[go: up one dir, main page]

WO1994013991A1 - Electrovannes - Google Patents

Electrovannes Download PDF

Info

Publication number
WO1994013991A1
WO1994013991A1 PCT/GB1993/002508 GB9302508W WO9413991A1 WO 1994013991 A1 WO1994013991 A1 WO 1994013991A1 GB 9302508 W GB9302508 W GB 9302508W WO 9413991 A1 WO9413991 A1 WO 9413991A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
solenoid
current
voltage
detecting
Prior art date
Application number
PCT/GB1993/002508
Other languages
English (en)
Inventor
John Colin Mumford
Original Assignee
Pi Research Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pi Research Ltd. filed Critical Pi Research Ltd.
Publication of WO1994013991A1 publication Critical patent/WO1994013991A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/28Interface circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K37/00Special means in or on valves or other cut-off apparatus for indicating or recording operation thereof, or for enabling an alarm to be given
    • F16K37/0025Electrical or magnetic means
    • F16K37/0041Electrical or magnetic means for measuring valve parameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1805Circuit arrangements for holding the operation of electromagnets or for holding the armature in attracted position with reduced energising current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1844Monitoring or fail-safe circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2017Output circuits, e.g. for controlling currents in command coils using means for creating a boost current or using reference switching
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2055Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit with means for determining actual opening or closing time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2058Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using information of the actual current value
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2068Output circuits, e.g. for controlling currents in command coils characterised by the circuit design or special circuit elements
    • F02D2041/2075Type of transistors or particular use thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2068Output circuits, e.g. for controlling currents in command coils characterised by the circuit design or special circuit elements
    • F02D2041/2079Output circuits, e.g. for controlling currents in command coils characterised by the circuit design or special circuit elements the circuit having several coils acting on the same anchor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/063Lift of the valve needle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1844Monitoring or fail-safe circuits
    • H01F2007/185Monitoring or fail-safe circuits with armature position measurement

Definitions

  • Electromagnetic valves are used in many systems, for example, as fuel injection valves or in hydraulic systems.
  • most electromagnetic valves have a head which is pressed by a spring against a valve seat to close the valve. The head is withdrawn from the valve seat to open the valve against the force of the spring by a solenoid which attracts a plate of ferromagnetic material on the valve on application of a drive current to the solenoid.
  • the operation of the spring is replaced by the head itself being a permanent magnet which is attracted into the valve seat by coils.
  • a separate armature floats on the valve stem and, when the solenoid coil is energised, the armature is attracted and moved towards the coil against the action of a spring. The armature strikes the flared end of the valve stem and then carries the valve to lift the valve from the valve seat.
  • the armature has a certain amount of pre-travel before the valve is lifted, which can reduce the delay between initial opening and fully open, and gives better consistency from cycle to cycle if the valve shows any tendency to stick to the seat, or if there are variations in supply pressure.
  • the spring strength and the solenoid gap are particularly susceptible to variation during manufacture of the valve. Temperature variation of the solenoid resistance and the fluid viscosity are particularly pronounced and the spring strength may vary with temperature also. Where the valve is a fuel injection valve in a motor vehicle, the battery voltage can vary considerably. Also, the properties of the fluid may alter as the fluid composition is varied. All of these factors make it difficult to anticipate accurately the time when the valve will be fully open.
  • a system for detecting opening of an electromagnetic valve the valve being opened by application of a drive voltage to a solenoid which attracts the valve to lift the valve from a valve seat to a stop position in which the valve is open, the system comprising: means for monitoring the current flowing in the solenoid; and, means for detecting a time variation in the solenoid current which corresponds to the stop position of the valve.
  • the means for detecting a change in the drive current may comprise means for monitoring the first derivative of the drive current with respect to time.
  • the means for detecting a change in the drive current comprises means for monitoring the second derivative of the drive current with respect to time.
  • the second derivative of the drive current shows a dramatic "spike", corresponding to the valve hitting its mechanical stop. Such a large spike is easily monitored.
  • there is a first spike in the second time-derivative of solenoid current which corresponds to the armature hitting the valve to lift the valve, and which is quickly followed by a second spike corresponding to the valve itself hitting the mechanical stop which signifies that the valve is fully opened.
  • the mass of the armature is greater than that of the valve assembly, the first spike tends to be significantly smaller but is dependent on a number of factors including the fluid supply pressure.
  • the present invention also includes a method for detecting opening of an electromagnetic valve, the valve being opened by application of a drive voltage to a solenoid which attracts the valve to lift the valve from a valve seat to a stop position in which the valve is open, the method comprising the steps of: monitoring the current flowing in the solenoid; and, detecting a time variation in the solenoid current which corresponds to the stop position of the valve.
  • the value of the drive current may be differentiated with respect to time.
  • the valve of the drive current is double-differentiated with respect to time, and the second derivative is monitored.
  • a constant voltage may be supplied across the solenoid as it is opened.
  • the invention also includes a method of detecting closing of an electromagnetic valve, the valve being opened by application of a drive voltage to a solenoid which attracts the valve to lift the valve from a valve seat to a stop position in which the valve is open, the method comprising the steps of: monitoring the voltage across the solenoid; and, detecting the time variation of the solenoid voltage which corresponds to the closed position of the valve.
  • the first derivative of the solenoid voltage with respect to time may be monitored.
  • the second derivative of the solenoid voltage with respect to time may be monitored.
  • a constant current may be supplied to the solenoid as the valve is closed.
  • Fig. 1 is a schematic diagram of a first example of an electromagnetic valve
  • Fig. 2 is a schematic diagram of a second example of an electromagnetic valve
  • Figs. 3A-C are graphs showing the variation of the control signal, the drive current, and the fuel flow rate with respect to time for the valve shown in Fig. 1;
  • Figs. 4A-C are graphs corresponding to those in Figure 3 for the valve shown in Figure 2;
  • Fig. 5 is a block diagram showing circuit components for the valve drive system and valve-opening detector;
  • Fig. 6A and B are circuit diagrams of the solenoid drive circuit and a variation respectively;
  • Fig. 7 is a circuit diagram for the current control circuit;
  • Fig. 8 is a circuit diagram for the detector
  • Fig. 9 is a diagram of the circuit providing the threshold voltages for the circuits of Fig. 7 and Fig. 8;
  • Fig. 10 is a diagram of the opening detector logic;
  • Fig. 11 shows the variation of high side drive to the solenoid
  • Fig. 12 shows the variation of the low side drive to the solenoid
  • Fig. 13 is a graph showing -dl/dt
  • Fig. 14 shows the variation of d 2I/dt2
  • Fig. 15 shows the logic sequence for the detector logic of Figure 10.
  • Fig. 16 shows the output Initial Opening XOR Fully Open for the detector logic
  • Fig. 17 shows the current waveform obtained using the Fully Open detection to switch from "Pull” mode to "Hold” mode
  • Fig. 18 shows a modified solenoid drive circuit (added to the circuit shown in Fig. 6A or 6B) ;
  • Fig. 19 shows a closure detection and current control circuit
  • Fig. 20 shows a circuit for producing the threshold voltages for the circuit shown in Fig. 19 (added to the circuit shown in Fig. 9) ;
  • Fig. 21 shows the closure detection and current control logic circuit
  • Fig. 22 shows the variation of low side drive voltage (VLO) and dV/dt at turn-off for first example of valve closing monitoring
  • Fig. 23 shows the closure detection signal corresponding to Fig. 22
  • Fig. 24 shows the variation of low side drive voltage (VLO) and dV/dt at turn-off for a second example of valve closing monitoring
  • Fig. 25 shows the closure detection signal corresponding to Fig. 24;
  • Fig. 26 the sequence of operations of the detector logic shown in Fig. 21.
  • FIG. 1 there is shown a fuel injection valve l which has a valve stem 2 at one end of which is a valve head 3 and at the opposite end of which is a ferromagnetic plate-like armature 4.
  • the valve head 3 is urged against a valve seat 5 to close the valve 1 by a coiled compression spring 6 acting between shoulders on the valve head 3 and a fixed member 7.
  • a solenoid 8 having a U-shaped core 9 is positioned with the end faces 10 of the core 9 in confronting relationship with the armature 4. Fuel is supplied under pressure into the region between the fixed member 7 and the valve seat 5 and which is indicated generally by "A" in the drawing.
  • FIG 2 there is shown a further example of a fuel injection valve. Those components which correspond to those shown in Figure 1 bear the same reference numerals.
  • This second example differs in that, instead of the fixed armature 4 of Figure 1, a floating armature 11 is provided between the enlarged end 12 of the valve stem and a second fixed member 13. The floating armature 11 is biased away from the solenoid 8 by a second coiled compression spring 14.
  • the floating armature 11 As the solenoid 8 is energised, the floating armature 11 is attracted towards the solenoid core 9 against the action of the second compression spring 14. After moving a short distance, the floating armature 11 "picks up" the valve end 12 to lift the valve head 3 from the valve seat 5.
  • the use of a floating armature 11 can reduce the delay between initial opening and fully open and gives better consistency if the valve shows any tendency to stick to the seat, or if there are variations in supply pressure.
  • valves are only shown schematically in Figures 1 and 2 and precise details will vary from design to design.
  • the valves, and the system described below, have particular application in petrol engines.
  • Figure 3A indicates the variation of the control signal applied to open the solenoid coil 8 for the first example of the valve shown in Figure 1.
  • Figure 3B shows the variation of the current I in the solenoid coil 8 with respect to time and
  • Figure 3C shows the rate of flow of the fuel through the valve.
  • T start the voltage is applied to the solenoid 8 and the current I builds up, the build up being in accordance with the inductance and possibly the resistance of the solenoid coil 8.
  • the magnetic force generated by the solenoid 8 is sufficient to overcome the compression spring 6 and the valve 3 begins to open.
  • the current I continues to build until the point T F at which point the armature 4 strikes the core 9 (or other mechanical stop in the valve) and the valve is fully open.
  • the area under the curve shown in Figure 3C represents the amount of fuel which has flowed. It will be seen that almost all of the fuel flow is during the period indicated by "PW" during which the valve is fully open in the example shown where the pulse width is relatively large.
  • Figure 4 shows graphs corresponding to those in Figure 3 for the second example of the valve shown in Figure 2.
  • the current I begins to rise.
  • the floating armature 11 strikes the valve end 12, causing the valve head to lift from the valve seat 5.
  • the floating armature 11 strikes the valve end 12, there is an increase in the rate of change of current as indicated at the point ⁇ . _
  • the fully open position of the valve is detected by monitoring for the change in slope of the curve of I v T.
  • the reason for the change in slope can be seen by considering the situation where a constant voltage V is applied to a solenoid coil having a resistance R and in which a current I flows, the solenoid attracting an armature which is a distance x away, and the system having an inductance L.
  • the equation of state assuming a linear response in which no part of the magnetic circuit is saturated, is:
  • dx/dt is the velocity of the armature. Accordingly, for a constant voltage V, an abrupt change in velocity of the armature (dx/dt) causes an abrupt change in dL/dt, which causes an abrupt change in dl/dt. The increase in dl/dt which occurs as the armature hits the solenoid core produces a corresponding large spike in the value of d 2 I/dt 2 .
  • FIG. 5 is a block diagram of the components"used in the present system.
  • the circuit is designed such that solenoids with non-overlapping duty cycles can share many components, and the diagrams have been drawn for the case of two solenoids sharing the same current control, detector and detector logic circuits.
  • the solenoid 8 is driven by a solenoid drive circuit 20.
  • the current I passing through the solenoid 8A or 8B is fed to earth through a sense resistor 21 having a resistance R s .
  • the voltage IR S developed on the sense resistor 21 is fed to a detector circuit 22 which performs a double time-differentiation on the input signal, the results of which are then passed to a detector logic circuit 23.
  • the detector logic circuit 23 detects the point X, of Figure 4B corresponding to the armature 11 hitting the valve end 12 (i.e. the initial opening of the valve) and also detects the fully open position of the valve corresponding to the point X 2 .
  • the valve is of the type shown in Figure 1, having the characteristics shown in Figure 3, there is only one jump in the value of d 2I/dt2 correspondi.ng to the position where 11 the valve is fully open and indicated X in Figure 3B, and for this type the circuit can be simplified somewhat.
  • the outputs of the detector logic circuit 23 are fed to a processor 24.
  • the processor 24 provides overall control of the circuit and in particular determines the point in time when the solenoid 8 (A or B) is energised and deenergised to control valve opening based on fuel requirements and previous cycles.
  • a current control circuit 25 provides signals to control operation of the solenoid drive circuit 20, and is itself under control of the processor 24.
  • the current control circuit 25 also has the voltage IR S as an input.
  • the solenoid drive circuit 20 is shown in more detail in Figure 6A.
  • a high side drive logic signal (HSD) from the current control circuit 25 is supplied to an integrated high-side switch circuit 31 which, in a specific example, is a BTS410F Profet. This provides the output drive voltage to the solenoid 8 (A and B) which is termed herein the "solenoid high side signal" (voltage denoted by VHI) .
  • a low side logic signal from the processor 24 is supplied to the gate of a transistor 32 (A or B) which, in a specific example, is a BUK555-100B. The drain of the transistor 32 receives the current from the solenoid low side (the "solenoid low side signal” with voltage denoted by VLO) .
  • the sense resistor 21 connects the sources of the transistors 32 (A and B) to earth and the voltage IR S across this component is fed into the detector and current control circuits.
  • a (Schottky) diode 33 connects the output of the switch circuit 31 to earth.
  • the switch circuit 31 accepts the logical input HSD and supplies a high side drive voltage.
  • the BTS410F Profet has various useful features, particularly short-circuit and over-temperature protection and a status output (STAT) which can be used to monitor fault conditions (open circuit load, shorted load, etc) .
  • the low side drives use respective logic level MOSFETS 32 (A and B) rated at lOOv VDS. These are bypassed with Transzorbs ZD1 (A and B) (in this example type SA51A which clamp at approximately 60v) which are used to absorb the energy stored in the solenoids at turn-off.
  • An alternative arrangement, using a conventional Zener diode, is indicated in Figure 6B.
  • the diode 33 ensures that the output voltage to the solenoid high side does not fall more than a fraction of a volt below earth, thus keeping down the dissipation of energy in the Profet 31. If the circuit is to be operated in an electrically noisy environment, the leads to the solenoids will require capacitors CIA, C1B and C2 connected to the circuit ground to prevent high frequency interference reaching the digital logic. A resistor Rl is then required to discharge the capacitors between cycles. (It may also be required for the closing detection, to be described in more detail below.)
  • the logic signals HSD and LSD are provided by the current control circuit 25 and the processor 24 respectively.
  • An "enable” signal used for resetting the digital logic between cycles and gating the HSD signal is formed by IC3A as LSD (A) OR LSD (B) .
  • the current control circuit 25 is shown in greater detail in Figure 7.
  • the Q output of the D-type flip-flop IC4A is low ("pull" mode).
  • the HSD signal becomes high when either LSD(A) or LSD(B) ("enable") is switched high by the processor 24.
  • switch SI in position A the current in the solenoid ramps up until the specified pull-in current is achieved (IR S reaches V2 on the comparator IC2B) , thus clocking IC4A and setting the Q output high (“hold mode").
  • With the switch SI in position B switching to hold mode occurs either when IR S reaches V2 or when the fully open condition is detected (whichever occurs first) .
  • the current ramps between two limits set by VI (on comparator IC2A) and the resistors R3 and R4. The lower of these limits is set slightly above the specified solenoid hold current.
  • the processor returns the LSD signal to the low state (setting enable and HSD low also) , causing the solenoid current to flow through the Transzorb (ZD1A, ZD1B, Figure 6A) and producing a large reverse voltage (in this example about 60V) across the coil, and a rapid (in this example about 60 ⁇ sec) decay of the current to zero.
  • the voltage waveforms appearing on the solenoid high side and low side, together with the corresponding current waveform, are shown in Figs 11 and 12 respectively, the upper trace being the voltage and the lower trace being the current.
  • the drive signal to the solenoid is oscillated as shown, which is extremely effective in reducing the power dissipated in the components in the drive circuit.
  • the detector circuit shown in Figure 8, is supplied with the voltage IR S across the sense resistor. This voltage is differentiated twice by IC6A and IC6B to produce a signal proportional to d 2I/dt2. The bandwidth of the differentiators is selected to optimize the signal to noise ratio at the output. The second derivative is compared with the threshold voltages V3 and V4 by comparators IC2C and IC2D. The outputs from these are fed into the detector logic ( Figure 10) , which in this example has been implemented using positive edge triggered D-type flip- flops. The sequence of operations occurring for the eight edges ( Figure 14) derived from the two comparators during the opening part of the cycle is indicated in Figure 15.
  • the four threshold voltages VI, V2, V3 and V4 are generated by the circuit in Figure 9, and these may be shared by a number of separate current control and detector circuits. In cases where the range of supply voltages is significant, it is advantageous to vary V2 and V3 with VBAT, as indicated in this example.
  • the two detected outputs corresponding to initial opening and fully open are returned to the processor 24 to be used for the calculation of pulse width and pulse start on subsequent cycles, and in some applications may be used for the calculation of the timing of the end of cycle on the current cycle.
  • the two detections are shown in Figure 16 where the signals from the detector logic ( Figure 10) have been combined using an exclusive OR gate.
  • the current waveform obtained by switching from pull mode to hold mode when the fully open condition is detected (SI in position B) is shown in Figure 17.
  • the present invention provides a remarkably simple system for determining the instant when the valve is fully open or closed with an extremely high degree of accuracy.
  • the present invention has wide applicability, but is particularly useful in determining the opening and/or closing of fuel injection valves in vehicle engines, particularly petrol engines, so that the fuel flow rate can be monitored and controlled more precisely.
  • the delay between application of the drive voltage and full opening of the valve can be determined, in real time if required, so that the drive voltage for the next cycle can be applied at the instant required to achieve full opening of the valve for the desired amount of time for the pulse width required. Similar considerations apply to valve closing.
  • the present invention is tolerant to relatively large variations in the supply voltage. Vehicle supply voltages are often irregular and ill-defined and thus the present invention can be used in many vehicles easily, without requiring the use of a regulated power system. The component count is also low, which also helps to keep down costs and also size.
  • a single Profet 31 is described above for use when the duty cycles of the injectors are non-overlapping, the solenoids of the fuel injectors effectively being connected in parallel between the Profet 31 and ground, and being operated sequentially. If the duty cycles overlap, a separate drive needs to be used for any overlapping injectors.
  • N is the number of turns on the coil and F is the flux in the magnetic circuit given by
  • M is the magnetomotive force from the remnant magnetism and x, ⁇ ⁇ and A,- are respectively the magnetic path length, the permeability and the cross-sectional area of the components in the magnetic circuit.
  • a switch S2 is shown which is arranged to allow the option of using either the solenoid remnant magnetism (position A, to which Figures 22 and 23 relate) or the constant current drive (position B, to which Figures 24 and 25 relate) according to the properties of the solenoid.
  • the circuit can be simplified considerably.
  • both HSD and LSD signals are set low, causing Ql ( Figure 6) to turn off and the solenoid current to flow through ZDl.
  • Ql Figure 6
  • the voltage VLO across ZDl falls below the rated breakdown voltage (51v for the SA51A)
  • the output of the comparator IC9A goes high. This clocks the flip-flop IC11A and triggers the two monostables IC12A and IC12B.
  • IC12A switches both HSD and CCD signals high for a time (set by R47 and C26) which is long enough for the closure event to occur.
  • the CCD signal drives the base of Q2 ( Figure 18) which provides a small current (in this case 20mA) through the coil.
  • the monostable IC12B and the flip-flop IC13A prevent spurious detections from the transient caused by switching the high side drive (HSD) and the constant current drive (CCD) .
  • HSD high side drive
  • CCD constant current drive
  • VLO The solenoid low side voltage, VLO, is differentiated by the amplifier IC10A ( Figure 19) .
  • This is fitted with zener diodes ZD6 and ZD7 to clip the output, and clamping diodes D6 and D7 at the input to ensure rapid recovery from the large values of dVLO/dt occurring at the initial turn-off.
  • the C0MP6 signal clocks the flip-flop IC13B. The output from this is returned to the processor 24 for the calculation of pulse widths on subsequent cycles.
  • the monostable IC12A When the monostable IC12A resets, the HSD and CCD signals are returned to the low state, which causes the solenoid current to flow through ZDl (again) .
  • the presence of the flip-flop IC11A prevents the sequence being repeated until another opening cycle has occurred.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Magnetically Actuated Valves (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Indication Of The Valve Opening Or Closing Status (AREA)

Abstract

Une électrovanne (1) s'ouvre lors de l'application d'une tension de commande à un solénoïde (8) qui attire la vanne (1) et la soulève de son siège (5) pour l'amener à une position d'arrêt dans laquelle elle est ouverte. Un système de détection d'ouverture de vanne (1) comprend un élément pour contrôler le courant s'écoulant dans le solénoïde (8) et un élément pour détecter une variation de temps dans le courant parcourant le solénoïde, qui correspond à la position d'arrêt de la vanne (1). Un système de détection de fermeture de la vanne comprend un élément pour contrôler la tension dans le solénoïde (8) et un élément pour détecter la variation de temps de la tension du solénoïde, qui correspond à la position fermée de la vanne (1).
PCT/GB1993/002508 1992-12-08 1993-12-08 Electrovannes WO1994013991A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB9225622A GB9225622D0 (en) 1992-12-08 1992-12-08 Electromagnetic valves
GB9225622.1 1992-12-08

Publications (1)

Publication Number Publication Date
WO1994013991A1 true WO1994013991A1 (fr) 1994-06-23

Family

ID=10726287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB1993/002508 WO1994013991A1 (fr) 1992-12-08 1993-12-08 Electrovannes

Country Status (2)

Country Link
GB (1) GB9225622D0 (fr)
WO (1) WO1994013991A1 (fr)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2293244A (en) * 1994-09-17 1996-03-20 Mtu Friedrichshafen Gmbh Determining the armature impact time upon de-energising a solenoid valve
WO1997004230A1 (fr) * 1995-07-17 1997-02-06 Scania Cv Aktiebolag Procede et dispositif de commande et de detection de la position d'un element de soupape actionne par solenoide
DE19620468A1 (de) * 1996-05-21 1997-11-27 Herion Technomatic Ag Aesch Verfahren und Vorrichtung zum Überwachen der Funktionsabläufe in einem Ventil
EP0944100A1 (fr) * 1998-02-06 1999-09-22 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Procédé et dispositif pour régler la soupape électromagnétique d'un véhicule industriel
WO2002075139A1 (fr) * 2001-03-15 2002-09-26 Siemens Vdo Automotive Corporation Detection de la fin de course d'une soupape de commande a solenoide
WO2003023212A1 (fr) * 2001-09-05 2003-03-20 Siemens Aktiengesellschaft Procede de commande d'une soupape d'injection de carburant actionnee par un actionneur piezoelectrique
WO2004102600A1 (fr) * 2003-05-13 2004-11-25 Wärtsilä Finland Oy Procede de commande de fonctionnement d'un solenoide
EP1528243A1 (fr) * 2003-10-31 2005-05-04 Magneti Marelli Powertrain S.p.A. Procédé de commande d'un injecteur avec vérification de mouvement de l'aiguille
EP1533506A2 (fr) 2003-11-21 2005-05-25 C.R.F. Società Consortile per Azioni Méthode pour déterminer l'instant d'arrivée en fin de course en phase de désactivation de l'obturateur mobile d'une électro-valve
EP1571679A2 (fr) 2004-03-05 2005-09-07 Woodward Governor Company Procédé de contrôle adaptatif et d'obtention de la tension de contrôle de valves électromagnétiques à partir du point de fermeture de la valve
WO2005119038A1 (fr) * 2004-06-03 2005-12-15 Siemens Aktiengesellschaft Procede et dispositif pour commander une soupape d'injection
EP2060762A1 (fr) * 2007-11-15 2009-05-20 Delphi Technologies, Inc. Détecteur d'impulsion transitoire et procédé de détection d'événements d'impulsion transitoire
EP2072791A1 (fr) 2007-12-18 2009-06-24 C.R.F. Società Consortile per Azioni Procédé pour déterminer l'instant d'arrivée en position extrême de l'élément mobile d'un électrovanne
WO2010133414A1 (fr) * 2009-05-19 2010-11-25 Robert Bosch Gmbh Procédé de détection d'un état de fonctionnement d'une soupape d'injection
WO2010145936A1 (fr) * 2009-06-15 2010-12-23 Robert Bosch Gmbh Détermination du retard de levage d'une électrovanne
WO2011138242A1 (fr) * 2010-05-03 2011-11-10 Continental Automotive Gmbh Ensemble circuit destiné à la détection d'un maximum dans la courbe d'un signal de mesure
DE202007019299U1 (de) 2007-12-18 2011-12-13 C.R.F. Società Consortile Per Azioni Vorrichtung zum Bestimmen des Endpositionszeitpunkts eines Stellgliedes eines Magnetventils
US20120101707A1 (en) * 2009-04-20 2012-04-26 Helerson Kemmer Method for operating an injector
EP2455600A1 (fr) * 2010-11-17 2012-05-23 Continental Automotive GmbH Procédé et dispositif de commande d'une soupape d'injection
EP2455601A1 (fr) * 2010-11-17 2012-05-23 Continental Automotive GmbH Procédé et dispositif de commande d'une soupape d'injection
WO2013149924A1 (fr) * 2012-04-04 2013-10-10 Continental Automotive Gmbh Détermination du comportement de mouvement dans le temps d'un injecteur de carburant sur la base d'une évaluation de la courbe dans le temps de différentes grandeurs de mesure électriques
EP2662555A1 (fr) * 2012-05-10 2013-11-13 Continental Automotive GmbH Procédé de surveillance d'une soupape d'injection
WO2014202406A1 (fr) * 2013-06-21 2014-12-24 Continental Automotive Gmbh Procédé et dispositif de commande d'injecteur
GB2515359A (en) * 2013-06-19 2014-12-24 Continental Automotive Systems Solenoid-actuator-armature end-of-motion detection
GB2521820A (en) * 2013-06-19 2015-07-08 Continental Automotive Systems Integral subtraction differentiator
WO2016119919A1 (fr) * 2015-01-28 2016-08-04 Robert Bosch Gmbh Procédé permettant de faire fonctionner un dispositif d'activation d'une pompe à piston
EP2990705A4 (fr) * 2013-04-26 2016-12-21 Hitachi Automotive Systems Ltd Unité de commande de vanne électromagnétique et dispositif de commande de moteur à combustion interne utilisant celle-ci
DE112016003323T5 (de) 2015-07-23 2018-04-19 Denso Corporation Vorrichtung zum Steuern einer Kraftstoffeinspritzung in einer Maschine mit interner Verbrennung
EP3663569A1 (fr) * 2018-12-07 2020-06-10 Delphi Technologies IP Limited Dispositif de décharge d'un interrupteur
US11073105B2 (en) 2018-10-02 2021-07-27 Rohr, Inc. Acoustic torque box
GB2620845A (en) * 2022-07-19 2024-01-24 Caterpillar Inc Fuel injector variability reduction

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6081807A (ja) * 1983-10-12 1985-05-09 Seiko Epson Corp ソレノイド駆動回路
EP0205807A1 (fr) * 1985-04-25 1986-12-30 Klöckner, Wolfgang, Dr. Procédé et dispositif de commande d'une soupape électromagnétique dans un moteur
GB2181310A (en) * 1985-10-04 1987-04-15 Coal Ind Solenoid operated spool valve control systems
WO1990007188A1 (fr) * 1988-12-22 1990-06-28 Robert Bosch Gmbh Procede et dispositif de commande et de detection du mouvement de l'induit d'un organe de commutation electromagnetique
EP0499419A2 (fr) * 1991-02-09 1992-08-19 Imi Norgren Limited Circuit de détection de mouvement pour une armature
WO1992015779A1 (fr) * 1991-02-27 1992-09-17 Siemens Aktiengesellschaft Dispositif pour la saisie du moment du debut d'injection dans le cas d'un injecteur

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6081807A (ja) * 1983-10-12 1985-05-09 Seiko Epson Corp ソレノイド駆動回路
EP0205807A1 (fr) * 1985-04-25 1986-12-30 Klöckner, Wolfgang, Dr. Procédé et dispositif de commande d'une soupape électromagnétique dans un moteur
GB2181310A (en) * 1985-10-04 1987-04-15 Coal Ind Solenoid operated spool valve control systems
WO1990007188A1 (fr) * 1988-12-22 1990-06-28 Robert Bosch Gmbh Procede et dispositif de commande et de detection du mouvement de l'induit d'un organe de commutation electromagnetique
EP0499419A2 (fr) * 1991-02-09 1992-08-19 Imi Norgren Limited Circuit de détection de mouvement pour une armature
WO1992015779A1 (fr) * 1991-02-27 1992-09-17 Siemens Aktiengesellschaft Dispositif pour la saisie du moment du debut d'injection dans le cas d'un injecteur

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 9, no. 225 (E - 342) 11 September 1985 (1985-09-11) *

Cited By (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2293244B (en) * 1994-09-17 1998-08-05 Mtu Friedrichshafen Gmbh Method and device for determining the armature impact time upon de-energising a solenoid valve
GB2293244A (en) * 1994-09-17 1996-03-20 Mtu Friedrichshafen Gmbh Determining the armature impact time upon de-energising a solenoid valve
US5995356A (en) * 1995-07-17 1999-11-30 Scania Cv Aktiebolag Method and apparatus for controlling and detecting the position of a solenoid-operated valve element
WO1997004230A1 (fr) * 1995-07-17 1997-02-06 Scania Cv Aktiebolag Procede et dispositif de commande et de detection de la position d'un element de soupape actionne par solenoide
DE19620468A1 (de) * 1996-05-21 1997-11-27 Herion Technomatic Ag Aesch Verfahren und Vorrichtung zum Überwachen der Funktionsabläufe in einem Ventil
EP0944100A1 (fr) * 1998-02-06 1999-09-22 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Procédé et dispositif pour régler la soupape électromagnétique d'un véhicule industriel
US6275368B1 (en) 1998-02-06 2001-08-14 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Method and apparatus for controlling electromagnetic valve in industrial vehicle
WO2002075139A1 (fr) * 2001-03-15 2002-09-26 Siemens Vdo Automotive Corporation Detection de la fin de course d'une soupape de commande a solenoide
US6848626B2 (en) 2001-03-15 2005-02-01 Siemens Vdo Automotive Corporation End of valve motion detection for a spool control valve
WO2003023212A1 (fr) * 2001-09-05 2003-03-20 Siemens Aktiengesellschaft Procede de commande d'une soupape d'injection de carburant actionnee par un actionneur piezoelectrique
US7040297B2 (en) 2001-09-05 2006-05-09 Siemens Aktiengesellshaft Method for controlling a piezo-actuated fuel-injection valve
WO2004102600A1 (fr) * 2003-05-13 2004-11-25 Wärtsilä Finland Oy Procede de commande de fonctionnement d'un solenoide
US7743748B2 (en) 2003-05-13 2010-06-29 Wärtsilä Finland Oy Method of controlling the operation of a solenoid
EP1528243A1 (fr) * 2003-10-31 2005-05-04 Magneti Marelli Powertrain S.p.A. Procédé de commande d'un injecteur avec vérification de mouvement de l'aiguille
US7124741B2 (en) 2003-10-31 2006-10-24 Magneti Marelli Powertrain S.P.A. Method for controlling an injector with verification that plunger movement has occurred
CN100387816C (zh) * 2003-10-31 2008-05-14 玛涅蒂玛瑞利动力系公开有限公司 具有发生活塞移动的验证的用于控制喷射器的方法
US7058538B2 (en) 2003-11-21 2006-06-06 C.R.F. Societa Consortile Per Azioni Method for determining the instant of reaching of the stroke end position in the deactivation phase of a movable element having shutter function forming part of a solenoid valve
EP1533506A3 (fr) * 2003-11-21 2006-06-21 C.R.F. Società Consortile per Azioni Méthode pour déterminer l'instant d'arrivée en fin de course en phase de désactivation de l'obturateur mobile d'une électro-valve
EP1533506A2 (fr) 2003-11-21 2005-05-25 C.R.F. Società Consortile per Azioni Méthode pour déterminer l'instant d'arrivée en fin de course en phase de désactivation de l'obturateur mobile d'une électro-valve
EP1571679A3 (fr) * 2004-03-05 2009-04-22 Woodward Governor Company Procédé de contrôle adaptatif et d'obtention de la tension de contrôle de valves électromagnétiques à partir du point de fermeture de la valve
EP1571679A2 (fr) 2004-03-05 2005-09-07 Woodward Governor Company Procédé de contrôle adaptatif et d'obtention de la tension de contrôle de valves électromagnétiques à partir du point de fermeture de la valve
WO2005119038A1 (fr) * 2004-06-03 2005-12-15 Siemens Aktiengesellschaft Procede et dispositif pour commander une soupape d'injection
EP2060762A1 (fr) * 2007-11-15 2009-05-20 Delphi Technologies, Inc. Détecteur d'impulsion transitoire et procédé de détection d'événements d'impulsion transitoire
EP2060763A3 (fr) * 2007-11-15 2015-05-20 Delphi International Operations Luxembourg S.à r.l. Détecteur d'impulsion transitoire et procédé de détection d'événements d'impulsion transitoire
US7917310B2 (en) 2007-11-15 2011-03-29 Delphi Technologies Holding S.Arl Fault detector and method of detecting faults
JP2012167673A (ja) * 2007-12-18 2012-09-06 Crf Soc Consortile Per Azioni ソレノイド駆動電流のスイッチング周波数の分析によって、ソレノイドバルブの可動要素がソレノイドの通電に続くその端位置に到達する瞬間を決定する方法
EP2072791A1 (fr) 2007-12-18 2009-06-24 C.R.F. Società Consortile per Azioni Procédé pour déterminer l'instant d'arrivée en position extrême de l'élément mobile d'un électrovanne
US8166932B2 (en) 2007-12-18 2012-05-01 C.R.F. Società Consortile Per Azioni Method for determining the instant when the movable element of a solenoid valve reaches its end position following energization of the solenoid, by means of an analysis of the switching frequence of the solenoid driving current
DE202007019299U1 (de) 2007-12-18 2011-12-13 C.R.F. Società Consortile Per Azioni Vorrichtung zum Bestimmen des Endpositionszeitpunkts eines Stellgliedes eines Magnetventils
US20120101707A1 (en) * 2009-04-20 2012-04-26 Helerson Kemmer Method for operating an injector
WO2010133414A1 (fr) * 2009-05-19 2010-11-25 Robert Bosch Gmbh Procédé de détection d'un état de fonctionnement d'une soupape d'injection
CN102803689B (zh) * 2009-06-15 2016-06-01 罗伯特·博世有限公司 磁阀的提升延迟的确定
WO2010145936A1 (fr) * 2009-06-15 2010-12-23 Robert Bosch Gmbh Détermination du retard de levage d'une électrovanne
CN102803689A (zh) * 2009-06-15 2012-11-28 罗伯特·博世有限公司 磁阀的提升延迟的确定
KR20130061687A (ko) * 2010-05-03 2013-06-11 콘티넨탈 오토모티브 게엠베하 측정 신호의 프로파일 내의 최고치를 검출하기 위한 회로 어레인지먼트
KR101719483B1 (ko) 2010-05-03 2017-03-24 콘티넨탈 오토모티브 게엠베하 측정 신호의 프로파일 내의 최고치를 검출하기 위한 회로 어레인지먼트
WO2011138242A1 (fr) * 2010-05-03 2011-11-10 Continental Automotive Gmbh Ensemble circuit destiné à la détection d'un maximum dans la courbe d'un signal de mesure
US9091709B2 (en) 2010-05-03 2015-07-28 Continental Automotive Gmbh Circuit arrrangement for detecting a maximum in the profile of a measurement signal
DE102010019012B4 (de) * 2010-05-03 2021-05-27 Vitesco Technologies GmbH Schaltungsanordnung zum Erkennen eines Maximums im Verlauf eines Messsignals
EP2455600A1 (fr) * 2010-11-17 2012-05-23 Continental Automotive GmbH Procédé et dispositif de commande d'une soupape d'injection
EP2455601A1 (fr) * 2010-11-17 2012-05-23 Continental Automotive GmbH Procédé et dispositif de commande d'une soupape d'injection
CN103299054A (zh) * 2010-11-17 2013-09-11 大陆汽车有限公司 用于操作喷射阀的方法和设备
CN103299054B (zh) * 2010-11-17 2016-09-28 大陆汽车有限公司 用于操作喷射阀的方法和设备
US9046442B2 (en) 2010-11-17 2015-06-02 Continental Automotive Gmbh Method and apparatus for operating an injection valve
WO2012065843A1 (fr) * 2010-11-17 2012-05-24 Continental Automotive Gmbh Procédé et commande d'actionnement d'une soupape d'injection
CN104185731A (zh) * 2012-04-04 2014-12-03 大陆汽车有限公司 基于各电气测量变量的时间进程的评估确定燃料喷射器的随时间变化的运动性能
KR20150005911A (ko) * 2012-04-04 2015-01-15 콘티넨탈 오토모티브 게엠베하 다양한 전기 측정 변수의 시간 진행의 평가에 기초한 연료 분사기의 시간에 따른 움직임 거동의 결정
WO2013149924A1 (fr) * 2012-04-04 2013-10-10 Continental Automotive Gmbh Détermination du comportement de mouvement dans le temps d'un injecteur de carburant sur la base d'une évaluation de la courbe dans le temps de différentes grandeurs de mesure électriques
US10330068B2 (en) 2012-04-04 2019-06-25 Continental Automotive Gmbh Determining the movement behavior over time of a fuel injector on the basis of an evaluation of the chronological progression of various electrical measurement variables
US20150152830A1 (en) * 2012-04-04 2015-06-04 Continental Automotive Gmbh Determining the Movement Behavior Over Time of a Fuel Injector on the Basis of an Evaluation of the Chronological Progression of Various Electrical Measurement Variables
KR102036943B1 (ko) * 2012-04-04 2019-10-25 콘티넨탈 오토모티브 게엠베하 다양한 전기 측정 변수의 시간 진행의 평가에 기초한 연료 분사기의 시간에 따른 움직임 거동의 결정
WO2013167675A1 (fr) * 2012-05-10 2013-11-14 Continental Automotive Gmbh Procédé pour surveiller une soupape d'injection
EP2662555A1 (fr) * 2012-05-10 2013-11-13 Continental Automotive GmbH Procédé de surveillance d'une soupape d'injection
US9482196B2 (en) 2012-05-10 2016-11-01 Continental Automotive Gmbh Method for monitoring an injection valve, and method for operating an injection valve
CN104271928B (zh) * 2012-05-10 2017-01-18 大陆汽车有限公司 用于监测喷射阀的方法
CN104271928A (zh) * 2012-05-10 2015-01-07 大陆汽车有限公司 用于监测喷射阀的方法
US10240551B2 (en) 2013-04-26 2019-03-26 Hitachi Automotive Systems, Ltd. Electromagnetic valve control unit and internal combustion engine control device using same
US11300070B2 (en) 2013-04-26 2022-04-12 Hitachi Astemo, Ltd. Electromagnetic valve control unit and internal combustion engine control device using same
EP2990705A4 (fr) * 2013-04-26 2016-12-21 Hitachi Automotive Systems Ltd Unité de commande de vanne électromagnétique et dispositif de commande de moteur à combustion interne utilisant celle-ci
GB2515359A (en) * 2013-06-19 2014-12-24 Continental Automotive Systems Solenoid-actuator-armature end-of-motion detection
GB2521820A (en) * 2013-06-19 2015-07-08 Continental Automotive Systems Integral subtraction differentiator
US10704488B2 (en) 2013-06-21 2020-07-07 Continental Automotive Gmbh Method and device for controlling an injector
EP2816212A1 (fr) * 2013-06-21 2014-12-24 Continental Automotive GmbH Procédé et dispositif de commande d'un injecteur
WO2014202406A1 (fr) * 2013-06-21 2014-12-24 Continental Automotive Gmbh Procédé et dispositif de commande d'injecteur
WO2016119919A1 (fr) * 2015-01-28 2016-08-04 Robert Bosch Gmbh Procédé permettant de faire fonctionner un dispositif d'activation d'une pompe à piston
US10989186B2 (en) 2015-01-28 2021-04-27 Robert Bosch Gmbh Operating method and actuation device for a piston pump
DE112016003323T5 (de) 2015-07-23 2018-04-19 Denso Corporation Vorrichtung zum Steuern einer Kraftstoffeinspritzung in einer Maschine mit interner Verbrennung
US10718290B2 (en) 2015-07-23 2020-07-21 Denso Corporation Device for controlling fuel injection in internal combustion engine
US11073105B2 (en) 2018-10-02 2021-07-27 Rohr, Inc. Acoustic torque box
EP3663569A1 (fr) * 2018-12-07 2020-06-10 Delphi Technologies IP Limited Dispositif de décharge d'un interrupteur
FR3089564A1 (fr) * 2018-12-07 2020-06-12 Delphi Technologies Ip Limited Dispositif de décharge d’un interrupteur
GB2620845A (en) * 2022-07-19 2024-01-24 Caterpillar Inc Fuel injector variability reduction

Also Published As

Publication number Publication date
GB9225622D0 (en) 1993-01-27

Similar Documents

Publication Publication Date Title
WO1994013991A1 (fr) Electrovannes
US6785112B2 (en) Method and device for triggering a fuel injector
KR100306980B1 (ko) 전류제한솔레노이드드라이버
US8737034B2 (en) Determining a change in the activation state of an electromagnetic actuator
CN103518241B (zh) 对执行器的用于确定电枢止动时刻的改良电气控制
US4688138A (en) Electromagnet drive device
US4949215A (en) Driver for high speed solenoid actuator
DE102011083007B4 (de) Verfahren und Ansteuervorrichtung zum Ansteuern eines elektromagnetischen Aktuators
US11352971B2 (en) Method of controlling a fuel injector
US4706619A (en) Automotive valve actuation method
SE515565C2 (sv) Metod för reglering av samt detektering av läget hos en solenoidpåverkad armatur
JP3697272B2 (ja) 電磁負荷を駆動する方法と装置
US6721158B2 (en) Method for providing current by means of an inductive component
DE60101770T2 (de) Elektrisch betätigtes motorventil mit ausgabe eines positionssignals
US6744615B1 (en) Device for controlling an electromechanical regulator
RU2009104779A (ru) Исполнительное устройство и способ его регулирования
US6631067B2 (en) Electromagnetic actuator for engine valves
CN104775926B (zh) 操控尤其外源点火的内燃机的喷射阀的方法和线路装置
CN114123150A (zh) 消除反电动势的电路、方法及电子设备
US5055961A (en) Flyback current dampening apparatus
US6061225A (en) Method and apparatus for controlling a solenoid within an electric dispensing gun
EP2482293A2 (fr) Dispositif de fonctionnement d'un aimant de levage
RU2074430C1 (ru) Электромагнитный привод коммутационного аппарата
US6191929B1 (en) Control device for an internal combustion engine
EP1901422A2 (fr) Appareil et procédé pour améliorer le temps de réponse d'actionneurs électromagnétiques

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase