WO1994006364A1 - Stabilisateur de compensation dynamique - Google Patents
Stabilisateur de compensation dynamique Download PDFInfo
- Publication number
- WO1994006364A1 WO1994006364A1 PCT/US1993/008639 US9308639W WO9406364A1 WO 1994006364 A1 WO1994006364 A1 WO 1994006364A1 US 9308639 W US9308639 W US 9308639W WO 9406364 A1 WO9406364 A1 WO 9406364A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- members
- stabilizer
- screws
- manipulator
- intraosteal
- Prior art date
Links
- 239000003381 stabilizer Substances 0.000 title claims abstract description 36
- 230000008878 coupling Effects 0.000 claims abstract description 11
- 238000010168 coupling process Methods 0.000 claims abstract description 11
- 238000005859 coupling reaction Methods 0.000 claims abstract description 11
- 210000000988 bone and bone Anatomy 0.000 claims description 13
- 230000033001 locomotion Effects 0.000 claims description 6
- 238000006073 displacement reaction Methods 0.000 claims description 5
- 230000001105 regulatory effect Effects 0.000 claims description 5
- 239000012634 fragment Substances 0.000 claims description 4
- 239000012528 membrane Substances 0.000 claims description 4
- 238000005192 partition Methods 0.000 claims description 3
- 230000011664 signaling Effects 0.000 claims description 3
- 230000000295 complement effect Effects 0.000 claims 1
- 208000010392 Bone Fractures Diseases 0.000 abstract description 5
- 239000012530 fluid Substances 0.000 description 4
- 208000027418 Wounds and injury Diseases 0.000 description 2
- 238000013016 damping Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 206010052428 Wound Diseases 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000002980 postoperative effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws or setting implements
- A61B17/60—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws or setting implements for external osteosynthesis, e.g. distractors, contractors
- A61B17/64—Devices extending alongside the bones to be positioned
- A61B17/6491—Devices extending alongside the bones to be positioned allowing small-scale motion of bone ends
Definitions
- the invention refers to a dynamic compensating stabilizer for use in functional therapy of bone fractures.
- fractured bone stabilizers for use in cases of periaiticular and bone shaft fractures. They constitute usually metal structures consisting of tubes, bars, links and intraosteal screws. Some of them are provided with articulated joints used to restore motorial abilities of damaged or injured human skelton joints to facilitate repositioning of fractured bones. Adjustment of the stabilizer's length is accomplished by turning an adjustment screw in an appropriate direction or by appropriately moving links along a bar. Dynamic behavior of such stabilizers is ensured by suitable springs being so arranged as to cause axial movement after loosening a locking screw. In these known stabilizers, it is difficult to determine correctly required pretensioning of such springs as well as to control correct positioning of stabilizer's axis and articulated joint in respect to axes of fractured bone fragments and a human skeleton joint involved.
- such known stabilizers are constructed as frame structures surrounding a limb injured over its whole circumference or a part thereof. This causes such stabilizers to be rather large in size and heavy. Further, these designs make it difficult to get access to wounds associated with a particular injury or postoperative ones. Frequently used introduction of intraosteal screws, not rarely right through a bone in question, may be associated with a serious risk. Furthermore, their use either requires an operative intervention which is burdensome for a patient or reduction of fractures being done externally based on guess work which makes correct repositioning difficult and worsens the results of treatment.
- the therapeutic process is based on experience, physical examinations, interviewing a patient and some auxiliary or additional investigations. It is completely impossible to verify correctness of data obtained from interviewing a patient, in particular those referring to intensity of exercises and loading forces.
- a patient is-unablp tq determine whether actual force loading an injured limb is or is not within the limits recommended by a physician.
- a stabilizer according to the present invention avoids these disadvantages of the prior art stabilizers by substituting a hydro/pneumatic system for hitherto used length and force adjustment mechanical components such as screws and springs.
- This system makes it possible, by admission or discharge of . corresponding amount of hydraulic fluid into or from a hydraulic cylinder chamber, to adjust exactly the length of the stabilizer as desired.
- Expansion of gas in a pneumatic chamber with tensile force being applied to the stabilizer results in stretching a membrane and resilient extension of the stabilizer.
- a partitioning wall with an appropriately sized orifice provided in the hydraulic chamber offers substantial resistance to hydraulic fluid flow and distributes over a substantial period of time any suddenly increasing loads.
- pressure gauge or pressure transducer connected to the pneumatic chamber or, preferably, to the hydraulic one associated with an appropriate electronic circuit it is made possibly to precisely control the loads transmitted to a limb in question.
- the electronic circuit through appropriate signaling (e.g. audible alarm signals) provides a patient involved with reliable information about the load actually applied to the injured limb such as too high or too little load applied to the limb.
- a memory enables storage of the total number of loads applied to a limb along with total number of external overloadings which may unfavorably influence the course of treatment.
- a stabilizer according to the present invention has been provided with a remotely controlled manipulator.
- This manipulator serves to correct any displacements of fractured bone fragments, while allowing monitoring of the displacements on an X-ray monitor situated at some distance from the X-ray unit or behind a lead shield separating it from that unit.
- the manipulator consists of a base and two or three functional units, each of them being provided with five or six individually, remotely or directly, controllable moving members.
- a single moving member has a movable part with one degree of freedom and its own hydraulic, electric or pneumatic actuator.
- the manipulator's gripping devices are coupled to a bone to be manipulated through intraosteal screws and their associated coupling blocks of the stabilizer.
- the manipulator's base is attached to a special stand or operating table.
- Fig. 1 shows a schematical top view of the stabilizer in longitudinal section
- Fig. 2 shows a side view of the stabilizer in longitudinal section
- Fig. 3 shows a cross-sectional view of the stabilizer of Fig. 1 along line I- I indicated in that figure;
- Fig. 4 shows one of moving members of the stabilizer in longitudinal section along with its associated elastic tank
- Fig. 5 shows a schematical side view of the manipulator
- Fig. 6 shows a schematical top view of the manipulator.
- the stabilizer consists of linking member 29 formed by a ball journal 1 and an element 10 with a longitudinal slot 20 formed therein.
- a hydraulic seal 9 e.g. in the form of O-ring
- the member 10 is slidablv movable inside the member 3 wherein it is stabilized to prevent its rotation by means of pin 8 slidablv engaging the slot 19 and mounted in the member 3.
- the member 3 incorporates a ball journal 2 being a part of a ball-and-socket articulated joint.
- a pneumatic chamber 4 provided with a regulating valve 1 1 and separated by means of flexible membrane 6 from hydraulic chamber 5 which is also provided with a regulating valve 12.
- the membrane 6 is supported on its side facing the chamber 4 by means of rigid perforated baffle 27.
- a partition wall 7 with an appropriately sized orifice. Admission or discharge of hydraulic fluid through the valve 12 into or from the hydraulic chamber 5 results in lengthening or shortening of the stabilizer respectively. Resistance to flow of hydraulic fluid through the orifice in the partition wall 7 causes efficient vibration damping when the stabilizer is being loaded. As soon as a compressive load has been relieved, gas from the pneumatic chamber 4 expands and flows through perforations or the baffle 27 and enables resilient damping in the direction of stretching. In the pneumatic chamber 4 or. preferably, in the hydraulic one 5.
- the coupling block 17 consists of a central part 1, preferably in the form of tube, carrying at its end a clamping ring 23 of internal diameter smaller than the outer diameter of the ball journal 1 and locked in place by means of taper screws 15.
- a clamping ring 23 of internal diameter smaller than the outer diameter of the ball journal 1 and locked in place by means of taper screws 15.
- recesses preferably in the form of elongated grooves 26, intermeshing with corresponding protrusions on contiguous surfaces of the part 13.
- the pneumatic chamber 4 with its associated regulating valve 1 1 and perforated baffle 27 of the previously described embodiment has been retained there.
- a pressure sensing element can be placed either inside or outside the tank 28.
- the members 3 and 10 are circular in their cross sections, it is necessary to prevent their rotational movement around their longitudinal axis while simultaneously allowing their linear movement in axial direction. This is achieved by providing the member 10 with a longitudinal slot 2.
- the pin 8 can comprise either a conventional pin or can take the form or a screw or bolt with a nut.
- Figs. 5 and 6 illustrate a manipulator designed to operate in association with a stabilizer according to the present invention.
- the manipulator comprises a base 30 (to be attached either to a special stand or operating table) and two or three functional units 31. depending on what kind of fracture is to be treated - a periarticular or bone shaft fracture.
- Each functional unit 31 consists of five or six members, each of them having a mount for attaching the next one and an actuator, preferably in the form of a hydraulic cylinder 32.
- an electric or pneumatic one can be used.
- Each of these members is able to be moved by its associated actuator in a single direction only and can be individually controlled either locally or remotely.
- the actuators are provided with pressure or force sensing elements.
- Adjustment of the angle at which the intraosteal screws are inclined in respect to each other is effected by rotating the rings 33 (together with their associated members 13) around the longitudinal axis of the central member 14 and locking them in place by means of screws 34 screwed into corresponding tapped holes in the ring 33.
Landscapes
- Health & Medical Sciences (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Biomedical Technology (AREA)
- Engineering & Computer Science (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Orthopedics, Nursing, And Contraception (AREA)
Abstract
L'invention concerne un stabilisateur de compensation dynamique utilisé dans le traitement des fractures. Des systèmes hydraulique (5) et pneumatique (4) sont utilisés pour ajuster la longueur du stabilisateur, ce qui permet de commander le chargement dynamique de l'ostéosynthèse et de rééducation. Un bloc d'accouplement divisé (17) modifie l'inclinaison des vis intraosseuses. Un manipulateur (30, 31, 32) permettant d'effectuer des fonctions dans tous les plans est également décrit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU51277/93A AU5127793A (en) | 1992-09-15 | 1993-09-15 | Dynamic compensating stabilizer |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PLP.295943 | 1992-09-15 | ||
PL29594392A PL169633B1 (pl) | 1992-09-15 | 1992-09-15 | Dynamiczny stabilizator kompensacyjny PL |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1994006364A1 true WO1994006364A1 (fr) | 1994-03-31 |
Family
ID=20058497
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1993/008639 WO1994006364A1 (fr) | 1992-09-15 | 1993-09-15 | Stabilisateur de compensation dynamique |
Country Status (3)
Country | Link |
---|---|
AU (1) | AU5127793A (fr) |
PL (1) | PL169633B1 (fr) |
WO (1) | WO1994006364A1 (fr) |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2726757A1 (fr) * | 1994-11-16 | 1996-05-15 | Soubeiran Arnaud Andre | Dispositif implantable chirurgicalement a geometrie modifiable par chauffage et applications |
EP0807419A3 (fr) * | 1996-05-15 | 1998-04-08 | ORTHOFIX S.r.l. | Fixateur externe compacte |
EP0820731A3 (fr) * | 1996-07-22 | 1998-07-15 | Fred Zacouto | Implant squelettique |
EP0953317A1 (fr) * | 1998-04-30 | 1999-11-03 | Fred Zacouto | Implant squelettique |
WO2002078554A1 (fr) * | 2001-03-28 | 2002-10-10 | Imperial College Innovations Ltd. | Régulateur de charge d'une articulation mobile, fixé sur l'os |
US6835207B2 (en) | 1996-07-22 | 2004-12-28 | Fred Zacouto | Skeletal implant |
US7611540B2 (en) | 2007-05-01 | 2009-11-03 | Moximed, Inc. | Extra-articular implantable mechanical energy absorbing systems and implantation method |
US8523948B2 (en) | 2009-10-20 | 2013-09-03 | Moximed, Inc. | Extra-articular implantable mechanical energy absorbing assemblies having a tension member, and methods |
US8597362B2 (en) | 2009-08-27 | 2013-12-03 | Cotera, Inc. | Method and apparatus for force redistribution in articular joints |
US8679178B2 (en) | 2009-10-20 | 2014-03-25 | Moximed, Inc. | Extra-articular implantable mechanical energy absorbing assemblies having two deflecting members and compliance member |
US8845724B2 (en) | 2009-08-27 | 2014-09-30 | Cotera, Inc. | Method and apparatus for altering biomechanics of the articular joints |
US8894714B2 (en) | 2007-05-01 | 2014-11-25 | Moximed, Inc. | Unlinked implantable knee unloading device |
US9005298B2 (en) | 2007-05-01 | 2015-04-14 | Moximed, Inc. | Extra-articular implantable mechanical energy absorbing systems |
US9044270B2 (en) | 2011-03-29 | 2015-06-02 | Moximed, Inc. | Apparatus for controlling a load on a hip joint |
US9168065B2 (en) | 2008-04-30 | 2015-10-27 | Moximed, Inc. | Ball and socket assembly |
US9398957B2 (en) | 2007-05-01 | 2016-07-26 | Moximed, Inc. | Femoral and tibial bases |
US9468466B1 (en) | 2012-08-24 | 2016-10-18 | Cotera, Inc. | Method and apparatus for altering biomechanics of the spine |
CN106413604A (zh) * | 2014-03-12 | 2017-02-15 | 奥索斯平有限公司 | 预加载的医疗柱 |
US9655648B2 (en) | 2007-05-01 | 2017-05-23 | Moximed, Inc. | Femoral and tibial base components |
US9668868B2 (en) | 2009-08-27 | 2017-06-06 | Cotera, Inc. | Apparatus and methods for treatment of patellofemoral conditions |
US9861408B2 (en) | 2009-08-27 | 2018-01-09 | The Foundry, Llc | Method and apparatus for treating canine cruciate ligament disease |
US9907645B2 (en) | 2007-05-01 | 2018-03-06 | Moximed, Inc. | Adjustable absorber designs for implantable device |
CN108236491A (zh) * | 2016-12-24 | 2018-07-03 | 王培林 | 一种骨块间轴向加压力可调的骨折外固定架 |
US10327816B2 (en) | 2007-05-01 | 2019-06-25 | Moximed, Inc. | Adjustable absorber designs for implantable device |
US10349980B2 (en) | 2009-08-27 | 2019-07-16 | The Foundry, Llc | Method and apparatus for altering biomechanics of the shoulder |
US10383736B2 (en) | 2007-05-01 | 2019-08-20 | Moximed, Inc. | Femoral and tibial base components |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4502473A (en) * | 1981-08-06 | 1985-03-05 | National Research Development Corp. | Apparatus for external fixation of bone fractures |
US5026372A (en) * | 1987-11-05 | 1991-06-25 | Robert Sturtzkopf | Fixation device for the external adjusting of bone fragments |
-
1992
- 1992-09-15 PL PL29594392A patent/PL169633B1/pl unknown
-
1993
- 1993-09-15 AU AU51277/93A patent/AU5127793A/en not_active Abandoned
- 1993-09-15 WO PCT/US1993/008639 patent/WO1994006364A1/fr active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4502473A (en) * | 1981-08-06 | 1985-03-05 | National Research Development Corp. | Apparatus for external fixation of bone fractures |
US5026372A (en) * | 1987-11-05 | 1991-06-25 | Robert Sturtzkopf | Fixation device for the external adjusting of bone fragments |
Cited By (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2726757A1 (fr) * | 1994-11-16 | 1996-05-15 | Soubeiran Arnaud Andre | Dispositif implantable chirurgicalement a geometrie modifiable par chauffage et applications |
EP0807419A3 (fr) * | 1996-05-15 | 1998-04-08 | ORTHOFIX S.r.l. | Fixateur externe compacte |
EP0820731A3 (fr) * | 1996-07-22 | 1998-07-15 | Fred Zacouto | Implant squelettique |
AU732244B2 (en) * | 1996-07-22 | 2001-04-12 | Fred Zacouto | Skeletal implant |
US6835207B2 (en) | 1996-07-22 | 2004-12-28 | Fred Zacouto | Skeletal implant |
EP0953317A1 (fr) * | 1998-04-30 | 1999-11-03 | Fred Zacouto | Implant squelettique |
FR2778085A1 (fr) * | 1998-04-30 | 1999-11-05 | Fred Zacouto | Implant squelettique |
US9610103B2 (en) | 2001-03-28 | 2017-04-04 | Moximed, Inc. | Bone fixated, articulated joint load control device |
WO2002078554A1 (fr) * | 2001-03-28 | 2002-10-10 | Imperial College Innovations Ltd. | Régulateur de charge d'une articulation mobile, fixé sur l'os |
AU2002234756B2 (en) * | 2001-03-28 | 2006-04-27 | Moximed, Inc. | Bone fixated, articulated joint load control device |
US9943336B2 (en) | 2001-03-28 | 2018-04-17 | Moximed, Inc. | Bone fixated, articulated joint load control device |
US10022154B2 (en) | 2007-05-01 | 2018-07-17 | Moximed, Inc. | Femoral and tibial base components |
US9125746B2 (en) | 2007-05-01 | 2015-09-08 | Moximed, Inc. | Methods of implanting extra-articular implantable mechanical energy absorbing systems |
US11389298B2 (en) | 2007-05-01 | 2022-07-19 | Moximed, Inc. | Extra-articular implantable mechanical energy absorbing systems |
US8894714B2 (en) | 2007-05-01 | 2014-11-25 | Moximed, Inc. | Unlinked implantable knee unloading device |
US9005298B2 (en) | 2007-05-01 | 2015-04-14 | Moximed, Inc. | Extra-articular implantable mechanical energy absorbing systems |
US10736746B2 (en) | 2007-05-01 | 2020-08-11 | Moximed, Inc. | Extra-articular implantable mechanical energy absorbing systems |
US10639161B2 (en) | 2007-05-01 | 2020-05-05 | Moximed, Inc. | Extra-articular implantable load sharing systems |
US10383736B2 (en) | 2007-05-01 | 2019-08-20 | Moximed, Inc. | Femoral and tibial base components |
US9700419B2 (en) | 2007-05-01 | 2017-07-11 | Moximed, Inc. | Extra-articular implantable mechanical energy absorbing systems and implantation method |
US9814579B2 (en) | 2007-05-01 | 2017-11-14 | Moximed, Inc. | Unlinked implantable knee unloading device |
US9907645B2 (en) | 2007-05-01 | 2018-03-06 | Moximed, Inc. | Adjustable absorber designs for implantable device |
US10327816B2 (en) | 2007-05-01 | 2019-06-25 | Moximed, Inc. | Adjustable absorber designs for implantable device |
US9398957B2 (en) | 2007-05-01 | 2016-07-26 | Moximed, Inc. | Femoral and tibial bases |
US10070964B2 (en) | 2007-05-01 | 2018-09-11 | Moximed, Inc. | Extra-articular implantable mechanical energy absorbing systems and implantation method |
US7611540B2 (en) | 2007-05-01 | 2009-11-03 | Moximed, Inc. | Extra-articular implantable mechanical energy absorbing systems and implantation method |
US10010421B2 (en) | 2007-05-01 | 2018-07-03 | Moximed, Inc. | Extra-articular implantable mechanical energy absorbing systems |
US9655648B2 (en) | 2007-05-01 | 2017-05-23 | Moximed, Inc. | Femoral and tibial base components |
US9168065B2 (en) | 2008-04-30 | 2015-10-27 | Moximed, Inc. | Ball and socket assembly |
US10363139B2 (en) | 2008-04-30 | 2019-07-30 | Moximed, Inc. | Ball and socket assembly |
US9278004B2 (en) | 2009-08-27 | 2016-03-08 | Cotera, Inc. | Method and apparatus for altering biomechanics of the articular joints |
US8845724B2 (en) | 2009-08-27 | 2014-09-30 | Cotera, Inc. | Method and apparatus for altering biomechanics of the articular joints |
US11730519B2 (en) | 2009-08-27 | 2023-08-22 | The Foundry, Llc | Method and apparatus for force redistribution in articular joints |
US9861408B2 (en) | 2009-08-27 | 2018-01-09 | The Foundry, Llc | Method and apparatus for treating canine cruciate ligament disease |
US9668868B2 (en) | 2009-08-27 | 2017-06-06 | Cotera, Inc. | Apparatus and methods for treatment of patellofemoral conditions |
US9931136B2 (en) | 2009-08-27 | 2018-04-03 | The Foundry, Llc | Method and apparatus for altering biomechanics of articular joints |
US9114016B2 (en) | 2009-08-27 | 2015-08-25 | Cotera, Inc. | Method and apparatus for altering biomechanics of the articular joints |
US11517360B2 (en) | 2009-08-27 | 2022-12-06 | The Foundry, Llc | Method and apparatus for treating canine cruciate ligament disease |
US8597362B2 (en) | 2009-08-27 | 2013-12-03 | Cotera, Inc. | Method and apparatus for force redistribution in articular joints |
US10695094B2 (en) | 2009-08-27 | 2020-06-30 | The Foundry, Llc | Method and apparatus for altering biomechanics of articular joints |
US9795410B2 (en) | 2009-08-27 | 2017-10-24 | Cotera, Inc. | Method and apparatus for force redistribution in articular joints |
US10349980B2 (en) | 2009-08-27 | 2019-07-16 | The Foundry, Llc | Method and apparatus for altering biomechanics of the shoulder |
US8679178B2 (en) | 2009-10-20 | 2014-03-25 | Moximed, Inc. | Extra-articular implantable mechanical energy absorbing assemblies having two deflecting members and compliance member |
US9034049B2 (en) | 2009-10-20 | 2015-05-19 | Moximed, Inc. | Extra-articular implantable mechanical energy absorbing assemblies having a tension member, and methods |
US8523948B2 (en) | 2009-10-20 | 2013-09-03 | Moximed, Inc. | Extra-articular implantable mechanical energy absorbing assemblies having a tension member, and methods |
US9060867B2 (en) | 2009-10-20 | 2015-06-23 | Moximed, Inc. | Extra-articular implantable mechanical energy absorbing assemblies having a tension member, and methods |
US9044270B2 (en) | 2011-03-29 | 2015-06-02 | Moximed, Inc. | Apparatus for controlling a load on a hip joint |
US10898237B2 (en) | 2012-08-24 | 2021-01-26 | The Foundry, Llc | Method and apparatus for altering biomechanics of the spine |
US9468466B1 (en) | 2012-08-24 | 2016-10-18 | Cotera, Inc. | Method and apparatus for altering biomechanics of the spine |
CN106413604A (zh) * | 2014-03-12 | 2017-02-15 | 奥索斯平有限公司 | 预加载的医疗柱 |
US9949758B2 (en) | 2014-03-12 | 2018-04-24 | Orthospin Ltd. | Preloaded medical struts |
EP3110353A4 (fr) * | 2014-03-12 | 2018-01-03 | Orthospin Ltd. | Entretoises médicales préchargées |
US11241256B2 (en) | 2015-10-15 | 2022-02-08 | The Foundry, Llc | Method and apparatus for altering biomechanics of the shoulder |
CN108236491B (zh) * | 2016-12-24 | 2021-07-13 | 王培林 | 一种骨块间轴向加压力可调的骨折外固定架 |
CN108236491A (zh) * | 2016-12-24 | 2018-07-03 | 王培林 | 一种骨块间轴向加压力可调的骨折外固定架 |
Also Published As
Publication number | Publication date |
---|---|
AU5127793A (en) | 1994-04-12 |
PL169633B1 (pl) | 1996-08-30 |
PL295943A1 (en) | 1994-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1994006364A1 (fr) | Stabilisateur de compensation dynamique | |
KR100477282B1 (ko) | 공간프레임 | |
US4890631A (en) | External fixation device intended for orthopedic use | |
US5320622A (en) | Dynamic axial splint | |
US4895141A (en) | Unilateral external fixation device | |
US8702705B2 (en) | Electromechanically driven external fixator and methods of use | |
US5074866A (en) | Translation/rotation device for external bone fixation system | |
US6129727A (en) | Orthopaedic spatial frame apparatus | |
AU738046B2 (en) | Method of adjusting orthopaedic or other fixator | |
US6171309B1 (en) | External fixator for repairing fractures of distal radius and wrist | |
US5092867A (en) | Correction and supporting apparatus, in particular for the spinal column | |
US5704937A (en) | Operative equipment for fixing spinal instrumentation | |
US20030109879A1 (en) | External fixator for distal radius fractures | |
US20080086128A1 (en) | Method and apparatus for treatment of scoliosis | |
JPH0579338B2 (fr) | ||
EP0072849A4 (fr) | Dispositif de fixation d'une fracture. | |
EP0996382A1 (fr) | Dispositif de distraction | |
GB2223406A (en) | External fixator device | |
WO1999022661A1 (fr) | Fixateur externe pour fractures du radius inferieur | |
US10925645B2 (en) | External fixator | |
RU2010556C1 (ru) | Способ лечения перелома длинной трубчатой кости и устройство для его осуществления | |
WO2000038584A1 (fr) | Structure de fixation exterieure utilisee dans le traitement des fractures, des luxations et de la rigidite post-traumatique de l'articulation du coude | |
GB2255284A (en) | External fixator | |
RU2749897C1 (ru) | Аппарат для лечения сочетанных переломов костей таза и бедра | |
JP2002506673A (ja) | 整形外科用固定装置の改良使用方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AT AU BB BG BR CA CH CZ DE DK ES FI GB HU JP KP KR LK LU MG MN MW NL NO NZ PL PT RO RU SD SE SK UA US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: CA |