

Family

ID=26432915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/000324 WO1993019404A1 (en) 1992-03-18 1993-03-18 Electronic machine with vibratory alarm

Country Status (5)

Country Link
US (2) US5878004A (ja)
EP (1) EP0585470B1 (ja)
DE (1) DE69313763T2 (ja)
HK (1) HK1002736A1 (ja)
WO (1) WO1993019404A1 (ja)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69508567T2 (de) * 1994-12-08 1999-07-29 Citizen Watch Co., Ltd., Tokio/Tokyo Antriebsvorrichtung fuer einen motor
JP2000501033A (ja) 1995-11-30 2000-02-02 ヴァーチャル テクノロジーズ インコーポレイテッド 触覚をフィードバックする人間/機械インターフェース
EP0833438B1 (en) * 1996-04-11 2003-03-12 Citizen Watch Co. Ltd. Motor driving device
JPH11165128A (ja) * 1997-12-04 1999-06-22 Namiki Precision Jewel Co Ltd 振動アクチュエータの駆動装置
US6365995B1 (en) * 1998-11-20 2002-04-02 Matsushita Electric Industrial Co., Ltd. Brushless motor and its assembly method
US7050360B2 (en) * 2002-03-20 2006-05-23 Kabushiki-Kaisya Tokyo Shinya Wrist watch with vibration function
JP2003344565A (ja) * 2002-05-29 2003-12-03 Seiko Instruments Inc 電子時計
US6748604B2 (en) 2002-05-30 2004-06-15 Finger Fitting Products, Inc. Glove massager
US6975563B2 (en) * 2003-02-06 2005-12-13 De Brito Dirk Test pacing wristwatch with vibration reminder
CH694898A5 (fr) * 2004-02-23 2005-08-31 Christophe Claret Sa Montre dont le mouvement est mobile dans son logement.
ATE490525T1 (de) 2005-08-27 2010-12-15 Minimax Gmbh & Co Kg Gefahren- und brandvibrationsalarmsystem
KR101404843B1 (ko) * 2006-06-22 2014-06-09 가부시키가이샤 니콘 위치 결정 장치, 떨림 보정 장치 및 전자 기기
CL2007001851A1 (es) * 2006-06-23 2008-01-18 Monsanto Technology Llc Socedad Anonima Organizada Bajo Las Leyes Del Estado De Delaware Segmento de adn de planta que comprende una secuencia recombinante de un factor de transcripcion nuclear y (nf-yb), celula vegetal que lo comprende y metodo para elaborar semillas que comprende seleccionar plantas que comprendan dicho adn.
JP4502023B2 (ja) * 2008-02-20 2010-07-14 カシオ計算機株式会社 ステップモータ駆動装置、ステップモータ駆動プログラム及びステップモータ駆動方法
JP5363167B2 (ja) * 2008-05-29 2013-12-11 セイコーインスツル株式会社 ステッピングモータ制御回路及びアナログ電子時計
US20100061191A1 (en) * 2008-09-09 2010-03-11 Mike Chen Silent time reminding device
EP2175329B1 (fr) * 2008-12-01 2011-02-16 The Swatch Group Research and Development Ltd. Mouvement d'horlogerie muni d'une alarme vibrante
US8841875B2 (en) * 2009-10-07 2014-09-23 Citizen Holdings Co., Ltd. Electronic watch
EP2339413B1 (fr) * 2009-12-22 2012-09-12 The Swatch Group Research and Development Ltd. Mouvement d'horlogerie muni d'une alarme vibrante
JP6003027B2 (ja) * 2011-08-30 2016-10-05 カシオ計算機株式会社 文字板構造及び腕時計
US8699306B2 (en) * 2011-12-28 2014-04-15 Gauss Spire Llc Silent alarm and exam notification timer device
JP5500465B2 (ja) * 2012-03-21 2014-05-21 カシオ計算機株式会社 情報報知装置および電子時計
EP2923179B1 (en) 2012-11-21 2020-12-23 Dynapar Corporation Sensor and/or power harvesting apparatus having a wide dynamic range for responding to a driving rotational input
JP6308788B2 (ja) * 2013-03-27 2018-04-11 セイコーインスツル株式会社 電子機器及び衝撃検出方法
KR102138503B1 (ko) * 2013-04-09 2020-07-28 엘지전자 주식회사 스마트 워치
JP5982590B2 (ja) * 2013-04-10 2016-08-31 ザ・スウォッチ・グループ・リサーチ・アンド・ディベロップメント・リミテッド 自動巻き腕時計用の巻き上げデバイス
CN103558750B (zh) * 2013-10-18 2016-03-02 刘思施 智能手表及传递电子名片的方法
EP3239787B1 (en) * 2014-12-26 2020-09-23 Citizen Watch Co., Ltd. Drive circuit for two-coil step motor
JP6668781B2 (ja) 2016-01-26 2020-03-18 セイコーエプソン株式会社 電子時計
JP6668873B2 (ja) * 2016-03-28 2020-03-18 セイコーエプソン株式会社 電子時計

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52102767A (en) * 1976-02-24 1977-08-29 Seiko Epson Corp Operation indicating apparatus for two-hand type electronic timepiece
JPS52120866A (en) * 1976-04-02 1977-10-11 Citizen Watch Co Ltd Electronic timepiece
JPS5513238B2 (ja) * 1972-09-20 1980-04-07
JPS6069590A (ja) * 1983-09-26 1985-04-20 Seiko Epson Corp 水晶時計のステツプモ−タ駆動方式
JPS6211113A (ja) * 1985-07-09 1987-01-20 Toei Denki Kk 位置検出装置
JPS6261910B2 (ja) * 1978-04-12 1987-12-23 Citizen Watch Co Ltd
JPS6323514B2 (ja) * 1982-07-09 1988-05-17 Seiko Epson Corp
JPH01250890A (ja) * 1988-03-31 1989-10-05 Seikosha Co Ltd 電磁駆動回路
JPH027597U (ja) * 1988-06-28 1990-01-18
JPH02107089U (ja) * 1989-02-13 1990-08-24

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4150536A (en) * 1976-01-28 1979-04-24 Citizen Watch Company Limited Electronic timepiece
JPS53132380A (en) * 1977-04-23 1978-11-18 Seiko Instr & Electronics Ltd Electronic watch
US4283783A (en) * 1978-11-28 1981-08-11 Citizen Watch Company Limited Drive control system for stepping motor
US4480218A (en) * 1983-03-29 1984-10-30 International Business Machines Corporation Direct detection of back EMF in permanent magnet step motors
US4637732A (en) * 1983-12-05 1987-01-20 Charles Jones Hand held athletic officiating timers
IT206292Z2 (it) * 1985-09-11 1987-07-20 Cali Romano Garze cosmetiche
US4920525A (en) * 1988-05-23 1990-04-24 Meister Jack B Quiet alarm clock
US5023853A (en) * 1988-06-27 1991-06-11 Masayuki Kawata Electric apparatus with silent alarm
JPH02211037A (ja) * 1989-02-08 1990-08-22 Matsushita Electric Ind Co Ltd 偏平ブラシレスモータ
JPH0381591U (ja) * 1989-12-08 1991-08-20
US5089998A (en) * 1991-04-04 1992-02-18 Richard Rund Vibrating and audible alarm clock
JPH04340400A (ja) * 1991-05-16 1992-11-26 Matsushita Electric Ind Co Ltd ステッピングモータの駆動装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5513238B2 (ja) * 1972-09-20 1980-04-07
JPS52102767A (en) * 1976-02-24 1977-08-29 Seiko Epson Corp Operation indicating apparatus for two-hand type electronic timepiece
JPS52120866A (en) * 1976-04-02 1977-10-11 Citizen Watch Co Ltd Electronic timepiece
JPS6261910B2 (ja) * 1978-04-12 1987-12-23 Citizen Watch Co Ltd
JPS6323514B2 (ja) * 1982-07-09 1988-05-17 Seiko Epson Corp
JPS6069590A (ja) * 1983-09-26 1985-04-20 Seiko Epson Corp 水晶時計のステツプモ−タ駆動方式
JPS6211113A (ja) * 1985-07-09 1987-01-20 Toei Denki Kk 位置検出装置
JPH01250890A (ja) * 1988-03-31 1989-10-05 Seikosha Co Ltd 電磁駆動回路
JPH027597U (ja) * 1988-06-28 1990-01-18
JPH02107089U (ja) * 1989-02-13 1990-08-24

Also Published As

Publication number Publication date
DE69313763D1 (de) 1997-10-16
US6349075B1 (en) 2002-02-19
DE69313763T2 (de) 1998-04-09
US5878004A (en) 1999-03-02
EP0585470A4 (en) 1996-03-20
EP0585470A1 (en) 1994-03-09
EP0585470B1 (en) 1997-09-10
HK1002736A1 (en) 1998-09-11

Similar Documents

Publication Publication Date Title
WO1993019404A1 (en) Electronic machine with vibratory alarm
HK1002736B (en) Electronic machine with vibration alarm
CN103092057B (zh) 自动调节振荡机械系统的振荡频率的电路与包括该电路的设备
JP3969747B2 (ja) 機械−電気エネルギー変換器及びかかるエネルギー変換器を含む計時器
JP2007089384A (ja) 圧電アクチュエータの駆動制御装置、電子機器、および圧電アクチュエータの駆動制御方法
JP3258125B2 (ja) 振動アラーム付電子機器
US6097675A (en) Electronically controlled mechanical timepiece
JPH07170772A (ja) 超音波モータおよび超音波モータ付電子機器
JP3594013B2 (ja) 時計装置
JP3432470B2 (ja) 電子機器
JP2969447B2 (ja) 超音波モータ及び超音波モータの製造方法
JPH06265648A (ja) 振動アラーム付電子機器
US4266291A (en) Electromagnetic swing device
EP1117016A1 (en) Electronic apparatus and method of controlling electronic apparatus
JPS605915B2 (ja) 電気時計の駆動装置
CN105824230A (zh) 多功能带闹钟石英手表机芯
JP3456476B2 (ja) 電子制御式機械時計
JP2003032986A (ja) 電子機器
JPS5844397Y2 (ja) 時計装置
JPH11101880A (ja) 電子制御式機械時計の制御用発電機
JP2001051074A (ja) 電磁変換器、計時装置およびロータ磁石の着磁方法
JP2694313B2 (ja) 超音波モータを用いた電子機器
JP2004004005A (ja) 電子制御式機械時計
JP3632599B2 (ja) 時計
JP2002277565A (ja) 時計用ステップモーター

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1993906791

Country of ref document: EP

ENP Entry into the national phase

Ref country code: US

Ref document number: 1993 146181

Date of ref document: 19931115

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1993906791

Country of ref document: EP

ENP Entry into the national phase

Ref country code: US

Ref document number: 1997 877247

Date of ref document: 19970617

Kind code of ref document: A

Format of ref document f/p: F

WWG Wipo information: grant in national office

Ref document number: 1993906791

Country of ref document: EP