WO1996001282A1 - Water-based porphyrin coating system - Google Patents
Water-based porphyrin coating system Download PDFInfo
- Publication number
- WO1996001282A1 WO1996001282A1 PCT/AU1995/000364 AU9500364W WO9601282A1 WO 1996001282 A1 WO1996001282 A1 WO 1996001282A1 AU 9500364 W AU9500364 W AU 9500364W WO 9601282 A1 WO9601282 A1 WO 9601282A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polymerisable
- resin
- porphyrin
- water
- coating system
- Prior art date
Links
- 150000004032 porphyrins Chemical class 0.000 title claims abstract description 27
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 25
- 238000000576 coating method Methods 0.000 title claims description 53
- 239000011248 coating agent Substances 0.000 title claims description 41
- 229920005989 resin Polymers 0.000 claims abstract description 48
- 239000011347 resin Substances 0.000 claims abstract description 45
- 239000008199 coating composition Substances 0.000 claims abstract description 25
- 239000000203 mixture Substances 0.000 claims abstract description 21
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 claims abstract description 18
- 150000007524 organic acids Chemical class 0.000 claims abstract description 12
- -1 alkyl pyrroles Chemical class 0.000 claims abstract description 10
- 238000009472 formulation Methods 0.000 claims abstract description 8
- 150000001875 compounds Chemical class 0.000 claims abstract description 5
- 125000001424 substituent group Chemical group 0.000 claims abstract description 5
- 239000007795 chemical reaction product Substances 0.000 claims abstract description 4
- 230000002939 deleterious effect Effects 0.000 claims abstract description 4
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 claims abstract description 3
- 239000000463 material Substances 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 14
- 150000001299 aldehydes Chemical class 0.000 claims description 13
- 238000006243 chemical reaction Methods 0.000 claims description 12
- 229910052751 metal Inorganic materials 0.000 claims description 12
- 239000002184 metal Substances 0.000 claims description 12
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical group C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 10
- 239000003054 catalyst Substances 0.000 claims description 10
- 239000000047 product Substances 0.000 claims description 10
- 239000003153 chemical reaction reagent Substances 0.000 claims description 9
- 229920000180 alkyd Polymers 0.000 claims description 8
- 239000002253 acid Substances 0.000 claims description 7
- 239000002243 precursor Substances 0.000 claims description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 6
- 239000002904 solvent Substances 0.000 claims description 6
- MLUCVPSAIODCQM-NSCUHMNNSA-N crotonaldehyde Chemical group C\C=C\C=O MLUCVPSAIODCQM-NSCUHMNNSA-N 0.000 claims description 5
- MLUCVPSAIODCQM-UHFFFAOYSA-N crotonaldehyde Natural products CC=CC=O MLUCVPSAIODCQM-UHFFFAOYSA-N 0.000 claims description 5
- 150000003839 salts Chemical class 0.000 claims description 5
- OXHNLMTVIGZXSG-UHFFFAOYSA-N 1-Methylpyrrole Chemical group CN1C=CC=C1 OXHNLMTVIGZXSG-UHFFFAOYSA-N 0.000 claims description 4
- HGINCPLSRVDWNT-UHFFFAOYSA-N Acrolein Chemical compound C=CC=O HGINCPLSRVDWNT-UHFFFAOYSA-N 0.000 claims description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 4
- 125000004432 carbon atom Chemical group C* 0.000 claims description 4
- 150000007522 mineralic acids Chemical group 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- 229920000877 Melamine resin Polymers 0.000 claims description 3
- 239000003377 acid catalyst Substances 0.000 claims description 3
- 229910021529 ammonia Inorganic materials 0.000 claims description 3
- 239000001023 inorganic pigment Substances 0.000 claims description 3
- 239000011342 resin composition Substances 0.000 claims description 3
- 229910052723 transition metal Inorganic materials 0.000 claims description 3
- 150000003624 transition metals Chemical class 0.000 claims description 3
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 claims description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- 239000004593 Epoxy Substances 0.000 claims description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 2
- 150000001412 amines Chemical class 0.000 claims description 2
- 150000001805 chlorine compounds Chemical group 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 239000010949 copper Substances 0.000 claims description 2
- 150000004292 cyclic ethers Chemical class 0.000 claims description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 2
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 claims description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 claims description 2
- 229910052753 mercury Inorganic materials 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 239000011733 molybdenum Substances 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 235000005985 organic acids Nutrition 0.000 claims description 2
- 239000012860 organic pigment Substances 0.000 claims description 2
- 230000000737 periodic effect Effects 0.000 claims description 2
- 229920002635 polyurethane Polymers 0.000 claims description 2
- 239000004814 polyurethane Substances 0.000 claims description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 2
- 229910000314 transition metal oxide Inorganic materials 0.000 claims description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims 2
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical group OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 claims 1
- 229910052742 iron Inorganic materials 0.000 claims 1
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims 1
- NDLPOXTZKUMGOV-UHFFFAOYSA-N oxo(oxoferriooxy)iron hydrate Chemical group O.O=[Fe]O[Fe]=O NDLPOXTZKUMGOV-UHFFFAOYSA-N 0.000 claims 1
- 239000011541 reaction mixture Substances 0.000 claims 1
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 10
- 238000012360 testing method Methods 0.000 description 8
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 7
- 239000000654 additive Substances 0.000 description 6
- 230000000996 additive effect Effects 0.000 description 6
- 239000000123 paper Substances 0.000 description 6
- 150000002739 metals Chemical class 0.000 description 5
- 230000002117 porphyrinogenic effect Effects 0.000 description 5
- 239000011780 sodium chloride Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 4
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 4
- 230000003472 neutralizing effect Effects 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 235000009161 Espostoa lanata Nutrition 0.000 description 3
- 240000001624 Espostoa lanata Species 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 239000003973 paint Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 2
- ZHNUHDYFZUAESO-OUBTZVSYSA-N aminoformaldehyde Chemical compound N[13CH]=O ZHNUHDYFZUAESO-OUBTZVSYSA-N 0.000 description 2
- 239000012736 aqueous medium Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 125000000168 pyrrolyl group Chemical group 0.000 description 2
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 229910014033 C-OH Inorganic materials 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 229910014570 C—OH Inorganic materials 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PZZYQPZGQPZBDN-UHFFFAOYSA-N aluminium silicate Chemical compound O=[Al]O[Si](=O)O[Al]=O PZZYQPZGQPZBDN-UHFFFAOYSA-N 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 230000003373 anti-fouling effect Effects 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 description 1
- YTIVTFGABIZHHX-UHFFFAOYSA-N butynedioic acid Chemical compound OC(=O)C#CC(O)=O YTIVTFGABIZHHX-UHFFFAOYSA-N 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 230000000536 complexating effect Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- HGOMLSWXJIICBL-UHFFFAOYSA-F dialuminum;zinc;tetrasulfate;tetracosahydrate Chemical compound O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.[Al+3].[Al+3].[Zn+2].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O HGOMLSWXJIICBL-UHFFFAOYSA-F 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 239000011356 non-aqueous organic solvent Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- TWHXWYVOWJCXSI-UHFFFAOYSA-N phosphoric acid;hydrate Chemical class O.OP(O)(O)=O TWHXWYVOWJCXSI-UHFFFAOYSA-N 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D487/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
- C07D487/22—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains four or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F20/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
- C08F20/02—Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
- C08F20/10—Esters
- C08F20/34—Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D4/00—Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
Definitions
- This invention relates to coating compositions and in particular to water-based coating compositions involving resin systems based on polymerisable porphyrins.
- Coating compositions based on polymerisable porphyrin or porphyrinogenic resin systems described in the aforementioned patent applications are generally formulated using non-aqueous organic solvents.
- Water-based coating formulations are desirable because it is generally easier to provide water-based coatings which are ecologically compatible and meet environmental protection requirements, than is the case with coatings based on non-aqueous solvents.
- Water-based coatings find use in various areas of application in building and engineering, e.g. for metal cladding; in the marine and automotive industries; in hostile environments such as metal containers, road marking or chemical process plants; and in the creation of non-slip surfaces.
- a water-based resin or coating composition which comprises a polymerisable porphyrin.
- a polymerisable porphyrin suitable for use in the formulation of water-based resins or coating compositions is produced by the reaction of:
- the preferred pyrrole is N-methylpyrrole.
- Preferred aldehydes are those in which the aldehyde (CHO) group is attached to a carbon chain containing from 2 to 7 carbon atoms, more preferably from 3 to 6 carbon atoms. Specifically preferred aldehydes are crotonaldehyde or acrolein.
- the reaction generally requires the presence of an acid catalyst, which is selected to suit the particular chosen reagents (a) and (b).
- the catalyst may be the organic acid (c) itself or it may be another acid, such as an inorganic acid, such as hydrochloric acid, an organic acid, such as acetic or propionic acid, or an acid anhydride, such as phthalic anhydride.
- Acids containing vinyl groups, such as acrylic acid, or triple bonds, such as acetylene dicarboxylic acid, are especially useful in providing the dual functionality of the polymerisable acid (c) and the catalyst.
- Preparation of the polymerisable porphyrins of the invention involves relatively simple procedures. Generally the pyrrole, aldehyde and organic acid (and the additional acid catalyst, if required) are mixed together and allowed to react at room temperature. After a period of time, the “induction period", the mixture rapidly increases in viscosity as polymerisation proceeds.
- the extent of the reaction may be controlled by adding one or more suitable reagents which effectively terminate the polymerisation.
- a C j - Cg aliphatic alcohol such as butanol
- me reaction product can be further modified by the addition of other reagents which have the effect of enhancing or modifying the hydrophilic character, and other properties of the final product.
- the addition of ammonia increases water solubility but generally this effect needs to be modified by the concomitant addition of an amine, preferably a hydroxyalkylamine, most preferably diethanolamine.
- butanol also aids overall water-solubility or water- dispersability of the product and glycol ethers or cyclic ethers, such as tetrahydrofuran, have a similar effect.
- Combinations of the above reagents are referred to herein collectively as "neutralising solutions”.
- the resin products of the invention can be used alone as coating compositions or as part of a coating system.
- they may be combined with other materials for this purpose, including known coating materials or compositions, or precursors of such materials.
- Such coating systems include, for example, combinations of the porphyrinogenic resins with epoxy-, phenolic- or alkyd-based resins of known types.
- Resin systems based on the polymerisable porphyrins of the invention can be formulated as additive components for known coating formulations, thereby to provide a water-based resin system capable of addition of existing coating formulations, eg. paints, varnishes and surface coating of all kinds, and to thus impart to such existing formulations the inherently useful properties of the porphyrinogenic resin system.
- Coatings or coating compositions in accordance with this invention find applications in a variety of fields, for example, they can be used in the paint industry generally and especially in anti-corrosion coatings for metals in the automotive, marine and general engineering industries. They can be utilised as decorative or protective coatings on various substrates, such as metals, paper and ceramics. They can be used as insulating coatings or as coatings for printing or masking substrates, e.g. in processes involving etching.
- coating formulations include: antifouling coating compositions comprising a polymerisable porphyrin, water and a siloxane component; thermal insulation coating compositions comprising a polymerisable porphyrin, (foam) and water; flexible anticorrosion coating compositions comprising a polymerisable porphyrin, water and a synthetic rubber; and pigmented or coloured coating formulations comprising a polymerisable porphyrin; water and a pigment.
- a typical water-based coating system in accordance with this invention, consists of two major parts.
- the first part (Part A) is the water-based resin obtained as described above.
- the second part (Part B) is a pigmented resin mixture made from one or more selected commercial resins, and metal oxides. Mixing of the Part A resin, the Part B resin, together, optionally with additional commercial resins and additive coating modifiers, gives the total coating system.
- the coatings can be applied to any appropriate substrate, for example, wood, raw or dressed timber, metals, ceramics, galvanised steel, aluminium, mild steel, stainless steel, other metal alloys and glass.
- the coatings can be applied by any suitable known method, for example, by dipping, brushing or, more effectively, by electrodeposition.
- the resin products of the invention can be reacted with other unsaturated polymeric or polymerisable materials.
- reagents which can be used for this purpose are polymerisable monomers, oligomers or other polymer precursors which possess appropriate reactive groups. Oligomer types which contain such groups include:
- Oligomers may be terminated (“end capped”) or reactive.
- Preferred oligomer types are the alkyd resin precursors, such as acrylic-melamine, melamine-alkyd or simple alkyd formations.
- Examples include castor oil base alkyds, soya bean oil alkyds, rosin esters, -OH rich esters and COOH rich esters (rosin precursors), -OH deficient and -COOH deficient resins.
- Such reactions may require the presence of a catalyst.
- Inorganic acids such as HC1 or organic acids, especially acrylic acid, may be used as catalysts.
- Metal salts are also useful as catalysts, particularly salts of the Transition Metals (Groups 3 to 12 of the Periodic Table) and the heavier metals of Group 14. Apart from acting as catalysts, these metals can also form coordination complexes with porphyrinogenic moieties, giving rise to coloured products which are useful in coating formulations.
- the metal halides may be used, examples of which are the chlorides of copper, iron(III), molybdenum, nickel, manganese, mercury and lead.
- the resin products of the invention have also been found to be capable of undergoing further reaction with metal surfaces and to thereby form strongly adherent coatings which are highly resistant to saline solutions and other corrosive materials.
- the resin products of the invention are also capable of reaction with organic or inorganic pigments, transition metal oxides or transition metal complexes.
- the coloured coatings thus formed have excellent colour fastness and anticorrosive properties.
- the neutralising solution consists of 66.7% of 0.880 ammonia, 7.4% of diethanolamine, 11.1% of n-butanol and 14.8% THF.
- the coating system whose composition is given in Table III was applied on to the surface of BHP zincalum panels.
- the general coating properties are given in Table IV.
- Resin BT336 is an amino-formaldehyde resin in an aqueous medium.
- Heucophos ZPZ is a modified phosphate hydrate-based wetting agent manufactured by Heuback GmbH & Co., Germany.
- Resin BT309 is an amino-formaldehyde, film-forming resin precursor in an aqueous medium.
- Dow Corning Silicate Additive 29 contains the C-OH functional group. It is an additive designed to assist in levelling and flow-out. It also has anti-floating properties. 5 BYK Additive 032 is an emulsion of hydrophobic components and paraffin-based mineral oil, normally used as a paint additive.
- Curing of the coating can be classified into three stages. These are surface cure, through cure and full cure. In most coating application processes, it is desirable that the surface cure and the through cure should take short time while full cure takes relatively long time. This is because rapid surface cure and through cure ensure the existing of a rapid coating application process and the slower full cure gives a highly ordered crosslinking and complexing which consequently ensures the development of good coating properties.
- a dry cotton ball of about 5mm diameter is placed on the surface of the coating panel.
- the coating panel is placed about 10 - 15 cm from an air jet. Slight blowing is then applied on the cotton ball.
- Surface cure is considered to be achieved when the cotton ball can be blown off the coating surface and no cotton fibre sticks to the coating surface.
- the surface cure time is the time which elapses between the end of the coating application and the time when surface cure is confirmed.
- a 20 x 20 mnr quantity filter paper is placed on the surface of coated panel.
- a 200g weight with circular bottom (1.13 cm in diameter) is then placed on top of the filter paper. After 30 seconds, the weight is removed and the coating panel turned upside down.
- Through cure is considered to have been realised if the filter paper falls of the coated surface and no fibre sticks to the coated surface.
- the time which elapses between the end of coating application and the time when through cure is achieved is the through cure time.
- Scratch Test A coin is pulled across the coating surface. The coating has good scratch resistance when no coating is lifted.
- Solvent Resistance This is based on double rubs with tissue paper.
- a double rub is a to-and-fro rub.
- the double rub value quoted is when the colour of the coating appears on the tissue paper as a consequence of the coating dissolving in the solvent, i.e. xylene.
- the cured coated panels were subjected to saline immersion tests.
- the saline solution contained 5% of NaCl and had a pH of 7.0.
- the saline immersion tests were both conducted at ambient temperature and at 120°C. The observations are recorded as Table V.
- Rust area increased to 2.5-4 mm in diameter.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Paints Or Removers (AREA)
Abstract
A polymerisable porphyrin suitable for use in the formulation of water-based resins or coating compositions characterised in that it comprises the reaction product of: (a) one or more compounds selected from the group consisting of pyrrole and N-(lower)alkyl pyrroles, any of which may be optionally ring substituted with one or two non-deleterious substituents; (b) at least one α,β-unsaturated aldehyde; (c) at least one unsaturated and/or polymerisable organic acid. Water-based resins or coating compositions or systems, containing such polymerisable porphyrins.
Description
WATER-BASED PORPHYRIN COATING SYSTEM
This invention relates to coating compositions and in particular to water-based coating compositions involving resin systems based on polymerisable porphyrins.
In International Patent Application No. WO92/01007 (PCT/AU91/00298), we described how the condensation of a beta-unsaturated aldehyde, especially crotonaldehyde, and pyrrole can give rise to a monomeric product which contains porphyrin-bearing unsaturated substituents. This monomeric material, which we referred to as a "polymerisable porphyrin", then readily polymerises to produce polymeric product. Polymers made from the monomeric material, or copolymers formed from the polymerisable material and at least one other polymerisable monomer of a known type, can be used in the production of films, coatings and other structures. The closely related porphyrinogenic resins are the subject of International Patent Application No WO93/13150 (PCT/AU92/00682). Both of these publications are incorporated herein by reference.
Coating compositions based on polymerisable porphyrin or porphyrinogenic resin systems described in the aforementioned patent applications are generally formulated using non-aqueous organic solvents. Water-based coating formulations are desirable because it is generally easier to provide water-based coatings which are ecologically compatible and meet environmental protection requirements, than is the case with coatings based on non-aqueous solvents. Water-based coatings find use in various areas of application in building and engineering, e.g. for metal cladding; in the marine and automotive industries; in hostile environments such as metal containers, road marking or chemical process plants; and in the creation of non-slip surfaces.
We have now found that it is possible to produce polymerisable porphyrins which can be used in the formulation of water-based coating compositions. Such polymerisable porphyrins can be produced by a modification of the procedures described in WO92/01007.
According to one aspect of the present invention there is provided a water-based resin or coating composition which comprises a polymerisable porphyrin.
According to a further aspect of the invention, a polymerisable porphyrin suitable for use in the formulation of water-based resins or coating compositions is produced by the reaction of:
(a) one or more compounds selected from the group consisting of pyrrole and N-(lower)alkyl pyrroles, any of which may be optionally ring substituted with one or two non-deleterious substituents; (b) at least one α,β-unsaturated aldehyde;
(c) at least one unsaturated and/or polymerisable organic acid.
The preferred pyrrole is N-methylpyrrole. Preferred aldehydes are those in which the aldehyde (CHO) group is attached to a carbon chain containing from 2 to 7 carbon atoms, more preferably from 3 to 6 carbon atoms. Specifically preferred aldehydes are crotonaldehyde or acrolein.
The reaction generally requires the presence of an acid catalyst, which is selected to suit the particular chosen reagents (a) and (b). The catalyst may be the organic acid (c) itself or it may be another acid, such as an inorganic acid, such as hydrochloric acid, an organic acid, such as acetic or propionic acid, or an acid anhydride, such as phthalic anhydride. Acids containing vinyl groups, such as acrylic acid, or triple bonds, such as acetylene dicarboxylic acid, are especially useful in providing the dual functionality of the polymerisable acid (c) and the catalyst.
Preparation of the polymerisable porphyrins of the invention involves relatively simple procedures. Generally the pyrrole, aldehyde and organic acid (and the additional acid catalyst, if required) are mixed together and allowed to react at room temperature. After a period of time, the "induction period", the mixture rapidly increases in viscosity as polymerisation proceeds.
Although the mechanism by which the polymerisation occurs and the chemical
structure of the resulting product are not yet fully understood, it is believed that the reaction initially involves the reaction of the pyrrole and the aldehyde to form a porphyrin ring structure. Organic acid moieties from the acid (c) then become attached to free positions on the pyrrole rings by reaction between unsaturation in the acid and remaining double bonds of the pyrrole rings.
The extent of the reaction may be controlled by adding one or more suitable reagents which effectively terminate the polymerisation. For example, addition of a Cj- Cg aliphatic alcohol, such as butanol, results in "end-capping" of the carboxyl group of the organic acid. At the same time, me reaction product can be further modified by the addition of other reagents which have the effect of enhancing or modifying the hydrophilic character, and other properties of the final product. The addition of ammonia increases water solubility but generally this effect needs to be modified by the concomitant addition of an amine, preferably a hydroxyalkylamine, most preferably diethanolamine. The addition of butanol also aids overall water-solubility or water- dispersability of the product and glycol ethers or cyclic ethers, such as tetrahydrofuran, have a similar effect. Combinations of the above reagents are referred to herein collectively as "neutralising solutions".
The resin products of the invention can be used alone as coating compositions or as part of a coating system. Advantageously, they may be combined with other materials for this purpose, including known coating materials or compositions, or precursors of such materials.
Such coating systems include, for example, combinations of the porphyrinogenic resins with epoxy-, phenolic- or alkyd-based resins of known types.
Resin systems based on the polymerisable porphyrins of the invention can be formulated as additive components for known coating formulations, thereby to provide a water-based resin system capable of addition of existing coating formulations, eg. paints, varnishes and surface coating of all kinds, and to thus impart to such existing formulations the inherently useful properties of the porphyrinogenic resin system.
Coatings or coating compositions in accordance with this invention find applications in a variety of fields, for example, they can be used in the paint industry generally and especially in anti-corrosion coatings for metals in the automotive, marine and general engineering industries. They can be utilised as decorative or protective coatings on various substrates, such as metals, paper and ceramics. They can be used as insulating coatings or as coatings for printing or masking substrates, e.g. in processes involving etching.
Other examples of such coating formulations include: antifouling coating compositions comprising a polymerisable porphyrin, water and a siloxane component; thermal insulation coating compositions comprising a polymerisable porphyrin, (foam) and water; flexible anticorrosion coating compositions comprising a polymerisable porphyrin, water and a synthetic rubber; and pigmented or coloured coating formulations comprising a polymerisable porphyrin; water and a pigment.
A typical water-based coating system, in accordance with this invention, consists of two major parts. The first part (Part A) is the water-based resin obtained as described above. The second part (Part B) is a pigmented resin mixture made from one or more selected commercial resins, and metal oxides. Mixing of the Part A resin, the Part B resin, together, optionally with additional commercial resins and additive coating modifiers, gives the total coating system.
The coatings can be applied to any appropriate substrate, for example, wood, raw or dressed timber, metals, ceramics, galvanised steel, aluminium, mild steel, stainless steel, other metal alloys and glass. The coatings can be applied by any suitable known method, for example, by dipping, brushing or, more effectively, by electrodeposition.
The resin products of the invention can be reacted with other unsaturated polymeric or polymerisable materials. Among the reagents which can be used for this
purpose are polymerisable monomers, oligomers or other polymer precursors which possess appropriate reactive groups. Oligomer types which contain such groups include:
(i) melamine based oligomers
(ii) epoxy oligomers
(iii) polyurethane oligomers or
(iv) alkyd resin precursors.
Oligomers may be terminated ("end capped") or reactive.
Preferred oligomer types are the alkyd resin precursors, such as acrylic-melamine, melamine-alkyd or simple alkyd formations.
Examples include castor oil base alkyds, soya bean oil alkyds, rosin esters, -OH rich esters and COOH rich esters (rosin precursors), -OH deficient and -COOH deficient resins.
Such reactions may require the presence of a catalyst. Inorganic acids, such as HC1 or organic acids, especially acrylic acid, may be used as catalysts. Metal salts are also useful as catalysts, particularly salts of the Transition Metals (Groups 3 to 12 of the Periodic Table) and the heavier metals of Group 14. Apart from acting as catalysts, these metals can also form coordination complexes with porphyrinogenic moieties, giving rise to coloured products which are useful in coating formulations.
Conveniently, the metal halides may be used, examples of which are the chlorides of copper, iron(III), molybdenum, nickel, manganese, mercury and lead. The resin products of the invention have also been found to be capable of undergoing further reaction with metal surfaces and to thereby form strongly adherent coatings which are highly resistant to saline solutions and other corrosive materials.
The resin products of the invention (and their reaction products with other polymeric/polymerisable materials) are also capable of reaction with organic or inorganic
pigments, transition metal oxides or transition metal complexes. The coloured coatings thus formed have excellent colour fastness and anticorrosive properties.
The invention is further described and illustrated by the following non-limiting examples. (All percentages are by weight).
Example 1. Preparation of Resin
(A) The formulation for a typical Part A resin is given in Table I. All parts and percentages are by weight
Table I Formulation for Part A resin
Materials Composition (%) Source
N-methylpyrrole 18.7 BASF
Crotonaldehyde 4.3 Aldrich
Acrylic acid 40.1 Aldrich
Neutralising 7.5 see Note solution
THF 2.6
butanol 10.7
Water 16.1
Note: The neutralising solution consists of 66.7% of 0.880 ammonia, 7.4% of diethanolamine, 11.1% of n-butanol and 14.8% THF.
The N-methylpyrrole, crotonaldehyde and acrylic acid were mixed and allowed to stand at room temperature for 3 hours. The neutralising solution was then added and mixed in. The mixture was heated at 60°-70°C for 1 hour after which the butanol, additional THF and water were added.
Example 2. Preparation of Coating Composition
(i) The composition of the Part B resin is given in Table II.
Table II Composition of Part B resin
Materials Composition (%) Source
Resin BT3361 35 BIP Chemicals Ltd.
Water 15
ZnO 5 BDH Chemicals Ltd.
Aluminium silicate 15 Kalon
ZPZ2 5 Kalon
Fe2O3 25 Kalon
(ii) The total coating formulation is given in Table III.
Table III Composition of total coating
Materials Composition (%) Source
Part A 45 See Example 1
Part B 35 see Table II
Resin BT3093 17 BIP Chemicals Ltd.
Dow Corning 294 1 Dow Corning Ltd.
BYK0325 2 BYK Chemicals Ltd.
Example 3. Testing
The coating system whose composition is given in Table III was applied on to the surface of BHP zincalum panels. The general coating properties are given in Table IV.
Table IV General coating properties
Property Results
Surface cure @ 120°C6 5 minutes
Thorough cure @ 120°C6 60 minutes
7 Scratch resistance Good
T-bend8 2T
Solvent resistance (Xylene)y >50 DR
Gloss10 Good
Notes to the tables:
1 Resin BT336 is an amino-formaldehyde resin in an aqueous medium.
2 Heucophos ZPZ is a modified phosphate hydrate-based wetting agent manufactured by Heuback GmbH & Co., Germany.
Resin BT309 is an amino-formaldehyde, film-forming resin precursor in an aqueous medium.
Dow Corning Silicate Additive 29 contains the C-OH functional group. It is an additive designed to assist in levelling and flow-out. It also has anti-floating properties.
5 BYK Additive 032 is an emulsion of hydrophobic components and paraffin-based mineral oil, normally used as a paint additive.
6 Curing time
Curing of the coating can be classified into three stages. These are surface cure, through cure and full cure. In most coating application processes, it is desirable that the surface cure and the through cure should take short time while full cure takes relatively long time. This is because rapid surface cure and through cure ensure the existing of a rapid coating application process and the slower full cure gives a highly ordered crosslinking and complexing which consequently ensures the development of good coating properties.
Surface-cure Time
A dry cotton ball of about 5mm diameter is placed on the surface of the coating panel. The coating panel is placed about 10 - 15 cm from an air jet. Slight blowing is then applied on the cotton ball. Surface cure is considered to be achieved when the cotton ball can be blown off the coating surface and no cotton fibre sticks to the coating surface. The surface cure time is the time which elapses between the end of the coating application and the time when surface cure is confirmed.
Through Curing Time
A 20 x 20 mnr quantity filter paper is placed on the surface of coated panel. A 200g weight with circular bottom (1.13 cm in diameter) is then placed on top of the filter paper. After 30 seconds, the weight is removed and the coating panel turned upside down. Through cure is considered to have been realised if the filter paper falls of the coated surface and no fibre sticks to the coated surface. The time which elapses between the end of coating application and the time when through cure is achieved is the through cure time.
Scratch Test: A coin is pulled across the coating surface. The coating has good scratch resistance when no coating is lifted.
8 T-Bend Test: The panel is bent over on itself (IT) and then again (2T) etc. The "T" value quoted is the highest one at which the film does not break up and cannot be easily removed by standard testing tapes.
9 Solvent Resistance: This is based on double rubs with tissue paper. A double rub is a to-and-fro rub. The double rub value quoted is when the colour of the coating appears on the tissue paper as a consequence of the coating dissolving in the solvent, i.e. xylene.
10 Gloss: The gloss of the coating is judged visually as good to bad with "good" meaning acceptable relative to the qualities required of a top coat.
The cured coated panels were subjected to saline immersion tests. The saline solution contained 5% of NaCl and had a pH of 7.0. The saline immersion tests were both conducted at ambient temperature and at 120°C. The observations are recorded as Table V.
Table V Results of saline immersion test
Period of test Observations
Ambient temperature
790 hours Coating remain unaffected
120°C
120 hours Coating lost gloss
264 hours Several pin-holes observed.
300 hours Rust in pin-holes observed.
360 hours Rust area observed. (1-1.2 mm diameter)
460 hours Rust area increased to 2.5-4 mm in diameter.
Those skilled in the art will appreciate that the invention described herein is susceptible to variations and modifications other than those specifically described. It is to be understood that the invention includes all such variations and modifications which fall within its spirit and scope. The invention also includes all the steps, features, compositions and compounds referred to or indicated in this specification, individually or collectively, and any and all combinations of any two or more of said steps or features.
Throughout this specification and the claims which follow, unless the context requires otherwise, the word "comprise", or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated integer or group of integers but not the exclusion of any other integer or group of integers.
Claims
1. A polymerisable porphyrin suitable for use in the formulation of water-based resins or coating compositions characterised in that it comprises the reaction product of: (a) one or more compounds selected from the group consisting of pyrrole and
N-(lower)alkyl pyrroles, any of which may be optionally ring substituted with one or two non-deleterious substituents;
(b) at least one α,β-unsaturated aldehyde;
(c) at least one unsaturated and/or polymerisable organic acid.
2. A polymerisable porphyrin as claimed in Claim 1, characterised in that the pyrrole is N-methylpyrrole.
3. A polymerisable porphyrin as claimed in Claim 1 or Claim 2, characterised in that the aldehyde is one in which the aldehyde (CHO) group is attached to a carbon chain containing from 2 to 7 carbon atoms.
4. A polymerisable porphyrin as claimed in Claim 3, characterised in that the carbon chain of the aldehyde contains from 3 to 6 carbon atoms.
5. A polymerisable porphyrin as claimed in Claim 4, characterised in that the aldehyde is crotonaldehyde or acrolein.
6. A process for producing a polymerisable porphyrin suitable for use in formulation of water-based resins or coating compositions, characterised in that it comprises reacting together
(a) one or more compounds selected from the group consisting of pyrrole and N-(lower)alkyl pyrroles, any of which may be optionally ring substituted with one or two non-deleterious substituents; (b) at least one α,β-unsaturated aldehyde; and
(c) at least one unsaturated and/or polymerisable organic acid; in the presence of an acid catalyst.
7. A process as claimed in Claim 6, characterised in that the catalyst is the acid component (c).
8. A process as claimed in Claim 6, characterised in that the catalyst is an inorganic acid or an organic acid which is not the acid component (c).
9. A process as claimed in any one of Claims 6 to 8, characterised in that the extent of the reaction between the components (a), (b) and (c) is controlled by adding to the reaction mixture one or more reagents which effectively terminate the reaction.
10. A process as claimed in Claim 9, characterised in that the added reagent is a C Co aliphatic alcohol, ammonia, an amine or a mixture of any two or more of such reagents.
11. A process as claimed in Claim 10, characterised in that the added reagent includes a water-solubility-enhancing or water-dispersability-enhancing solvent.
12. A process as claimed in Claim 11, characterised in that the solvent is a glycol ether, or a cyclic ether.
13. A process as claimed in Claim 12, characterised in that the solvent is tetrahydrofuran.
14. A water-based resin or coating composition characterised in that it comprises a polymerisable porphyrin.
15. A water-based resin or coating composition characterised in that it comprises a polymerisable porphyrin as claimed in any one of Claims 1 to 5.
16. A resin coating system as claimed in Claim 14 or Claim 15, characterised in that it includes at least one other known coating material.
17. A resin coating system as claimed in Claim 16, characterised in that the polymerisable resin is reacted with at least one unsaturated polymeric or polymerisable material.
18. A resin coating system as claimed in Claim 17, characterised in that the polymerised or polymerisable material is one or more of the following: (i) a melamine based oligomer (ii) an epoxy oligomer (iii) a polyurethane oligomer or (iv) an alkyd resin precursor.
19. A resin coating system as claimed in Claim 17 or Claim 18, characterised in that the reaction is carried out in the presence of a catalyst selected from inorganic acids, organic acids and metal salts.
20. A resin coating system as claimed in Claim 19, wherein the catalyst is a salt of a metal selected from Groups 3 to 12 of the Periodic Table.
21. A resin coating system as claimed in Claim 20, characterised in that the metal salt is a chloride of copper, iron (III), molybdenum, nickel, manganese, mercury or lead.
22. A resin coating system as claimed in any one of Claims 17 to 21, characterised in that the crosslinked resin product is further reacted with an organic pigment, an inorganic pigment, a transition metal oxide or a transition metal complex.
23. A resin coating system as claimed in Claim 22, characterised in that the inorganic pigment is ferric oxide.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| AU27077/95A AU2707795A (en) | 1994-07-01 | 1995-06-21 | Water-based porphyrin coating system |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| AUPM6594 | 1994-07-01 | ||
| AUPM6594A AUPM659494A0 (en) | 1994-07-01 | 1994-07-01 | Water-based porphyrin coating system |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO1996001282A1 true WO1996001282A1 (en) | 1996-01-18 |
Family
ID=3781162
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/AU1995/000364 WO1996001282A1 (en) | 1994-07-01 | 1995-06-21 | Water-based porphyrin coating system |
Country Status (2)
| Country | Link |
|---|---|
| AU (2) | AUPM659494A0 (en) |
| WO (1) | WO1996001282A1 (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN114181583A (en) * | 2021-12-06 | 2022-03-15 | 合众(佛山)化工有限公司 | Porphyrin derivative modified water-based acrylic resin and preparation method thereof |
| CN114181582A (en) * | 2021-12-06 | 2022-03-15 | 合众(佛山)化工有限公司 | Nontoxic efficient porphyrin derivative modified acrylic resin water-based anticorrosive paint |
| CN114276744A (en) * | 2021-12-02 | 2022-04-05 | 合众(佛山)化工有限公司 | Modified polyurethane resin water-based anticorrosive paint |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE2308252A1 (en) * | 1973-02-20 | 1974-08-22 | Basf Ag | METHOD FOR MANUFACTURING MESOTETRAARYL PORPHINES |
| SU1574603A1 (en) * | 1988-08-11 | 1990-06-30 | Ивановский Химико-Технологический Институт | Method of obtaining meso-tetraaryloctamethylporphyrins |
| WO1992001007A1 (en) * | 1990-07-06 | 1992-01-23 | Memtec Limited | Polymerisable porphyrins |
| WO1993013150A1 (en) * | 1991-12-30 | 1993-07-08 | Memtec Limited | Porphyrinogenic resin systems and polymers derived therefrom |
| JPH05255338A (en) * | 1992-03-11 | 1993-10-05 | Nippon Soda Co Ltd | Metal porphyrin complex |
-
1994
- 1994-07-01 AU AUPM6594A patent/AUPM659494A0/en not_active Abandoned
-
1995
- 1995-06-21 WO PCT/AU1995/000364 patent/WO1996001282A1/en active Application Filing
- 1995-06-21 AU AU27077/95A patent/AU2707795A/en not_active Abandoned
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE2308252A1 (en) * | 1973-02-20 | 1974-08-22 | Basf Ag | METHOD FOR MANUFACTURING MESOTETRAARYL PORPHINES |
| SU1574603A1 (en) * | 1988-08-11 | 1990-06-30 | Ивановский Химико-Технологический Институт | Method of obtaining meso-tetraaryloctamethylporphyrins |
| WO1992001007A1 (en) * | 1990-07-06 | 1992-01-23 | Memtec Limited | Polymerisable porphyrins |
| WO1993013150A1 (en) * | 1991-12-30 | 1993-07-08 | Memtec Limited | Porphyrinogenic resin systems and polymers derived therefrom |
| JPH05255338A (en) * | 1992-03-11 | 1993-10-05 | Nippon Soda Co Ltd | Metal porphyrin complex |
Non-Patent Citations (1)
| Title |
|---|
| DERWENT ABSTRACT, Accession No. 91-146944/20; & SU,A,1 574 603 (IVAN CHEM TECHN INS) 30 June 1990. * |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN114276744A (en) * | 2021-12-02 | 2022-04-05 | 合众(佛山)化工有限公司 | Modified polyurethane resin water-based anticorrosive paint |
| CN114181583A (en) * | 2021-12-06 | 2022-03-15 | 合众(佛山)化工有限公司 | Porphyrin derivative modified water-based acrylic resin and preparation method thereof |
| CN114181582A (en) * | 2021-12-06 | 2022-03-15 | 合众(佛山)化工有限公司 | Nontoxic efficient porphyrin derivative modified acrylic resin water-based anticorrosive paint |
Also Published As
| Publication number | Publication date |
|---|---|
| AU2707795A (en) | 1996-01-25 |
| AUPM659494A0 (en) | 1994-07-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP3380556B2 (en) | Water-dispersible acrylic-modified polyester resin used for coating and method for producing the same | |
| US3719629A (en) | Water thinnable coating compositions from aminoethylated interpolymers | |
| JPS6178860A (en) | Epoxy graft acryl aqueous primer surface | |
| WO1996018699A1 (en) | Coil coating compositions with low temperature flexibility and improved stain resistance | |
| CA1296470C (en) | Urea-aldehyde polycondensates, preparation thereof and use thereof as surface coating binders | |
| JPH09286933A (en) | Antifouling coating composition | |
| JPS5821457A (en) | thermosetting coating composition | |
| AU663911B2 (en) | Porphyrinogenic resin systems and polymers derived therefrom | |
| JPS6036237B2 (en) | Method for producing reactive curable binder mixtures and cured articles | |
| WO1996001282A1 (en) | Water-based porphyrin coating system | |
| EP0099207A1 (en) | Agents for preparing cross-linked polymers and polymerisable compositions and water based paint products containing such agents | |
| US3137583A (en) | Corrosion resistant paints | |
| JPH0689290B2 (en) | Paint composition | |
| US4195004A (en) | Process for preparing water-dispersible resins | |
| JP3191874B2 (en) | Fast-curing coating composition | |
| EP0002548B1 (en) | Process for the preparation of water-dispersible resins, and their use in surface coatings | |
| US11920052B2 (en) | Waterborne, UV curable coating composition for easy-clean coatings | |
| CN113045948A (en) | Preparation method of water-based acrylic amino baking paint | |
| JPS608262B2 (en) | Self-curing resin composition useful for coating coatings | |
| JPS6143668A (en) | Water-and oil-repellent paint | |
| US3240734A (en) | Coating compositions comprising aldehyde modified amide interpolymers and polyamide resins | |
| CN117025049B (en) | Water-based stainless steel coating and preparation method thereof | |
| KR20110085507A (en) | Hybrid resin for CCM back coating, preparation method thereof and coating composition comprising same | |
| JP3339629B2 (en) | Aqueous dispersion and resin composition for aqueous paint using the same | |
| US3485781A (en) | Cross-linking of water soluble or water-dispersible polyesters with dichromates |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU CA CN JP KR NO US |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
| DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| 122 | Ep: pct application non-entry in european phase |