[go: up one dir, main page]

WO1996000306A1 - Procede de fabrication de tole d'acier electromagnetiquement non orientee presentant une densite elevee de flux magnetique pour un niveau faible de perte dans le noyau - Google Patents

Procede de fabrication de tole d'acier electromagnetiquement non orientee presentant une densite elevee de flux magnetique pour un niveau faible de perte dans le noyau Download PDF

Info

Publication number
WO1996000306A1
WO1996000306A1 PCT/JP1995/000234 JP9500234W WO9600306A1 WO 1996000306 A1 WO1996000306 A1 WO 1996000306A1 JP 9500234 W JP9500234 W JP 9500234W WO 9600306 A1 WO9600306 A1 WO 9600306A1
Authority
WO
WIPO (PCT)
Prior art keywords
annealing
temperature
hot rolling
self
rolling
Prior art date
Application number
PCT/JP1995/000234
Other languages
English (en)
French (fr)
Inventor
Ryutaro Kawamata
Takeshi Kubota
Tomoji Kumano
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP14318194A external-priority patent/JP3348802B2/ja
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to DE69518529T priority Critical patent/DE69518529T2/de
Priority to KR1019960707404A priority patent/KR100207834B1/ko
Priority to EP95909113A priority patent/EP0779369B1/en
Priority to US08/765,858 priority patent/US5803989A/en
Publication of WO1996000306A1 publication Critical patent/WO1996000306A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment

Definitions

  • the present invention relates to a method for producing a non-oriented electrical steel sheet having excellent magnetic properties with high magnetic flux density and low iron loss, which is used as an iron core material of electric equipment.
  • the product The ⁇ 100> direction which is the easy axis of the crystal axis in the plane, is effective in improving magnetic flux density.
  • ND II ⁇ 1 10> direction is enriched, and at the same time, the direction of the crystal axis is hardly magnetized.
  • the cold rolling reduction before finish annealing can be controlled to an appropriate range.
  • hot-rolled sheet annealing has been performed to coarsen the crystal structure before cold rolling, or high magnetic flux density has been achieved by devising hot-rolling conditions.
  • 58-136718 discloses a technique in which a self-annealing is performed after the completion of hot rolling in the r-phase region.
  • the finish hot rolling end temperature is in the range A
  • the phase is changed from 7 phase to ⁇ phase in the cooling zone, and then the crystal grains are grown in the phase phase during winding. I have.
  • cooling on the ROT is controlled to ensure sufficient cooling to transform to the ⁇ range after finishing hot rolling, and as a result, the temperature of the steel sheet tends to drop more than necessary with respect to the self-annealing temperature. Grain formation during self-annealing There was a disadvantage that the length was insufficient.
  • Japanese Patent Application Laid-Open No. 60-194019 discloses a method for controlling cooling after self-annealing in order to improve the non-uniformity of the hot-rolled structure obtained by the self-annealing process.
  • the phenomenon that the hot-rolled structure becomes mixed is due to the non-uniform growth of the hot-rolled structure during self-annealing, and it is difficult to improve this by controlling the cooling rate after self-annealing.
  • An object of the present invention is to solve such problems in the prior art and to provide a non-oriented electrical steel sheet having a high magnetic flux density and a low iron loss. Disclosure of the invention
  • the present inventors have conducted intensive studies to secure crystal grain growth in the hot-rolled structure and improve the magnetic flux density during self-annealing more than before.
  • finish rolling is completed at a temperature exceeding (A r 3 + 50) ° C, and the strip is wound in a temperature range equal to or higher than the + r two-phase region. , -50) ° C or more and less than ⁇ (A, + A 3 ) / 2 ⁇ ° C, the self-annealing conditions are appropriately controlled so that the self-annealing time is 2 minutes or more and 3 hours or less.
  • the hot-rolled crystal structure is increased to an average particle size of 150 // m or more, which is more uniformly coarser than the conventional technology, and the magnetic properties of the product are significantly improved. And found that the present invention was completed. That is, the gist of the present invention is that at least one element selected from the group consisting of Si, Mn, and A1 in steel is included in weight.
  • the slab consisting of a component having ⁇ -transformation consisting of Fe and unavoidable impurities is subjected to hot rolling by setting the finish hot rolling end temperature to a temperature exceeding (Ar 3 + 50) ° C.
  • the hot rolled sheet is wound at a temperature higher than (Ar 3 + 50) ° C, and (A, -50) ° C or more in the wound state
  • the present invention performs winding in the region of the +2 phase region.
  • the crystal grain size before hot rolling that is, before cold rolling is coarsened.
  • the transformation from the r phase to the hot phase after hot rolling is considered to be detrimental for refining the crystal grains of the hot rolled sheet, and the transformation from the 7 phase to the phase in the self-annealing process as in the present invention has hitherto been considered.
  • the use of the pervert was not saved.
  • the hot-rolling finishing temperature and winding temperature described in the above literature change from the y-phase to the hi-phase even though the specified range may change with the change of the transformation point due to the change of the components.
  • Fig. 1 (A) is a diagram showing the microstructure (A) of the hot-rolled sheet microscope of the present invention
  • Figs. 1 (B), 1 (C), 1 (D) and 1 (E) are comparative figures. It is a figure which shows the hot rolled sheet microscope metal structure (B)-(E) of an example, respectively.
  • the present inventors have conducted intensive studies on the problems in the prior art to achieve low iron loss and high magnetic flux density at the same time, and as a result, in a non-oriented electrical steel sheet having a transformation, By performing winding and self-annealing under appropriate conditions in relation to the ⁇ transformation point, the product after finish annealing has an extremely high magnetic flux density and good iron loss (low iron loss value). We succeeded in producing grain-oriented electrical steel sheets at low cost.
  • the texture of the product after finish annealing is controlled to produce a non-oriented electrical steel sheet with extremely high magnetic flux density and good iron loss (low iron loss).
  • a non-oriented electrical steel sheet with a low iron loss value and a high magnetic flux density in a non-oriented electrical steel sheet with a transformation point a non-oriented electrical steel sheet with In the hot rolling process, the finish hot rolling end temperature
  • the Si content is less than 0.10% In addition, it is necessary to add 0.10% or more because sufficient resistivity cannot be obtained, while on the other hand, if the Si content exceeds 2.50%, the transformation from 7 to 7 does not occur, so it must be 2.50% or less.
  • A1 like Si, also has the effect of increasing the specific resistance of the steel sheet and reducing eddy current loss. For this purpose, it is necessary to add 0.10% or more.
  • C On the other hand, if the A1 content exceeds 1.00%, the magnetic flux density decreases and the cost increases, so the content is set to 1.00% or less. Furthermore, if (Si + 2A1) exceeds 2.50%, no more transformation occurs, so (Si + 2A1) must be ⁇ 2.50%.
  • Mn like Al and Si, has the effect of increasing the specific resistance of the steel sheet and reducing eddy current loss. Therefore, the Mn content needs to be 0.10% or more. On the other hand, if the Mn content exceeds 2.0%, the deformation resistance during hot rolling increases, making hot rolling difficult.In addition, the crystal structure after hot rolling tends to become finer, and the magnetic properties of the product deteriorate. Mn content must be 2.0% or less. In addition, since the transformation point is lowered by the addition of Mn, the two-phase region winding in the finish hot rolling in the present invention can be performed at a lower temperature side, and the finish hot rolling by increasing the winding temperature can be performed. The addition of Mn is effective in improving the winding workability of the steel, suppressing the formation of oxides on the steel sheet surface, and improving the yield during pickling. From the viewpoint of such transformation point control, the Mn content is preferably 0.30% to 1.50%.
  • P is added in the range of 0.02% or more and 0.1% or less in order to improve the punching property of the product. If the addition amount is less than 0.02%, there is no effect of improving the punching property, and if it exceeds 0.1%, the effect is saturated.From the viewpoint of magnetic properties of the product c, there is no problem if it is within P ⁇ 0.2%. .
  • B is added to form BN during hot rolling to prevent fine precipitation of A1N and render N harmless.
  • the B content needs to be balanced with the amount of N, and the content is preferably such that the ratio B ⁇ ZN ⁇ of the two satisfies the range of 0.5 to 1.5.
  • the need for B addition is small.
  • Ni is added for the purpose of increasing the yield stress of the steel sheet by solid solution strengthening, improving the magnetic flux density, or, like Mn, lowering the transformation point and improving winding workability.
  • the added amount should be 0.1% or more and 3.0% or less.
  • the preferable addition amount is 1.0% or more and 3.0% or less from the viewpoint of increasing the yield stress of the steel sheet, the preferable addition amount is 0.5% or more and 2.5% or less from the viewpoint of improving the magnetic properties, and the preferable addition amount is 1.0% or more 2.5% from the viewpoint of the transformation point adjustment. % Or less. If the addition amount is 0.1% or less, there is no effect for any purpose, and if it exceeds 3.0%, it is unsuitable in terms of cost.
  • the addition amount should be 1.0% or more and 13.0% or less. A more preferable addition amount is 5.0% or more and 9.0% or less. If the addition amount is less than 1.0%, there is no rust resistance improvement effect, and if it exceeds 13.0%, it is not suitable in terms of cost.
  • Sb is added for the purpose of increasing the magnetic flux density by improving the texture.
  • the addition amount should be 0.02% or more and 0.2% or less. A more preferable addition amount is 0.03% or more and 0.15% or less. If the amount added is less than 0.01%, the texture There is no good effect, and if it exceeds 0.2%, the grain growth during finish annealing is hindered and the iron loss of the product worsens.
  • Sni ' is added for the purpose of increasing magnetic flux density by improving texture.
  • the addition amount should be 0.02% or more and 0.2% or less. A more preferable addition amount is 0.03% or more and 0.15% or less. If the addition amount is less than 0.02%, there is no texture improving effect, and if it exceeds 0.2%, the grain growth during finish annealing is impaired and the iron loss of the product deteriorates.
  • Cu is added for the purpose of increasing the magnetic flux density by improving the texture.
  • the addition amount should be 0.1% or more and 1.0% or less. A more preferable addition amount is 0.1% or more and 0.4% or less. If the addition amount is less than 0.1%, there is no effect of improving the texture, and if it exceeds 1.0%, a flaw is generated on the surface of the steel sheet.
  • C is 0.050% or less
  • the object of the present invention can be achieved.
  • Low-grade non-oriented electrical steel sheets are mainly small-sized rotating machines, and it is necessary to promote grain growth during finish annealing after cold rolling or further strain relief annealing due to low iron loss. However, it is necessary to reduce fine precipitates in steel.
  • the strip winding temperature in the hot rolling step is set to the An point or higher, and thereafter, Self-annealing at (A, -50) ° C or more and less than ⁇ (A 3 + Ai) / 2 ⁇ ° C for 2 minutes to 3 hours, so that carbides and other precipitates and inclusions are sufficient Agglomerates and precipitates. Therefore, it is not required to be extremely low carbon, and C may be 0.050% or less.
  • S and N are elements that are inevitably mixed during the smelting stage of steel.
  • S and N partially re-dissolve during slab heating in the hot rolling process, forming MnS and A1N precipitates during hot rolling, preventing the growth of recrystallized grains and magnetizing the product during finish annealing. So-called pinning that hinders domain wall movement when It is effective and may hinder low iron loss of products. Therefore, the smaller the content, the better. Therefore, it is not necessary to set a lower limit.
  • S ⁇ 0.010% and N ⁇ 0.010% should be set as in the past, but in the present invention, coarse aggregates of precipitates are formed for the same reason as in C. S ⁇ 0.020%, N ⁇ 0.020%, because detoxification can be achieved by chemical conversion.
  • the steel slab composed of the above components is produced by melting in a converter and being manufactured by continuous casting or ingot lump rolling.
  • the steel slab is heated by a known method.
  • This slab is subjected to hot rolling to a predetermined thickness.
  • the end temperature of finish hot rolling was set to temperatures above in (A r 3 + 50), A r, after winding in the above temperature points, known to the Koiru the heat keeping cover, First optionally By using auxiliary heating or other means to keep the heat or control the temperature of the coil in the method ( ⁇ ! -50). C or more, to himself annealing can at ⁇ (A 3 + A i) / 2 ⁇ ° C less than the temperature.
  • the finish hot rolling end temperature if the finish hot rolling end temperature is too high, the transformation from the y phase to the phase during self-annealing occurs even when hot rolling is performed according to the conditions of the present invention. Due to the coarsening of the ⁇ -phase structure, the progress of the finishing hot-rolling is preferably 1150 ° C or less because the progress of the ⁇ -phase structure becomes unstable and a mixed grain structure is easily formed.
  • Winding temperature of the present invention more than point A, the preferred properly is ⁇ (A r, + A r 3) / 2 ⁇ ° C or more.
  • self-annealing temperature exceeds A, the point, yourself 7 phase during annealing finished residual Suruga, self annealing temperature according to the study results of the present inventors ⁇ (A, + A 3) / 2 ⁇ ° C
  • the self-annealing temperature By controlling the amount of the remaining seven phases at the end of self-annealing to be less than that, the growth of coarse phases into coarse grains accompanying the disappearance of the seven phases occurred regardless of the cooling rate after the end of self-annealing. But the self-annealing temperature
  • the self-annealing temperature is lower than (A,-50), the crystal growth of ⁇ grains during self-annealing will not sufficiently occur, and a non-oriented electrical steel sheet having excellent magnetic properties cannot be obtained. Therefore, the self-annealing temperature must be (A! -50) or higher.
  • the self-annealing temperature is more preferably not less than ( ⁇ , ⁇ 50) and not more than ⁇ , point.
  • Sample A of the present invention in Table 3 satisfies all of the requirements of the present invention under the hot rolling conditions, and sample B has a finish hot rolling temperature and a winding temperature within the scope of the present invention, but has a self-annealing temperature.
  • ⁇ (a! + a 3) / 2 ⁇ are those points higher than e C is outside the range of the present invention, sample C final hot rolling temperature, the coiling temperature but is within the scope of the present invention self-annealing temperature The temperature is lower than (A! -50) ° C, which is outside the scope of the present invention.
  • Sample D used the conventional self-annealing process, that is, the finishing temperature of the hot-rolling was defined as the y-range, and then the cooling temperature was reduced.
  • sample ⁇ The final temperature of the finishing hot rolling is defined as the temperature range, then the steel strip is transformed into a zone before coil winding by water cooling on a cooling table, and the steel strip is wound and then continuously rolled by continuous annealing. The annealed materials were picked up.
  • the hot-rolled crystal structure of Sample A was coarse grains of 150 m or more, and no fine-grained structure was found.
  • Sample B in which the self-annealing temperature was higher than the specified temperature range of the present invention, the mixture of coarse grains with a grain size of 150 / zm or more and a fine grain structure with a grain size of 100 rn or less was mixed. It has a grain structure.
  • Samples C, D and E all had a hot-rolled crystal structure with a grain size of 100 m or less.
  • Fig. 1 (A), Fig. 1 (B), Fig. 1 (C), Fig. 1 (D), and Fig. 1 (E) show the microstructures of hot-rolled sheet microscopes of samples A to E, respectively.
  • the hot rolled sheet obtained in this way is made into a product by one cold rolling and continuous annealing.
  • Cold rolling reduction 70% 92%, preferably 74% 83% It is.
  • the decrease in magnetic flux density is small even when the cold rolling reduction is increased to about 90%.
  • the cold rolling mill may be any of a tandem rolling mill, a reverse rolling mill, and a Sendzimir rolling mill.
  • the rolling conditions may include rolling the coil after heating it with a hot bath of water or the like, or rolling at a temperature of 100 ° C or more for the purpose of improving the rollability, improving the magnetic properties, and other purposes. Absent.
  • the continuous annealing is preferably performed in a normal continuous annealing furnace in a non-oxidizing atmosphere, but it is oxidized for the purpose of removing C remaining in the steelmaking stage or C contained in steel sheets for other purposes. It may be done in a neutral atmosphere. Also, during annealing, the annealing temperature may be set to (+7) two phase region or seven region for improving texture.
  • the annealing temperature is preferably 700 or more and 110 ° C. or less, and the annealing time is preferably between 10 seconds and 3 minutes.
  • a method in which the annealing pattern is heated to a high temperature in the first stage and then annealed at a low temperature in the second stage may be used. If the annealing temperature is lower than 700, the recrystallization progresses insufficiently and the magnetic properties deteriorate, so 700 or more is required. If the annealing temperature exceeds 1100 ° C, the steel sheet surface will be Temperature is set to 110 ° C or less. In addition, the optimum annealing temperature is determined according to each component from the viewpoints of the recrystallization temperature and grain growth, which are determined by the composition of the steel sheet.
  • a skin pass rolling step may be added to obtain a product. If the skin pass rolling ratio is less than 2%, the effect of improving iron loss cannot be obtained, and if it is more than 20%, the magnetic properties deteriorate, so it is set to 2% to 20%.
  • the magnetic flux density does not decrease. High magnetism that was difficult to achieve with conventional technology It became possible to achieve both bundle density and low iron loss.
  • finish hot rolling end temperature, the winding temperature, and the self-annealing condition as defined in the present invention are also advantageous from the viewpoint of detoxifying precipitates that inhibit crystal growth during finish annealing and strain relief annealing. .
  • slab heating temperature when the slab heating temperature is increased, precipitates such as MnS re-dissolve in the parent phase during slab heating, and this precipitates finely during hot rolling and worsens the iron loss of the product. Since the precipitates are rendered harmless during self-annealing by performing the hot rolling specified in the present invention, in the present invention, slab heating is performed to secure the finishing hot rolling end temperature and the winding temperature. Even if the temperature is raised more than before, the iron loss does not deteriorate.
  • the coil was immediately inserted into the heat retention cover, and self-annealed at the specified temperature for 60 minutes. After that, it was pickled and cold rolled to obtain 0.50 and 0.55 marauders.
  • the one with a thickness of 0.50 strokes was annealed in a continuous annealing furnace at 800 for component 1 and 850 for component 2 for 30 seconds.
  • component 1 was annealed at 760 ° C and component 2 at 820 ° C for 30 seconds in a continuous annealing furnace.
  • Tables 6 and 7 show the winding temperature, self-annealing temperature, and magnetic measurement results of the present invention and the comparative example described in the examples.
  • the self-annealing temperature is ⁇ (A, + A 3) / 2 ⁇ from at (A, + 50) be in the range of ° C
  • Example Magnetic properties were inferior.
  • the winding temperature of both component 1 in Table 6 and component 2 in Table 7 was (( ⁇ ⁇ + Ar 3 ) / 2 ⁇ .
  • the magnetic properties of Example 2 which was not less than C were superior to those of Examples 3 and 4 in which the winding temperature was lower than ⁇ (Ar 3 + Ar / 2) ° C.
  • Components with a thickness of 0.50 were annealed in a continuous annealing furnace at 800 at component 3 and at 850 ° C for 30 seconds.
  • component 3 is 760 in a continuous annealing furnace
  • component 4 is annealed at 820 for 30 seconds, and finished to 0.50 mm thick by skin-pass rolling with a 9% reduction rate. Annealing equivalent to that performed by the customer for 2 hours was performed. The magnetic properties of these samples were measured.
  • Tables 10 and 11 show the winding temperature, self-annealing temperature, and magnetic measurement results of the present invention and the comparative example described in the examples.
  • a non-oriented electrical steel sheet having high magnetic flux density and low iron loss and excellent in magnetic properties can be provided, and thus can be applied as an iron core material of electric equipment. Might be very useful.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Description

明 細 書 磁束密度が高く鉄損の低い無方向性電磁鋼板の製造方法 技術分野
本発明は、 電気機器の鉄心材料として用いられる、 磁束密度が高 く、 鉄損が低い優れた磁気特性を有する無方向性電磁鋼板の製造方 法に関する。 背景技術
近年、 電気機器、 特に無方向性電磁鋼板がその鉄心材料として使 用される回転機及び中、 小型変圧器等の分野においては、 世界的な 電力、 エネルギー節減、 さらにはフロンガス規制等の地球環境保全 の動きの中で、 高効率化の動きが急速に広まりつつある。 このため, 無方向性電磁鋼板に対しても、 その特性向上、 すなわち、 高磁束密 度かつ低鉄損化への要請がますます強まつてきている。
ところで、 無方向性電磁鋼板においては、 従来、 低鉄損化の手段 として一般に、 電気抵抗増大による渦電流損低減の観点から S iある いは A 1等の含有量を高める方法がとられてきた。 しかし、 この方法 では反面、 磁束密度の低下は避け得ないという問題点があった。 ま た、 単に S iあるいは A1等の含有量を高めるのみではなく、 特開昭 61— 231 120号公報に記載されているように、 C , N , S , 0等の低 減による高純度鋼化や、 特開昭 57- 35626号公報に記載されているよ うな仕上焼鈍サイクルの工夫等の製造プロセス上の処置もなされて きたが、 いずれも低鉄損化は図られても、 磁束密度についてはそれ ほどの効果はなかった。 一方で、 製品における集合組織を改善し磁 束密度を向上させるために、 一次再結晶集合組織中において製品板 面内に結晶軸の磁化容易軸である < 100 >方向を有し磁束密度の改 善に有効である ND II < 1 10 >方位を富化させると同時に、 結晶軸の 難磁化方向であるく 1 1 1 >方向を製品板面内に有する ND II < 1 1 1 > 系方位集積度を低下させることを目的に、 仕上げ焼鈍前の冷延圧下 率を適正範囲に制御することや、 同様の目的で冷延前結晶組織を粗 大化させるために熱延板焼鈍を施すこと、 あるいは熱延条件の工夫 等による高磁束密度化が図られてきた。 しかし磁束密度が高くかつ 鉄損が低い無方向性電磁鋼板を製造できるには至らず、 無方向性電 磁鋼板に対する前記の要請に応えることはできなかった。 本発明者 らは、 このような従来技術の限界を打破すべく制御熱延と熱延ス ト リ ップ巻取後にコイルの保有熱で焼鈍を行わせる自己焼鈍条件に着 目して検討を行った。
従来から、 相変態を有する無方向性電磁鋼板の熱間圧延工程にお いては、 製品の磁気特性向上の観点から、 熱延板結晶粒径の制御が 行われてきた。 熱延板の自己焼鈍については特開昭 54-76422号公報 にその技術が公開されており、 自己焼鈍時のコィル温度確保のため の保熱カバー使用については特開昭 56- 33436号公報に規定されてい る。 また、 自己焼鈍時条件を適切に設定することにより熱延板の結 晶組織を粗大化し製品の磁気特性改善を図る方法については特開昭 57-57829号公報、 特開昭 60- 501 17号公報、 仕上熱延終了温度を r相 域としてその後自己焼鈍を実施する技術については特開昭 58- 1 36718 号公報に開示されている。 しかし、 これらの公知文献における実施 例では、 仕上熱延終了温度はァ域とし、 冷却帯で 7相から α相へ変 態させた後、 巻取中にひ相域で結晶粒成長を図っている。 このため、 仕上熱延終了後に α域まで変態させるために冷却を十分に確保する ように ROT 上での冷却が制御される結果、 自己焼鈍温度に対し鋼板 温度が必要以上に下がりやすく、 結果として自己焼鈍中の結晶粒成 長が不十分となる欠点があった。 また、 このような欠点を改善する ため自己焼鈍中にコイルの再加熱が必要となるが、 自己焼鈍中の再 加熱セはコィル内の温度分布にむらが生じやすく熱延板結晶組織が 不均一となり十分に粗大化せず、 また操業上の観点からも自己焼鈍 中のコイルの再加熱は不経済であり、 必要最小限にとどめたいとい う要請があった。
自己焼鈍プロセスにより得られる熱延組織の不均一性を改善する ため特開昭 60— 194019号公報には自己焼鈍後の冷却を制御する方法 が開示されている。 しかし熱延組織が混粒になる現象は自己焼鈍中 の熱延組織が均一に成長しないことが原因であり、 自己焼鈍終了後 の冷却速度制御によりこれを改善するこ とは困難である。
本発明は、 従来技術におけるこのような問題点を解決し、 高磁束 密度かつ低鉄損の無方向性電磁鋼板を提供することを目的とするも のである。 発明の開示
本発明者らはこのような従来技術の欠点を克服し、 自己焼鈍中に 従来以上に熱延組織の結晶粒成長を確保し磁束密度の改善を図るた め鋭意検討を行った結果、 熱間圧延工程において (A r 3 + 50) °Cを 上回る温度にて仕上圧延を終了しひ + r 2相域以上の温度域で当該 ス ト リ ップを巻取り、 その自己焼鈍温度を (A , - 50) °C以上 { ( A , + A 3 ) / 2 } °C未満の温度域に、 自己焼鈍時間を 2分以上 3時間以内とするように自己焼鈍条件を適切に制御し、 自己焼鈍中 の γ相からひ相への変態を制御することで熱延結晶組織を平均粒径 で 150 // m以上として従来技術以上に均一に粗大化し、 製品におけ る磁気特性が著しく改善され得ることを発見し本発明の完成に至つ た。 すなわち、 本発明の要旨とするところは、 鋼中に Si, Mn, A1のグ ループから選ばれた元素の少なく とも 1種が重量 で
0.10%≤Si≤2.50%
0.10%≤A1≤ 1.00%
0. \0%≤Mn≤2.00%
かつ、 Siと A1の合計量が
Si+ 2 Al≤2.50%
を満足し、 残部が Fe及び不可避不純物からなる α ァ変態を有する 成分から成るスラブにその仕上熱延終了温度を (Ar3 + 50) °C超の 温度とする熱間圧延を施して熱延板とし、 該熱延板を (Ar3 + 50) °Cを上回る温度で巻取り、 巻取った状態で (A , -50) °C以上
{ ( A 1 + As)/ 2 } で未満の温度域にて 2分以上 3時間以下保持 する自己焼鈍を施し、 酸洗を行い、 1 回の冷間圧延を行い、 次いで 仕上焼鈍を施し、 或いは自己焼鈍後酸洗を行い、 冷間圧延し、 仕上 焼鈍後 2〜20%のスキンパス圧延を行う こ とを特徴とする無方向性 電磁鋼板の製造方法にある。
このように本発明は + 2相域の領域で巻取を実施するも のであるが、 前記の公知文献に記載の技術においては熱延板すなわ ち冷延前の結晶粒径を粗大化する観点から、 熱延後の r相からひ相 への変態は熱延板の結晶粒を微細化するために有害であるとみなさ れ、 これまで本発明のごとき自己焼鈍工程における 7相から 相へ の変態の利用は省みられなかった。 すなわち、 上記文献中に記載さ れている熱延仕上温度、 巻取温度は、 成分の変化による変態点の変 動に伴いその規定範囲が変化することはあっても、 y相からひ相へ の変態は仕上熱延終了後の冷却中に行わせ、 巻取後ひ相で結晶粒成 長を行う ことを主眼とするものであった。 このため、 本発明のごと き + 2相域にて巻取を実施する技術とはその技術思想が全 く異なるものである。 図面 0簡単な説明
図 1 (A) は本発明の熱延板顕微鏡金属組織 (A) を示す図であ り、 図 1 (B) 、 図 1 (C) 、 図 1 (D) 及び図 1 (E) は比較例 の熱延板顕微鏡金属組織 (B) 〜 (E) をそれぞれ示す図である。 発明を実施するための最良の形態
本発明者らは、 低鉄損と高磁束密度を同時に達成すベく従来技術 における問題点を鋭意検討を重ねた結果、 変態を有する無方向性電 磁鋼板にあって、 仕上げ熱間圧延時の巻取り及び自己焼鈍をひ τ変 態点との関係において適切な条件下で行う ことによって、 仕上焼鈍 後の製品における磁束密度が極めて高く、 鉄損が良好な (鉄損値が 低い) 無方向性電磁鋼板を安価に製造することに成功した。
すなわち、 熱間圧延条件を規定することにより、 仕上焼鈍後の製 品における集合組織を制御し、 磁束密度が極めて高く鉄損が良好な (鉄損が低い) 無方向性電磁鋼板を製造するようにしたものである < 変態点を有する無方向性電磁鋼板において鉄損値が低くかつ、 磁 束密度が高い無方向性電磁鋼板を得るためにはひ〜 y変態を有する 無方向性電磁鋼板の熱間圧延工程において、 仕上熱延終了温度を
( ΑΓ3 + 50) °Cを上回る温度とし、 巻取温度を A 点以上のひ +ァ 域以上の温度とし、 その後、 (A, -50) °C以上、 { ( A3 +A】) / 2 } °C未満の温度にて 2分以上 3時間以内の間、 巻取ったコイル の状態で自己焼鈍することによって仕上焼鈍後の製品における集合 組織を制御することが必要であり、 これにより、 磁束密度が極めて 高く鉄損が良好 (鉄損が低い) な無方向性電磁鋼板を製造すること ができる。 まず、 成分について説明すると (以下%は全て重量 、 Siは鋼 板の固有抵抗を増大させ渦流損を低減させ、 鉄損値を改善するため に添加される。 Si含有量が 0.10%未満であると固有抵抗が十分に得 られないので 0.10%以上添加する必要がある。 一方、 Si含有量が 2.50%を越えるとひ〜 7変態を生じなくなるので 2.50%以下とする 必要がある。
A1も、 Siと同様に、 鋼板の固有抵抗を増大させ渦電流損を低減さ せる効果を有する。 このためには、 0.10%以上添加する必要がある c 一方、 A1含有量が 1.00%を越えると、 磁束密度が低下し、 コス ト高 ともなるので 1.00%以下とする。 さらに、 (Si+ 2 A1) が 2.50%を 越えると、 ひ〜 7変態を生じなくなるので、 (Si+ 2 A1) ≤2.50% でなくてはならない。
Mnは、 Al, Siと同様に鋼板の固有抵抗を増大させ渦電流損を低減 させる効果を有する。 このため、 Mn含有量は 0.10%以上とする必要 がある。 一方、 Mn含有量が 2.0 %を越えると熱延時の変形抵抗が増 加し熱延が困難となるとともに、 熱延後の結晶組織が微細化しやす くなり、 製品の磁気特性が悪化するので、 Mn含有量は 2.0 %以下と する必要がある。 また、 Mn添加によりひ 7変態点が低下するため、 本発明における仕上熱延における 2相域巻取をより低温側で実施す ることが可能となり、 巻取温度を高めることによる仕上熱延後の巻 取作業性の低下を改善し、 鋼板表面の酸化物形成を抑制することが 可能になり酸洗時の歩留まりが向上するなどの点で Mn添加は有効で ある。 このような変態点制御の観点からは Mn含有量は 0.30%〜1.50 %であることが好ましい。
また、 製品の機械的特性の向上、 磁気的特性、 耐靖性の向上ある いはその他の目的のために、 P, B, Ni, Cr, Sb, Sn及び Cuのグル ープから選ばれた元素の少なく とも 1種を鐧中に含有させても本発 明の効果は損なわれない。
すなわち、 Pは、 製品の打ち抜き性を良好ならしめるために 0.02 %以上 0.1 %以下の範囲で添加する。 添加量が 0.02%未満であれば 打抜き性改善の効果はなく、 0.1 %超であればその効果が飽和する c 製品の磁気特性の観点からみると P≤0.2 %の範囲であれば問題が ない。
Bは熱間圧延時に BNを形成させて A1N の微細析出を妨げ、 Nを無 害化させるために添加される。 B含有量は Nとの量のバランスが必 要であり、 その含有量は両者の比 B ^ZN^が 0.5 から 1.5 の範囲 を満たすことが好ましい。 本発明においては熱延後に析出物の粗大 凝集化が行われるから、 B添加の必要性は少ない。
Niは固溶強化による鋼板の降伏応力を増加させる目的、 磁束密度 を向上させる目的、 もしく は Mnと同様に変態点を低下させ巻取作業 性を改善することを目的に添加される。 添加量は 0.1 %以上 3.0 % 以下とする。 鋼板の降伏応力増加の観点から好ましい添加量は 1.0 %以上 3.0 %以下、 磁気特性改善の観点から好ましい添加量は 0.5 %以上 2.5 %以下、 変態点調整の観点から好ましい添加量は 1.0 % 以上 2.5 %以下である。 添加量が 0.1 %以下では何れの目的におい ても効果がなく、 3.0 %を上回るとコス トの点で不適であるので 3.0 %以下とする。
Crは耐銹性改善を目的に添加される。 添加量は 1.0 %以上 13.0% 以下とする。 さらに好ましい添加量としては 5.0 %以上 9.0 %以下 である。 添加量が 1.0 %未満では耐銹性改善効果がなく、 13.0%を 上回るとコス トの点で不適であるので 13.0%以下とする。
Sbは集合組織改善による高磁束密度化を目的に添加される。 添加 量は 0.02%以上 0.2 %以下とする。 さらに好ま しい添加量としては 0.03%以上 0.15%以下である。 添加量が 0.01%未満では集合組織改 善効果がなく、 0.2 %を上回ると仕上焼鈍時の粒成長性が阻害され 製品の鉄損が悪化するので、 0.2 %以下とする。
Sni'ま集合組織改善による高磁束密度化を目的に添加される。 添加 量は 0.02%以上 0.2 %以下とする。 さらに好ましい添加量としては 0.03%以上 0.15%以下である。 添加量が 0.02%未満では集合組織改 善効果がなく、 0.2 %を上回ると仕上焼鈍時の粒成長性が阻害され 製品の鉄損が悪化するので 0.2 %以下とする。
Cuは集合組織改善による高磁束密度化を目的に添加される。 添加 量は 0.1 %以上 1.0 %以下とする。 さらに好ま しい添加量としては 0.1 %以上 0.4 %以下である。 添加量が 0.1 %未満では集合組織を 改善効果がなく、 1.0 %を上回ると鋼板表面に疵が発生するので 1.0 %以下とする。
その他の成分として、 Cは 0.050 %以下であれば本発明の目的を 達成することができる。 低級グレー ドの無方向性電磁鋼板は主とし て小型回転機であり、 鉄損の低域のために冷延後の仕上げ焼鈍ある いはさらに歪み取り焼鈍中の粒成長を促進させる必要があり、 鋼中 の微細析出物を減らす必要がある。 このためには、 通常は鋼中の C の含有量を低濃度にする必要があるが、 本発明においては、 熱間圧 延工程のスト リ ップ巻取り温度を An点以上とし、 その後、 (A , -50) °C以上、 { ( A3 + A i)/ 2 } °C未満の温度にて 2分〜 3時 間自己焼鈍することから、 炭化物その他の析出物、 介在物は十分に 凝集析出する。 従って、 極低炭素とすることは要求されず、 Cは 0.050 %以下であれば良い。
S , Nは鋼の溶製段階で不可避的に混入する元素である。 S, N は熱間圧延工程におけるスラブ加熱中に一部再固溶し、 熱間圧延中 に MnS, A1Nの析出物を形成し、 仕上焼鈍時に再結晶粒の成長を妨げ たり製品が磁化されるときに磁壁の移動を妨げるいわゆるピニング 効果を発揮し製品の低鉄損化を妨げる原因となる。 従って、 その含 有量は少ない程良い。 このため下限を特に設ける必要はない。 磁気 特性への悪影響を防止するには、 従来と同様 S≤0. 010 %、 N≤ 0. 010 %とすべきところであるが、 本発明においては Cと同様の理 由により析出物の粗大凝集化による無害化がはかられるため、 S≤ 0. 020 %、 N≤ 0. 020 %であれば良い。
次に本発明のプロセス条件について説明する。
前記成分からなる鋼スラブは、 転炉で溶製され連続铸造あるいは 造塊一分塊圧延により製造される。 鋼スラブは公知の方法にて加熱 される。
このスラブに熱間圧延を施し所定の厚みとする。 この際、 仕上熱 延の終了温度は (A r 3 + 50) でを上回る温度とし、 A r ,点以上の温 度で巻取った後、 必要に応じこのコィルを保熱カバ一等の公知の方 法にて保熱あるいはコィルの温度制御のため補助加熱等の手段を用 いることにより、 (Α ! - 50) 。C以上、 { ( A 3 + A i )/ 2 } °C未 満の温度にてき己焼鈍する。
仕上熱延終了温度が (A r 3 + 50) 以下であると、 巻取までに再 結晶 · 粒成長を十分に進行させることが難しくなり、 自己焼鈍中の 粒成長との相乗効果により結晶組織を粗大化することが困難になる とともに仕上げ熱延ス夕ン ド通過後、 冷却帯での鋼板の冷却を十分 に施しつつ巻取温度を A 点以上確保することが困難になり、 冷却 不足から鋼板の温度分布が長手方向で大き く変動し、 鋼板の巻取が 安定せず、 熱延コイルのス ト リ ップの形状が著しく悪化する。 した がって仕上熱延終了温度は (A r 3 + 50) °Cを上回る温度を確保する ことが好ましい。 このように仕上熱延後の巻取を安定化するために 通常は冷却してからコィルに巻取るが、 仕上熱延後の巻取が安定に 施されるのであれば仕上熱延終了後、 ス ト リ ツプを水冷等により積 極的に冷却することは本発明では必ずしも必須ではない。
仕上熱延終了温度には特に上限を設けないが、 仕上熱延終了温度 を上げすぎると、 本発明の条件に従って熱延を実施した場合におい ても、 自己焼鈍中の y相から 相への変態に伴う α相組織の粗大化 進行が不安定になり混粒組織となりやすいため仕上熱延終了温度は 1150°C以下であることが好ましい。
本発明の巻取温度は、 A 点以上、 好ま しく は { ( A r , + A r 3 ) / 2 } °C以上である。 本発明の温度範囲において熱延板を巻取るこ とにより、 自己焼鈍中に y相から α相への変態が進行すると同時に- 未変態 7相が変態後のひ相の粒成長の進行を阻止する。 7相からひ 相への変態が更に進行することにより、 α相の結晶粒成長を抑制し ていた未変態 7相が消失し、 それと同時に未変態 7相により抑制さ れていた α相の結晶粒成長が急速に進行し鋼板全体が平均粒径 150 // m程度かそれ以上の粗大粒となる。 巻取温度が A n点未満となる と巻取直後の鋼板組織に 7相が存在しなくなり前記のような原理に 基づく結晶組織の粗大化が発生しなくなるので巻取温度は A 点以 上好ましく は { ( A r 3 + A r i ) / 2 } °C以上とする必要がある。
自己焼鈍温度が A , 点を上回る場合、 己焼鈍終了時に 7相が残 留するが、 本発明者らの検討結果によれば自己焼鈍温度を { ( A , + A 3 )/ 2 } °C未満として自己焼鈍終了時の残留 7相の量を抑制す ることにより、 自己焼鈍終了後の冷却速度に関係なく 7相の消失に 伴うひ相の粗大粒への成長は発生した。 しかしき己焼鈍温度が
{ ( A , + A 3 )/ 2 } °C以上となると自己焼鈍終了直後の残留 7相 の体積率が増加し、 自己焼鈍後の冷却中に残留 y相が α粒の粗大化 を阻止したまま熱延組織が凍結されるため熱延板中の細粒の体積率 が増加し結晶組織は混粒となつた。 このような熱延板を出発材にし て製品を製造すると製品の磁気特性は鋼板の場所により著しく不安 定となり不適当である。 このため自己焼鈍温度は { (A】 +A3 2 } °C未満とする必要がある。
ま ^、 自己焼鈍温度が (A , — 50) て未満となると自己焼鈍中の α粒の結晶粒成長が十分起こらなくなり、 優れた磁気特性を有する 無方向性電磁鋼板を得ることができない。 このため自己焼鈍温度は (A! -50) 以上とする必要がある。
自己焼鈍中の α粒の粗大化をより安定に進行させる観点からは、 自己焼鈍温度は (Α , — 50) で以上かつ Α , 点以下であるこ とがよ り好ましい。
本発明における熱延条件が熱延結晶組織に与える影響を調査する ため、 以下の様な実験を実施した。 表 1 に示す成分及び残部 Fe及び 不可避不純物からなる鋼を転炉により溶製し連続铸造設備により厚 さ 220mm のスラブとした。 この鋼の An, Ar3, A】 , A 3 変態点 を表 2に示す。 このスラブを通常の方法にて加熱し、 熱延により 2.5mm に仕上げた。 この時の熱延条件及び各熱延条件で得られた熱 延板の顕微鏡金属組織の観察結果を表 3に示す。 表 3の結晶粒径は JISG0552の切断法に従い測定し、 平均粒径は粒度番号より求めた円 相当直径で示した。
表 3における本発明の試料 Aは熱延条件が本発明の要件を全て満 たしており、 試料 Bは仕上熱延温度、 巻取温度は本発明の範囲に含 まれるが自己焼鈍温度が { ( A! + A3)/ 2 } eCより も高い点が本 発明範囲を外れるものであり、 試料 Cは仕上熱延温度、 巻取温度は 本発明の範囲に含まれるが自己焼鈍温度が (A ! -50) °Cより も低 い点が本発明範囲を外れるものであり、 試料 Dは従来法の自己焼鈍 プロセス、 すなわち仕上熱延の終了温度を y域とし、 その後冷却テ 一ブル上でコィル巻取前にひ域へ変態させ自己焼鈍を α域で行った 試料である。 また、 従来技術の比較例として試料 Εは熱延板焼鈍を 含むプロセス、 すなわち仕上熱延の終了温度を 域とし、 その後冷 却テーブル上で水冷によりコイル巻取前に鋼帯をひ域へ変態させ該 鋼帯^巻取った後、 連続焼鈍により熱延板焼鈍を施した材料をとり あげた。
表 3に示した熱延板金属組織観察結果より、 試料 Aにおいて熱延 結晶組織が 150 m以上の粗大粒となっており、 細粒組織は見あた らなかった。 これに対し、 自己焼鈍温度が本発明の規定温度範囲よ り も高かった試料 Bでは粒径 150 /z m以上の粗大粒と粒径 100 rn 以下の細粒組織のマ ト リ ッ クスとの混粒組織となっている。
また、 試料 C, D, Eはいずれも熱延結晶組織は 100 m以下の 整粒組織となった。
このように本発明の熱延条件を満たすように仕上熱延を実施する ことにより、 熱延結晶組織を 150 m以上の均一な粗大組織とする ことが可能である。 図 1 (A) , 図 1 ( B ) , 図 1 ( C) , 図 1 (D) 及び図 1 (E) に試料 A〜Eの熱延板顕微鏡金属組織をそれ ぞれ示す。
表 1
(単位:重量
Figure imgf000014_0001
表 2
(単位: °C)
A, A3 ΑΓΙ Ar3 (A,+A3)/2 (ΑΓ! +ΑΓ3)/2 A, -50
"占、、 占 占 占
825 904 791 870 865 831 775 表 3
Figure imgf000015_0001
*マトリックス部分 自己焼鈍時間は 2分未満では自己焼鈍の効果が十分でなく 熱延 板組織の結晶粒成長が不十分となるため高磁束密度を得ることがで きない。 また、 自己焼鈍時間が 3時間より長くなるとその効果が飽 和し、 逆に生産性が低下し、 さらに自己焼鈍中の過度の酸化により 後工程での酸洗性が著しく悪化し実用的でないので 3時間以内とし た。
自己焼鈍の際、 後工程での酸洗性を良好にするため、 保熱カバー 内を Ν 2 不活性ガス雰囲気あるいは減圧下とするか、 もしく は減圧 後 Ν 2 等不活性ガス雰囲気の充塡を行う ことも有効である。 また、 巻取り後所定の自己焼鈍をへた後のコイルは特段の処置無く放冷し ても差し支えないが、 後工程での酸洗性を向上させるため、 自己焼 鈍終了後、 好ましく は α相の粒成長速度が緩慢となる 700 °C以下ま で温度が低下した時点でコィルを水槽へ浸潰させる等の手段により 冷却することも本発明の効果を何等損なう ものではない。
このようにして得られた熱延板は一回の冷間圧延と連続焼鈍によ り製品とする。 冷間圧延率は、 70 % 92 %、 好ま しく は 74 % 83 % である。 本発明によれば、 冷間圧延率を 90 %程度に増加させても磁 束密度の低下は少ない。 冷間圧延機は、 タンデム圧延機、 リバース 圧延機、 ゼンジミア圧延機のいずれで行っても良い。 また、 圧延条 件は、 圧延性改善、 磁気特性改善、 その他の目的のためにコイルを 水等のホッ トバスで加熱した後に圧延することや 100 °C以上の温度 において温間圧延することも差し支えない。
連続焼鈍条件としては、 通常の連続焼鈍炉にて非酸化性雰囲気で 行う ことが好ましいが、 製鋼段階で残留した C除去もしく はその他 の目的で鋼板中に含有せしめた C除去を目的に酸化性雰囲気で行う ことも差し支えない。 また、 焼鈍中に集合組織改善のために焼鈍温 度を ( + 7 ) 2相域あるいは 7域とすることも差し支えない。 焼 鈍温度は 700 で以上 1 1 00°C以下で、 焼鈍時間は 1 0秒から 3分の間と することが好ましい。 焼鈍中の鋼板の酸化抑制その他の目的で焼鈍 パターンを前段で高温に加熱して後段で低い温度で焼鈍する等の方 法でも差し支えない。 焼鈍温度が 700 でを下回ると再結晶の進行が 不十分になり磁気特性が悪化するため 700 て以上が必要であり、 焼 鈍温度が 1 100°Cを上回ると焼鈍の通板中に鋼板表面に疵が生じるの で 1 1 00°C以下とする。 また、 焼鈍温度は鋼板の成分により決まる再 結晶温度、 粒成長性の観点からそれぞれの成分に応じて最適焼鈍温 度が決まる。
また冷延後連続焼鈍を施したのちスキンパス圧延工程を付加して 製品としてもよい。 スキンパス圧延率は 2 %未満では鉄損改善効果 が得られず、 20 %以上では磁気特性が悪化するため 2 %から 20 %と する。
また、 本発明によれば、 仕上焼鈍時の条件を従来の焼鈍条件より も高温にし時間を長く して粒成長させ製品の鉄損を改善しても、 磁 束密度が低くなることはなく、 従来技術で達成が困難であった高磁 束密度と低鉄損を両立させることが可能となった。
また、 本発明に規定したような仕上熱延終了温度、 巻取温度及び 自己 鈍条件は仕上焼鈍、 及び歪取焼鈍時の結晶粒成長を阻害する 析出物の無害化という観点からも有益である。
従来の自己焼鈍及び熱延板焼鈍を前提とする熱延条件では、 仕上 熱延を y域で終了し α域まで急冷した後熱延板を巻取る。 これに対 し本発明の熱延条件を満たすためには α + rの 2相域の温度以上で 巻取を実施し、 自己焼鈍中に 7相からひ相への変態を徐々に行わせ る。 このため巻取温度が上昇し、 その後も自己焼鈍中に緩やかに温 度降下が進行するため従来技術より も高温での保持時間が長くなる, その結果 MnS 等の結晶粒成長を阻害する有害析出物がォス トワル ド 成長により粗大化し、 従来の自己焼鈍もしく は熱延板焼鈍より も一 層結晶粒成長に対し析出物の無害化が図られる。 このため本プロセ スの熱延条件によれば熱延板における析出物の無害化が図られる結 果、 従来熱延結晶組織を粗大化させる方法として採用されてきた自 己焼鈍や熱延板焼鈍を含むプロセスと比較して製品における鉄損が より改善される。 .
また、 スラブ加熱温度を上昇させた場合、 MnS 等の析出物がスラ ブ加熱中に母相に再固溶し、 これが熱延中に微細に再析出して製品 の鉄損を悪化させるが、 本発明に規定した熱延を実施することによ り自己焼鈍中に析出物の無害化が図られることから、 本発明におい ては仕上熱延終了温度、 巻取温度を確保するためにスラブ加熱温度 も従来より も上昇させても鉄損が悪化しない。
以上のように析出物無害化の観点からも、 巻取温度は A I 以上、 好ましく は { ( A r i + A r 3 ) / 2 } °C以上の温度であることが望ま しい。 このような仕上熱延、 巻取から自己焼鈍に至る過程の制御に より、 製品における磁壁のピニングサイ トとなる有害析出物の無害 化が図られ、 鉄損特性の改善を達成することができる。 実施
次に、 本発明の実施例について述べる。
実施例 1
表 4 に示す成分及び残部 Fe及び不可避不純物からなる鋼を転炉に より溶製し連続铸造設備により厚さ 220imn のスラブとした。 この鋼 の An, Ar3, A J , Α3 変態点を表 5に示す。 このスラブを通常 の方法にて加熱し、 熱延により 2.5mm に仕上げた。 この時、 熱延仕 上温度を (Ar3 + 50) °C以上とし、 巻取温度を Αι^点以上と八^点 未満の 2水準にとつた。
熱延後コイルを直ちに保熱カバー内に挿入し、 所定の温度で 60分 自己焼鈍した。 その後、 酸洗を施し、 冷間圧延により 0.50匪及び 0.55匪に仕上げた。 板厚 0.50画のものについては連続焼鈍炉にて、 成分 1 は 800 でで、 成分 2は 850 でで 30秒間焼鈍した。 また、 板厚 0.55mmのものについては連続焼鈍炉にて成分 1 は 760 、 成分 2は 820 °Cでそれぞれ 30秒焼鈍を施し、 圧下率 9 %のスキンパス圧延に より 0.50圆に仕上げ、 750 °C 2時間の需要家が実施する焼鈍に相当 する焼鈍を施した。 これらの試料の磁気特性を測定した。
表 6および表 7に実施例中で述べた本発明と比較例の巻取温度、 自己焼鈍温度と磁気測定結果を合わせて示す。
このように巻取温度を Ar!点以上にすることにより、 1 回法、 ス キンパス圧延法とも磁束密度の値が高く、 鉄損値の低い材料が得ら れることがわかった。 比較例では巻取温度が An点以下まで低下し ているため、 自己焼鈍温度が { ( A , + A3)/ 2 } でから (A , + 50) °Cの範囲であっても実施例より も磁気特性が劣っていた。 また- 表 6の成分 1、 表 7の成分 2 ともに巻取温度が { (ΑΓι + Ar3) / 2 } 。C以上であった実施例①②⑤⑥の方が巻取温度が { ( Ar3 + Ar / 2 } °Cを下回った実施例③④⑦⑧より磁気特性が優れてい た。 '
表 4
(単位:重量
Figure imgf000019_0001
表 5 成分 Ai As Ari Ar3 (Ai+A3)/2 (Ari+Ar3)/2 Ai -50 占 占 "占«、 "占»、
CO O (°C) (。C) (。C) CO (°C)
1 900 971 875 947 936 911 850
2 847 942 807 901 895 854 797
表 6 成分 1 熱 延 自 己 スキン 磁気特性
¾ 驭
仕 上 焼 鈍 パス 磁束密度 鉄 損 温 I¾ Kg; 温 度 温 度 圧 延 B50 W17/50 実施例① 1015°C 921。C 860°C 無 し 1.80 5.12
" ② 〃 〃 有 り 1.78 4.35
" ③ 1009°C 889°C 860°C 無 し 1.79 5.35
" ④ 〃 〃 〃 有 り 1.77 4.60 比較例① 1005°C 852°C 860°C 無 し 1.74 6.01
" ② 〃 有 り 1.71 5.30
" ③ loorc 831°C 860°C 無 し 1.74 6.20
" ④ 〃 〃 〃 有 り 1.71 5.40
成分 2 埶ハ、、 3ΐ 自 己 スキン 磁気特性
巻 取
仕 上 焼 鈍 パス 磁束密度 鉄 損 温 度 (Tesla) (W/kg) 温 度 n J又 圧 延 B50 W17/50 実施例⑤ 980°C 865°C 830V 無 し 1.77 3.17
" ⑥ 〃 〃 〃 有 り 1.75 2.71
" ⑦ 981°C 842°C 830°C 無 し 1.76 3.30
" ⑧ 〃 〃 有 り 1.74 2.90 比較例⑤ 980°C 804。C 請0 C 無 し 1.73 3.75
" ⑥ 〃 〃 〃 有 り 1.70 3.25
" ⑦ 982°C 793°C 830eC 無 し 1.72 4.11
" ⑧ 〃 有 り 1.69 3.51 実施例 2
表 8に示す成分及び残部 Fe及び不可避不純物からなる鋼を転炉に より 製し連続铸造設備により厚さ 220mm のスラブとした。 この鋼 の Ar!, Ar3, A J , As 変態点を表 9に示す。 このスラブを通常 の方法にて加熱し、 熱延により 2.5mni に仕上げた。 この時、 巻取温 度を ΑΓι点以上とし、 各成分につき自己焼鈍温度を 4水準とし、 自 己焼鈍時間は 60分とした。 その後、 酸洗を施し、 冷間圧延により 0.50隱及び 0.55匪に仕上げた。 板厚 0.50誦のものは連続焼鈍炉にて 成分 3は 800 で、 成分 4は 850 °Cで 30秒間焼鈍した。 また、 板厚 0.55議のものは、 連続焼鈍炉にて成分 3は 760 でで、 成分 4 は 820 てで 30秒焼鈍を施し、 圧下率 9 %のスキンパス圧延により 0.50咖厚 に仕上げ、 750 で 2時間の需要家が実施する焼鈍に相当する焼鈍を 施した。 これらの試料の磁気特性を測定した。
表 10及び表 11に実施例中で述べた本発明と比較例の巻取温度、 自 己焼鈍温度と磁気測定結果をあわせて示す。
表 8
(単位:重量 )
Figure imgf000021_0001
表 9 成分 A, A3 An Ar3 (Ai+A3)/2 (Ari+Ar3)/2 Ai -50
"占,、 "占、、 "占*、 '占"、
(°C) (。C) (。C) (。C) (。C) (。C) (°C)
3 900 947 874 918 924 896 850
4 839 929 805 895 884 850 789 表 10 成分.3 熱 延 自 己 スキン 磁気特性
*s ¥ -ex7.
仕 上 焼 鈍 パス 磁束密度
inn 度 1 C 1αノ
温 度 ha. 圧 延 Β50
実施例⑨ 985°C 901°C 870eC 雞 し 1.79 5.20
" ⑩ 〃 〃 有 1.77 4.45 実施例⑪ 984eC 890°C 860。C し 1.78 5.23
" ⑫ 〃 〃 〃 有 り 1.76 4.46 比較例⑨ 985°C 885°C 835で 無 し 1.75 6.09
" ⑩ 〃 〃 有 1.72 5.40 比較例⑪ 985°C 880°C 810°C 無 し 1.74 6.11
" ⑫ 〃 〃 〃 有 り 1.71 5.50
成分 4 熱 延 自 己 スキン 磁気特性
巻 取
仕 上 焼 鈍 パス 磁束密度 鉄 損 温 度 (Tesla) (W/kg) inn ' ΪΠΙ1 圧 延 B50 W17/50 実施例⑫ 974°C 835°C 820°C 無 し 1.77 3.22
" ⑭ 〃 〃 〃 有 1.75 2.80 実施例⑮ 971°C 836°C 800°C 無 し 1.77 3.29
" ⑯ 〃 〃 〃 有 1.75 2.83 比較例⑬ 973°C 832°C 780。C 無 し 1.72 3.80
" ⑭ 〃 有 1.69 3.42 比較例⑮ 976°C 833°C 760°C 無 し 1.71 3.91
" ⑩ 〃 〃 〃 有 り 1.68 3.51 このように自己焼鈍温度を (A , — 50) から { ( A , + A 3: 2 } °C未満にとることにより、 1 回法、 スキンパス圧延法とも磁束 密度め値が高く、 鉄損値の低い材料が得られることがわかった。 産業上の利用可能性
本発明によれば、 磁束密度が高く鉄損の低い磁気特性に優れた無 方向性電磁鋼板を提供できるので電気機器の鉄心材料として適用で き、 したがって回転機及び中、 小型変圧器の分野において大いに利. 用される可能性がある。

Claims

請 求 の 範 囲
1. ' 鋼中に Si, Mn及び A1のグループから選ばれた元素の少なく とも. 1種が重量%で
0.10^≤Si≤2.50%
0.10%≤ Al≤ 1.00%
0.10%≤ n≤2.00%
かつ、 Siと A1の合計量が
Si+ 2 Al≤2.50%
を満足し、 残部が Feおよび不可避不純物からなる α 7変態を有す る成分から成るスラブを熱間圧延し、 仕上熱延後の巻取り温度を Α Γι点以上として巻取ること ; 巻取った状態で (Α, -50) °C以上 { (A, + A3)/2 } で未満の温度域で 2分以上 3時間以下の間保 持する自己焼鈍を行う こと ; 得られた熱延帯に酸洗処理を施したの ち 1回の冷間圧延を行って最終板厚にすること ; 次いで仕上焼鈍を 施すこと ; 以上からなる磁束密度が高く鉄損の低い無方向性電磁鋼 板の製造方法。
2. 自己焼鈍を施した鋼帯に酸洗処理を施し次いで冷間圧延を行 い、 仕上焼鈍後 2〜20%のスキンパス圧延を行って最終板厚にする 請求の範囲第 1項記載の製造方法。
3. 熱間圧延の仕上熱延終了温度を (Ar3 + 50) °C超の温度とす る請求の範囲第 1項記載の製造方法。
4. 熱間圧延の仕上熱延終了温度を (Ar3 + 50) °C超の温度とす る請求の範囲第 2項記載の製造方法。
5. 仕上熱延後の巻取り温度を { (Ari + Ar3) / 2 } °C以上と する請求の範囲第 1項記載の製造方法。
6. 仕上熱延後の巻取り温度を { (An + Ar3) / 2 } °C以上と する請求の範囲第 2項記載の製造方法,
PCT/JP1995/000234 1994-06-24 1995-02-17 Procede de fabrication de tole d'acier electromagnetiquement non orientee presentant une densite elevee de flux magnetique pour un niveau faible de perte dans le noyau WO1996000306A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE69518529T DE69518529T2 (de) 1994-06-24 1995-02-17 Verfahren zur herstellung von elektrischen nicht orientierten stahlplatten mit hoher magnetischer flussdichte und geringem eisenverlust
KR1019960707404A KR100207834B1 (ko) 1994-06-24 1995-02-17 고 자속 밀도와 저 철손을 갖는 무방향성 전기강판의 제조방법
EP95909113A EP0779369B1 (en) 1994-06-24 1995-02-17 Method of manufacturing non-oriented electromagnetic steel plate having high magnetic flux density and low iron loss
US08/765,858 US5803989A (en) 1994-06-24 1995-02-17 Process for producing non-oriented electrical steel sheet having high magnetic flux density and low iron loss

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP6/143181 1994-06-24
JP14318194A JP3348802B2 (ja) 1993-06-30 1994-06-24 磁束密度が高く、鉄損の低い無方向性電磁鋼板の製造方法

Publications (1)

Publication Number Publication Date
WO1996000306A1 true WO1996000306A1 (fr) 1996-01-04

Family

ID=15332776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/000234 WO1996000306A1 (fr) 1994-06-24 1995-02-17 Procede de fabrication de tole d'acier electromagnetiquement non orientee presentant une densite elevee de flux magnetique pour un niveau faible de perte dans le noyau

Country Status (6)

Country Link
US (1) US5803989A (ja)
EP (1) EP0779369B1 (ja)
KR (1) KR100207834B1 (ja)
CN (1) CN1047207C (ja)
DE (1) DE69518529T2 (ja)
WO (1) WO1996000306A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0786528A1 (fr) * 1996-01-25 1997-07-30 Usinor Sacilor Procédé de fabrication de tÔle d'acier magnétique à grains non orientés et tÔle obtenue par le procédé
DE19807122A1 (de) * 1998-02-20 1999-09-09 Thyssenkrupp Stahl Ag Verfahren zur Herstellung von nichtkornorientiertem Elektroblech
DE19930519C1 (de) * 1999-07-05 2000-09-14 Thyssenkrupp Stahl Ag Verfahren zum Herstellen von nicht kornorientiertem Elektroblech
DE19930518C1 (de) * 1999-07-05 2000-10-12 Thyssenkrupp Stahl Ag Verfahren zum Herstellen von nicht kornorientiertem Elektroblech
WO2013134895A1 (zh) * 2012-03-15 2013-09-19 宝山钢铁股份有限公司 一种无取向电工钢板及其制造方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6007642A (en) * 1997-12-08 1999-12-28 National Steel Corporation Super low loss motor lamination steel
JP4258918B2 (ja) * 1999-11-01 2009-04-30 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
DE10015691C1 (de) * 2000-03-16 2001-07-26 Thyssenkrupp Stahl Ag Verfahren zum Herstellen von nichtkornorientiertem Elektroblech
JP4303431B2 (ja) * 2000-12-11 2009-07-29 新日本製鐵株式会社 超高磁束密度無方向性電磁鋼板およびその製造方法
JP4329538B2 (ja) * 2001-06-28 2009-09-09 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法
EP1415008A1 (de) * 2001-08-11 2004-05-06 ThyssenKrupp Stahl AG Nichtkornorientiertes elektroblech oder -band und verfahren zu seiner herstellung
DE10153234A1 (de) * 2001-10-31 2003-05-22 Thyssenkrupp Stahl Ag Für die Herstellung von nichtkornorientiertem Elektroblech bestimmtes, warmgewalztes Stahlband und Verfahren zu seiner Herstellung
FR2835001A1 (fr) * 2002-01-21 2003-07-25 Usinor Procede de fabrication d'une tole d'acier magnetique, toles et pieces obtenues
ATE338146T1 (de) * 2002-05-08 2006-09-15 Ak Steel Properties Inc Verfahren zum kontinuierlichen giessen von nichtorientiertem elektrostahlband
KR100561996B1 (ko) * 2003-04-10 2006-03-20 신닛뽄세이테쯔 카부시키카이샤 높은 자속 밀도를 갖는 무방향성 전자 강판의 제조 방법
US20050000596A1 (en) 2003-05-14 2005-01-06 Ak Properties Inc. Method for production of non-oriented electrical steel strip
JP4681450B2 (ja) * 2005-02-23 2011-05-11 新日本製鐵株式会社 圧延方向の磁気特性に優れた無方向性電磁鋼板とその製造方法
CN100463979C (zh) * 2005-10-15 2009-02-25 鞍钢股份有限公司 一种压缩机专用的冷轧电工钢的制造方法
WO2007074987A1 (en) * 2005-12-27 2007-07-05 Posco Co., Ltd. Non-oriented electrical steel sheets with improved magnetic property and method for manufacturing the same
DK1873852T3 (da) * 2006-06-30 2011-06-27 Air Liquide Ledende plader til brændstofcelleelementer
US9362032B2 (en) * 2011-04-13 2016-06-07 Nippon Steel & Sumitomo Metal Corporation High-strength non-oriented electrical steel sheet
JP6665794B2 (ja) 2017-01-17 2020-03-13 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法
CN107457272A (zh) * 2017-07-25 2017-12-12 宝钢集团新疆八钢铁有限公司 一种含罩退工序if钢板形不良补救方法
WO2019057115A1 (zh) * 2017-09-20 2019-03-28 宝钢湛江钢铁有限公司 在线提高Ti微合金化热轧高强钢析出强化效果的生产方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58136718A (ja) * 1982-02-10 1983-08-13 Kawasaki Steel Corp 磁気特性の優れた無方向性電磁鋼帯の製造方法
JPH03193821A (ja) * 1989-12-22 1991-08-23 Nippon Steel Corp 磁束密度が高くかつ鉄損の低い無方向性電磁鋼板の製造方
JPH06235026A (ja) * 1993-02-10 1994-08-23 Nippon Steel Corp 磁束密度が高く、鉄損の低い無方向性電磁鋼板の製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5476422A (en) * 1977-11-30 1979-06-19 Nippon Steel Corp Manufacture of non-oriented electrical sheet with superior magnetism by self annealing of hot rolled sheet
JPS5633436A (en) * 1979-08-22 1981-04-03 Nippon Steel Corp Uniformalizing method for temperature of hot rolled coil of electrical steel after coiling
JPS5638422A (en) * 1979-09-05 1981-04-13 Kawasaki Steel Corp Manufacture of cold-rolled lower electromagnetic steel plate
JPS5915966B2 (ja) * 1980-08-08 1984-04-12 新日本製鐵株式会社 磁気特性の優れた無方向性珪素鋼板の製造方法
JPS5846531B2 (ja) * 1980-09-22 1983-10-17 川崎製鉄株式会社 無方向性電磁鋼帯の製造方法
JPS6050117A (ja) * 1983-08-26 1985-03-19 Nippon Steel Corp 無方向性電磁鋼の熱延コイル焼鈍方法
JPS60194019A (ja) * 1984-03-14 1985-10-02 Nippon Steel Corp 形状および磁性の優れた無方向性電磁鋼板の製造方法
JPS61231120A (ja) * 1985-04-06 1986-10-15 Nippon Steel Corp 磁気特性の優れた無方向性電磁鋼板の製造方法
KR960011799B1 (ko) * 1991-08-14 1996-08-30 신닛뽄 세이데스 가부시기가이샤 무방향성 전기 강판의 제조 방법
JPH06240358A (ja) * 1993-02-12 1994-08-30 Nippon Steel Corp 磁束密度が高く、鉄損の低い無方向性電磁鋼板の製造方法
JPH06240359A (ja) * 1993-02-12 1994-08-30 Nippon Steel Corp 磁束密度が高く、鉄損の低い無方向性電磁鋼板の製造方法
JPH06240360A (ja) * 1993-02-12 1994-08-30 Nippon Steel Corp 磁気特性が極めて優れた無方向性珪素鋼板の製造方法
JP3331401B2 (ja) * 1993-03-31 2002-10-07 新日本製鐵株式会社 全周磁気特性の優れた無方向性電磁鋼板の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58136718A (ja) * 1982-02-10 1983-08-13 Kawasaki Steel Corp 磁気特性の優れた無方向性電磁鋼帯の製造方法
JPH03193821A (ja) * 1989-12-22 1991-08-23 Nippon Steel Corp 磁束密度が高くかつ鉄損の低い無方向性電磁鋼板の製造方
JPH06235026A (ja) * 1993-02-10 1994-08-23 Nippon Steel Corp 磁束密度が高く、鉄損の低い無方向性電磁鋼板の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0779369A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0786528A1 (fr) * 1996-01-25 1997-07-30 Usinor Sacilor Procédé de fabrication de tÔle d'acier magnétique à grains non orientés et tÔle obtenue par le procédé
FR2744135A1 (fr) * 1996-01-25 1997-08-01 Usinor Sacilor Procede de fabrication de tole d'acier magnetique a grains non orientes et tole obtenue par le procede
EP1473371A3 (fr) * 1996-01-25 2005-04-13 Usinor Procédé de fabrication de tole d'acier magnétique à grains non orientés et tole obtenue par le procédé
DE19807122A1 (de) * 1998-02-20 1999-09-09 Thyssenkrupp Stahl Ag Verfahren zur Herstellung von nichtkornorientiertem Elektroblech
DE19807122C2 (de) * 1998-02-20 2000-03-23 Thyssenkrupp Stahl Ag Verfahren zur Herstellung von nichtkornorientiertem Elektroblech
DE19930519C1 (de) * 1999-07-05 2000-09-14 Thyssenkrupp Stahl Ag Verfahren zum Herstellen von nicht kornorientiertem Elektroblech
DE19930518C1 (de) * 1999-07-05 2000-10-12 Thyssenkrupp Stahl Ag Verfahren zum Herstellen von nicht kornorientiertem Elektroblech
WO2001002610A1 (de) * 1999-07-05 2001-01-11 Thyssen Krupp Stahl Ag Verfahren zum herstellen von nicht kornorientiertem elektroblech
WO2013134895A1 (zh) * 2012-03-15 2013-09-19 宝山钢铁股份有限公司 一种无取向电工钢板及其制造方法

Also Published As

Publication number Publication date
EP0779369B1 (en) 2000-08-23
US5803989A (en) 1998-09-08
EP0779369A4 (en) 1997-09-17
DE69518529T2 (de) 2001-04-19
CN1047207C (zh) 1999-12-08
KR100207834B1 (ko) 1999-07-15
DE69518529D1 (de) 2000-09-28
EP0779369A1 (en) 1997-06-18
CN1154146A (zh) 1997-07-09

Similar Documents

Publication Publication Date Title
WO1996000306A1 (fr) Procede de fabrication de tole d&#39;acier electromagnetiquement non orientee presentant une densite elevee de flux magnetique pour un niveau faible de perte dans le noyau
JP2006501361A5 (ja)
JPH07252532A (ja) 磁気特性の優れた一方向性電磁鋼板の製造方法
JPH0742501B2 (ja) 磁性焼鈍前後の磁気特性の優れた無方向性電磁鋼板の製造方法
JP4422220B2 (ja) 磁束密度が高く鉄損の低い無方向性電磁鋼板及びその製造方法
JP3348802B2 (ja) 磁束密度が高く、鉄損の低い無方向性電磁鋼板の製造方法
KR100332251B1 (ko) 일방향성규소강판의제조방법
JPH0121851B2 (ja)
JP2023508294A (ja) 無方向性電磁鋼板およびその製造方法
JP4281119B2 (ja) 電磁鋼板の製造方法
JPH0757888B2 (ja) 磁束密度の高い無方向性電磁鋼板の製造方法
JP3474741B2 (ja) 磁気特性に優れた方向性電磁鋼板の製造方法
JP4206538B2 (ja) 方向性電磁鋼板の製造方法
JP2521585B2 (ja) 磁気特性の優れた一方向性電磁鋼板の製造方法
JP2713028B2 (ja) 方向性電磁鋼板およびその製造方法
JPH06306473A (ja) 磁気特性の優れた一方向性電磁鋼板の製造方法
JP2521586B2 (ja) 磁気特性の優れた一方向性電磁鋼板の製造方法
KR970007031B1 (ko) 안정화된 자기적 특성을 갖는 방향성 전기강판의 제조방법
JPH06240358A (ja) 磁束密度が高く、鉄損の低い無方向性電磁鋼板の製造方法
JPH08269553A (ja) 磁気特性の優れた一方向性電磁鋼板の製造方法
JP2784661B2 (ja) 高磁束密度薄手一方向性電磁鋼板の製造方法
KR20010039572A (ko) 투자율이 우수한 무방향성 전자강판 및 그 제조방법
JP3379058B2 (ja) 磁束密度が高く、鉄損の低い無方向性電磁鋼板の製造方法
JP3326083B2 (ja) 高磁場鉄損特性に比較して低磁場鉄損特性に優れた方向性電磁鋼板の製造方法
JPH0257125B2 (ja)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 95194275.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1995909113

Country of ref document: EP

Ref document number: 08765858

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1995909113

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1995909113

Country of ref document: EP