[go: up one dir, main page]

WO1995011371A1 - Procede d'amelioration de centrales electriques a cycle combine avec apport solaire - Google Patents

Procede d'amelioration de centrales electriques a cycle combine avec apport solaire Download PDF

Info

Publication number
WO1995011371A1
WO1995011371A1 PCT/ES1994/000102 ES9400102W WO9511371A1 WO 1995011371 A1 WO1995011371 A1 WO 1995011371A1 ES 9400102 W ES9400102 W ES 9400102W WO 9511371 A1 WO9511371 A1 WO 9511371A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
solar
cycle
pressure
boiler
Prior art date
Application number
PCT/ES1994/000102
Other languages
English (en)
Spanish (es)
Inventor
Antonio Lara Cruz
Original Assignee
Compañia Sevillana De Electricidad, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compañia Sevillana De Electricidad, S.A. filed Critical Compañia Sevillana De Electricidad, S.A.
Publication of WO1995011371A1 publication Critical patent/WO1995011371A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/06Devices for producing mechanical power from solar energy with solar energy concentrating means
    • F03G6/064Devices for producing mechanical power from solar energy with solar energy concentrating means having a gas turbine cycle, i.e. compressor and gas turbine combination
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/06Devices for producing mechanical power from solar energy with solar energy concentrating means
    • F03G6/065Devices for producing mechanical power from solar energy with solar energy concentrating means having a Rankine cycle
    • F03G6/067Binary cycle plants where the fluid from the solar collector heats the working fluid via a heat exchanger
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Definitions

  • This invention consists of an improvement procedure applicable to combined-cycle power plants gas turbine-steam turbine in which it is desired to integrate an additional steam flow generated from solar energy.
  • power generation and / or congeneration plants by means of a combined cycle, which integrates a gas turbine and a steam cycle for the recovery of the exhaust gases from the gas turbine, steam cycles of one, two and three pressures (the latter usually including steam reheating at intermediate pressure), whose fundamental difference lies in the level of exergy losses available in said gases, in the process of transmitting energy to the steam cycle.
  • the recovery with a pressure cycle is the one that presents a maximum mismatch and therefore the greatest exergy losses, both due to the important thermal differences and the high temperature of the gases at the exit of the recovery boiler. Therefore, this cycle is practically not used, given its low performance, except in small installations, where its simplicity is imposed.
  • the most common scheme in combined cycle power plants is the two-pressure steam cycle, with which a better adjustment of the absorption curve is achieved, also allowing to reduce the outlet temperature of the gases, reducing the exergy losses and increasing Therefore the performance.
  • the three-pressure recovery cycle has begun to be used, with steam reheating at intermediate pressure, in the upper temperature zone of the gas turbine's exhaust gases.
  • This solution allows the upper pressure of the cycle to be raised up to pressures of the order of 100 bar and to improve the shape of the absorption curve in its adaptation to the transfer, thanks to the three vaporizations at different pressure and the increase of the global specific heat in the steam absorption zone, when the steam flow to be superheated and the superheat steam are added.
  • the improvement process object of this invention consists in working, during the periods of solar steam supply, with a higher pressure of the steam cycle higher than the optimum design of the corresponding combined basic cycle without solar steam input and working with a lower pressure, close to optimum, during periods of operation without solar steam.
  • the steam provided by the solar boiler can be saturated or overheated.
  • superheated steam it can have a significantly lower thermal level than the output of the recovery boiler or have practically the same thermal level as this one. In the latter case, it would be mixed with the outlet of the recovery boiler before entering the steam turbine. In the other case, additional overheating in the recovery boiler would be necessary.
  • saturated steam which is considered the most interesting alternative, it would be mixed with the saturated steam coming out of the high pressure boiler of the recovery boiler and would pass to the superheated one of the same, being thus integrated in the cycle steam.
  • the feed water to the solar boiler would be taken preferably from the outlet of the high pressure economizer from the recovery boiler or from the discharge of the recirculation pump of the high pressure vaporizer thereof.
  • the limit to which it is possible to raise the upper pressure of the cycle is determined by the maximum degree of final permissible humidity in the steam turbine from a maximum overheating temperature determined by the exhaust temperature of the gas turbine gases.
  • the reheating of the steam at intermediate pressure to the temperature allowed by said exhaust gases allows a significant increase in this higher pressure, without reaching high final humidity rates in the steam turbine.
  • the proposed invention basically allows the steam turbine to be sized for the nominal steam flow generated in the recovery boiler in the absence of solar steam, with the upper pressure of the steam cycle corresponding to this condition, so that the admission of a higher steam flow through the steam turbine during periods of operation with solar steam is possible thanks to the characteristic increase in the upper pressure of the steam cycle and therefore , of the pressure at the steam turbine inlet, in this other condition.
  • This lack of oversizing of the steam turbine could even affect its escape, allowing an increase in the losses of the output speed in the condition with solar steam input, limited on the other hand by the slight increase that would occur in the Condensation pressure in the latter condition, if no condenser surfaces or cooling water flow rates are modified, due to the greater flow of steam to condense.
  • the recovery boiler must also be designed for the maximum upper pressure (with solar steam input) and each of its changers must be adequately sized to adapt optimally to the extreme operating conditions, so that under conditions of maximum demand for surface the thermal differentials of design are reached and under conditions of minimum required surface the appropriate typical actions (temperings, recirculations, etc.) are carried out to prevent excessive overheating or unwanted vaporization.
  • the available flow rate of contribution steam to the combined cycle is variable in time, and can oscillate from a null value to the maximum design value.
  • the proposed invention allows to operate satisfactorily in the two extreme conditions indicated, with an optimal regulation for intermediate transitory conditions.
  • the most appropriate solution in this case consists in the use of a regulation system of the power plant by means of variable boiler pressure, so that the turbine admits, with fully open inlet valves, the nominal steam flow generated in the recovery of the Exhaust gases from the gas turbine, in operation as a combined cycle without solar steam, and expand it to the condensation pressure.
  • the intake pressure in the turbine is increased, as the flow of steam to be admitted in the same temperature conditions is higher, so that the pressure at which This steam is generated, both in the solar boiler and at the upper pressure level of the recovery boiler, continuously up to the nominal value corresponding to the maximum contribution of solar steam.
  • said burners in addition to the usual boiler inlet, would be installed in the inlet of the high pressure vaporizer of the boiler, in order not to affect the operating conditions in the superheater with its operation, acting only on saturated steam generated in the recovery boiler.
  • said vaporizer in a smooth tube (without fins) in order to improve its working conditions and decrease its thermal inertia, so that the response capacity of this set is similar to or greater than the disturbance caused by the change of contribution of steam of solar origin to any transitory of this energy, in order to be able to control the operating parameters of the steam cycle in any situation.
  • This solution could be used both for the control of unforeseen transients and periods of absence of sun, as well as for other periods of peak demand of electrical energy in periods of absence of expected sun, if the design of the plant contemplates a maximum power with solar input or with post-combustion greater than the nominal power of the base combined cycle, based on keeping the gas turbine at full load and increasing the power of the steam turbine during those periods. Under these conditions, it would operate with a lower power, that of the combined base cycle, during the hours of lower demand for electricity.
  • the proposed invention in relation to existing solutions offers the following advantages:. Possibility of avoiding or limiting the oversizing and, therefore, the increase in cost of the steam turbine, with respect to the basic dimensions required by the design of the combined cycle plant without making the contribution of solar steam, as well as the need for reduce the load of the gas turbine and, by Therefore, the power generated, under conditions of high solar steam.
  • -. Reduction of exergy losses due to heat transmission of gases to the fluid in the high pressure area of the recovery boiler.
  • the proposed invention offers the following additional advantages:. High stability of the thermal conditions in the intake and early stages of the steam turbine, with significant reduction of the thermal stresses associated with load changes. -. Possibility of avoiding the multi-valve control and the steam turbine regulation stage, with the consequent reduction of costs and improvement of yields. -. Provisions of an important to the macenam and thermal entourage without cost and self-regulated, in the boilers themselves and high-pressure pipes of the installation, which dampens the transients derived from the fluctuations of solar radiation. As a whole, all the above advantages allow reducing investment costs, at least in larger plants, and increasing the overall performance of the plant, for a given solar energy contribution, leading to greater profitability of this type of combined cycle power plants with solar support.
  • the other proposed improvement, using post-combustion burners offers the following advantages:. Improvement of the operating conditions of the equipment, stabilizing its operating parameters before changes in the contribution of solar steam. -. Possibility of controlling the power generated in accordance with various operating programs of the plant. -. Possibility of increasing the participation of solar energy (broadly) in the energy balance of the plant and / or reducing or eliminating the need to increase the size of the superheater of the recovery boiler, using biofuels of biological origin- post-combustion solar.
  • Figure 1 shows an application scheme, including the following equipment: 1.- Heliostat field
  • the total steam flow generated in the recovery boiler is lower than in the operation without solar steam supply, so the vaporizers will have to be sized for the latter condition, being oversized for the first case, which only translates into a small reduction of the minimum thermal differentials in said operating condition, not affecting the functionality of the system at all.
  • the superheater must be sized for the maximum solar steam supply condition, being somewhat oversized in the other extreme operating condition, which is not a problem, as it can be perfectly resolved by tempering with liquid water to control the maximum overheating temperature , as usual in this type of facilities.
  • said oversizing of the superheater with respect to the sizing required by the base combined cycle, can be reduced or avoided by resorting to the use of typical post-combustion burners located at the entrance of the recovery boiler in the periods of solar steam supply , fed with the same fossil fuel of the gas turbine, at the cost of reducing the overall performance and solar participation, or, better still, with biological fuels obtained from biomass.
  • the economizers for liquid heating at the different pressures of the cycle will be optimally sized in each case from a technical point of view and economical, which will normally lead to an oversize in the operation as a combined cycle without solar steam.
  • liquid recirculations or other usual systems of control of this phenomenon should be provided.
  • the absorption curves in the economizers have been represented in the figure without taking into account the possible recirculations required as normally done, given that both representations are totally equivalent from the thermodynamic point of view , and this form, which logically coincides with the typical of a combined cycle of two pressures, facilitates the compression of the diagram.
  • the low temperature recovery zone including the generation of the small steam flow for the deaerator, allows for a higher cooling of the gases in the operating condition with solar steam, due to the fact that it has a higher liquid flow to heat in this condition.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Procédé permettant d'améliorer des centrales électriques à cycle combiné avec apport externe de vapeur à partir d'énergie solaire, consistant à utiliser deux procédés complémentaires, qui peuvent également être utilisés indépendamment et présenter des avantages importants pour des installations classiques de ce type. Le premier procédé consiste à faire fonctionner la centrale, pendant les périodes d'apport de vapeur solaire, à une haute pression du cycle de vapeur qui soit plus élevée que la pression nominale optimale du cycle combiné de base correspondant sans apport de vapeur solaire, afin d'augmenter le rendement et de réduire au minimun les dimensions des équipements. Le second procédé consiste à utiliser des brûleurs de post-combustion conçus en association avec la chaudière de récupération, afin de compenser les transitoires de défaillance en alimentation de vapeur externe, et faire en sorte que la puissance générée par la centrale soit indépendante de l'alimentation en vapeur solaire.
PCT/ES1994/000102 1993-10-21 1994-10-21 Procede d'amelioration de centrales electriques a cycle combine avec apport solaire WO1995011371A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP9302213 1993-10-21
ES9302213 1993-10-21

Publications (1)

Publication Number Publication Date
WO1995011371A1 true WO1995011371A1 (fr) 1995-04-27

Family

ID=8283388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES1994/000102 WO1995011371A1 (fr) 1993-10-21 1994-10-21 Procede d'amelioration de centrales electriques a cycle combine avec apport solaire

Country Status (1)

Country Link
WO (1) WO1995011371A1 (fr)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996031697A1 (fr) * 1995-04-03 1996-10-10 Compañia Sevillana De Electricidad, S.A. Systeme d'integration de l'energie solaire dans une centrale thermique classique de production d'energie electrique
WO1997014887A1 (fr) * 1995-10-17 1997-04-24 Siemens Aktiengesellschaft Procede de production d'energie et centrale electrique pour la mise en oeuvre de ce procede
ES2174682A1 (es) * 1998-09-10 2002-11-01 Ormat Ind Ltd Equipo de actualizacion tecnologica para reducir el consumo de combustible fosil de una central generadora de energia que utiliza la radiacion solar incidente.
ES2279658A1 (es) * 2004-07-22 2007-08-16 Serled Consultores, S.L. Procedimiento de generacion de electricidad a partir de energia termica solar y biomasa.
ES2312275A1 (es) * 2007-06-07 2009-02-16 Abengoa Solar New Technologies, S.A. Planta de concentracion solar para produccion de vapor sobrecalentado.
WO2009106657A1 (fr) 2008-02-25 2009-09-03 Sener Grupo De Ingenieria, S.A. Procédé pour générer de l'énergie au moyen de cycles thermiques à vapeur de pression élevée et température modérée
CN101956577A (zh) * 2010-09-15 2011-01-26 刘建光 新能源中温水蒸汽发电系统
CN101968041A (zh) * 2010-09-29 2011-02-09 武汉凯迪工程技术研究总院有限公司 采用生物质锅炉作为辅助热源的太阳能发电方法及系统
CN102200103A (zh) * 2010-03-26 2011-09-28 阿尔斯通技术有限公司 集成式太阳能联合循环发电站及其运作方法
WO2011068880A3 (fr) * 2009-12-01 2012-09-20 Areva Solar, Inc. Utilisation de vapeur et/ou d'eau chaude générées par l'énergie solaire
CN103147944A (zh) * 2013-01-29 2013-06-12 华北电力大学 一种两段式塔式太阳能热发电系统
CN103953402A (zh) * 2014-04-11 2014-07-30 武汉凯迪工程技术研究总院有限公司 一种太阳能与生物质能联合发电的优化集成系统
CN104912607A (zh) * 2015-06-10 2015-09-16 中国华电工程(集团)有限公司 塔式太阳能光热与天然气联合发电系统
CN104912757A (zh) * 2015-06-10 2015-09-16 中国华电工程(集团)有限公司 槽式太阳能光热与天然气联合发电系统
CN104912755A (zh) * 2015-06-10 2015-09-16 中国华电工程(集团)有限公司 菲涅尔式太阳能光热与天然气联合发电系统
WO2015136163A1 (fr) 2014-03-13 2015-09-17 Mini Green Power Installation de production d'energie a partir de la biomasse et de l'energie solaire
CN106837717A (zh) * 2017-02-03 2017-06-13 安徽鼎甲科技有限公司 一种光热发电与生物质能互补发电系统
CN107448920A (zh) * 2017-08-16 2017-12-08 上海垒锦环境科技中心 生物质、垃圾、污泥与煤混合燃烧的综合发电系统
CN109653971A (zh) * 2018-10-17 2019-04-19 中山市思源电器有限公司 一种太阳能辅助燃煤混合发电装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0526816A1 (fr) * 1991-08-06 1993-02-10 Siemens Aktiengesellschaft Centrale à turbines à gaz et à vapeur avec un générateur de vapeur solaire
DE4126038A1 (de) * 1991-08-06 1993-02-11 Siemens Ag Gas- und dampfturbinenkraftwerk mit einem solarbeheizten dampferzeuger
DE4126036A1 (de) * 1991-08-06 1993-02-11 Siemens Ag Gas- und dampfturbinenkraftwerk mit einem solar beheizten dampferzeuger

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0526816A1 (fr) * 1991-08-06 1993-02-10 Siemens Aktiengesellschaft Centrale à turbines à gaz et à vapeur avec un générateur de vapeur solaire
DE4126038A1 (de) * 1991-08-06 1993-02-11 Siemens Ag Gas- und dampfturbinenkraftwerk mit einem solarbeheizten dampferzeuger
DE4126036A1 (de) * 1991-08-06 1993-02-11 Siemens Ag Gas- und dampfturbinenkraftwerk mit einem solar beheizten dampferzeuger

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996031697A1 (fr) * 1995-04-03 1996-10-10 Compañia Sevillana De Electricidad, S.A. Systeme d'integration de l'energie solaire dans une centrale thermique classique de production d'energie electrique
WO1997014887A1 (fr) * 1995-10-17 1997-04-24 Siemens Aktiengesellschaft Procede de production d'energie et centrale electrique pour la mise en oeuvre de ce procede
ES2174682A1 (es) * 1998-09-10 2002-11-01 Ormat Ind Ltd Equipo de actualizacion tecnologica para reducir el consumo de combustible fosil de una central generadora de energia que utiliza la radiacion solar incidente.
ES2279658A1 (es) * 2004-07-22 2007-08-16 Serled Consultores, S.L. Procedimiento de generacion de electricidad a partir de energia termica solar y biomasa.
ES2279658B1 (es) * 2004-07-22 2008-08-01 Serled Consultores, S.L. Procedimiento de generacion de electricidad a partir de energia termica solar y biomasa.
ES2312275A1 (es) * 2007-06-07 2009-02-16 Abengoa Solar New Technologies, S.A. Planta de concentracion solar para produccion de vapor sobrecalentado.
ES2312275B1 (es) * 2007-06-07 2009-12-29 Abengoa Solar New Technologies, S.A. Planta de concentracion solar para produccion de vapor sobrecalentado.
WO2009106657A1 (fr) 2008-02-25 2009-09-03 Sener Grupo De Ingenieria, S.A. Procédé pour générer de l'énergie au moyen de cycles thermiques à vapeur de pression élevée et température modérée
US8904789B2 (en) 2008-02-25 2014-12-09 Sener Grupo De Ingenieria, S.A. Method for generating energy by means of thermal cycles with high pressure and moderate temperature steam
WO2011068880A3 (fr) * 2009-12-01 2012-09-20 Areva Solar, Inc. Utilisation de vapeur et/ou d'eau chaude générées par l'énergie solaire
AU2010326107B2 (en) * 2009-12-01 2016-02-25 Areva Solar, Inc. Utilizing steam and/or hot water generated using solar energy
CN102792021B (zh) * 2009-12-01 2015-12-16 阿雷瓦太阳能股份有限公司 利用由使用太阳能产生的蒸汽和/或热水发电的装置和方法
CN102792021A (zh) * 2009-12-01 2012-11-21 阿雷瓦太阳能股份有限公司 利用由使用太阳能产生的蒸汽和/或热水
CH702906A1 (de) * 2010-03-26 2011-09-30 Alstom Technology Ltd Verfahren zum betrieb eines integrierten solar-kombikraftwerks sowie solar-kombikraftwerk zur durchführung des verfahrens.
EP2372116A1 (fr) 2010-03-26 2011-10-05 Alstom Technology Ltd Procédé de fonctionnement d'une centrale solaire à cycle combinée intégrée et centrale solaire à cycle combinée intégrée destinée à exécuter le procédé
CN102200103A (zh) * 2010-03-26 2011-09-28 阿尔斯通技术有限公司 集成式太阳能联合循环发电站及其运作方法
US8833051B2 (en) 2010-03-26 2014-09-16 Alstom Technology Ltd Method for operation of an integrated solar combined-cycle power station, and a solar combined-cycle power station for carrying out this method
CN101956577A (zh) * 2010-09-15 2011-01-26 刘建光 新能源中温水蒸汽发电系统
WO2012034358A1 (fr) * 2010-09-15 2012-03-22 Liu Jianguang Système générateur d'énergie à vapeur à température intermédiaire utilisant une nouvelle source d'énergie
CN101968041A (zh) * 2010-09-29 2011-02-09 武汉凯迪工程技术研究总院有限公司 采用生物质锅炉作为辅助热源的太阳能发电方法及系统
CN103147944A (zh) * 2013-01-29 2013-06-12 华北电力大学 一种两段式塔式太阳能热发电系统
WO2015136163A1 (fr) 2014-03-13 2015-09-17 Mini Green Power Installation de production d'energie a partir de la biomasse et de l'energie solaire
FR3018559A1 (fr) * 2014-03-13 2015-09-18 Jean Riondel Installation de production d'energie a partir de la biomasse et de l'energie solaire
WO2015154585A1 (fr) * 2014-04-11 2015-10-15 武汉凯迪工程技术研究总院有限公司 Système intégré optimisé pour production d'électricité hybride solaire-biomasse
CN103953402A (zh) * 2014-04-11 2014-07-30 武汉凯迪工程技术研究总院有限公司 一种太阳能与生物质能联合发电的优化集成系统
CN104912755A (zh) * 2015-06-10 2015-09-16 中国华电工程(集团)有限公司 菲涅尔式太阳能光热与天然气联合发电系统
CN104912757A (zh) * 2015-06-10 2015-09-16 中国华电工程(集团)有限公司 槽式太阳能光热与天然气联合发电系统
CN104912607A (zh) * 2015-06-10 2015-09-16 中国华电工程(集团)有限公司 塔式太阳能光热与天然气联合发电系统
CN106837717A (zh) * 2017-02-03 2017-06-13 安徽鼎甲科技有限公司 一种光热发电与生物质能互补发电系统
CN107448920A (zh) * 2017-08-16 2017-12-08 上海垒锦环境科技中心 生物质、垃圾、污泥与煤混合燃烧的综合发电系统
CN109653971A (zh) * 2018-10-17 2019-04-19 中山市思源电器有限公司 一种太阳能辅助燃煤混合发电装置

Similar Documents

Publication Publication Date Title
WO1995011371A1 (fr) Procede d'amelioration de centrales electriques a cycle combine avec apport solaire
US11560879B2 (en) Solar-aided coal-fired flexible power generation system and operation method thereof
CN102439304B (zh) 结合太阳能运行的燃气-蒸汽发电厂
AU734132B2 (en) Energy generating installation
JP5596715B2 (ja) 太陽熱複合発電システム及び太陽熱複合発電方法
US9534509B2 (en) Cogeneration device including hydrocondenser
CN101968043B (zh) 一种太阳能热发电系统
JP4854422B2 (ja) 貫流型排熱回収ボイラの制御方法
US20120317981A1 (en) Heat recovery steam generator, method for retrofitting a heat recovery steam generator and related process for generating power
CN202109457U (zh) 一种用于煤气锅炉的大比例热负荷调节装置
JP5812955B2 (ja) 発電給熱装置
JP7635379B2 (ja) 溶融塩蓄熱に基づく火力発電ユニットの柔軟な運転システム
Jensen et al. Demonstration of a concentrated solar power and biomass plant for combined heat and power
CA2470184C (fr) Chauffage d'eau d'alimentation
JP7330690B2 (ja) ボイラシステム及び発電プラント並びにボイラシステムの運転方法
US9194377B2 (en) Auxiliary steam supply system in solar power plants
CN105247208B (zh) 具有蓄热器的太阳能集热器厂
ES2387724B1 (es) Sistema de regeneración parcial en turbinas de gas de ciclos combinados con una o varias fuentes de calor.
CN113685818A (zh) 一种垃圾焚烧炉组合式助燃空气加热系统
EP3055562B1 (fr) Procédé de chauffage contrôlé d'un fluide de traitement par le biais d'une centrale solaire thermique à concentration et d'un système caloporteur et appareil associé
CN104990264A (zh) 一种全冷凝锅炉
CN211692594U (zh) 一种lng气化及发电系统
EP0639254B1 (fr) Methode applicable aux petites centrales thermiques
CN113944940A (zh) 一种氨气燃烧利用系统
JP2014055716A (ja) 複合ボイラシステム

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

ENP Entry into the national phase

Ref country code: US

Ref document number: 1995 481443

Date of ref document: 19950621

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1994930232

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1994930232

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase