WO1993021993A1 - Low level laser for soft tissue treatment - Google Patents
Low level laser for soft tissue treatment Download PDFInfo
- Publication number
- WO1993021993A1 WO1993021993A1 PCT/US1993/004123 US9304123W WO9321993A1 WO 1993021993 A1 WO1993021993 A1 WO 1993021993A1 US 9304123 W US9304123 W US 9304123W WO 9321993 A1 WO9321993 A1 WO 9321993A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- laser
- housing
- low level
- stimulation
- light energy
- Prior art date
Links
- 210000004872 soft tissue Anatomy 0.000 title description 3
- 239000013307 optical fiber Substances 0.000 claims abstract description 30
- 230000000638 stimulation Effects 0.000 claims abstract description 26
- 230000007246 mechanism Effects 0.000 claims abstract description 25
- 230000008859 change Effects 0.000 claims description 2
- 210000001519 tissue Anatomy 0.000 description 37
- 239000000523 sample Substances 0.000 description 18
- 229910019655 synthetic inorganic crystalline material Inorganic materials 0.000 description 17
- 230000003287 optical effect Effects 0.000 description 13
- 208000002193 Pain Diseases 0.000 description 11
- 230000001965 increasing effect Effects 0.000 description 10
- 230000036407 pain Effects 0.000 description 10
- 230000009467 reduction Effects 0.000 description 10
- 230000000694 effects Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 230000001225 therapeutic effect Effects 0.000 description 6
- 230000001413 cellular effect Effects 0.000 description 5
- CPBQJMYROZQQJC-UHFFFAOYSA-N helium neon Chemical compound [He].[Ne] CPBQJMYROZQQJC-UHFFFAOYSA-N 0.000 description 5
- 208000027418 Wounds and injury Diseases 0.000 description 4
- 230000035876 healing Effects 0.000 description 4
- 238000002647 laser therapy Methods 0.000 description 4
- 210000005036 nerve Anatomy 0.000 description 4
- 201000004415 tendinitis Diseases 0.000 description 4
- 206010061218 Inflammation Diseases 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 208000000491 Tendinopathy Diseases 0.000 description 3
- 206010043255 Tendonitis Diseases 0.000 description 3
- 206010052428 Wound Diseases 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 230000004054 inflammatory process Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 210000000578 peripheral nerve Anatomy 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 210000000707 wrist Anatomy 0.000 description 3
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- 208000007101 Muscle Cramp Diseases 0.000 description 2
- 206010035148 Plague Diseases 0.000 description 2
- 208000005392 Spasm Diseases 0.000 description 2
- 241000607479 Yersinia pestis Species 0.000 description 2
- 230000009102 absorption Effects 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- JNDMLEXHDPKVFC-UHFFFAOYSA-N aluminum;oxygen(2-);yttrium(3+) Chemical compound [O-2].[O-2].[O-2].[Al+3].[Y+3] JNDMLEXHDPKVFC-UHFFFAOYSA-N 0.000 description 2
- 210000003050 axon Anatomy 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 230000004087 circulation Effects 0.000 description 2
- 230000001427 coherent effect Effects 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 210000002310 elbow joint Anatomy 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 208000014674 injury Diseases 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 210000003127 knee Anatomy 0.000 description 2
- 230000003902 lesion Effects 0.000 description 2
- 230000004089 microcirculation Effects 0.000 description 2
- 230000001151 other effect Effects 0.000 description 2
- 238000006213 oxygenation reaction Methods 0.000 description 2
- 239000000902 placebo Substances 0.000 description 2
- 229940068196 placebo Drugs 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000000015 thermotherapy Methods 0.000 description 2
- 229910019901 yttrium aluminum garnet Inorganic materials 0.000 description 2
- 208000022211 Arteriovenous Malformations Diseases 0.000 description 1
- 102000016938 Catalase Human genes 0.000 description 1
- 108010053835 Catalase Proteins 0.000 description 1
- 208000000094 Chronic Pain Diseases 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 108010049140 Endorphins Proteins 0.000 description 1
- 102000009025 Endorphins Human genes 0.000 description 1
- 108010092674 Enkephalins Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 208000000624 Esophageal and Gastric Varices Diseases 0.000 description 1
- 206010063560 Excessive granulation tissue Diseases 0.000 description 1
- 208000012671 Gastrointestinal haemorrhages Diseases 0.000 description 1
- 206010018852 Haematoma Diseases 0.000 description 1
- 208000032843 Hemorrhage Diseases 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 241000272168 Laridae Species 0.000 description 1
- URLZCHNOLZSCCA-VABKMULXSA-N Leu-enkephalin Chemical class C([C@@H](C(=O)N[C@@H](CC(C)C)C(O)=O)NC(=O)CNC(=O)CNC(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=CC=C1 URLZCHNOLZSCCA-VABKMULXSA-N 0.000 description 1
- 102000006386 Myelin Proteins Human genes 0.000 description 1
- 108010083674 Myelin Proteins Proteins 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 206010029113 Neovascularisation Diseases 0.000 description 1
- 208000028389 Nerve injury Diseases 0.000 description 1
- 206010030113 Oedema Diseases 0.000 description 1
- 208000008469 Peptic Ulcer Diseases 0.000 description 1
- 206010034972 Photosensitivity reaction Diseases 0.000 description 1
- 102000019197 Superoxide Dismutase Human genes 0.000 description 1
- 108010012715 Superoxide dismutase Proteins 0.000 description 1
- 208000025865 Ulcer Diseases 0.000 description 1
- 206010056091 Varices oesophageal Diseases 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000036982 action potential Effects 0.000 description 1
- 238000001467 acupuncture Methods 0.000 description 1
- 230000036592 analgesia Effects 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 239000004019 antithrombin Substances 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 210000001130 astrocyte Anatomy 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 210000001772 blood platelet Anatomy 0.000 description 1
- 230000036770 blood supply Effects 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 230000001112 coagulating effect Effects 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000002651 drug therapy Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 208000024170 esophageal varices Diseases 0.000 description 1
- 201000010120 esophageal varix Diseases 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 210000000416 exudates and transudate Anatomy 0.000 description 1
- 230000001815 facial effect Effects 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 239000002223 garnet Substances 0.000 description 1
- 208000030304 gastrointestinal bleeding Diseases 0.000 description 1
- 210000001126 granulation tissue Anatomy 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 210000001503 joint Anatomy 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- HIQSCMNRKRMPJT-UHFFFAOYSA-J lithium;yttrium(3+);tetrafluoride Chemical compound [Li+].[F-].[F-].[F-].[F-].[Y+3] HIQSCMNRKRMPJT-UHFFFAOYSA-J 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 210000002751 lymph Anatomy 0.000 description 1
- 238000002078 massotherapy Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 210000003470 mitochondria Anatomy 0.000 description 1
- 210000005012 myelin Anatomy 0.000 description 1
- 229960003940 naproxen sodium Drugs 0.000 description 1
- CDBRNDSHEYLDJV-FVGYRXGTSA-M naproxen sodium Chemical compound [Na+].C1=C([C@H](C)C([O-])=O)C=CC2=CC(OC)=CC=C21 CDBRNDSHEYLDJV-FVGYRXGTSA-M 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 230000008764 nerve damage Effects 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000036211 photosensitivity Effects 0.000 description 1
- 230000008288 physiological mechanism Effects 0.000 description 1
- 230000016919 positive regulation of biological process Effects 0.000 description 1
- 229910001414 potassium ion Inorganic materials 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000009103 reabsorption Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 231100000241 scar Toxicity 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 210000000278 spinal cord Anatomy 0.000 description 1
- 208000010110 spontaneous platelet aggregation Diseases 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 230000017423 tissue regeneration Effects 0.000 description 1
- 230000000472 traumatic effect Effects 0.000 description 1
- 231100000397 ulcer Toxicity 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N5/0613—Apparatus adapted for a specific treatment
- A61N5/0616—Skin treatment other than tanning
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N5/067—Radiation therapy using light using laser light
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/20—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
- A61B2018/2035—Beam shaping or redirecting; Optical components therefor
- A61B2018/20351—Scanning mechanisms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/20—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
- A61B2018/2035—Beam shaping or redirecting; Optical components therefor
- A61B2018/204—Attenuators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N2005/0635—Radiation therapy using light characterised by the body area to be irradiated
- A61N2005/0643—Applicators, probes irradiating specific body areas in close proximity
- A61N2005/0644—Handheld applicators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N2005/0635—Radiation therapy using light characterised by the body area to be irradiated
- A61N2005/0643—Applicators, probes irradiating specific body areas in close proximity
- A61N2005/0645—Applicators worn by the patient
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N2005/065—Light sources therefor
- A61N2005/0651—Diodes
Definitions
- the field of the is the use of low level laser energy for treating soft living tissue by stimulation.
- U. S. Patent No. 5,050,597 teaches a laser thermotherapy apparatus which includes a laser splitter which branches laser energy from a laser source to either laser diodes or optical fibers.
- U. S. Patent No. 5,024,236 teaches an electric probe for locating acupuncture points and a light emitting diode which are disposed in a relatively compact, easily portable assembly.
- U. S. Patent No. 5,176,130 teaches a heated massage therapy device which has a hand-held housing, a mechanical vibration generator disposed within the housing. At least one source of infrared radiation is disposed within the housing.
- U. S. Patent No. 3,648,706 teaches an irradiation device for thermotherapy which includes at least one series of light sources which are arranged one next to the other and intended to be placed over a portion of the human body.
- the neodymium doped yttrium-aluminum-garnet (Nd:YAG) laser is also in widespread use.
- the Nd:YAG laser has a predominant mode of operation at a wavelength of 1.064 microns in the near infrared region
- the Nd:YAG optical emission is absorbed to a greater extent by blood than by water making it useful for coagulating large, bleeding vessels.
- the Nd:YAG laser at 1.064 microns has been transmitted through endoscopes for treatment of a variety of gastrointestinal bleeding lesions, such as esophageal varices, peptic ulcers and arteriovenous anomalies.
- Such application soft laser energy are thus well adapted where high energy thermal effects are desired, such as tissue vaporization, tissue cauterization, coagulation and as a surgical scalpel.
- U. S. Patent No. 5,021,452 teaches a method of using a low power laser emitting light energy of a wavelength in the range of 600 to 1100 nanometers to irradiate a wound site.
- biochemical events identified as responses to irradiation by light energy having a wavelength of 904 nanometers included increased ascorbic acid uptake by fibroblasts.
- U. S. Patent No. 4,671,285 teaches a method of applying essentially monochromatic light having a non-traumatic power density to to the skin area adjacent to a specific peripheral nerve region of the body and for sufficient time so as to achieve a
- SUBSTITUTE SHEET decrease in pain or a reduction in muscle spasms.
- the inventor, Walker described her research in an article, published in The Clinical Journal of Pain. Volume 3, pages 183-187, 1988.
- Human subjects received irradiation of the skin overlying peripheral nerves with a helium-neon laser at a power of 1 milliwatt, at a wavelength of 632.5 nanometers and at a pulse rate of 20 Hz) for 20 second to each treatment site. This treatment was accompanied by irradiation of the skin overlying painful facial areas for 30 to 90 second according to a predetermined protocol.
- Control subjects received placebo treatment by an apparatus that looked identical to the laser apparatus but emitted no radiation. Laser or placebo therapy was repeated three times a week for ten weeks. Subjects in the experimental group exhibited a statistically significant reduction in the intensity of pain as measured by the visual analog scale and the number of painful episodes.
- U. S. Patent No. 4,945,489 teaches a laser multiplexing system which is capable of time-sharing high-power laser output among a number of work stations.
- the laser beam is directable in guick succession into the ends of various optical fibers leading to remote work stations.
- the precise position of focus of the beam into each optical fiber is originally determined and continually monitored during the beam travel cycle for each work station.
- U. S. Patent No. 4,917,084 and U. S. Patent No. 4,950,266 teach an infrared laser catheter system for use with laser energy produced by a laser operating in the mid-infrared region (approximately 2 microns) is delivered by an optical fiber in a catheter to a surgical site for biological tissue removal and repair.
- Laser sources which have an output wavelength in this region include: holmium-doped yttrium aluminum garnet (Ho:YAG), holmium-doped yttrium lithium fluoride (Ho:YLF), holmium-doped yttrium-scandium-gadolinium- garnet (Ho:YSGG), erbium-doped YAG, erbium-doped YLF and thulium-doped YAG.
- Laser output energy is applied to a silica-based optical fiber which has been specially purified to reduce the hydroxyl-ion concentration to a low level.
- the catheter may include a single optical fiber or a plurality of optical fibers arranged to give overlapping output patterns for large
- the lasers are operated with relatively long pulses at energy levels of approximately one joule per pulse.
- the lasers are operated in a continuous wave mode at low power.
- the Holmium-doped laser operating in the wavelength range of from about 1.9 to about 2.1 microns is preferred.
- the threshold energy density should be greater than about 0.6 joule/cubic millimeter per pulse, and that the pulse width should be substantially less than about 83 milliseconds, and that the repetition rate should be in the range of from about 1 to about 10 Hertz.
- TJ. S. Patent No. 4,925,265 teaches an apparatus which mechanically shifts a collimated beam of light energy from a laser into one optical fiber at a time in a bundle or an array of a plurality of optical fibers.
- the apparatus includes a connector member having a plurality of passages extending longitudinally therethrough, the passages being disposed in a nominal common plane.
- the input end of each optical fiber extends through a respective passage, with the axes of the input ends spaced closely together and oriented parallel to the axis of a laser beam directed toward the input ends.
- the collimated beam of light energy passes through a positive lens having a focal plane coincident with the input ends of an optical fiber.
- An axially translatable shaft extends generally perpendicular to the nominal plane and to the beam axis and is coupled to a drive mechanism to shift the axial position of the shaft selectively, rapidly, and reiteratively.
- SUBSTITUTESHEET U. S. Patent No. 4,927,226 teaches an apparatus for multiplexing a coherent high power continuous-wave laser beam which has a mirror mounted on a galvanometer to interrupt the laser beam and another mirror mounted on another galvanometer to deflect the laser beam to a selected pair of optical fibers. The other mirror is moved only when the laser beam is interrupted to avoid fiber damage. Yet another mirror mounted on a galvanometer can be used to provide a greater number of addressable fibers.
- a method of multiplexing comprises interrupting a laser beam, deflecting it, changing its direction only when interrupted, focussing it, and transmitting it through the optical fibers.
- U. S. Patent No. 4,836,203 teaches a device for therapeutical irradiation of organic tissue by laser radiation which includes a first laser, a second laser, a mirror system and an optical system.
- the first laser is a helium-neon laser and emits on a wavelength of 633 nanometers.
- the second laser has a continuous-wave operation and emits light energy which has a wavelength in the range of 800 to 870 nanometers, preferably 840 nanometers.
- the optical system serves -to widen the beams of the first and second lasers which
- the optical system allows continuous adjustment of the size of the field irradiated up to a maximum diameter of the order of 30 millimeters.
- the mirror system includes an outer mirror rotatable around two axes for positioning the irradiation field for beam switching between the first and second lasers and the beam outlet opening of the device.
- S. Patent No. 4,686,986 teaches an apparatus for the stimulation of biological processes related to cellular activity, particularly for promoting the healing of wounds, ulcers and epithelial injuries.
- the lesion is irradiated with linearly polarized light of predetermined intensity, comprising incoherent components of wavelength, exceeding 300 nanometers.
- the apparatus includes a light source, constituted by a lamp emitting incoherent visible and/or infrared light, a deflecting system projecting the light beams into the given direction of treatment, a polarizer placed in the path of the light beam, projected into the direction of treatment, and preferably ultraviolet and infrared filters.
- the present invention is generally directed to an apparatus for treating living tissue by stimulation with low level light energy includes a laser, an optical fiber optically coupled to the laser and a controller.
- the controller is electricaly coupled to the laser.
- SUBSTITUTE SHEET scanner is optically to the optical fiber so that the output of light energy from the laser to an area of skin is externally located adjacent to a tissue to be treated.
- the controller is electricaly coupled to the scanner.
- the scanner includes a housing, an x-axis servo mechanism, an y-axis servo mechanism and an z-axis servo mechanism.
- the x-axis servo mechanis , the y- axis servo mechanism, the z-axis servo mechanism are coupled to the housing.
- Fig. 1 is a schematic drawing of an apparatus for treating soft living tissue by stimulation with low level laser energy which includes a laser, an output coupler, four stationary probes, an ohmmeter and two conductive members.
- Fig. 2 is a perspective view of one of the four stationary probes with one of the two conductive
- Fig. 3 is an elevational view in cross- section of the stationary probe and the conductive member of Fig. 3.
- Fig. 4 is a schematic view of the laser and the output coupler of Fig. 1.
- Fig. 5 is a perspective view of a holder for use with each of the four probes of Fig. 1.
- Fig. 6 is an elevational view of a combination of the stationary probe with the conductive member of Fig. 3 and the holder of Fig. 5 in cross- section.
- Fig. 7 is a schematic drawing of a belt holding two combinations of the stationary probe with the conductive member and the holder of Fig. 6 to a patient's back.
- Fig. 8 is an elevational view of four connectors holding together the four combinations of the stationary probe with the conductive member and the holder of Fig. 6 in order to treat either a patient's wrist or any other similar joint, including his knee and his elbow joint.
- Fig. 9 is a partial elevational view of the four connectors holding together the four combinations of the stationary probe with the conductive member of Fig. 3 and the holder of Fig. 5.
- Fig. 10 is a schematic drawing of a belt
- Fig. 11 is a perspective view of an apparatus for treating soft living tissue by stimulation with low level laser energy which includes a laser system, a scanner and a servo system and which is treating a patient's shoulder in accordance with the principles of the present invention.
- Fig. 12 is a perspective view of the apparatus of Fig. 11 which is treating a patient's wrist.
- Fig. 13 is a schematic drawing of the apparatus of Fig. 11.
- Fig. 14 is a perspective view of the servo system of the apparatus of Fig. 11.
- Fig. 15 is a front elevational view in cross- section of the scanner of the apparatus of Fig. 11.
- Fig. 16 is a side elevational view of the scanner of the apparatus of Fig. 11.
- an apparatus 10 includes a laser 11, a first stationary probe 12 which has a first housing 13 and a first lens system 14 for treating living tissue by stimulation with low level light energy.
- the laser 11 generates an output of light energy at a wavelength in the range of the near infrared region of the electromagnetic spectrum.
- the laser 11 may be either a Nd:YAG laser or a laser diode.
- the laser 11 produces 100 to 800 milliwatts in either a pulsed mode or a continuous mode.
- the first lens system 14 is disposed in the first housing 13 and optically couples the laser 11 to a first area of skin which is externally located adjacent to the tissue to be treated.
- the apparatus 10 also includes an ohmmeter ⁇ 5, a first conductive member 16, a second conductive member 17.
- the first conductive member 15 is mechanically coupled to the first housing 13 and. is disposed contiguous and adjacent to the first area of skin.
- the second conductive member 11- is disposed contiguous and adjacent to a second area of skin, which is oppositely disposed from the first area of skin.
- the first and second conductive members 16 and 17 are electrically coupled to the first area of skin, respectively.
- the ohmmeter 15 has a first terminal 18 and a second terminal 19.
- the first and second terminals 18 and 19 are electrically coupled to the first and second conductive members 16 and 17 so that the ohmmeter 15 is monitored during treatment in order that the effective- ness of the treatment may be monitored by observing the change in conductivity of the treated tissue.
- the apparatus 10 further includes a second housing 20, a second lens system 21, a third housing 22, a third lens system 23, a fourth housing 24 and a fourth lens system 25.
- the second lens system 21 is disposed in the second housing 20 and optically couples the output of light energy from the laser 11 to a second area of skin which is oppositely disposed from the first area of skin.
- the second conductive member 17 is mechanically
- SUBSTITUTESHEET coupled to the second housing 20 and is disposed contiguous and adjacent to a second area of skin.
- the third lens system 23 is disposed in the third housing 22 and optically couples the output of light energy from the laser 11 to a third area of skin which is externally located adjacent to the tissue to be treated.
- the fourth lens system 25 is disposed in the fourth housing 24 and optically couples the output of light energy from the laser 11 to a fourth area of skin which is oppositely disposed from the third area of skin.
- the apparatus still further includes a power supply 26, a timer 27, an output coupler 28 which has a single optical input 29 and four optical output 30, four optical shutters 31 and a controller 32.
- the power suppy 26 is electrically coupled to the laser 11.
- the timer 27 is electrically coupled to the power suppy 26 and controls the power supply 26.
- the single optical input 29 of the output coupler 28 is mechanically and optically coupled to the laser 11 by an optical fiber 33.
- Each of the four optical output 30 of the output coupler 28 is mechanically and optically coupled to one of the four optical shutters 31 by one of four optical fibers 34.
- ⁇ . S. Patent No. 4,950,266 teaches an output coupler for an infrared laser system.
- Each of the first, second, third and fourth lens systems 14, 21, 23 and 25 is mechanically and optically coupled to one of the four optical shutters 31 by one of four optical fibers 35.
- the controller 32 is electrically coupled to each of the four optical shutters 31.
- each stationary probe 40 is formed by a housing 41 and a lens system 42.
- the lens system includes a defocusing lens 43 and a cover lens 44.
- the housing 41 is hollow and has a cylindrical portion 45 and a truncated-conical portion 46.
- the defocusing lens 43 is disposed in the cylindrical portion 45.
- the cover lens 44 is disposed in the truncated- conical portion 46.
- a cylindrical member 47 secures the defocusing lens 43 against a ledge 48 within the cylindrical portion of the housing 41.
- a face-ring 49 secures the cover lens 44 in place.
- the apparatus 10 may also include a holder 50 for use in holding the probe in place.
- the holder 50 has a first sheet 51 and a second sheet 52.
- the first sheet 51 has a hole 53 which may be aligned with the cover lens 44.
- the second sheet 52 has a U-shaped hole 53 so that when the first and second sheets 51 and 52 are joined together they form the holder 50 for the probe 40.
- the holder 50 has a pair of slots 55 in which either a belt 56 or a strap may be inserted for forming a hinge.
- the belt 56 holds two probes 40 to a patient's back.
- FIG. 8 in conjunction with Fig. 7, Fig. 9 and Fig. 10 four fastening straps 61 connects together four probes 40 in order to treat either a patient's wrist or any other similar joint, including his knee, his elbow joint.
- the belt 56 connects together three probes 40 in order to treat a patient's shoulder.
- the inventor has used a Nd:YAG laser operating at a fundamental wavelength of 1.064 microns and at an output power level in the range of 100 to 800 milliwatts to generate light energy. This light energy
- T is applied to regions of the body which reguire a decrease in muscle spasm, increased circulation, decrease in pain or enhanced tissue healing.
- the area of skin is demarcated and the tissue to be is irradiated with a beam of this light energy in a grid fashion for the amount of time and intensity necessary to produce the desired therapeutic effect, with the energy density of the irradiated tissue being limited to the range of from about 1 to about 15 joules per cubic centimeter.
- the intensity and duration of treatment is determined by the character of the tissue to be treated, the depth of penetration desired, the acuteness of the injury and the condition of the patient.
- the inventor has demonstrated therapeutic treatment by a low level reactive laser system for the purposes of reducing pain, reducing inflammation, and enhancing healing of damaged tissue by stimulation of microcirculation, all being successfully accomplished without producing damaging thermal effects in the tissue.
- the Nd:YAG laser had an adjustable output beam of light energy at a power of 100 to 800 milliwatts.
- the Nd:YAG laser was capable of operation in a pulsed or continuous mode. The output was controlled by an exposure timer in the range of 0.1 to 9.9 minutes.
- the pulse on-time was adjustable from 0.1 to 9.9 seconds in 0.1 second intervals.
- the pulse off-time was also adjustable from 0.1 to 9.9 seconds in 0.1 second intervals.
- the therapeutic beam output of light energy was directed by a helium-neon laser beam, having an output of less than 1 milliwatt because the beam of light energy from the Nd:YAG is invisible.
- the visible light energy from the helium-neon laser beam is in the
- SUBSTITUTESHEET red portion of the electromagnetic spectrum at 633 nanometers. Both beams of light energy are precisely aligned and are coincident upon impact at the tissue site.
- the method for delivering the beams of light energy to the target sight is a flexible quartz fiber and either a focusing handpiece or a stationary probe 40.
- Light passing through the attenuator is focused through a pair of 90 millimeter focal length lenses onto the proximal end of an optical fiber cable.
- the main beam attenuator is a shutter placed outside the laser head between the output coupler of the laser and the beam steering mirror. It includes four components: a 90 degree reflecting prism, a shutter arm, a shutter mounting bracket and an actuating solenoid.
- the prism is mounted to the shutter arm so that, in the normally closed position the prism intercepts the laser beam and reflects it downwardly into a beam dump in the laser deck.
- the solenoid is energized when an output channel has been selected and the foot pedal is depressed, which causes the shutter arm to raise and allows the beam to pass.
- the solenoid arm is de-energized, the shutter drops into the closed position.
- the laser system is obtained from Melles Griot and includes a helium-neon aiming laser, Model 05LHR007, and a Nd:YAG laser, Model 607C, which
- 1 V is provided with an optical fiber guide and a coupler for directing the beam of optical energy to the tissue to be treated.
- the beam of light energy from the Nd:YAG laser is controlled and applied to produce a
- SUBSTITUTE SHEET minimum absorption rate in the irradiated tissue which will elevate the average temperature of the irradiated tissue to a level above the basal body temperature, but which does not exceed the maximum absorption rate which is great enough to convert the irradiated tissue into a collagenous substance.
- the inventor has determined through extensive testing that the foregoing condition is satisfied by the Nd:YAG laser operated at a power output level of from 100 to 800 milliwatts, with the laser beam being focused to produce an energy density of the projected laser beam in the range of from about 1.0 to about 15 joules per square centimeter. Since the beam of light energy is coherent, a variable power density of the light was obtained by converging the laser beam into small treatment areas, for example, from about 0.5 to about 2 square millimeters at each grid treatment point.
- the inventor observed certain physiological mechanisms in the tissue and at the cellular level when she used the above process.
- she has demonstrated that the blood vessel walls possess photosensitivity.
- the tonus is inhibited in smooth myoctyes, thus increasing the blood flow in the capillaries.
- Analgesia of the tissue has been observed in connection with a complex series of actions at the tissue level. At the local level, there is a reduction of inflammation, causing a reabsorption of exudates. Enkephalins and endorphins are recruited to modulate the pain production both at the spinal cord level and in the brain. The serotnogenic pathway is also recruited. While it is not completely understood, it is believed that the irradiation of the tissue causes the return of an energy balance at the cellular level which is the reason for the reduction of pain.
- 60 for treating living tissue by stimulation with low level light energy includes a laser 61, an optical fiber 62, a scanner 63 and a controller 64.
- the laser is a laser 61, an optical fiber 62, a scanner 63 and a controller 64.
- the optical fiber 62 is optically coupled to the laser 61.
- the scanner 63 includes a housing 65, an x-axis servo mechanism 66, a y-axis servo mechanism 67 and a z-axis servo mechanism 68,
- the x-axis servo mechanism 66, the y-axis servo mechanism 67 and the z-axis servo mechanism 68 are coupled to the housing 65 and are controlled by the controller 64.
- the scanner 63 is optically to the optical fiber 62 so that the output of light energy from the laser 61 to an area of skin is externally located adjacent to a tissue to be treated.
- the controller 64 is electricaly coupled to the scanner 63 and the laser 61.
Landscapes
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Radiation-Therapy Devices (AREA)
Abstract
An apparatus for treating living tissue by stimulation with low level light energy includes a laser (61), an optical fiber (62), a scanner (63) and a controller (64). The laser (11) generates an output of light energy. The optical fiber (62) is optically coupled to the laser. The scanner (63) includes a housing (65), an x-axis servo mechanism (66), a y-axis servo mechanism (67) and a z-axis servo mechanism (68). The x-axis servo mechanism (66), the y-axis servo mechanism (67) and the z-axis servo mechanism (68) are coupled to the housing (65) and are controlled by the controller (64). The scanner (63) is optically to the optical fiber (62) so that the output of light energy from the laser (61) to an area of skin is externally located adjacent to a tissue to be treated. The controller (64) is electrically coupled to the scanner (63) and the laser (61).
Description
LOW LEVEL LASER FOR SOFT TISSUE TREATMENT
Background of the Invention
The field of the is the use of low level laser energy for treating soft living tissue by stimulation.
U. S. Patent No. 5,050,597 teaches a laser thermotherapy apparatus which includes a laser splitter which branches laser energy from a laser source to either laser diodes or optical fibers.
U. S. Patent No. 5,024,236 teaches an electric probe for locating acupuncture points and a light emitting diode which are disposed in a relatively compact, easily portable assembly.
U. S. Patent No. 5,176,130 teaches a heated massage therapy device which has a hand-held housing, a mechanical vibration generator disposed within the housing. At least one source of infrared radiation is disposed within the housing.
U. S. Patent No. 3,648,706 teaches an irradiation device for thermotherapy which includes at least one series of light sources which are arranged one next to the other and intended to be placed over a portion of the human body.
The neodymium doped yttrium-aluminum-garnet (Nd:YAG) laser is also in widespread use. The Nd:YAG laser has a predominant mode of operation at a wavelength of 1.064 microns in the near infrared region
SUBSTITUTE SHEET
of the electromagnetic spectrum. The Nd:YAG optical emission is absorbed to a greater extent by blood than by water making it useful for coagulating large, bleeding vessels. The Nd:YAG laser at 1.064 microns has been transmitted through endoscopes for treatment of a variety of gastrointestinal bleeding lesions, such as esophageal varices, peptic ulcers and arteriovenous anomalies.
Such application soft laser energy are thus well adapted where high energy thermal effects are desired, such as tissue vaporization, tissue cauterization, coagulation and as a surgical scalpel.
U. S. Patent No. 5,021,452 teaches a method of using a low power laser emitting light energy of a wavelength in the range of 600 to 1100 nanometers to irradiate a wound site. The inventors, Labbe and Rettmer, published their results in Lasers in Surgery and Medicinef Volume 10, pages 201-207, 1990. The inventors stated that clinical investigations of laser photobioactivation, or biostiumulation, might be differently designed and more fruitful if knowledge of basic biochemical mechanisms were better understood. In their investigation, biochemical events identified as responses to irradiation by light energy having a wavelength of 904 nanometers included increased ascorbic acid uptake by fibroblasts.
U. S. Patent No. 4,671,285 teaches a method of applying essentially monochromatic light having a non-traumatic power density to to the skin area adjacent to a specific peripheral nerve region of the body and for sufficient time so as to achieve a
SUBSTITUTE SHEET
decrease in pain or a reduction in muscle spasms. The inventor, Walker, described her research in an article, published in The Clinical Journal of Pain. Volume 3, pages 183-187, 1988. Human subjects received irradiation of the skin overlying peripheral nerves with a helium-neon laser at a power of 1 milliwatt, at a wavelength of 632.5 nanometers and at a pulse rate of 20 Hz) for 20 second to each treatment site. This treatment was accompanied by irradiation of the skin overlying painful facial areas for 30 to 90 second according to a predetermined protocol. Control subjects received placebo treatment by an apparatus that looked identical to the laser apparatus but emitted no radiation. Laser or placebo therapy was repeated three times a week for ten weeks. Subjects in the experimental group exhibited a statistically significant reduction in the intensity of pain as measured by the visual analog scale and the number of painful episodes. These results, combined with previous research, indicate that laser therapy may provide relief from some kinds of chronic pain.
England described his clinical study of low power laser thereapy for shoulder tendonitis in an article published in Scandinavian Journal of
Rheumatology. Volume 18, pages 427-431, 1989. In this clinical study 30 patients with supraspinatus or bicipital tendonitis were randomly allocated to active infrared laser therapy at 904 nanometers three times weekly for two weeks, dummy laser or drug treatment for two weeks. Objectively maximum active extension, flexion and abduction of the shoulder, and subjectively pain stiffness movement and function were measured at zero and two weeks. Significant improvement of active
SUBSTITUTE SHEET
over dummy laser was noted for all seven assessments. Active laser therapy produced significant improvement over drug therapy for all three objective measures and pain. Naproxen sodium significantly improved only movement and function compared to dummy laser. These results demonstrate the effectiveness of laser therapy in tendinitis of the shoulder.
U. S. Patent No. 4,945,489 teaches a laser multiplexing system which is capable of time-sharing high-power laser output among a number of work stations. The laser beam is directable in guick succession into the ends of various optical fibers leading to remote work stations. The precise position of focus of the beam into each optical fiber is originally determined and continually monitored during the beam travel cycle for each work station.
U. S. Patent No. 4,917,084 and U. S. Patent No. 4,950,266 teach an infrared laser catheter system for use with laser energy produced by a laser operating in the mid-infrared region (approximately 2 microns) is delivered by an optical fiber in a catheter to a surgical site for biological tissue removal and repair. Laser sources which have an output wavelength in this region include: holmium-doped yttrium aluminum garnet (Ho:YAG), holmium-doped yttrium lithium fluoride (Ho:YLF), holmium-doped yttrium-scandium-gadolinium- garnet (Ho:YSGG), erbium-doped YAG, erbium-doped YLF and thulium-doped YAG. Laser output energy is applied to a silica-based optical fiber which has been specially purified to reduce the hydroxyl-ion concentration to a low level. The catheter may include a single optical fiber or a plurality of optical fibers arranged to give overlapping output patterns for large
SUBSTITUTE SHEET
area coverage. For tissue removal, the lasers are operated with relatively long pulses at energy levels of approximately one joule per pulse. For tissue repair, the lasers are operated in a continuous wave mode at low power. For the removal of atheroscleotic plague, the Holmium-doped laser operating in the wavelength range of from about 1.9 to about 2.1 microns is preferred. For removal of such plague by a Holmium-doped laser, it has been found that the threshold energy density should be greater than about 0.6 joule/cubic millimeter per pulse, and that the pulse width should be substantially less than about 83 milliseconds, and that the repetition rate should be in the range of from about 1 to about 10 Hertz.
TJ. S. Patent No. 4,925,265 teaches an apparatus which mechanically shifts a collimated beam of light energy from a laser into one optical fiber at a time in a bundle or an array of a plurality of optical fibers. The apparatus includes a connector member having a plurality of passages extending longitudinally therethrough, the passages being disposed in a nominal common plane. The input end of each optical fiber extends through a respective passage, with the axes of the input ends spaced closely together and oriented parallel to the axis of a laser beam directed toward the input ends. The collimated beam of light energy passes through a positive lens having a focal plane coincident with the input ends of an optical fiber. An axially translatable shaft extends generally perpendicular to the nominal plane and to the beam axis and is coupled to a drive mechanism to shift the axial position of the shaft selectively, rapidly, and reiteratively.
SUBSTITUTESHEET
U. S. Patent No. 4,927,226 teaches an apparatus for multiplexing a coherent high power continuous-wave laser beam which has a mirror mounted on a galvanometer to interrupt the laser beam and another mirror mounted on another galvanometer to deflect the laser beam to a selected pair of optical fibers. The other mirror is moved only when the laser beam is interrupted to avoid fiber damage. Yet another mirror mounted on a galvanometer can be used to provide a greater number of addressable fibers. A method of multiplexing comprises interrupting a laser beam, deflecting it, changing its direction only when interrupted, focussing it, and transmitting it through the optical fibers.
The application of conventional lasers for the purpose of stimulating soft tissue to cause a reduction in pain and inflammation, in stimulation of microcirculation to reduce healing time has been attempted at very low power levels, typically well under 100 milliwatts. Although some therapeutic benefits have been achieved, the treatment time has been unacceptably long.
U. S. Patent No. 4,836,203 teaches a device for therapeutical irradiation of organic tissue by laser radiation which includes a first laser, a second laser, a mirror system and an optical system. The first laser is a helium-neon laser and emits on a wavelength of 633 nanometers. The second laser has a continuous-wave operation and emits light energy which has a wavelength in the range of 800 to 870 nanometers, preferably 840 nanometers. The optical system serves -to widen the beams of the first and second lasers which
SUBSTITUTESHEET
follow the same beam path. The optical system allows continuous adjustment of the size of the field irradiated up to a maximum diameter of the order of 30 millimeters. The mirror system includes an outer mirror rotatable around two axes for positioning the irradiation field for beam switching between the first and second lasers and the beam outlet opening of the device.
ϋ. S. Patent No. 4,686,986 teaches an apparatus for the stimulation of biological processes related to cellular activity, particularly for promoting the healing of wounds, ulcers and epithelial injuries. The lesion is irradiated with linearly polarized light of predetermined intensity, comprising incoherent components of wavelength, exceeding 300 nanometers. The apparatus includes a light source, constituted by a lamp emitting incoherent visible and/or infrared light, a deflecting system projecting the light beams into the given direction of treatment, a polarizer placed in the path of the light beam, projected into the direction of treatment, and preferably ultraviolet and infrared filters.
Summary of the Invention
The present invention is generally directed to an apparatus for treating living tissue by stimulation with low level light energy includes a laser, an optical fiber optically coupled to the laser and a controller. The controller is electricaly coupled to the laser.
In a first aspect of the present invention, a
SUBSTITUTE SHEET
scanner is optically to the optical fiber so that the output of light energy from the laser to an area of skin is externally located adjacent to a tissue to be treated. The controller is electricaly coupled to the scanner.
In a second aspect of the present invention, the scanner includes a housing, an x-axis servo mechanism, an y-axis servo mechanism and an z-axis servo mechanism. The x-axis servo mechanis , the y- axis servo mechanism, the z-axis servo mechanism are coupled to the housing.
Other aspects and many of the attendant advantages will be more readily appreciated as the same becomes better understood by reference to the following detailed description and considered in connection with the accompanying drawing in which like reference symbols designate like parts throughout the figures.
The features of the present invention which are believed to be novel are set forth with particularity in the appended claims.
Brief Description of the Drawing
Fig. 1 is a schematic drawing of an apparatus for treating soft living tissue by stimulation with low level laser energy which includes a laser, an output coupler, four stationary probes, an ohmmeter and two conductive members.
Fig. 2 is a perspective view of one of the four stationary probes with one of the two conductive
SUBSTITUTESHEET
members of Fig. 1.
Fig. 3 is an elevational view in cross- section of the stationary probe and the conductive member of Fig. 3.
Fig. 4 is a schematic view of the laser and the output coupler of Fig. 1.
Fig. 5 is a perspective view of a holder for use with each of the four probes of Fig. 1.
Fig. 6 is an elevational view of a combination of the stationary probe with the conductive member of Fig. 3 and the holder of Fig. 5 in cross- section.
Fig. 7 is a schematic drawing of a belt holding two combinations of the stationary probe with the conductive member and the holder of Fig. 6 to a patient's back.
Fig. 8 is an elevational view of four connectors holding together the four combinations of the stationary probe with the conductive member and the holder of Fig. 6 in order to treat either a patient's wrist or any other similar joint, including his knee and his elbow joint.
Fig. 9 is a partial elevational view of the four connectors holding together the four combinations of the stationary probe with the conductive member of Fig. 3 and the holder of Fig. 5.
Fig. 10 is a schematic drawing of a belt
SUBSTITUTESHEET
holding three combinations of the stationary probe with the conductive member and the holder of Fig. 6 to a patient's shoulder.
Fig. 11 is a perspective view of an apparatus for treating soft living tissue by stimulation with low level laser energy which includes a laser system, a scanner and a servo system and which is treating a patient's shoulder in accordance with the principles of the present invention.
Fig. 12 is a perspective view of the apparatus of Fig. 11 which is treating a patient's wrist.
Fig. 13 is a schematic drawing of the apparatus of Fig. 11.
Fig. 14 is a perspective view of the servo system of the apparatus of Fig. 11.
Fig. 15 is a front elevational view in cross- section of the scanner of the apparatus of Fig. 11.
Fig. 16 is a side elevational view of the scanner of the apparatus of Fig. 11.
Detailed Description of the Preferred Method
Referring to Fig. 1 in conjunction with Fig.
2 and Fig. 3 an apparatus 10 includes a laser 11, a first stationary probe 12 which has a first housing 13 and a first lens system 14 for treating living tissue by stimulation with low level light energy. The laser
11 generates an output of light energy at a wavelength in the range of the near infrared region of the electromagnetic spectrum. The laser 11 may be either a Nd:YAG laser or a laser diode. The laser 11 produces 100 to 800 milliwatts in either a pulsed mode or a continuous mode. The first lens system 14 is disposed in the first housing 13 and optically couples the laser 11 to a first area of skin which is externally located adjacent to the tissue to be treated. The apparatus 10 also includes an ohmmeter ϊ5, a first conductive member 16, a second conductive member 17. The first conductive member 15 is mechanically coupled to the first housing 13 and. is disposed contiguous and adjacent to the first area of skin. The second conductive member 11- is disposed contiguous and adjacent to a second area of skin, which is oppositely disposed from the first area of skin. The first and second conductive members 16 and 17 are electrically coupled to the first area of skin, respectively. The ohmmeter 15 has a first terminal 18 and a second terminal 19. The first and second terminals 18 and 19 are electrically coupled to the first and second conductive members 16 and 17 so that the ohmmeter 15 is monitored during treatment in order that the effective- ness of the treatment may be monitored by observing the change in conductivity of the treated tissue. The apparatus 10 further includes a second housing 20, a second lens system 21, a third housing 22, a third lens system 23, a fourth housing 24 and a fourth lens system 25. The second lens system 21 is disposed in the second housing 20 and optically couples the output of light energy from the laser 11 to a second area of skin which is oppositely disposed from the first area of skin. The second conductive member 17 is mechanically
SUBSTITUTESHEET
coupled to the second housing 20 and is disposed contiguous and adjacent to a second area of skin. The third lens system 23 is disposed in the third housing 22 and optically couples the output of light energy from the laser 11 to a third area of skin which is externally located adjacent to the tissue to be treated. The fourth lens system 25 is disposed in the fourth housing 24 and optically couples the output of light energy from the laser 11 to a fourth area of skin which is oppositely disposed from the third area of skin.
Referring to Fig. 1 in conjunction with Fig. 4 the apparatus still further includes a power supply 26, a timer 27, an output coupler 28 which has a single optical input 29 and four optical output 30, four optical shutters 31 and a controller 32. The power suppy 26 is electrically coupled to the laser 11. The timer 27 is electrically coupled to the power suppy 26 and controls the power supply 26. The single optical input 29 of the output coupler 28 is mechanically and optically coupled to the laser 11 by an optical fiber 33. Each of the four optical output 30 of the output coupler 28 is mechanically and optically coupled to one of the four optical shutters 31 by one of four optical fibers 34. ϋ. S. Patent No. 4,950,266 teaches an output coupler for an infrared laser system. Each of the first, second, third and fourth lens systems 14, 21, 23 and 25 is mechanically and optically coupled to one of the four optical shutters 31 by one of four optical fibers 35. The controller 32 is electrically coupled to each of the four optical shutters 31.
Referring to Fig. 5 in conjunction with Fig.
SUBSTITUTE SHEET
4, Fig. 6 and Fig. 7 each stationary probe 40 is formed by a housing 41 and a lens system 42. The lens system includes a defocusing lens 43 and a cover lens 44. The housing 41 is hollow and has a cylindrical portion 45 and a truncated-conical portion 46. The defocusing lens 43 is disposed in the cylindrical portion 45. The cover lens 44 is disposed in the truncated- conical portion 46. A cylindrical member 47 secures the defocusing lens 43 against a ledge 48 within the cylindrical portion of the housing 41. A face-ring 49 secures the cover lens 44 in place. The apparatus 10 may also include a holder 50 for use in holding the probe in place. The holder 50 has a first sheet 51 and a second sheet 52. The first sheet 51 has a hole 53 which may be aligned with the cover lens 44. The second sheet 52 has a U-shaped hole 53 so that when the first and second sheets 51 and 52 are joined together they form the holder 50 for the probe 40. The holder 50 has a pair of slots 55 in which either a belt 56 or a strap may be inserted for forming a hinge. The belt 56 holds two probes 40 to a patient's back.
Referring to Fig. 8 in conjunction with Fig. 7, Fig. 9 and Fig. 10 four fastening straps 61 connects together four probes 40 in order to treat either a patient's wrist or any other similar joint, including his knee, his elbow joint. The belt 56 connects together three probes 40 in order to treat a patient's shoulder.
The inventor has used a Nd:YAG laser operating at a fundamental wavelength of 1.064 microns and at an output power level in the range of 100 to 800 milliwatts to generate light energy. This light energy
T
is applied to regions of the body which reguire a decrease in muscle spasm, increased circulation, decrease in pain or enhanced tissue healing. The area of skin is demarcated and the tissue to be is irradiated with a beam of this light energy in a grid fashion for the amount of time and intensity necessary to produce the desired therapeutic effect, with the energy density of the irradiated tissue being limited to the range of from about 1 to about 15 joules per cubic centimeter. The intensity and duration of treatment is determined by the character of the tissue to be treated, the depth of penetration desired, the acuteness of the injury and the condition of the patient.
The inventor has demonstrated therapeutic treatment by a low level reactive laser system for the purposes of reducing pain, reducing inflammation, and enhancing healing of damaged tissue by stimulation of microcirculation, all being successfully accomplished without producing damaging thermal effects in the tissue. The Nd:YAG laser had an adjustable output beam of light energy at a power of 100 to 800 milliwatts. The Nd:YAG laser was capable of operation in a pulsed or continuous mode. The output was controlled by an exposure timer in the range of 0.1 to 9.9 minutes. The pulse on-time was adjustable from 0.1 to 9.9 seconds in 0.1 second intervals. The pulse off-time was also adjustable from 0.1 to 9.9 seconds in 0.1 second intervals. The therapeutic beam output of light energy was directed by a helium-neon laser beam, having an output of less than 1 milliwatt because the beam of light energy from the Nd:YAG is invisible. The visible light energy from the helium-neon laser beam is in the
SUBSTITUTESHEET
red portion of the electromagnetic spectrum at 633 nanometers. Both beams of light energy are precisely aligned and are coincident upon impact at the tissue site. The method for delivering the beams of light energy to the target sight is a flexible quartz fiber and either a focusing handpiece or a stationary probe 40.
The beam of light energy exits the Nd:YAG laser through the output coupler of the laser head and is steered by a pair of alignment wedges before passing through a circularly variable, neutral density attenuator. Light passing through the attenuator is focused through a pair of 90 millimeter focal length lenses onto the proximal end of an optical fiber cable. The main beam attenuator is a shutter placed outside the laser head between the output coupler of the laser and the beam steering mirror. It includes four components: a 90 degree reflecting prism, a shutter arm, a shutter mounting bracket and an actuating solenoid. The prism is mounted to the shutter arm so that, in the normally closed position the prism intercepts the laser beam and reflects it downwardly into a beam dump in the laser deck. The solenoid is energized when an output channel has been selected and the foot pedal is depressed, which causes the shutter arm to raise and allows the beam to pass. When the solenoid arm is de-energized, the shutter drops into the closed position. The laser system is obtained from Melles Griot and includes a helium-neon aiming laser, Model 05LHR007, and a Nd:YAG laser, Model 607C, which
1 V is provided with an optical fiber guide and a coupler for directing the beam of optical energy to the tissue to be treated. The beam of light energy from the Nd:YAG laser is controlled and applied to produce a
SUBSTITUTE SHEET
minimum absorption rate in the irradiated tissue which will elevate the average temperature of the irradiated tissue to a level above the basal body temperature, but which does not exceed the maximum absorption rate which is great enough to convert the irradiated tissue into a collagenous substance.
The inventor has determined through extensive testing that the foregoing condition is satisfied by the Nd:YAG laser operated at a power output level of from 100 to 800 milliwatts, with the laser beam being focused to produce an energy density of the projected laser beam in the range of from about 1.0 to about 15 joules per square centimeter. Since the beam of light energy is coherent, a variable power density of the light was obtained by converging the laser beam into small treatment areas, for example, from about 0.5 to about 2 square millimeters at each grid treatment point.
The inventor observed certain physiological mechanisms in the tissue and at the cellular level when she used the above process. In the evaluation of the microcirculatory system, for example, she has demonstrated that the blood vessel walls possess photosensitivity. When the blood vessel walls are exposed to laser irradiation as set forth above, the tonus is inhibited in smooth myoctyes, thus increasing the blood flow in the capillaries. She has observed other effects which are peripheral capillarid neovascularization, reduction of blood platelet aggregation, reduction of 02 from the triplet to the singlet form which- allows for greater oxygenation of the tissue, reduction of better substance concentration
in the blood, stabilization of the indices of erythrocyte deformation, reduction of products of perioxidized lipid oxygenation of the blood, other effects which have been observed are increased index of antithrombin activity, stimulation of the enzymes of the antioxidant system such as superoxide dismutase and catalase. An increase in the venous and lymph and outflow from the irradiated region has been observed. The tissue permeability in the area is substantially enhanced. This assists in the immediate reduction of edema and hematoma concentrations in the tissue. At the cellular level, the mitochondria have also been noted to produce increased amounts of ADP with subsequent increase in ATP. There also appears to be an increased stimulation of the calcium and sodium pumps at the tissue membrane at the cellular level.
At the neuronal level, the following effects have been observed as a result of the foregoing therapeutic treatment. First, there is an increased action potential of crushed and intact nerves. The blood supply and the number of axons is increased in the irradiated area. Inhibition of scar tissue is noticed when tissue is lased. There is an immediate increase in the membrane permeability of the nerve. Long term changes in the permeability of calcium and potassium ions through the nerve for at least 120 days have been observed. The RNA and subseguent DNA production is enhanced. Singlet 02 is produced which is an important factor in cell regeneration. Pathological degeneration with nerve injury is changed to regeneration. Both astrocytes and oligodedrocytes and stimulated which causes an increased production of peripheral nerve axons and myelin.
Phygocytosis of the blood cells is increased, thereby substantially reducing infection. There also appears to be significant anti-inflammatory phenomena which provides a decrease in the inflammation of tendons, nerves, bursae in the joints, while at the same time yielding a strengthening of collagen. There is also an effect on the significant increase of granulation tissue in the closure of open wounds under limited circulation conditions.
Analgesia of the tissue has been observed in connection with a complex series of actions at the tissue level. At the local level, there is a reduction of inflammation, causing a reabsorption of exudates. Enkephalins and endorphins are recruited to modulate the pain production both at the spinal cord level and in the brain. The serotnogenic pathway is also recruited. While it is not completely understood, it is believed that the irradiation of the tissue causes the return of an energy balance at the cellular level which is the reason for the reduction of pain.
Referring to Fig. 11 and Fig. 12 an apparatus
60 for treating living tissue by stimulation with low level light energy includes a laser 61, an optical fiber 62, a scanner 63 and a controller 64. The laser
61 is a Nd:YAG laser which generates an output of light energy at a power in the range of 100 to 800 milliwatts in either a continuous mode or a pulsed mode. The optical fiber 62 is optically coupled to the laser 61.
Referring to Fig. 13 in conjunction with Fig. 14, Fig. 15 and Fig. 16 the scanner 63 includes a housing 65, an x-axis servo mechanism 66, a y-axis servo mechanism 67 and a z-axis servo mechanism 68,
The x-axis servo mechanism 66, the y-axis servo mechanism 67 and the z-axis servo mechanism 68 are coupled to the housing 65 and are controlled by the controller 64. The scanner 63 is optically to the optical fiber 62 so that the output of light energy from the laser 61 to an area of skin is externally located adjacent to a tissue to be treated. The controller 64 is electricaly coupled to the scanner 63 and the laser 61.
From the foregoing it can be seen that an apparatus for treating soft living tissue by stimulation with low level laser energy has been described. It should be noted that the sketches are not drawn to scale and that distance of and between the figures are not to be considered significant.
Accordingly it is intended that the foregoing disclosure and showing made in the drawing shall be considered only as an illustration of the principles of the present invention.
SUBS ITUTESHEET
Claims
1. An apparatus for treating living tissue by stimulation with low level light energy, said apparatus comprising: a. a laser which generates an output of light energy; b. an optical fiber optically coupled to said laser; c. a scanner optically to said optical fiber so that the output of light energy from said laser to an area of skin is externally located adjacent to a tissue to be treated; and d. a controller electricaly coupled to said scanner and said laser.
2. An apparatus for treating soft living tissue by stimulation with low level laser energy according to claim 1 wherein said laser is a Nd:YAG laser which produces 100 to 800 milliwatts in a pulsed mode.
3. An apparatus for treating soft living tissue by stimulation with low level laser energy according to claim 1 wherein said laser is a Nd:YAG laser which produces 100 to 800 milliwatts in a continuous mode.
4. An apparatus for treating soft living tissue by stimulation with low level laser energy according to claim 1 wherein said laser is a diode laser which produces 100 to 800 milliwatts in a pulsed mode.
IT TESHEET
5. An apparatus for treating soft living tissue by stimulation with low level laser energy according to claim 1 wherein said laser is a diode laser which produces 100 to 800 milliwatts in a continuous mode.
6. An apparatus for treating soft living tissue by stimulation with low level laser energy according to claim 1 wherein said scanner includes: a. a housing; b. an x-axis servo mechanism coupled to said housing and controlled by said controller; c. an y-axis servo mechanism coupled to said housing and controlled by said controller; and d. an z-axis servo mechanism coupled to said housing and controlled by said controller.
7. An apparatus for treating living tissue by stimulation with low level light energy, said apparatus comprising: a. a laser which generates an output of light energy; b. an optical fiber optically coupled to said laser; c. a controller electricaly coupled to said laser; and d. a scanner optically to said optical fiber, said scanner including a housing, an x-axis servo mechanism coupled to said housing and controlled by said controller, an y-axis servo mechanism coupled to said housing and controlled by said controller and an z-axis servo mechanism coupled to said housing and controlled by said controller whereby the output of light energy from said laser to an area of skin is externally located adjacent
SUBSTITUTE SHEET to a tissue to be treated.
8. An apparatus for treating living tissue by stimulation with low level light energy for use with a laser which generates an output of light energy, said apparatus comprising: a. a first housing; b. a first lens system which is disposed in said first housing and which optically couples the output of light energy from the laser to a irst area of skin which is externally located adjacent to a tissue to be treated; c. a first conductive member which is mechanically coupled to said irst housing and which is disposed contiguous and adjacent to the first area of skin, said first conductive member being electrically coupled to the first area of skin; d. a second conductive member which is disposed contiguous and adjacent to a second area of skin, which is oppositely disposed from the first area of skin, said second conductive member being electrically coupled to the second area of skin; and e. an ohmmeter which has a first terminal and a second terminal with said first terminal being electrically coupled to said first conductive member and said second terminal being electrically coupled to said second conductive member whereby said ohmmeter is monitored during treatment in order that the effectiveness of the treatment may be monitored by observing the change in conductivity of the treated tissue.
9. An apparatus for treating soft living tissue by stimulation with low level light energy according to claim l wherein said apparatus further comprises: a. a second housing; and b. second lens system which is disposed in said second housing and which optically couples the output of light wherein said second conductive member is mechanically coupled to said second housing and is disposed contiguous and adjacent to the second area of skin.
10. An apparatus for treating soft living tissue by stimulation with low level light energy according to claim 2 wherein said laser produces 100 to 800 milliwatts in a pulsed mode.
11. An apparatus for treating soft living tissue by stimulation with low level light energy according to claim 2 wherein said laser produces 100 to 800 milliwatts in a continuous mode.
12. An appratus for treating living tissue by stimulation with low level laser energy from a laser which generates light energy, said apparatus comprising: a. a first housing; b. a first lens system which is disposed in said first housing and which optically couples the laser to a first area of skin which is externally located adjacent to a tissue to be treated; c. a second housing; and d. a second lens system which is disposed in said second housing and which optically couples said laser to a second area of skin which is oppositely
SUBSTITUTE SHEET disposed from the first area of skin.
13. An apparatus for treating soft living tissue by stimulation with low level laser energy according to claim 5 wherein said laser is a Nd:YAG laser which produces 100 to 800 milliwatts in a pulsed mode.
14. An apparatus for treating soft living tissue by stimulation with low level laser energy according to claim 5 wherein said laser is a Nd:YAG laser which produces 100 to 800 milliwatts in a continuous mode.
SUBSTITUTE SHEET
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US87338592A | 1992-04-24 | 1992-04-24 | |
US07/873,385 | 1992-04-24 | ||
US4766793A | 1993-04-14 | 1993-04-14 | |
US08/047,667 | 1993-04-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1993021993A1 true WO1993021993A1 (en) | 1993-11-11 |
Family
ID=26725303
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1993/004123 WO1993021993A1 (en) | 1992-04-24 | 1993-04-26 | Low level laser for soft tissue treatment |
Country Status (2)
Country | Link |
---|---|
AU (1) | AU4228593A (en) |
WO (1) | WO1993021993A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997028752A1 (en) * | 1996-02-06 | 1997-08-14 | Gary Lewis Jones | Laser depilation apparatus and method |
US6267779B1 (en) | 1999-03-29 | 2001-07-31 | Medelaser, Llc | Method and apparatus for therapeutic laser treatment |
EP0900107A4 (en) * | 1996-03-25 | 2004-04-07 | Inc Laserstim | Diode laser irradiation system for biological tissue stimulation |
WO2007047892A1 (en) * | 2005-10-20 | 2007-04-26 | Light Sciences Oncology, Inc. | External wearable light therapy treatment systems |
WO2007124021A3 (en) * | 2006-04-20 | 2008-03-20 | Therapy Products Inc | Scanning treatment laser with sweep beam spot and universal carriage |
US7922751B2 (en) | 2004-02-04 | 2011-04-12 | Erchonia Corporation | Stand-alone scanning laser device |
EP2311525A1 (en) * | 2009-10-13 | 2011-04-20 | Christoph Bolt | Device for selective medical hyperthermia |
US7993382B2 (en) | 2004-02-06 | 2011-08-09 | Erchonia Corporation | Fat reduction using external laser radiation and niacin |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4252130A (en) * | 1974-10-29 | 1981-02-24 | Agence Nationale De Valorisation De La Recherche | Method and apparatus for monitoring the congelation of a biological body |
US4538608A (en) * | 1984-03-23 | 1985-09-03 | Esperance Jr Francis A L | Method and apparatus for removing cataractous lens tissue by laser radiation |
US4930504A (en) * | 1987-11-13 | 1990-06-05 | Diamantopoulos Costas A | Device for biostimulation of tissue and method for treatment of tissue |
US5050597A (en) * | 1987-03-05 | 1991-09-24 | S.L.T. Japan Co., Ltd. | Laser irradiation system for thermotherapy |
-
1993
- 1993-04-26 AU AU42285/93A patent/AU4228593A/en not_active Abandoned
- 1993-04-26 WO PCT/US1993/004123 patent/WO1993021993A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4252130A (en) * | 1974-10-29 | 1981-02-24 | Agence Nationale De Valorisation De La Recherche | Method and apparatus for monitoring the congelation of a biological body |
US4538608A (en) * | 1984-03-23 | 1985-09-03 | Esperance Jr Francis A L | Method and apparatus for removing cataractous lens tissue by laser radiation |
US5050597A (en) * | 1987-03-05 | 1991-09-24 | S.L.T. Japan Co., Ltd. | Laser irradiation system for thermotherapy |
US4930504A (en) * | 1987-11-13 | 1990-06-05 | Diamantopoulos Costas A | Device for biostimulation of tissue and method for treatment of tissue |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997028752A1 (en) * | 1996-02-06 | 1997-08-14 | Gary Lewis Jones | Laser depilation apparatus and method |
EP0900107A4 (en) * | 1996-03-25 | 2004-04-07 | Inc Laserstim | Diode laser irradiation system for biological tissue stimulation |
US6267779B1 (en) | 1999-03-29 | 2001-07-31 | Medelaser, Llc | Method and apparatus for therapeutic laser treatment |
US7922751B2 (en) | 2004-02-04 | 2011-04-12 | Erchonia Corporation | Stand-alone scanning laser device |
US7947067B2 (en) | 2004-02-04 | 2011-05-24 | Erchonia Corporation | Scanning treatment laser with sweep beam spot and universal carriage |
US7993382B2 (en) | 2004-02-06 | 2011-08-09 | Erchonia Corporation | Fat reduction using external laser radiation and niacin |
WO2007047892A1 (en) * | 2005-10-20 | 2007-04-26 | Light Sciences Oncology, Inc. | External wearable light therapy treatment systems |
WO2007124021A3 (en) * | 2006-04-20 | 2008-03-20 | Therapy Products Inc | Scanning treatment laser with sweep beam spot and universal carriage |
EP2311525A1 (en) * | 2009-10-13 | 2011-04-20 | Christoph Bolt | Device for selective medical hyperthermia |
Also Published As
Publication number | Publication date |
---|---|
AU4228593A (en) | 1993-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11883095B2 (en) | Dual wavelength laser treatment device | |
US5445146A (en) | Biological tissue stimulation by low level optical energy | |
US5951596A (en) | Biological tissue stimulation by optical energy | |
US5897549A (en) | Transformation of unwanted tissue by deep laser heating of water | |
US6083217A (en) | Destruction for unwanted tissue by deep laser heating of water | |
KR100971358B1 (en) | Invasive Dual Wavelength Laser Needle | |
EP0726083A2 (en) | Method and apparatus for the diagnostic and composite pulsed heating and photodynamic therapy treatment | |
US20070185552A1 (en) | Device and method for biological tissue stimulation by high intensity laser therapy | |
Waner et al. | A comparison of copper vapor and flashlamp pumped dye lasers in the treatment of facial telangiectasia | |
KR20010090805A (en) | Method and apparatus for therapeutic laser treatment | |
KR880001155B1 (en) | The curing device of athlete's foot | |
US20040010300A1 (en) | Device and method for biological tissue stimulation by high intensity laser therapy | |
WO1993021993A1 (en) | Low level laser for soft tissue treatment | |
AU778495B2 (en) | Tissue rejuvenation by illuminating radiation | |
Bailin | Lasers in dermatology—1985 | |
RU2539535C1 (en) | Matrix laser emitter for physiotherapeutic apparatus | |
CA2216918A1 (en) | Biological tissue stimulation by optical energy | |
Trelles et al. | PHOTOTHERAPY UNVEILED: A REVIEW OF THE PHOTOBIOLOGICAL BASICS BEHIND ATHERMAL PHOTOBIOMODULATION WITH LASERS AND OTHER LIGHT SOURCES. PART 1: LIGHT-ITS PROPERTIES AND PARAMETERS | |
MXPA99006462A (en) | Stimulation of biological tissue through energiaopt | |
Fasano | Laser physic | |
Ellis | The use of lasers in acupuncture | |
LT4411B (en) | Device for stimulation biological tissue by optical energy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU CA JP KP KR RU |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
COP | Corrected version of pamphlet |
Free format text: PAGES 1/6-6/6,DRAWINGS,REPLACED BY NEW PAGES 1/6-6/6 |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: CA |
|
122 | Ep: pct application non-entry in european phase |