[go: up one dir, main page]

WO1996001324A2 - Nouveau site interne d'entree des ribosomes, vecteur le contenant et utilisation therapeutique - Google Patents

Nouveau site interne d'entree des ribosomes, vecteur le contenant et utilisation therapeutique Download PDF

Info

Publication number
WO1996001324A2
WO1996001324A2 PCT/FR1995/000894 FR9500894W WO9601324A2 WO 1996001324 A2 WO1996001324 A2 WO 1996001324A2 FR 9500894 W FR9500894 W FR 9500894W WO 9601324 A2 WO9601324 A2 WO 9601324A2
Authority
WO
WIPO (PCT)
Prior art keywords
vector
sequence
gene
dna fragment
interest
Prior art date
Application number
PCT/FR1995/000894
Other languages
English (en)
Other versions
WO1996001324A3 (fr
Inventor
Clarisse Berlioz
Sandrine Jacquemoud
Christophe Torrent
Jean-Luc Darlix
Original Assignee
Institut National De La Sante Et De La Recherche Medicale (Inserm)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut National De La Sante Et De La Recherche Medicale (Inserm) filed Critical Institut National De La Sante Et De La Recherche Medicale (Inserm)
Priority to US08/600,999 priority Critical patent/US5925565A/en
Priority to AU29295/95A priority patent/AU707874B2/en
Priority to EP95925007A priority patent/EP0769062A2/fr
Priority to JP8503707A priority patent/JPH10503644A/ja
Publication of WO1996001324A2 publication Critical patent/WO1996001324A2/fr
Publication of WO1996001324A3 publication Critical patent/WO1996001324A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/13011Gammaretrovirus, e.g. murine leukeamia virus
    • C12N2740/13051Methods of production or purification of viral material
    • C12N2740/13052Methods of production or purification of viral material relating to complementing cells and packaging systems for producing virus or viral particles
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/90Vectors containing a transposable element
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2840/00Vectors comprising a special translation-regulating system
    • C12N2840/20Vectors comprising a special translation-regulating system translation of more than one cistron
    • C12N2840/203Vectors comprising a special translation-regulating system translation of more than one cistron having an IRES
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/788Of specified organic or carbon-based composition
    • Y10S977/802Virus-based particle
    • Y10S977/803Containing biological material in its interior
    • Y10S977/804Containing nucleic acid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/904Specified use of nanostructure for medical, immunological, body treatment, or diagnosis
    • Y10S977/915Therapeutic or pharmaceutical composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/904Specified use of nanostructure for medical, immunological, body treatment, or diagnosis
    • Y10S977/92Detection of biochemical

Definitions

  • New internal ribosome entry site New internal ribosome entry site. carrier vector and therapeutic use
  • the present invention relates to a DNA fragment isolated from a retrotransposon and comprising an internal ribosome entry site (IRES). More particularly, it relates to expression vectors comprising this DNA fragment and in particular polycistronic vectors allowing the efficient and stable expression of several genes of interest under the dependence of the same promoter.
  • the present invention finds an interesting application in the field of gene therapy vectors.
  • the vectors are obtained by deletion of at least part of the viral genes which are replaced by the genes of therapeutic interest.
  • Such vectors can be propagated in a complementation line which provides in trans the deleted viral functions to generate a viral vector particle defective for replication but capable of infecting a host cell.
  • retroviral vectors are among the most used, but mention may also be made of vectors derived from adenoviruses, viruses associated with adenoviruses, poxviruses and herpes viruses. This type of vector, their organization and their mode of infection are widely described in the literature accessible to those skilled in the art.
  • ribosomes enter the messenger RNA through the cap located at the 5 'end of all eukaryotic mRNAs.
  • IRES a certain number of these structures, called IRES because of their function, have been identified in the 5 ′ non-coding region of non-capped viral mRNAs such as that in particular of picornaviruses such as the poliomyelitis virus (Pelletier et al. ., 1988, Mol. Cell. Biol., ⁇ 9, 1103-1112) and EMCV (Encephalomyocarditis virus (Jang et al., J. Virol., 1988, 62, 2636-2643).
  • the genome of eukaryotic cells includes a number of mobile cellular genetic elements, called transposons, which have the ability to move from one site in the genome to another chosen at random. At present, their biological function and significance is unknown. Some of them, the retrotransposons, appear to be related to retroviral proviruses by their organization and their mode of transposition (by an RNA intermediary, reverse transcription and. integration into the cell genome). Among the various murine retrotransposons identified to date, there are the elements VL30. The murine genome contains 150 to 200 copies. They are approximately 6 kb in length and have direct repeats at their ends reminiscent of retroviral LTRs. They are defective for replication and do not contain coding sequences (codons for stopping translation in the different reading phases).
  • the IRES site of a murine VL30 is particularly advantageous. Firstly, it allows an effective and stable translation reinitiation rate in the long term and, secondly and unexpectedly, it can also, within the framework of a retroviral vector, fulfill the functions of dimerization and d packaging, regardless of its position in the vector. And finally, because of its weak homology with retroviral sequences, its use considerably reduces the risk of production of viruses competent for replication, an advantageous property in the context of gene therapy vectors intended for human use.
  • the present invention relates to an isolated DNA fragment comprising an internal ribosome entry site (IRES) and / or an encapsidation sequence, characterized in that it is derived from a retrotransposon.
  • IRS internal ribosome entry site
  • encapsidation sequence characterized in that it is derived from a retrotransposon.
  • isolated DNA fragment is meant a DNA fragment isolated from its context, that is to say not associated with another retrotransposon sequence other than that defined below.
  • retrotransposon refers to a genetic element mobile cell which exhibits characteristics of the retroviral type, in particular by the existence of direct repetitions at its two ends.
  • IRES is meant a sequence capable of promoting the entry of ribosomes into an RNA molecule in a manner independent of the cap, at an internal site of this RNA.
  • An packaging sequence is a sequence involved in the packaging process of retroviruses or retroviral vectors by promoting the dimerization of two copies of the retroviral genome and by allowing the dimer to be packaged in viral particles.
  • derivative refers to a structure having a retrotransposon origin but which may have undergone some modifications, have been obtained by chemical synthesis or else various elements comprising parts of retrotransposon, such as the HaMSV virus.
  • a DNA fragment according to the invention is capable of exerting an IRES function and an packaging function when it is introduced into an appropriate retroviral vector.
  • a DNA fragment according to the invention is isolated from the 5 'end of a retrotransposon and in particular from the region which directly follows the direct repeat located at its 5' end (LTR-like 5 ') and, in particular, the RNA transfer binding site (PBS).
  • LTR-like 5 ' the region which directly follows the direct repeat located at its 5' end
  • PBS RNA transfer binding site
  • it comprises at least 100 nucleotides of said region, advantageously at least 200 nucleotides, preferably at least 300 nucleotides, preferably at least 400 nucleotides and, most preferably, at least 550 nucleotides , this by counting the nucleotides apart from the 5 'direct repetition. But, of course, it can extend beyond in the 3 'direction up to at most 0.88 to 1.5 kb.
  • a DNA fragment according to the invention is derived from a VL30 element of rodent, preferably, of murine origin and, very particularly, of rat or mouse.
  • a DNA fragment having a sequence substantially homologous to the sequence presented in the identifier of sequence SEQ ID NO: 1, starting at nucleotide 1 and ending at nucleotide 590 or, optionally, starting at nucleotide 176 and ending at nucleotide 590.
  • substantially homologous refers to a degree of homology greater than 70%, advantageously greater than 80%, preferably greater than 90% and, most preferably, greater than 95%.
  • a DNA fragment according to the invention may have a sequence slightly different from one of the sequences described in the sequence identifiers 1 and 2, provided however that the substitution, the deletion or the addition of one or more several nucleotides does not affect its IRES function and / or the packaging function.
  • a DNA fragment according to the invention is intended to be integrated (in any orientation) into a transfer and expression vector for one or more gene (s) of interest.
  • the choice of such a vector is wide and the techniques of cloning into the selected vector are within the reach of those skilled in the art.
  • poxvirus canary pox or vaccinia virus
  • adenovirus baculovirus
  • l virus herpes virus associated with an adenovirus or retrovirus.
  • adenoviral vector when it is an adenoviral vector, it can be derived from a human adenovirus, preferably of type 2 or 5, animal, preferably canine or avian, or alternatively a hybrid between various species.
  • adenoviruses The general technology for adenoviruses is disclosed in Graham and Prevec (1991, Methods in Molecular Biology, Vol 7, Gene tran fer and Expression Protocols; Ed E.J. Murray, the human Press Inc, 109-118).
  • a DNA fragment according to the invention is preferably positioned upstream of a gene of interest to improve the translation of the expression product for which it codes. It can be included in an expression cassette of the monocistronic type (for the expression of a gene of interest placed under the control of a promoter) or polycistronic (for the expression of at least two genes of interest placed under the control of the same promoter).
  • the latter can contain several elements in tandem "IRES site-gene of interest" of which at least one of the IRES sites consists of a DNA fragment according to the invention. It is particularly preferred to use it in a dicistronic cassette into which it can be inserted either upstream of the first gene of interest or upstream of the second, the latter variant being the preferred.
  • a vector according to the invention comprises several expression cassettes, these can be inserted in any orientation relative to each other; in the same orientation (promoter acting in the same direction) or in reverse orientation (promoter acting in the opposite direction).
  • a vector according to the invention comprises several DNA fragments according to the invention, it is preferable that they come from retrotransposons of different origins. According to this particular embodiment, it is preferred that one of the fragments is derived from a rat VL30 and in particular has a sequence substantially homologous to SEQ ID NO: 1 and that the other is derived from a mouse VL30 and has in particular a sequence substantially homologous to SEQ ID NO: 2.
  • a vector according to the invention derives from a retrovirus.
  • retroviruses such as avian erythroblastosis virus (AEV), avian leukemia virus (AVL), avian sarcoma virus (ASV), necrosis virus of spleen (SNV) and Rous sarcoma virus (RSV), bovine retroviruses, feline retroviruses, murine retroviruses such as murine leukemia virus (MuLV), Friend virus (F-MLV) and murine sarcoma virus (MSV) and primate retroviruses.
  • retroviruses such as murine leukemia virus (MuLV), Friend virus (F-MLV) and murine sarcoma virus (MSV) and primate retroviruses.
  • other retroviruses can be used.
  • MoMuLV Moloney murine leukemia virus
  • the retroviral vectors which can be envisaged for the purposes of the present invention are shown diagrammatically in FIG. 1 (a, b and c). Of course, these examples are not limiting.
  • the 5 'and 3' retroviral LTRs are represented by a hatched box, the murine VL30 sequences (indifferently mouse and / or rat) by a bold line, the internal promoter by a dotted box, the genes of interest by a white box and finally the retroviral packaging region (Psi) by a thin line.
  • the retroviral LTR 5 ′ can be used as a promoter for the expression of one or more gene (s) of interest, but an internal promoter can also be used.
  • a retoviral vector according to the invention can, optionally, comprise a retroviral packaging region such as the Psi sequence of MoMuLV.
  • a DNA fragment according to the invention can also fulfill this function and this regardless of its position in the retroviral vector of the invention (upstream of a gene of interest and / or downstream of the 5 'LTR).
  • a gene of interest can code for a protein corresponding to all or part of a native protein as found in nature. It can also be a chimeric protein, for example from the fusion of polypeptides of various origins or a mutant having improved and / or modified biological properties. Such a mutant can be obtained by conventional biological techniques by substitution, deletion and / or addition of one or more amino acid residues.
  • a vector according to the invention is particularly intended for the prevention or treatment of cystic fibrosis, hemophilia A or B, Duchenne or Becker's myopathy, cancer, AIDS and other bacteria or infectious diseases due to a pathogenic organism: virus, bacteria, parasite or prion.
  • the genes of interest which can be used in the present invention are those which code for the following proteins:
  • cytokine and in particular an interleukin, an interferon, a tissue necrosis factor and a growth factor and in particular hematopoietic
  • factor VIII a factor or cofactor involved in coagulation and in particular factor VIII, factor IX, von Willebrand factor, antithrombin III, protein C, thrombin and hirudin,
  • an enzyme inhibitor such as ⁇ l-antitrypsin and viral protease inhibitors
  • a suicide gene expression product such as HSV (herpes virus) type 1 thymidine kinase
  • a protein whose absence, modification or deregulation of expression is responsible for a genetic disease, such as the protein CFTR, dystrophin or minidystrophin, insulin, ADA (adenosine diaminose), glucocerebrosida e and phenylhydroxylase,
  • a protein capable of inhibiting the initiation or progression of cancers such as a product for expression of tumor suppressor genes (p53 genes,
  • Rb a toxin, an antibody, an immunotoxin,
  • a protein capable of inhibiting a viral infection or its development for example an antigenic epitope of the virus in question, an antibody or an altered variant of a viral protein capable of entering into competition with the native viral protein.
  • a functional promoter in the host cell considered and, preferably, a human cell.
  • the choice of promoter is very wide and within the reach of those skilled in the art. It can be a promoter naturally governing the expression of a gene of interest in use in the present invention or any other promoter (of eukaryotic or viral origin). Furthermore, it can be ubiquitous or regulable in nature, in particular in response to certain tissue-specific or event-specific cellular signals.
  • tissue-specific promoter when it is desired to target the expression of the gene (s) of interest in a particular cell or cell type, for example lymphocytes in for AIDS, lung cells for cystic fibrosis or muscle cells for myopathy.
  • lymphocytes in for AIDS, lung cells for cystic fibrosis or muscle cells for myopathy.
  • SV40 promoters By way of nonlimiting examples, mention may in particular be made of the SV40 promoters.
  • the late promoter MPL Major Late Promoter
  • HMG Hydroxy ethyl-Glutaryl Coenzyme A
  • TK Thymidine kinase
  • retroviral LTRs and, in particular, that of MoMuLV or MSV when using a retoviral vector
  • the late promoter MPL Major Late Promoter
  • the 7.5K and H5R promoters in particular intended for vectors derived from poxvirus and especially from the vaccinia virus
  • the PGK promoter Phosphoglycero kinase
  • the liver-specific promoters of the genes coding for ⁇ l-antitrypsin, factor IX, albumin and transferrin the promoters of the immunoglobulin genes which allow expression in lymphocytes
  • the promoters of the genes coding for the surfactant or the CFTR protein which have a certain specificity for lung tissue.
  • an expression cassette present in a vector according to the invention may comprise other sequences necessary for the expression of the gene (s) of interest, both at the level of transcription and of translation; for example enhancer-type transcription activator sequences, introns, transcription termination signals and, as indicated above, a secretion signal.
  • the invention also covers the viruses and viral particles obtained by transfection of the viral vector according to the invention in an adequate complementation line.
  • the complementation lines that can be used to generate infectious viral particles as well as the method to be used.
  • Being an adenoviral vector use may be made of line 293 (Graham et al., 1977, J. Gen. Viral., 36, 59-72).
  • ecotropic cell lines such as the CRE line (Danos and Mulligan, 1988, Proc. Natl. Acad. Sci. USA, 85, 6460-6464 ) or GP + E-86 (Markowitz et al., 1988, J. Virol., 62, 1120-1124).
  • an amphotropic complementation line such as the PG13 line (Miller et al., 1991, J. Virol., 65, 2220-2224) or Psi Env-am (Markowitz et al., 1988, TAAP Vol. CI, 212-218).
  • PG13 line Miller et al., 1991, J. Virol., 65, 2220-2224
  • Psi Env-am Markowitz et al., 1988, TAAP Vol. CI, 212-218.
  • the invention also extends to eukaryotic cells comprising a DNA fragment according to the invention. They can be obtained by infection with infectious viral particles according to the invention or by introduction of a plasmid or viral vector either in vitro (in a cell taken from a patient or an animal) or directly in vivo.
  • the methods for introducing a vector into a cell are conventional. It is possible to use the precipitation technique with calcium phosphate, that with DEAE dextran, direct injection of the vector or of a portion thereof into a cell or even encapsulation in molecules of the liposome type.
  • the vectors according to the invention can be present in the host cell either in the form integrated into the cell genome or in episomal form both in the nucleus and in the cytoplasm of the cell.
  • the cell according to the invention is advantageously a mammalian cell and, preferably, a human cell.
  • the present invention also relates to the therapeutic use of a vector or a cell according to the invention, for the preparation of a pharmaceutical composition intended for the treatment and / or prevention of a genetic disease or of a disease. acquired like cancer or an infectious disease.
  • a vector according to the invention can be used for other purposes such as the recombinant production in eukaryotic cells of expression products intended to be included after purification in said pharmaceutical composition.
  • the invention also relates to a pharmaceutical composition
  • a pharmaceutical composition comprising, as therapeutic or prophylactic agent, a vector or a cell according to the invention, in combination with a vehicle which is acceptable from a pharmaceutical point of view.
  • a pharmaceutical composition according to the invention can be manufactured in a conventional manner.
  • a therapeutically effective amount of such an agent is combined with an acceptable carrier, diluent or adjuvant.
  • She may be administered according to any route of administration and this in a single or repeated dose after a certain interval of interval.
  • the quantity to be administered will be chosen according to different criteria, in particular the use as a treatment or vaccine, the route of administration, the patient, the type of disease to be treated and its state of progress, the duration of treatment .... etc.
  • a pharmaceutical composition according to the invention comprises between 10 4 and 10 w pfu (unit forming plaques), advantageously between ÎO "1 and 10 ⁇ pfu and, preferably, between 10 6 and 10 n pfu of viral particles .
  • the invention relates to a method of treatment of genetic diseases, cancers and infectious diseases according to which a therapeutically effective amount of a vector or a cell according to the invention is administered to a patient in need of such treatment .
  • a therapeutically effective amount of a vector or a cell according to the invention is administered to a patient in need of such treatment .
  • they can be administered directly in vivo, for example by intravenous, intramuscular injection or by aerosolization in the lungs.
  • an ex vivo gene therapy protocol which consists in taking the cells from a patient, bone marrow stem cells or peripheral blood lymphocytes, transfecting them with a vector according to the invention and cultivate in vitro before re-implanting them in the patient.
  • the invention also relates to an isolated DNA fragment comprising an encapsidation sequence (Psi) derived from a Moloney murine leukemia virus (MoMuLV) as an internal ribosome entry site (IRES) and its implementation.
  • Psi encapsidation sequence
  • MoMuLV Moloney murine leukemia virus
  • IVS internal ribosome entry site
  • It will be a polycistronic vector preferably comprising two genes of interest under the control of the same promoter and having a Psi sequence of MoMuLV between the two genes.
  • FIG. 1 represents some retroviral vectors usable within the framework of the invention a: of monocistronic type, b: of dicistronic type and c: of mixed type comprising cassettes of mono and dicistronic expression.
  • the 5 'and 3' LTRs are represented by a hatched box, the murine VL30 sequences (rat or mouse) by a bold line, the retroviral Psi sequence by a thin line, the internal promoter by a dotted box and finally the genes d interest by a white box.
  • Figure 2 shows schematically the vectors pVL-CT2, pCBTl, pCBT2, pMLV-LacZ +, pSJEl and pSJE2.
  • the constructions described below are produced according to the general techniques of genetic engineering and molecular cloning detailed in Maniatis et al. (1989, Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY) or as recommended by the manufacturer when using a commercial kit.
  • the filling of the protruding 5 ′ ends can be carried out using the Klenow fragment of the DNA polymerase of E. coli and destruction of the protruding 3 'ends in the presence of phage T4 DNA polymerase.
  • PCR techniques are known to those skilled in the art and extensively described in PCR Protocols, a guide to methods and applications (Ed: Innis, Gelfand, Sninsky and White, Académie Press, Inc.).
  • the vector pCB28 is obtained in the following way
  • the EcoRI-Nhel fragment from pLNPOZ (Adam et al., 1991, J. Virol. 65, 4985- 4990) is cloned into Bluescript II KS + digested with EcoRI and Spel to give pCB25.
  • the HindIII-Xbal fragment of pCB25 containing the sequences coding for neomycin (neo), the IRES site of the poliovirus and the ⁇ -galactosidase gene (LacZ) is cloned in the vector pRc / CMV (Invitrogen) deleted from positions 1284 to 3253 and digested with HindIII and Xbal.
  • a fragment carrying the viral sequences of the F-MLV virus from positions 1 to 651 is generated by PCR using primers 6 and 7 (SEQ ID NO: 3 and 4).
  • a DNA preparation obtained from this virus by conventional techniques can be used as a template.
  • the PCR fragment is digested with Xhol and BamHI and then inserted between the neo and LacZ genes of pCB27 partially digested with Xhol and BamHI.
  • VL30 sequences were generated by PCR from the pVL-CG20 matrix
  • PVL-D 1-794, pVL-D205-794 and pVL-D380-794 are obtained according to the inserted VL30 sequence.
  • the neo-VL30-LacZ dicistronic cassette is under the control of the T7 RNA polymerase promoter for expression in vitro and of the early cytomegalovirus (CMV) promoter for expression in eukaryotic cells. It is indicated that the AUC initiator of the lacZ gene is placed in a context favorable to the initiation of translation according to the Kozak rule (A / G CCAUGG; Kozak, 1986, Cell - / - /, 283-292).
  • Dicistronic RNAs are generated by in vitro synthesis from 5 ⁇ g of recombinant plasmids pVL linearized by Xbal. The transcription reaction takes place for 3 h at 37 ° C. in 0.1 ml of 40 mM Tris-HCl (pH 7.5), 6 mM MgCl 2 , 2 mM spermidine, 10 mM dithiothreitol, 10 mM NaCl, 0.5 mM of each of the ribonucleoside triphosphate in the presence of 40 U of T7 RNA polymerase and 80 U of RNAsin (RNase inhibitor).
  • RNAs (10 ⁇ g of RNA / ml) are then translated in vitro into a system of rabbit reticulocyte lysates (RRL system, Proméga) at 50% of its original concentration in the presence of 1 mCi [ 33 S] methionine / ml (Amersham) (reaction time lh at 31 ° C).
  • the reaction mixture is supplemented with potassium acetate and potassium chloride to a final concentration of 60 mM and 40 mM respectively.
  • the tubes are placed at 100 ° C. in 62.5 mM Tris-HCl (pH 6.8), 2% SDS, 10% glycerol, 5% / 3-mercaptoethanol and 0.02% bromophenol blue and the labeled proteins. at 3 'S are analyzed by gel electrophoresis polyacrylamide 10% - 0.2% SDS. The quantification of the translation products of the neo and LacZ genes is carried out by scanning. The neo protein serves as standardization of the level of translation and the quantity of ⁇ galactosidase synthesized (PM 110 kDa) is evaluated.
  • RNAs produced from each of the vectors allow the synthesis of the expression products of the two genes (neo and ⁇ galactosidase) which indicates that they are dicistronic and suggests the existence of an IRES in the VL30 sequences used. , ensuring the initiation of translation of the second cistron, hence the production of / 3-galactosidase.
  • Retroviral vectors comprising a sequence of a rat VL30.
  • the plasmid pCB71 is obtained in the following way:
  • neomycin gene (neo; positions 4 to 844) is amplified by
  • PCR from the vector pLNPOZ (Adam et al., 1991, supra) and using primers 10 and 11 (SEQ ID NO: 5 and 6) provided at their ends with restriction Sali, Spel and BamHI.
  • the PCR fragment generated is digested with SalI and BamHI and introduced with the EcoRV-SalI fragment from pCB70 carrying the alkaline phosphatase gene into the vector pLNPOZ digested by Bail and BamHI.
  • a 0.59 kb DNA fragment comprising the sequences of the rat VL30 (positions 205 to 794) is isolated by PCR and provided at its 5 'and 3' ends with an Nhel site.
  • the plasmid pVL-CG20 (Torrent et al., 1994, supra) is used as a matrix and the oligonucleotides 12 and 13 reported in SEQ ID NO: 7 and 8.
  • the PCR fragment is digested with Nhel before be inserted into the vector pCB71 digested with Spel, to give pCBT2.
  • an oligonucleotide 13 has included a translation initiator ATG codon placed in a favorable Kozak context (A / GCCATGG) which will then make it possible to introduce a coding sequence devoid of initiator codon.
  • the final construction pCBT2 ( Figure 2) contains the 5 'LTR of MoMuLV, the gene for human alkaline phosphatase, a 0.59 kb fragment isolated from rat VL30 (positions 205 to 794) followed by the neomycin gene and LTR 3 'of MoMuLV.
  • the construction of the plasmid pCBTl is carried out as follows
  • a DNA fragment comprising the rat VL30 sequences (positions 205 to 379) is generated by PCR from the vector pVL-CG20 and oligonucleotides 8 and 9 (SEQ ID NO: 9 and 10). After digestion with Nhel, this is inserted into the vector pCB28 also cleaved by Nhel, to give pCB57. This Nhel fragment is isolated from pCB57 and introduced into the vector pCB71 digested with Spel. As before, this fragment includes a translation initiator codon placed in a Kozak context.
  • PCBT1 (FIG. 2) is generated which is identical to pCBT2 except for the length of the VL30 fragment of rat (0.175 kb instead of 0.59 kb).
  • a DNA fragment comprising the HaMSV sequences is isolated by PCR
  • the plasmid pVL-CG20 (Torrent et al, 1994, supra) is used as a matrix and the oligonucleotides 16 and 13 reported in SEQ ID NO: 11 and 8.
  • the PCR fragment is digested with Smal and Ncol before being inserted into the vector pLNPOZ (Adam et al., 1991, supra) digested with Ncol and partially with Smal, to give pVL-CT2 ( Figure 2).
  • the GP + E-86 ecotropic complementation line (Markowitz et al., 1988, J. Virol., 62, 1120-1124) and the target cells NIH3T3 (mouse fibroblastic cells) available at ATCC, are cultured at 37 ° C in the presence of 5% C0 2 in DMEM medium (Dulbecco's Modified Eagle's Medium) supplemented with 5% newborn calf serum.
  • DMEM medium Dulbecco's Modified Eagle's Medium
  • the day before transfection and infection the GP + E-86 cells and the NIH3T3 target cells are cultured at the rate of 5 ⁇ 10 5 cells per 10 cm dish and 1.5 ⁇ 10 D cells per well, respectively.
  • Viral infections are carried out according to the conventional protocol described in the literature.
  • the titration method is that of the limit dilution point.
  • the vectors pCBTl, ⁇ CBT2 and pVL-CT2 as well as the reference vector pMLV-LacZ are transfected in parallel in the GP + E-86 cells according to the method of Chen and Okyama (1987, Mol (Cell. Biol., 7, 2745-2753).
  • D + 1 the cells are washed according to the methods of the art and the culture supernatant is harvested on D + 2.
  • Different dilutions are used to infect the target cells NIH3T3.
  • the cells are cultured in a selective medium (800 g / ml of G418) 24 hours after transfection or infection.
  • LacZ gene after X-Gal staining is measured on a culture aliquot of cells infected and transfected with pMLV-LacZ and pVL-CT2. This coloring technique is described in the basic works accessible to those skilled in the art. It is also possible to use a commercial kit (Promega).
  • alkaline phosphatase is regularly determined over time in the transfected GP + E-86 cells and in the NIH3T3 cells infected with pCBT1 and pCBT2.
  • the cells are rinsed in PBS 1 buffer and fixed 5 min at room temperature with a solution containing 2% formaldehyde and 0.2% glutaraldehyde in PBS x 1.
  • the cells were then rinsed twice in PBS x 1 buffer and then incubated for 30 min at 65 ° C in PBS x 1. They are washed in AP buffer (0.1 M Tris-HCl pH 9.5, 0.1 M NaCl, 50 mM MgCl,).
  • This buffer is then replaced by the staining solution (containing 0.1 g / ml of 5-bromo-4-chloro-3-indolyl phosphate 1, 1 mg / ml of Nitoblue terazolium salt 1, Levamisol 1 mM in of the AP buffer).
  • the cells are incubated for 6 hours at room temperature, protected from light.
  • the colored cells correspond to the positive phosphatase cells.
  • the rate of packaging of each of the vectors is estimated by calculating the ratio of number of infected colored cells (PA or LacZ positive) to the number of transfected colored cells (PA or LacZ positive) x 100. The results are shown in Table 1 next.
  • the data indicate that the rat VL30 DNA fragment (positions 205 to 794) includes an packaging signal at least as effective as the Psi sequence of MoMuLV. Su ⁇ renantly, the localization of the rat VL30 sequence between two genes has little effect on the packaging efficiency of the retroviral genome (vector pCBT2 compared to pVL-CT2).
  • the vast majority of cells expressing the neo gene (resistance to G418) simultaneously express the phosphatase gene.
  • the expression of the two genes is stable over time, since more than 90% of the cells resistant to G418 are also phosphatase positive after 40 days of culture in selective medium.
  • RNA precipitates are recovered using a glass rod while the RNAs are precipitated for 1 hour at -20 ° C and then centrifuged for 30 minutes at 10,000 ⁇ m at 4 ° C.
  • the purified cellular RNA is taken up in 150 ⁇ ⁇ of sterile water.
  • RNAs are incubated at 65 "C for 5 min in a MOPS buffer (20 mM mo ⁇ holinopropanesulfonic acid, 5 mM sodium acetate, ImM EDTA, pH7) containing 6% formaldehyde, 50% formamide, 30% blue glycerol.
  • MOPS buffer 20 mM mo ⁇ holinopropanesulfonic acid, 5 mM sodium acetate, ImM EDTA, pH7
  • the denatured RNAs are deposited on 0.7% agarose gel under denaturing condition (MOPS IX, 6% formaldehyde), the RNAs are then transferred to a nitrocellulose membrane in a 25mM sodium phosphate buffer for 1 hour 30 min at 800mA.
  • UV (252 nm; 0.32 J / cm 2 ) to fix the RNAs.
  • the membrane is incubated for 4 hours at 42 ° C in a prehybridization solution (50% formamide, 1M NaCl, 50mM NaP04 pH7, 10% Dextran sulfate, 1% SDS, 250 ⁇ g / ml denatured salmon sperm DNA 5 min at 100 ° C.
  • a prehybridization solution 50% formamide, 1M NaCl, 50mM NaP04 pH7, 10% Dextran sulfate, 1% SDS, 250 ⁇ g / ml denatured salmon sperm DNA 5 min at 100 ° C.
  • the membrane is then hybridized for 14 hours at 42 ° C. in 50% formamide, 0.8M NaCl, 50mM NaP04 pH7, 10 % Dextran sulfate and 1% SDS
  • the neomycin probe used at 0.5.10 ° cpm / ⁇ g is denatured for 5 min at 100 ° C and added to the hybridization solution.
  • the membrane is washed in successive baths: 2 x SSC, 1% SDS (2 times 10 min, room temperature), 2 x SSC, 0.1% SDS (30 min, 65 ° C) and 1 x SSC , 0.1% SDS (30 min, 65 ° C).
  • the membrane is then dried and exposed to -80 ° C for 72 hours.
  • the neomycin probe is complementary to the neomycin gene between positions 213 and 596 and corresponds to the Pstl-Ncol fragment from pLNPOZ (Adam et al., 1991).
  • the probe was labeled by primer extension with the Nonaprimer kit kit I (Appligene).
  • RNAs were extracted from GP + E-86 cells 72 hours after transfection of the plasmid pCBT2, or else from NIH3T3 cells infected with pCBT2 virions after 30 days of selection. Hybridization of these RNAs with a probe complementary to the neo gene reveals the presence of a single dicistronic RNA of identical size in the transfected and infected cells. Consequently, the simultaneous expression of the phosphatase and neomycin genes in 90-95% of the infected cells after 30 days of selection is due to the presence of a single dicistronic RNA.
  • This example describes the construction of dicistronic vectors containing an encapsidation signal in normal position (downstream of the 5 'LTR) and the second between two cistrons.
  • Two retroviral vectors (1) pVL-CBT2-E + are generated in which the MoMuLV signal is placed downstream of the 5 'LTR and the rat VL30 sequence (205-794) between the genes coding for alkaline and neo phosphatase and ( 2) pVL-CBT5 in which their respective positions are reversed.
  • pVL-CBT2-E + results from the cloning of the EcoRI fragment isolated from pLNPOZ (Adam et al., 1991, supra) carrying the 5 ′ LTR sequences and from packaging of MoMuLV in pCBT2 previously digested with this same enzyme (FIG. 3).
  • Dicistronic retroviral vector comprising the packaging signal of MoMuLV in the central position.
  • the equivalent of pCBT2 is constructed with the difference that the packaging signal of MoMuLV (positions 210 to 1035) replaces that of rat VL30. It is isolated from the vector pLNPOZ by PCR using suitable primers having at their ends an Nhel site. After Nhel digestion, the amplified fragment is introduced between the PA and neo genes of pMLV-CB71 (Berlioz and Darlix, 1995, J. Virol. 69, 2214-2222) digested with Spel. PMLV-CBT is obtained ( Figure 3).
  • the viral titers are determined in a transient or stable manner according to the technology previously applied by evaluation of the number of cells expressing alkaline phosphatase. The results are shown in Table 2 below and compared with the dicistronic vector pCBT2.
  • the GP + E-86 cells are transfected with each of the retroviral vectors and the expression levels of the PA gene are evaluated in the presence and in the absence of neomycin.
  • Neomycin resistant and PA positive cells are counted after 15 days of selection.
  • the values obtained are slightly greater for the dicistronic vectors carrying the two packaging signals than for their counterparts carrying only one, which suggests that the presence of two packaging sequences, one of retroviral origin. and the other of VL30 does not influence the gene expression of cistrons. Furthermore, in all cases, the expression of the neo gene is effective.
  • Retroviral vector comprising an encapsidation sequence isolated from a mouse VL30.
  • a DNA fragment containing the mouse VL30 sequence (positions 362 to 1149) is amplified by PCR from the vector pKT403 (Adams et al, 1988, supra) and using the oligonucleotide primers 3 and 4 (SEQ ID NO : 12 and 13).
  • the fragment generated is digested with Bail and Ncol before being inserted between the same sites of the vector pLNPOZ (Adam et al., 1991, supra).
  • the vector pSJE2 is obtained.
  • Table 3 gives an estimate of the viral titers obtained for each of the pSJE vectors as a function of the starting complementation line.
  • the vector pMLVLacZ + (Torrent et al., 1994, supra) comprising the conventional packaging region of MoMuLV is used for reference.
  • transient long term transient pSJEl 0.1 x 10 3 0.3 x 10 3 0.7 x 10 4
  • pSJE2 1 x 10 5 1, 3 x 10 5 6.5 x 10
  • pSJE3 ⁇ 0.001 x 10 3 ⁇ 0.001 x 10 3 ⁇ 0.01 x 10 4
  • pMLVlacZ 0.85 x 10 3 2 x 10 3 7 x 10 4
  • mice VL30 sequence between nucleotides 362 and 1149 comprises an packaging sequence at least as effective as that of MoMuLV.
  • the vector pSJE3 devoid of any packaging region, is incapable of generating viral particles.
  • the rat VL30 sequence is replaced in the vector pCBT2 by one of the mouse VL30 sequences (either the 0.78 kb fragment going from positions 362 to 1149 or the 0.21 kb fragment going from positions 362 to 575), an effective packaging rate and a correct expression of the alkaline phosphatase gene are measured.
  • TTGTTTGTCT TCTTTGTGAC CTGACTGTGG TTTTCTGGAC GTGTTGTGTC TGTTAGTGTC 360
  • ORGANISM Murine leukemia virus
  • ORGANISM Murine leukemia virus
  • ORGANISM element VL30 from rat
  • C INDIVIDUAL ISOLATED: oligo 8
  • TYPE OF MOLECULE DNA (genomics)
  • HYPOTHETIC NO
  • ANTI-SENSE NO

Landscapes

  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Virology (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

La présente invention a pour objet un nouveau site interne d'entrée des ribosomes et une nouvelle région d'encapsidation d'un rétrotransposon et notamment des VL30 murins. Elle concerne également un vecteur et une cellule eucaryote les contenant ainsi que leur usage thérapeutique ou prophylactique.

Description

Nouveau site interne d'entrée des ribosomes. vecteur le contenant et utilisation thérapeutique
La présente invention concerne un fragment d'ADN isolé d'un rétrotransposon et comprenant un site interne d'entrée des ribosomes (IRES). Plus particulièrement, elle concerne des vecteurs d'expression comportant ce fragment d'ADN et notamment des vecteurs polycistroniques permettant l'expression efficace et stable de plusieurs gènes d'intérêt sous la dépendance d'un même promoteur. La présente invention trouve une application intéressante dans le domaine des vecteurs de thérapie génique.
La faisabilité de la thérapie génique appliquée à l'homme n'est plus à démontrer et ceci concerne de nombreuses applications thérapeutiques comme les maladies génétiques, les maladies infectieuses et les cancers. De nombreux documents de l'art antérieur décrivent les moyens de mettre en oeuvre une thérapie génique, notamment par l'intermédiaire de vecteurs viraux. D'une manière générale, les vecteurs sont obtenus par délétion d'au moins une partie des gènes viraux qui sont remplacés par les gènes d'intérêt thérapeutique. De tels vecteurs peuvent être propagés dans une lignée de complémentation qui fournit en trans les fonctions virales délétées pour générer une particule de vecteur viral défective pour la réplication mais capable d'infecter une cellule hôte. A ce jour, les vecteurs rétroviraux sont parmi les plus utilisés mais on peut citer également des vecteurs issus des adénovirus, virus associés aux adénovirus, poxvirus et virus de l'herpès. Ce type de vecteur, leur organisation et leur mode d'infection sont largement décrits dans la littérature accessible à l'homme de l'art.
Il peut être avantageux de disposer de vecteurs de thérapie génique plus performants et capables notamment de produire efficacement plusieurs protéines d'intérêt. Cependant, la présence de plusieurs promoteurs au sein du même vecteur se traduit très souvent par une réduction voire même une perte de l'expression au cours du temps. Ceci est dû à un phénomène bien connu d'interférence entre les séquences promotrices. Dans ce contexte, la publication de la demande internationale WO93/03143 propose une solution à ce problème qui consiste à mettre en oeuvre un site interne d'entrée des ribosomes (IRES). Elle décrit un vecteur rétroviral dicistonique pour l'expression de deux gènes d'intérêt placés sous le contrôle du même promoteur. La présence d'un site IRES de picornavirus entre ceux-ci permet la production du produit d'expression issu du second gène d'intérêt par initiation interne de la traduction de l'ARNm dicistronique.
Normalement, l'entrée des ribosomes au niveau de l'ARN messager se fait par la coiffe située à l'extrémité 5' de l'ensemble des ARNm eucaryotes. Cependant cette règle universelle connaît des exceptions. L'absence de coiffe chez certains ARNm viraux laissait supposer l'existence de structures alternatives permettant l'entrée des ribosomes à un site interne de ces ARN. A ce jour, un certain nombre de ces structures, nommées IRES du fait de leur fonction, ont été identifiées dans la région 5' non codante des ARNm viraux non coiffés comme celle notamment des picornavirus tel que le virus de la poliomyélite (Pelletier et al. , 1988, Mol. Cell. Biol. , <9, 1103-1112) et l'EMCV (Encephalomyocarditis virus (Jang et al. , J. Virol. , 1988, 62, 2636-2643).
On a maintenant trouvé un nouveau site interne d'entrée des ribosomes dans les retrotransposons murins de type VL30 et montré que ce site améliore la traduction des séquences codantes placées à sa suite.
Le génome des cellules eucaryotes comprend un certain nombre d'éléments génétiques cellulaires mobiles, appelés transposons, qui ont la capacité de se déplacer d'un site du génome à un autre choisi au hasard. A l'heure actuelle, on ignore leurs fonction et signification biologique. Certains d'entre eux, les retrotransposons, apparaissent apparentés aux provirus rétroviraux par leur organisation et leur mode de transposition (par un intermédiaire ARN, transcription inverse et . intégration dans le génome cellulaire). Parmi les différents retrotransposons murins identifiés à ce jour, figurent les éléments VL30. Le génome murin en comprend de 150 à 200 copies. Ils ont une longueur d'environ 6 kb et possèdent à leurs extrémités des répétitions directes qui rappellent les LTRs rétroviraux. Ils ont défectifs pour la réplication et ne contiennent pas de séquences codantes (codons d'arrêt de la traduction dans les différentes phases de lecture). Ces éléments en tant que tels sont décrits dans la littérature et leur séquence nucléotidique connue (Adams et al. , 1988, Mol. Cell. Biol. , 8, 2989-2998 ; Van Beveren, Coffin et Hughes 1984. Restriction analysis of two génomes and restriction maps of représentative retroviral proviruses and cellular oncogenes p.559-1209, ed : Weiss, Teich, Varmus et Coffin ; RNA tumor viruses, 2nd éd. Cold Spring Harbor Laboratory). Par ailleurs, ils peuvent être transmis d'une cellule à l'autre par encapsidation en présence d'un virus auxiliaire (helper).
Il n'était pas évident d'identifier une séquence IRES dans les éléments VL30 murins puisque ceux-ci sont dépourvus de séquences codant pour des protéines et ne présentent pas d'homologie frappante de séquence avec les sites déjà décrits dans la littérature. De plus, par rapport à ces derniers, le site IRES d'un VL30 murin est particulièrement avantageux. En premier lieu, il permet un taux de réinitiation de la traduction efficace et stable à long terme et, d'autre part et de manière inattendue, il peut également, dans le cadre d'un vecteur retroviral, remplir les fonctions de dimérisation et d' encapsidation et ceci indépendamment de sa position dans le vecteur. Et enfin, du fait de sa faible homologie avec les séquences rétrovirales, son emploi réduit considérablement le risque de production de virus compétents pour la réplication, propriété avantageuse dans le cadre des vecteurs de thérapie génique destinés à un usage humain.
C'est pourquoi la présente invention a pour objet un fragment d'ADN isolé comprenant un site interne d'entrée des ribosomes (IRES) et/ou une séquence d'encapsidation, caractérisé en ce qu'il est dérivé d'un rétrotransposon.
Par fragment d'ADN isolé, on entend un fragment d'ADN isolé de son contexte c'est à dire non associé à une autre séquence de rétrotransposon autre que celle définie ci-dessous. Le terme "rétrotransposon" se rapporte à un élément génétique cellulaire mobile qui présente des caractéristiques de type retroviral, notamment par l'existence de répétitions directes à ses deux extrémités. Par IRES, on désigne une séquence capable de promouvoir l'entrée des ribosomes dans une molécule d'ARN d'une manière indépendante de la coiffe, au niveau d'un site interne de cet ARN. Une séquence d'encapsidation, est une séquence impliquée dans le processus d'encapsidation des rétrovirus ou vecteurs rétroviraux en favorisant la dimérisation de deux copies du génome retroviral et en permettant l'encapsidation du dimère dans les particules virales. Le terme "dérivé" fait référence à une structure ayant une origine rétrotransposon mais qui peut avoir subi quelques modifications, avoir été obtenue par synthèse chimique ou encore d'éléments divers comprenant des parties de rétrotransposon, comme le virus HaMSV.
Selon un mode de réalisation préféré, un fragment d'ADN selon l'invention est capable d'exercer une fonction IRES et une fonction d'encapsidation lorsqu'il est introduit dans un vecteur retroviral approprié.
Dans le cadre de la présente invention, un fragment d'ADN selon l'invention est isolé de l'extrémité 5' d'un rétrotransposon et notamment de la région qui suit directement la répétition directe située à son extrémité 5' (LTR-like 5') et, en particulier, le site de liaison à l'ARN transfert (PBS). Il va sans dire qu'il peut être isolé par toute technique en usage dans le domaine de l'art, par exemple par clonage à l'aide de sondes appropriées, par PCR (Polymerase Chain reaction) ou encore synthèse chimique. Aux fins de la présente invention, il comprend au moins 100 nucléotides de ladite région, avantageusement au moins 200 nucléotides, de préférence au moins 300 nucléotides, de manière préférée au moins 400 nucléotides et, de manière tout à fait préférée, au moins 550 nucléotides, ceci en comptant les nucléotides hors la répétition directe en 5' . Mais, bien entendu, il peut s'étendre au delà dans la direction 3' jusqu'à au plus 0,88 à 1 ,5 kb.
Selon un mode de réalisation tout à fait préféré, un fragment d'ADN selon l'invention, est dérivé d'un élément VL30 de rongeur, de préférence, d'origine murine et, tout particulièrement, de rat ou de souris. S'agissant de la première variante selon laquelle un fragment d'ADN est isolé d'un VL30 de rat, on préfère tout particulièrement mettre en oeuvre un fragment d'ADN ayant une séquence substantiellement homologue à la séquence présentée dans l'identificateur de séquence SEQ ID NO: 1 , commençant au nucléotide 1 et se terminant au nucléotide 590 ou, de manière optionnelle, commençant au nucléotide 176 et se terminant au nucléotide 590.
Selon la deuxième variante (fragment d'ADN isolé d'un VL30 de souris), on aura de préférence recours à un fragment d'ADN présentant une séquence substantiellement homologue à la séquence présentée dans l'identificateur de séquence SEQ ID NO: 2, commençant au nucléotide 1 et se terminant au nucléotide 788.
Le terme substantiellement homologue fait référence à un degré d'homologie supérieur à 70%, avantageusement supérieur à 80%, de préférence supérieur à 90% et, de manière tout à fait préférée, supérieur à 95%. Ainsi, un fragment d'ADN selon l'invention peut avoir une séquence légèrement différente d'une des séquences décrites dans les identificateurs de séquence 1 et 2, à la condition toutefois que la substitution, la délétion ou l'addition d'un ou plusieurs nucléotides n'affecte pas sa fonction IRES et/ou la fonction d'encapsidation.
D'une manière générale, un fragment d'ADN selon l'invention est destiné à être intégré (dans une orientation quelconque) dans un vecteur de transfert et d'expression d'un ou plusieurs gène(s) d'intérêt. Le choix d'un tel vecteur est large et les techniques de clonage dans le vecteur retenu sont à la portée de l'homme de l'art. Conformément aux buts poursuivis par la présente invention, on peut envisager un vecteur plasmidique ou un vecteur dérivé d'un virus animal et, en particulier, d'un poxvirus (canari pox ou virus de la vaccine), adénovirus, baculovirus, virus de l'herpès, virus associé à un adénovirus ou rétrovirus. De tels vecteurs sont largement décrits dans la littérature. En particulier, lorsqu'il s'agit d'un vecteur adénoviral, celui-ci peut être issu d'un adénovirus humain, de préférence de type 2 ou 5, animal, de préférence canin ou aviaire, ou encore d'un hybride entre des espèces variées. La technologie générale concernant les adénovirus est divulguée dans Graham et Prevec (1991 , Methods in Molecular Biology, Vol 7, Gène tran fer and Expression Protocols ; Ed E.J. Murray, the human Press Inc, 109-118).
Dans le cadre de la présente invention, un fragment d'ADN selon l'invention est de préférence positionné en amont d'un gène d'intérêt pour améliorer la traduction du produit d'expression pour lequel celui-ci code. Il peut être inclus dans une cassette d'expression de type monocistronique (pour l'expression d'un gène d'intérêt placé sous le contrôle d'un promoteur) ou polycistronique (pour l'expression d'au moins deux gènes d'intérêt placés sous le contrôle d'un même promoteur). Cette dernière peut contenir plusieurs éléments en tandem "site IRES- gène d'intérêt" dont au moins un des sites IRES est constitué par un fragment d'ADN selon l'invention. On préfère tout particulièrement le mettre en oeuvre dans une cassette dicistronique dans laquelle il peut être inséré soit en amont du premier gène d'intérêt soit en amont du second, cette dernière variante étant la préférée.
Lorsqu'un vecteur selon l'invention comprend plusieurs cassettes d'expression, celles-ci peuvent être insérées dans une orientation quelconque les unes par rapport aux autres ; dans une même orientation (promoteur agissant dans une même direction) ou en orientation réverse (promoteur agissant dans une orientation opposée) .
Dans le cas où un vecteur selon l'invention comprend plusieurs fragments d'ADN selon l'invention, il est préférable qu'ils soient issus de retrotransposons d'origines différentes. Selon ce mode de réalisation particulier, on préfère qu'un des fragments soit dérivé d'un VL30 de rat et présente notamment une séquence substantiellement homologue à la SEQ ID NO: 1 et que l'autre soit dérivé d'un VL30 de souris et présente notamment une séquence substantiellement homologue à la SEQ ID NO: 2.
Selon un mode de réalisation tout à fait préféré, un vecteur selon l'invention dérive d'un rétrovirus. On peut citer à titre d'exemples, les rétrovirus aviaires tels que le virus de l'érythroblastose aviaire (AEV), le virus de la leucémie aviaire (AVL), le virus du sarcome aviaire (ASV), le virus de la nécrose de la rate (SNV) et le virus du sarcome de Rous (RSV) , les rétrovirus bovins, les rétrovirus félins, les rétrovirus murins tels que le virus de la leucémie murine (MuLV) , le virus de Friend (F-MLV) et le virus du sarcome murin (MSV) et les rétrovirus de primate. Bien entendu, d'autres rétrovirus peuvent être mis en oeuvre. Cependant, on préfère tout particulièrement avoir recours au virus de la leucémie murine de Moloney (MoMuLV). Les nombreux vecteurs rétroviraux dérivés de ce dernier qui sont décrits dans la littérature, notamment le vecteur N2 ou un de ses dérivés peuvent être utilisés dans le cadre de la présente invention.
Les vecteurs rétroviraux envisageables aux fins de la présente invention sont schématisés dans la Figure 1 (a, b et c). Bien entendu, ces exemples ne sont pas limitatifs. Pour plus de clarté, les LTRs 5' et 3'rétroviraux sont représentés par une boîte hachurée, les séquences de VL30 murin (indifféremment souris et/ou rat) par un trait gras, le promoteur interne par une boîte pointillée, les gènes d'intérêt par une boîte blanche et enfin la région d'encapsidation (Psi) rétrovirale par un trait fin. Comme cela est illustré, le LTR 5' retroviral peut être utilisé comme promoteur pour l'expression d'un ou plusieurs gène (s) d'intérêt mais on peut également avoir recours à un promoteur interne. D'autre part, un vecteur rétoviral selon l'invention peut, de façon optionnelle, comporter une région d'encapsidation rétrovirale comme la séquence Psi du MoMuLV. Cependant, la présence de cette dernière n'est pas exigée dans la mesure où un fragment d'ADN selon l'invention peut également remplir cette fonction et ceci quelle que soit sa position dans le vecteur retroviral de l'invention (en amont d'un gène d'intérêt et/ou en aval du LTR 5').
Aux fins de la présente invention, un gène d'intérêt en usage dans l'invention peut être obtenu d'un organisme eucaryote, procaryote ou d'un virus par toute technique conventionnelle. Il est, de préférence, capable de produire un produit d'expression ayant un effet thérapeutique et il peut s'agir d'un produit homologue à la cellule hôte ou, de manière alternative, hétérologue. Le terme produit d'expression désigne une protéine ou un fragment de celle-ci. Dans le cadre de la présente invention, un gène d'intérêt peut coder pour un produit (i) intracellulaire (ii) membranaire présent à la surface de la cellule hôte ou (iii) sécrété hors de la cellule hôte. Il peut donc comprendre des éléments additionnels appropriés comme, par exemple, une séquence codant pour un signal de sécrétion. Ces signaux sont connus de l'homme de l'art.
Conformément aux buts poursuivis par la présente invention, un gène d'intérêt peut coder pour une protéine correspondant à tout ou partie d'une protéine native telle que trouvée dans la nature. Il peut également s'agir d'une protéine chimérique, par exemple provenant de la fusion de polypeptide d'origines diverses ou d'un mutant présentant des propriétés biologiques améliorées et/ou modifiées. Un tel mutant peut être obtenu par des techniques de biologie classiques par substitution, délétion et/ou addition d'un ou plusieurs résidus acides aminés.
On préfère tout particulièrement mettre en oeuvre un gène d'intérêt thérapeutique codant pour un produit d'expression capable d'inhiber ou retarder l'établissement et/ou le développement d'une maladie génétique ou acquise. Un vecteur selon l'invention est particulièrement destiné à la prévention ou au traitement de la mucoviscidose, de l'hémophilie A ou B, de la myopathie de Duchenne ou de Becker, du cancer, du SIDA et d'autres bactéries ou maladies infectieuses dues à un organisme pathogène : virus, bactérie, parasite ou prion. Les gènes d'intérêt utilisables dans la présente invention, sont ceux qui codent pour les protéines suivantes :
/ - une cytokine et notamment une interleukine, un interféron, un facteur de nécrose tissulaire et un facteur de croissance et notamment hématopoïétique
(G-CSF, GM-CSF) ,
un facteur ou cofacteur impliqué dans la coagulation et notamment le facteur VIII, le facteur IX, le facteur von Willebrand, l'antithrombine III, la protéine C, la thrombine et l'hirudine,
une enzyme et notamment la trypsine, une ribonucléase et la β- galactosidase,
un inhibiteur d'enzyme tel que l'αl-antitrypsine et les inhibiteurs de protéases virales
un produit d'expression d'un gène suicide comme la thymidine kinase du virus HSV (virus de l'herpès) de type 1 ,
un activateur ou un inhibiteur de canaux ioniques,
une protéine dont l'absence, la modification ou la dérégulation de l'expression est responsable d'une maladie génétique, telle que la protéine CFTR, la dystrophine ou minidystrophine, l'insuline, l'ADA (adénosine diaminose) , la glucocérébrosida e et la phénylhydroxylase,
une protéine capable d'inhiber l'initiation ou la progression de cancers, telle qu'un produit d'expression de gènes supresseurs de tumeurs (gènes p53,
Rb...) , une toxine, un anticorps, une immunotoxine,
une protéine capable de stimuler une réponse immunitaire, et
- une protéine capable d'inhiber une infection virale ou son développement, par exemple un épitope antigénique du virus en cause, un anticorps ou un variant altéré d'une protéine virale susceptible d'entrer en compétition avec la protéine virale native.
Par ailleurs, un gène d'intérêt en usage dans la présente invention, peut également coder pour un marqueur de sélection permettant de sélectionner ou identifier les cellules hôtes transfectées par un vecteur selon l'invention. On peut citer le gène néo (néomycine) conferrant une résistance à l'antibiotique G418, le gène dhfr (dihydrofolate réductase) , le gène CAT (Chloramphenicol Acethyl Transférase) ou encore le gène gpt (xanthine phosphoribosyl).
D'une manière générale, on aura recours pour l'expression d'un ou des gène(s) d'intérêt à un promoteur fonctionnel dans la cellule hôte considérée et, de préférence, une cellule humaine. Le choix du promoteur est très large et à la portée de l'homme du métier. Il peut s'agir d'un promoteur gouvernant naturellement l'expression d'un gène d'intérêt en usage dans la présente invention ou de tout autre promoteur (d'origine eucaryote ou viral). Par ailleurs, il peut être de nature ubiquitaire ou régulable, notamment en réponse à certains signaux cellulaires tissu- spécifiques ou événements-spécifiques. A titre indicatif, il peut être avantageux de mettre en oeuvre un promoteur tissu-spécifique lorsque l'on veut cibler l'expression du ou des gène(s) d'intérêt dans une cellule ou un type cellulaire particulier, par exemple les lymphocytes dans le cadre du SIDA, les cellules pulmonaires dans le cadre de la mucoviscidose ou les cellules musculaires dans le cadre des myopathies. A titres d'exemples non limitatifs, on peut citer notamment les promoteurs SV40 . (Virus Simian 40), HMG (Hydroxy éthyl-Glutaryl Coenzyme A), TK (Thymidine kinase) , les LTR rétroviraux et, en particulier, celui du MoMuLV ou du MSV lorsqu'on met en oeuvre un vecteur rétoviral, le promoteur tardif MPL (Major Late Promoteur) d'adénovirus de type 2 notamment dans le contexte d'un vecteur adénoviral, les promoteurs 7,5K et H5R notamment destinés à des vecteurs dérivés de poxvirus et surtout du virus de la vaccine, le promoteur PGK (Phosphoglycéro kinase), les promoteurs foie-spécifiques des gènes codant pour l'αl-antitrypsine, le facteur IX, l'albumine et la transferrine, les promoteurs des gènes d'immunoglobulines qui permettent une expression dans les lymphocytes, et enfin les promoteurs des gènes codant pour le surfactant ou la protéine CFTR qui présentent une certaine spécificité pour les tissus pulmonaires.
Par ailleurs, une cassette d'expression présente dans un vecteur selon l'invention peut comporter d'autres séquences nécessaires à l'expression du ou des gène(s) d'intérêt, tant au niveau de la transcription que de la traduction ; par exemple des séquences activatrices de la transcription de type enhancer, des introns, des signaux de terminaison de la transcription et, comme indiqué précédemment, un signal de sécrétion.
L'invention couvre également les virus et particules virales obtenus par transfection du vecteur viral selon l'invention dans une lignée de complémentation adéquate. Selon le type de vecteur viral utilisé, l'homme du métier connaît les lignées de complémentation pouvant être employées pour générer des particules virales infectieuses ainsi que le procédé à mettre en oeuvre. S'agissant d'un vecteur adénoviral, on peut avoir recours à la lignée 293 (Graham et al. , 1977, J. Gen. Viral. , 36, 59-72).
Dans le cadre d'un vecteur retroviral selon l'invention, on peut envisager d'employer des lignées cellulaires ecotropiques, comme la lignée CRE (Danos et Mulligan, 1988, Proc. Natl. Acad. Sci. USA, 85, 6460-6464) ou GP + E-86 (Markowitz et al. , 1988, J. Virol. , 62, 1120-1124). Mais on préfère tout particulièrement mettre en oeuvre une lignée de complémentation amphotropique telle que la lignée PG13 (Miller et al. , 1991 , J. Virol. , 65, 2220-2224) ou Psi Env- am (Markowitz et al. , 1988, T.A.A.P. Vol. CI, 212-218). Généralement, on récupère les particules virales infectieuses dans le surnageant de culture des cellules de complémentation transfectées par un vecteur retroviral selon l'invention.
L'invention s'étend également aux cellules eucaryotes comprenant un fragment d'ADN selon l'invention. Elles peuvent être obtenues par infection par des particules virales infectieuses selon l'invention ou par introduction d'un vecteur plasmidique ou viral soit in vitro (dans une cellule prélevée d'un patient ou d'un animal) soit directement in vivo. Les méthodes pour introduire un vecteur dans une cellule sont conventionnelles. On peut mettre en oeuvre la technique de précipitation au phosphate de calcium, celle au DEAE dextrane, l'injection directe du vecteur ou d'une portion de celui-ci dans une cellule ou encore l'encapsulation dans des molécules de type liposomes. D'autre part, les vecteurs selon l'invention peuvent être présents dans la cellule hôte soit sous forme intégrée dans le génome cellulaire ou sous forme épisomale aussi bien dans le noyau que dans le cytoplasme de la cellule. La cellule selon l'invention est avantageusement une cellule mammifère et, de préférence, une cellule humaine.
La présente invention concerne également l'usage thérapeutique d'un vecteur ou d'une cellule selon l'invention, pour la préparation d'une composition pharmaceutique destinée au traitement et/ou à la prévention d'une maladie génétique ou d'une maladie acquise comme le cancer ou une maladie infectieuse. Cependant, un tel usage n'est pas limité à une application de type thérapie génique somatique. En particulier, un vecteur selon l'invention peut être utilisé à d'autres fins comme la production par voie recombinante dans des cellules eucaryotes de produits d'expression destinés à être inclus après purification dans ladite composition pharmaceutique.
L'invention s'adresse également à une composition pharmaceutique comprenant à titre d'agent thérapeutique ou prophylactique un vecteur ou une cellule selon l'invention, en association avec un véhicule acceptable d'un point de vue pharmaceutique.
Une composition pharmaceutique selon l'invention peut être fabriquée de manière conventionnelle. En particulier, on associe une quantité thérapeutiquement efficace d'un tel agent à un support, un diluant ou un adjuvant acceptable. Elle peut être administrée selon n'importe quelle route d'administration et ceci en dose unique ou répétée après un certain délai d'intervalle. La quantité à administrer sera choisie en fonction de différents critères, en particulier l'usage à titre de traitement ou de vaccin, la voie d'administration, le patient, le type de maladie à traiter et son état d'évolution, la durée du traitement.... etc. A titre indicatif, une composition pharmaceutique selon l'invention comprend entre 104 et 10w pfu (unité formant des plages), avantageusement entre ÎO"1 et 10ϋ pfu et, de préférence, entre 106 et 10n pfu de particules virales.
Par ailleurs, l'invention concerne une méthode de traitement de maladies génétiques, cancers et maladies infectieuses selon laquelle on administre une quantité thérapeutiquement efficace d'un vecteur ou d'une cellule selon l'invention à un patient ayant besoin d'un tel traitement. Selon un premier protocole thérapeutique, on peut les administrer directement in vivo, par exemple par injection intraveineuse, intramusculaire ou par aérosolisation dans les poumons. De manière alternative, on peut adopter un protocole de thérapie génique ex vivo qui consiste à prélever les cellules d'un patient, cellules souches de la moelle osseuse ou lymphocytes du sang périphérique, à les transfecter avec un vecteur selon l'invention et à les cultiver in vitro avant de les réimplanter au patient.
L'invention concerne également un fragment d'ADN isolé comportant une séquence d'encapsidation (Psi) dérivée d'un virus de la leucémie murine de Moloney (MoMuLV) à titre de site interne d'entrée des ribosomes (IRES) et sa mise en oeuvre dans le cadre de vecteurs d'expression tels que ceux mentionnés précédemment et, en particulier, de vecteurs rétroviraux. Il s'agira d'un vecteur polycistronique comprenant, de préférence, deux gènes d'intérêt sous le contrôle d'un même promoteur et présentant une séquence Psi de MoMuLV entre les deux gènes. Le vecteur peut inclure des gènes d'intérêt supplémentaires, soit sous la forme d'une cassette polycistronique (plusieurs éléments en tandem "IRES-gène d'intérêt" dont au moins un IRES est constitué par une séquence Psi dérivant du MoMuLV), soit sous la forme d'une cassette indépendante pourvue de son propre promoteur. Bien entendu, l'invention couvre également les particules virales et les cellules eucaryotes comprenant un tel vecteur, leur usage thérapeutique ainsi qu'une composition pharmaceutique. On indique qu'un site IRES selon l'invention est, de préférence, porté par les séquences s 'étendant des nucléotides 210 à 1035 du génome MoMuLV ( + 1 , représentant le site d'initiation de la transcription).
L'invention est illustrée ci-après par référence aux figures suivantes.
La Figure 1 représente quelques vecteurs rétroviraux utilisables dans le cadre de l'invention a : de type monocistronique, b : de type dicistronique et c : de type mixte comprenant des cassettes d'expression mono et dicistroniques. Les LTRs 5' et 3' sont représentés par une boîte hachurée, les séquences de VL30 murin (rat ou souris) par un trait gras, la séquence Psi rétrovirale par un trait fin, le promoteur interne par une boîte pointillée et enfin les gènes d'intérêt par une boîte blanche.
La Figure 2 schématise les vecteurs pVL-CT2, pCBTl , pCBT2, pMLV-LacZ+ , pSJEl et pSJE2.
La Figure 3 schématise les vecteurs pMLV-CBT, pVL-CBT2-E+ et pVL-CBT5 (plap représente le gène phosphatase alcaline désigné ci-après PA).
EXEMPLES
Les constructions ci-après décrites sont réalisées selon les techniques générales de génie génétique et de clonage moléculaire détaillées dans Maniatis et al. (1989, Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY) ou selon les recommandations du fabricant lorsqu'on utilise un kit commercial. Le remplissage des extrémités 5' protubérantes peut être réalisé à l'aide du fragment Klenow de l'ADN polymérase d'E. coli et la destruction des extrémités 3' protubérantes en présence de l'ADN polymérase du phage T4. Les techniques de PCR sont connues de l'homme de l'art et abondamment décrites dans PCR Protocols, a guide to methods and applications (Ed : Innis, Gelfand, Sninsky et White, Académie Press, Inc.) .
Par ailleurs, la position des séquences du VL30 de rat et de souris est indiquée par référence à la molécule ARN, la position + 1 correspondant au premier nucléotide de la molécule d'ARN, c'est à dire au site d'initiation de la transcription dans la molécule ADN (premier nucléotide de la séquence R). En ce qui concerne les séquences VL30 de souris, les positions ARN 362-575 et 362-1149 correspondent respectivement aux positions ADN 631-844 et 631-1418 de la séquence décrite dans Adams et al. (1988, Mol. Cell. Biol. , (9, 2989-2998)
EXEMPLE I : Etudes d'expression in vitro
1. Construction des vecteurs d 'expression
Le vecteur pCB28 est obtenu de la façon suivante
Le fragment EcoRI-Nhel de pLNPOZ (Adam et al. , 1991 , J. Virol. 65, 4985- 4990) est clone dans le Bluescript II KS + digéré par EcoRI et Spel pour donner pCB25. Le fragment HindlII-Xbal de pCB25 contenant les séquences codant pour la néomycine (néo), le site IRES du poliovirus et le gène β-galactosidase (LacZ) est clone dans le vecteur pRc/CMV (Invitrogen) délété des positions 1284 à 3253 et digéré par HindIII et Xbal. Un fragment portant les séquences virales du virus F-MLV des positions 1 à 651 est généré par PCR à l'aide des amorces 6 et 7 (SEQ ID NO: 3 et 4). On peut utiliser à titre de matrice une préparation d'ADN obtenu de ce virus par les techniques classiques. Le fragment PCR est digéré par Xhol et BamHI puis inséré entre les gènes néo et LacZ de pCB27 partiellement digéré par Xhol et BamHI.
Puis on insère entre les gènes néo et LacZ de pCB28 (également décrit dans Berlioz et Darli , 1995, J. Virol. 69, 2214-2222) linéarisé par Nhel, une série de fragments portant des séquences VL30 de taille déterminée, respectivement :
- des positions 1 à 794, - des positions 205 à 794, et
- des positions 380 à 794.
Les séquences VL30 ont été générées par PCR à partir de la matrice pVL-CG20
(Torrent et al. , 1994, J. Virol. 68, 661-667). Il est à la portée de l'homme de l'art de concevoir des amorces appropriées à partir des données de séquences et pourvues en outre d'un site Nhel à leurs extrémités (à cet égard les oligonucléotides décrits dans les SEQ ID NO: 7 et 8 peuvent convenir pour les positions 205 à 794). On obtient pVL-D 1-794, pVL-D205-794 et pVL-D380-794 selon la séquence VL30 insérée.
Dans tous ces vecteurs, la cassette dicistronique néo-VL30-LacZ est sous le contrôle du promoteur de l'ARN polymérase T7 pour l'expression in vitro et du promoteur précoce du cytomégalovirus (CMV) pour l'expression dans les cellules eucaryotes. On indique que l'AUG initiateur du gène lacZ est placé dans un contexte favorable à l'initiation de la traduction selon la règle de Kozak (A/G CCAUGG ; Kozak, 1986, Cell -/-/, 283-292).
2. Traduction in vitro des ARNs dicistronigues
On génère des ARNs dicistroniques par synthèse in vitro à partir de 5 μg de plasmides recombinants pVL linéarisés par Xbal. La réaction de transcription se déroule 3 h à 37° C dans 0,1 ml de 40 mM Tris-HCl (pH 7,5), 6 mM MgCl2, 2 mM spermidine, 10 mM dithiothreitol, 10 mM NaCl, 0,5 mM de chacun des ribonucléosides triphosphate en présence de 40 U d'ARN polymérase T7 et 80 U de RNAsine (inhibiteur de RNase). Après un traitement à la DNase (RQ1), les ARNs sont extraits au phenol-chloroforme et précipités à l'éthanol. Ils sont ensuite redissous dans de l'eau stérile bidistillée et soumis à une électrophorèse sur gel d'agarose pour vérifier leur intégrité (bande unique migrant à la taille attendue de 4,6 à 5 kb selon les plasmides).
Les ARNs dicistroniques (10 μg d'ARN/ml) sont ensuite traduits in vitro dans un système de lysats de réticulocytes de lapin (système RRL, Proméga) à 50 % de sa concentration d'origine en présence de 1 mCi [33S] méthionine/ml (Amersham) (temps de. réaction lh à 31 °C). Le mélange réactionnel est supplémenté en acétate de potassium et en chlorure de potassium à une concentration finale de 60 mM et 40 mM respectivement.
Les tubes sont placés à 100°C dans 62,5 mM Tris-HCl (pH 6,8), 2 % SDS, 10 % glycérol, 5 % /3-mercaptoéthanol et 0,02 % de bleu de bromophenol et les protéines marquées au 3'S sont analysées par électrophorèse sur gel de polyacrylamide 10 % - 0,2 % SDS. La quantification des produits de traduction des gènes néo et LacZ est effectuée par scanning. La protéine néo sert de standardisation du niveau de traduction et on évalue la quantité de β galactosidase synthétisée (PM 110 kDa).
Les ARN produits à partir de chacun des vecteurs permettent la synthèse des produits d'expression des deux gènes (néo et β galactosidase) ce qui indique qu'ils sont dicistroniques et suggère l'existence d'un IRES dans les séquences VL30 mises en oeuvre, assurant l'initiation de la traduction du second cistron d'où la production de /3-galactosidase.
Lorsqu'on examine la réaction d'une manière quantitative, le ratio /3gal/néo est similaire pour les vecteurs pVL-Dl-794 et pVL-D205-794. Il semble donc que les séquences 1-205 du VL30 ont peu d'influence sur le mechanisme d'initiation de la traduction. De manière intéressante avec le vecteur pVL-D380-794, le niveau de synthèse de la /3-galactosidase est plus élevé. Ces expériences suggèrent que les séquences 380 à 794 du VL30 de rat ont la capacité d'initier la traduction d'un cistron en 3' via un mécanisme d'entrée interne des ribosomes.
EXEMPLE 2 : Vecteurs rétroviraux comprenant une séquence d'un VL30 de rat.
1. Construction des vecteurs dicistroniques
Le plasmide pCB71 est obtenu de la façon suivante :
Un fragment EcoRI-Xbal est isolé du plasmide Clal2-AP et clone entre les mêmes sites du Bluescript II KS + (Stratagène) pour générer pCB70. Ce fragment comprend le gène de la phosphatase alcaline humaine (PA) décrit dans l'art antérieur (Fekete et Cepko, 1993, Mol. Cell. Biol., 13, 2604-2613). L'introduction de sites de restriction adéquates est à la portée de l'homme du métier.
En parallèle, le gène de la néomycine (néo ; positions 4 à 844) est amplifié par
PCR à partir du vecteur pLNPOZ (Adam et al. , 1991 , supra) et à l'aide des amorces 10 et 11 (SEQ ID NO: 5 et 6) munies à leurs extrémités de sites de restriction Sali, Spel et BamHI. Le fragment PCR généré est digéré par Sali et BamHI et introduit avec le fragment EcoRV-SalI de pCB70 portant le gène de la phosphatase alcaline dans le vecteur pLNPOZ digéré par Bail et BamHI.
On isole par PCR un fragment d'ADN de 0,59 kb comportant les séquences du VL30 de rat (positions 205 à 794) et muni à ses extrémités 5' et 3' d'un site Nhel. On met en oeuvre le plasmide pVL-CG20 (Torrent et al. , 1994, supra) à titre de matrice et les oligonucléotides 12 et 13 reportés dans les SEQ ID NO: 7 et 8. Le fragment PCR est digéré par Nhel avant d'être inséré dans le vecteur pCB71 digéré par Spel, pour donner pCBT2. A titre indicatif, on a inclus dans l'oligonucléotide 13 un codon ATG initiateur de la traduction placé dans un contexte favorable de Kozak (A/GCCATGG) qui permettra ensuite d'introduire une séquence codante dépourvue de codon initiateur.
La construction finale pCBT2 (Figure 2) contient le LTR 5' du MoMuLV, le gène de la phosphatase alcaline humaine, un fragment de 0,59 kb isolé du VL30 de rat (positions 205 à 794) suivi du gène néomycine et du LTR 3' du MoMuLV.
La construction du plasmide pCBTl s'effectue de la façon comme suit
Un fragment d'ADN comportant les séquences VL30 de rat (positions 205 à 379) est généré par PCR à partir du vecteur pVL-CG20 et des oligonucléotides 8 et 9 (SEQ ID NO: 9 et 10). Après digestion par Nhel, celui-ci est inséré dans le vecteur pCB28 également clivé par Nhel, pour donner pCB57. Ce fragment Nhel est isolé de pCB57 et introduit dans le vecteur pCB71 digéré par Spel. Comme précédemment, ce fragment comporte un codon initiateur de la traduction placé dans un contexte Kozak. On génère pCBTl (Figure 2) identique à pCBT2 à l'exception de la longueur du fragment VL30 de rat (0,175 kb au lieu de 0,59 kb) .
2. Construction du vecteur monocistronique pVL-CT2
On isole par PCR un fragment d'ADN comportant les séquences d'HaMSV
(position + 1 à + 794) muni à son extrémité 3' d'un site Ncol. On met en oeuvre le plasmide pVL-CG20 (Torrent et al, 1994, supra) à titre de matrice et les oligonucléotides 16 et 13 reportés dans les SEQ ID NO: 11 et 8. Le fragment PCR est digéré par Smal et Ncol avant d'être inséré dans le vecteur pLNPOZ (Adam et al., 1991 , supra) digéré par Ncol et partiellement par Smal, pour donner pVL- CT2 (Figure 2).
3. Génération de particules virales infectieuses et détermination du taux d'encapsidation et du taux d'expression des gènes néo, phosphatase alcaline et LacZ
La lignée de complémentation écotrope GP + E-86 (Markowitz et al. , 1988, J. Virol. , 62, 1120-1124) et les cellules cibles NIH3T3 (cellules fibroblastiques de souris) disponibles à l'ATCC, sont cultivées à 37°C en présence de 5% de C02 dans du milieu DMEM (Dulbecco's Modified Eagle's Médium) complémenté avec 5% de sérum de veau de nouveau-né. La veille de la transfection et de l'infection, les cellules GP + E-86 et les cellules cibles NIH3T3 sont mises en culture à raison de 5xl05 cellules par boîte de 10cm et 1.5xlOD cellules par puit, respectivement. Les infections virales sont réalisées selon le protocole conventionnel décrit dans la littérature. La méthode de titration est celle dite du point de dilution limite.
Les vecteurs pCBTl , ρCBT2 et pVL-CT2 ainsi que le vecteur de référence pMLV- LacZ (Torrent et al, 1994, supra) sont transfectés en parallèle dans les cellules GP + E-86 selon la méthode de Chen et Okyama (1987, Mol. Cell. Biol. , 7, 2745- 2753). Le jour suivant (J + l) , les cellules sont lavées selon les méthodes de l'art et on récolte le surnageant de culture à J + 2. Différentes dilutions sont utilisées pour infecter les cellules cibles NIH3T3. Les cellules sont cultivées en milieu sélectif (800 g/ml de G418) 24 heures après la transfection ou l'infection.
On mesure sur une aliquote de culture de cellules infectées et transfectées par pMLV-LacZ et pVL-CT2, l'expression du gène LacZ après coloration X-Gal. Cette technique de coloration est décrite dans les ouvrages de base accessibles à l'homme du métier. Il est également possible d'utiliser un kit commercial (Promega) .
De même, on détermine régulièrement au cours du temps, la production de la phosphatase alcaline dans les cellules GP + E-86 transfectées et dans les cellules NIH3T3 infectées par pCBTl et pCBT2. Pour ce faire, les cellules sont rincées dans du tampon PBS 1 et fixées 5 min à température ambiante avec une solution contenant 2% de formaldéhyde et 0,2% de glutaraldéhyde dans du PBS x 1. Les cellules ont ensuite rincées deux fois dans du tampon PBS x 1 puis incubées 30 min à 65°C dans du PBS x 1. Elles sont lavées dans du tampon AP (0,1 M Tris-HCl pH 9,5, 0,1 M NaCl, 50 mM MgCl,). Ce tampon est en.suite remplacé par la solution de coloration (contenant 0, 1 g/ml de 5-bromo-4-chloro-3-indolyl phosphate 1 , 1 mg/ml de Nitoblue sel de térazolium 1 , Levamisol 1 mM dans du tampon AP). les cellules sont incubées 6 heures à température ambiante à l'abri de la lumière. Les cellules colorées correspondent aux cellules phosphatase positives.
Lé taux d'encapsidation de chacun des vecteurs est estimé en calculant le rapport nombre de cellules infectées colorées (PA ou LacZ positives) sur le nombre de cellules transfectées colorées (PA ou LacZ positives) x 100. Les résultats sont indiqués dans le Tableau 1 suivant.
Tableau 1
PLASMIDES TAUX D'ENCAPSIDATION pMLV-Lac Z + 100
pVL-CT2 170
pCBTl 1 ,8
pCBT2 100
Les données indiquent que le fragment d'ADN de VL30 de rat (positions 205 à 794) comprend un signal d'encapsidation au moins aussi efficace que la séquence Psi du MoMuLV. De manière suφrenante, la localisation de la séquence VL30 de rat entre deux gènes affecte peu l'efficacité d'encapsidation du génome retroviral (vecteur pCBT2 comparé à pVL-CT2).
D'autre part, lorsque l'on suit l'expression des gènes PA et néo au cours du temps, la grande majorité des cellules exprimant le gène néo (résistance au G418) expriment simultanément le gène phosphatase. L'expression des deux gènes est stable au cours du temps, puisque plus de 90% des cellules résistantes au G418 sont également phosphatase positives après 40 jours de culture en milieu sélectif.
4. Analyse des ARN
Des cellules à confluence sont lavées (PBS IX) puis incubées 1 heure à 37° C dans un tampon de lyse (50mM Tris-HCl pH8,8 ; 0.3M NaCl ; 0,5% SDS ; 0,1% β- mercapto-éthanol ; lOO g/ml protéinase K). Le lysat est extrait deux fois au phénol. Les acides nucléiques sont ensuite précipités en présence de 2,5 volumes d'éthanol froid. Le précipité d'ADN est récupéré à l'aide d'une baguette en verre alors que les ARNs sont précipités 1 heure à -20 °C puis centrifugés 30 minutes à 10000 φm à 4°C. L'ARN cellulaire purifié est repris dans 150 μ\ d'eau stérile.
Les ARNs cellulaires totaux sont incubés à 65 "C pendant 5 min dans un tampon MOPS (20mM acide moφholinopropanesulfonique, 5mM acétate de sodium, ImM EDTA, pH7) contenant 6% formaldéhyde, 50% formamide, 30% bleu glycérol. Les ARNs dénaturés sont déposés sur gel agarose 0,7% en condition dénaturante (MOPS IX, 6% formaldéhyde). Les ARNs sont ensuite transférés sur membrane de nitrocellulose dans un tampon phosphate de sodium 25mM pendant 1 heure 30 min à 800mA. La membrane est exposée sous les UV (252 nm ; 0,32 J/cm2) pour fixer les ARNs. Puis, la membrane est incubée 4 heures à 42°C dans une solution de préhybridation (50% formamide, 1M NaCl, 50mM NaP04 pH7, 10% Dextran sulfate, 1% SDS, 250μg/ml ADN de sperme de saumon dénaturé 5 min à 100°C) . La membrane est ensuite hybridée pendant 14 heures à 42 °C en 50% formamide, 0,8M NaCl, 50mM NaP04 pH7, 10% Dextran sulfate et 1% SDS. La sonde néomycine utilisée à 0,5.10° cpm/μg est dénaturée 5 min à 100°C et ajoutée à la solution d'hybridation. Après hybridation, la membrane est lavée dans des bains successifs : 2 x SSC, 1% SDS (2 fois 10 min, température ambiante), 2 x SSC, 0,1% SDS (30 min, 65°C) et 1 x SSC, 0,1% SDS (30 min, 65°C). La membrane est ensuite séchée et exposée à -80 °C pendant 72 heures.
La sonde néomycine est complémentaire du gène de la néomycine entre les positions 213 et 596 et correspond au fragment Pstl-Ncol de pLNPOZ (Adam et al. , 1991). La sonde a été marquée par extension d'amorce avec le kit Nonaprimer kit I (Appligene).
Les ARNs cellulaires ont été extraits de cellules GP + E-86 72 heures après transfection du plasmide pCBT2, ou bien de cellules NIH3T3 infectées avec des virions pCBT2 après 30 jours de sélection. L'hybridation de ces ARNs avec une sonde complémentaire du gène néo révèle la présence d'un seul ARN dicistronique de taille identique dans les cellules transfectées et infectées. En conséquence, l'expression simultanée des gènes phosphatase et néomycine dans 90-95% des cellules infectées après 30 jours de sélection est due à la présence d'un seul ARN dicistronique.
5. Vecteur retroviral dicistronique contenant deux signaux d'encapsidation.
Cet exemple décrit la construction de vecteurs dicistroniques contenant un signal d'encapsidation en position normale (en aval du LTR 5') et le second entre deux cistrons. On génère deux vecteurs rétroviraux (1) pVL-CBT2-E+ dans lequel le signal MoMuLV est placé en aval du LTR 5' et la séquence VL30 de rat (205-794) entre les gènes codant pour la phosphatase alcaline et néo et (2) pVL-CBT5 dans lequel leurs positions respectives sont inversées.
pVL-CBT2-E+ résulte du clonage du fragment EcoRI isolé de pLNPOZ (Adam et al. , 1991 , supra) portant les séquences LTR 5' et d'encapsidation du MoMuLV dans pCBT2 préalablement digéré par ce même enzyme (Figure 3).
pVL-CBT5 est obtenu de la façon suivante : les séquences correspondant au LTR 5' de MoMuLV suivi des séquences VL30 (positions 205 à 794) sont amplifiées par PCR à partir de la matrice pVL-CT2. Il est à la portée de l'homme de l'art de déterminer les amorces qui conviennent et de les pourvoir de sites EcoRI à leurs extrémités 5' . Le fragment amplifié est digéré par EcoRI et clone dans le vecteur pMLV-CTB (voir ci-après) également traité par EcoRI pour donner pVL-CBT5 (Figure 3).
6. Vecteur retroviral dicistronique comportant le signal d'encapsidation de MoMuLV en position centrale. On construit l'équivalent de pCBT2 à la différence que le signal d'encapsidation de MoMuLV (positions 210 à 1035) remplace celui de VL30 de rat. Il est isolé du vecteur pLNPOZ par PCR à l'aide d'amorces adéquates comportant à leurs extrémités un site Nhel. Après digestion Nhel, le fragment amplifié est introduit entre les gènes PA et neo de pMLV-CB71 (Berlioz et Darlix, 1995, J. Virol. 69, 2214-2222) digéré par Spel. On obtient pMLV-CBT (Figure 3).
7. Evaluation des fonctions d'encapsidation et IRES des vecteurs pMLV-CBT2-
E pVL-CBT5 et pMLV-CBT
Les titres viraux sont déterminés de manière transitoire ou stable selon la technologie appliquée précédemment par évaluation du nombre de cellules exprimant la phosphatase alcaline. Les résultats sont indiqués dans le tableau 2 suivant et comparés au vecteur dicistronique pCBT2.
Tableau 2
Vecteurs Titres viraux (PA+ cfύ/ml)
Expression transitoire Expression long-terme pCBT2 1 x 104 1 x ιo5 pMLV-CBT 2,5 x 104 2 x 105 pVL-CBT2-E + 3 x 104 4 x 105 pVL-CBT5 2,5 x !04 1 ,8 x lO5
Ces données indiquent que la présence de deux signaux d'encapsidation dans un vecteur recombinant n'a pas d'effet (pMLV-CBT comparé à pVL-CBT5) ou un effet modéré (pCBT2 comparé à pVL-CBT2-E+) sur le titre viral par rapport à un vecteur n'ayant qu'un signal. On observe également que la position de ces signaux au sein du génome retroviral peut influencer leur capacité d'encapsidation (pVL- CBT2-E+ comparé à pVL-CBT5) bien qu'à un faible degré. A cet égard, la combinaison "signal MoMuLV en position normale et VL30 entre les deux cistrons" semble plus efficace.
Les cellules GP + E-86 sont transfectées avec chacun des vecteurs rétroviraux et on évalue les niveaux d'expression du gène PA en présence et en absence de néomycine. Les cellules résistantes à la néomycine et PA positives sont dénombrées après 15 jours de sélection. Les valeurs obtenues sont légèrement plus importantes pour les vecteurs dicistroniques portant les deux signaux d'encapsidation que pour leurs homologues n'en portant qu'un, ce qui suggère que la présence de deux séquences d'encapsidation, l'une d'origine rétrovirale et l'autre de VL30 n'influence pas l'expression génique des cistrons. Par ailleurs, dant tous les cas, l'expression du gène néo est efficace. Or elle ne peut être obtenue que par initiation interne de la traduction des ARNs dicistroniques médiée par les séquences précédant le cistron néomycine, soit VL30 (pCBT2 ou pVL-CBT2-E+) ou la région d'encapsidation du MoMuLV (pMLV-CBT et pVL-CBT5).
En conclusion, ces expériences montrent que les séquences 5' VL30 et MoMuLV sont toutes deux capables de promouvoir l'encapsidation d'un vecteur retroviral et l'initiation de la traduction d'un cistron placé en aval.
EXEMPLE 3 : Vecteur retroviral comprenant une séquence d'encapsidation isolée d'un VL30 de souris.
1. Construction des vecteurs
Un fragment d'ADN contenant la séquence VL30 de souris (positions 362 à 1149) est amplifié par PCR à partir du vecteur pKT403 (Adams et al, 1988, supra) et à l'aide des amorces oligonucléotidiques 3 et 4 (SEQ ID NO: 12 et 13). Le fragment généré est digéré par Bail et Ncol avant d'être inséré entre les mêmes sites du vecteur pLNPOZ (Adam et al. , 1991 , supra). On obtient le vecteur pSJE2.
Par ailleurs, un fragment d'ADN comprenant une séquence plus courte de VL30 de souris (positions 362-575) également obtenu par PCR à partir de la matrice pKT403 et des oligonucléotides 1 et 2 (SEQ ID NO: 14 et 15) , est introduit dans le vecteur pLNPOZ comme décrit ci-dessus. On obtient pSJEl.
Les vecteurs pSJEl et pSJE2 comprennent le LTR 5' du MoMuLV, le fragment
VL30 de souris indiqué, le gène LacZ et le LTR 3' du MoMuLV. A titre de témoin négatif, on construit le vecteur pSJE3 identique aux deux précédents mais dans lequel la séquences VL30 est remplacée par un polylinker. Il est obtenu par introduction de l'oligonucléotide 5 (SEQ ID NO: 16) entre les sites Bail et Ncol de pLNPOZ.
2. Détermination du taux d'encapsidation
La technologie utilisée est comparable à celle décrite dans l'exemple 1. Brièvement, les vecteurs pSJEl , 2 et 3 sont transfectés dans des lignées murines de complémentation, GP + E-86 ou CRIP (Danos et Mulligan, 1988, Proc. Natl. Acad. Sci. USA, 85, 6460-6464). Le surnageant de culture est utilisé pour infecter les cellules cibles murines NIH3T3. On mesure l'expression du gène LacZ dans les cellules infectées et transfectées après coloration X-Gal. Le titre viral correspond au rapport nombre de cellules bleues (LacZ + ) infectées sur le taux de transfection multiplié par le volume de surnageant viral utilisé. Le tableau 3 suivant donne une estimation des titres viraux obtenus pour chacun des vecteurs pSJE en fonction de la lignée de complémentation de départ. On utilise à titre de référence le vecteur pMLVLacZ + (Torrent et al. , 1994, supra) comprenant la région d'encapsidation conventionnelle du MoMuLV.
Tableau 3
PLASMIDES TITRES SUR GP + E86 (/ml) TITRES SUR CRIP (/ml)
En expression En expression En expression transitoire long terme transitoire pSJEl 0,1 x 103 0,3 x 103 0,7 x 104 pSJE2 1 x 105 1 ,3 x 105 6,5 x 104 pSJE3 < 0,001 x 103 < 0,001 x 103 < 0,01 x 104 pMLVlacZ + 0,85 x 103 2 x 103 7 x 104
Les résultats montrent que la séquence VL30 de souris comprise entre les nucléotides 362 et 1149 comprend une séquence d'encapsidation au moins aussi efficace que celle du MoMuLV. Une séquence VL30 plus courte (positions 362-
575) est encore capable d'encapsidation quoiqu'à un taux plus faible. Comme attendu, le vecteur pSJE3, dépourvu de toute région d'encapsidation est incapable de générer des particules virales.
Par ailleurs, lorsque l'on remplace dans le vecteur pCBT2 la séquence VL30 de rat par une des séquences VL30 de souris (soit le fragment 0,78 kb allant des positions 362 à 1149 soit le fragment 0,21 kb allant des positions 362 à 575) , on mesure un taux d'encapsidation efficace et une expression correcte du gène de la phosphatase alcaline.
- 26 -
LISTE DE SEQUENCES
(1) INFORMATION GENERALE:
(i) DEPOSANT:
(A) NOM: INSERM
(B) RUE: 101 rue de Tolbiac
(C) VILLE: Paris cedex 13
(E) PAYS: France
(F) CODE POSTAL: 75654
(G) TELEPHONE: (1) 44 23 60 00 (H) TELECOPIE: (1) 45 85 68 56
(ii) TITRE DE L' INVENTION: Nouveau site interne d'entrée des ribosomes, vecteur le contenant et utilisation thérapeutique.
(iii) NOMBRE DE SEQUENCES: 16
(iv) FORME LISIBLE PAR ORDINATEUR:
(A) TYPE DE SUPPORT: Tape
(B) ORDINATEUR: IBM PC compatible
(C) SYSTEME D' EXPLOITATION: PC-DOS/MS-DOS
(D) LOGICIEL: Patentln Release #1.0, Version #1.25 (OEB)
(2) INFORMATION POUR LA SEQ ID NO: 1:
(i) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 590 paires de bases
(B) TYPE: acide nucléique
(C) NOMBRE DE BRINS: simple
(D) CONFIGURATION: linéaire
(ii) TYPE DE MOLECULE: ADN (génomique) (iii) HYPOTHETIQUE: NON (iii) ANTI-SENS: NON
(vi) ORIGINE:
(A) ORGANISME: Rattus
(B) SOUCHE: élément VL30 de rat
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 1:
GGCAAGCCGG CCGGCGTTTG TCTTGTCTGT TGTGTCTTGT CCTGTGAACG ATCGATCAAT 60
AGGCTCAGAT CTGGGGACTA TCTGGGCGGG CCAGAGAAGG AGCTGACGAG CTCGGACTTC 120
TCCCCCGCAG CCCTGGAAGA CGTTCCAAGG GTGGTTGGAG GAGAGGGAGA TGCGGATCCG 180
TGGCACCTCC GTCCGTTTTC GGAGGGATCC GCACCCTTGA TGACTCCGTC TGAATTTTTG 240
GTTTCAGTTT GGTACCGAAG CTGCGCGGCG CGCTGCTTGT TACTTGTTTG ACTGTTGGAA 300
TTGTTTGTCT TCTTTGTGAC CTGACTGTGG TTTTCTGGAC GTGTTGTGTC TGTTAGTGTC 360
TTTTTGACTT TTGTTTCGTG TTTGAATTTG GACTGACGAC TGTGTTTAAA ATCTTAGACC 420
GACGACTGTG TTTGAAATCA TGAAACTGTT TGCTTTGTTC GTCGAAGAGT TTTACTTGGT 480 CCCCTTAACG CTTAGTGAGT AAGAAACTTA ATTTTGTAGA CCCCGCTCTA GTGGCAGTGT 540 GTTGGTTGAT AGCCAAAGTT AATTTTTAAA ACATAGTGTT TTGGGGGTTG 590
(2) INFORMATION POUR LA SEQ ID NO: 2:
(i) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 788 paires de bases
(B) TYPE: acide nucléique
(C) NOMBRE DE BRINS: simple
(D) CONFIGURATION: linéaire
(ii) TYPE DE MOLECULE: ADN (génomique)
(iii) HYPOTHETIQUE: NON
(iii) ANTI-SENS: NON
(vi) ORIGINE:
(B) SOUCHE: élément VL30 de souris
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 2:
GATTCTTTGT TCTGTTTTGG TCTGATGTCT GTGTTCTGAT GTCTGTGTTC TGTTTCTAAG 60
TCTGGTGCGA TCGCAGTTTC AGTTTTGCGG ACGCTCAGTG AGACCGCGCT CCGAGAGGGA 120
GTGCGGGGTG GATAAGGATA GACGTGTCCA GGTGTCCACC GTCCGTTCGC CCTGGGAGAC 180
GTCCCAGGAG GAACAGGGGA GGATCAGGGA CGCCTGGTGG ACCCCTTTGA AGGCCAAGAG 240
ACCATTTGGG GTTGCGAGAT CGTGGGTTCG AGTCCCACCT CGTGCCCAGT TGCGAGATCG 300
TGGGTTCGAG TCCCACCTCG TGTTTTGTTG CGAGATCGTG GGTTCGAGTC CCACCTCGCG 360
TCTGGTCACG GGATCGTGGG TTCGAGTCCC ACCTCGTGTT TTGTTGCGAG ATCGTGGGTT 420
CGAGTCCCAC CTCGCGTCTG GTCACGGGAT CGTGGGTTCG AGTCCCACCT CGTGCAGAGG 480
GTCTCAATTG GCCGGCCTTA GAGAGGCCAT CTGATTCTTC TGGTTTCTCT TTTTGTCTTA 540
GTCTCGTGTC CGCTCTTGTT GTGACTACTG TTTTTCTAAA AATGGGACAA TCTGTGTCCA 600
CTCCCCTTTC TCTGACTCTG GTTCTGTCGC TTGGTAATTT TGTTTGTTTA CGTTTGTTTT 660
TGTGAGTCGT CTATGTTGTC TGTTACTATC TTGTTTTTGT TTGTGGTTTA CGGTTTCTGT 720
GTGTGTCTTG TGTGTCTCTT TGTGTTCAGA CTTGGACTGA TGACTGACGA CTGTTTTTAA 780
GTTATGCC 788 (2) INFORMATION POUR LA SEQ ID NO: 3:
(i) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 30 paires de bases
(B) TYPE: acide nucléique
(C) NOMBRE DE BRINS: simple
(D) CONFIGURATION: linéaire
(ii) TYPE DE MOLECULE: ADN (génomique) (iii) HYPOTHETIQUE: NON (iii) ANTI-SENS: NON
(vi) ORIGINE:
(A) ORGANISME: Murine leukemia virus
(B) SOUCHE: souche Friend (oligo 6)
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 3: GCTCGAGCTA GCTGCAGCGC CAGTCCTCCG 30
(2) INFORMATION POUR LA SEQ ID NO: 4:
(i) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 26 paires de bases
(B) TYPE: acide nucléique
(C) NOMBRE DE BRINS: simple
(D) CONFIGURATION: linéaire
(ii) TYPE DE MOLECULE: ADN (génomique) (iii) HYPOTHETIQUE: NON (iii) ANTI-SENS: OUI
(vi) ORIGINE:
(A) ORGANISME: Murine leukemia virus
(B) SOUCHE: souche Friend
(C) INDIVIDUEL ISOLE: oligo 7
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 4: CGGGATCCGC TAGCAAACTT AAGGGG 26
(2) INFORMATION POUR LA SEQ ID NO: 5:
(i) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 25 paires de bases
(B) TYPE: acide nucléique
(C) NOMBRE DE BRINS: simple
(D) CONFIGURATION: linéaire
(ii) TYPE DE MOLECULE: ADN (génomique) (iii) HYPOTHETIQUE: NON (iii) ANTI-SENS: NON
(vi) ORIGINE:
(B) SOUCHE: gène néomycine
(C) INDIVIDUEL ISOLE: oligo 10
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 5: GGGGTCGACA CTAGTGATTG AACAA 25
(2) INFORMATION POUR LA SEQ ID NO: 6:
(i) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 27 paires de bases
(B) TYPE: acide nucléique
(C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire (ii) TYPE DE MOLECULE: ADN (génomique) (iii) HYPOTHETIQUE: NON (iii) ANTI-SENS: OUI
(vi) ORIGINE:
(B) SOUCHE: gène néomycine
(C) INDIVIDUEL ISOLE: oligo 11
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 6: GCTCTAGAGG ATCCGGCAGG TTGGGCG 27
(2) INFORMATION POUR LA SEQ ID NO: 7:
(i) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 21 paires de bases
(B) TYPE: acide nucléique
(C) NOMBRE DE BRINS: simple
(D) CONFIGURATION: linéaire
(ii) TYPE DE MOLECULE: ADN (génomique) (iii) HYPOTHETIQUE: NON (iii) ANTI-SENS: NON
(vi) ORIGINE:
(B) SOUCHE: élément VL30 de rat
(C) INDIVIDUEL ISOLE: oligo 12
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 7: GGGCTAGCGG CAAGCCGGCC G 21
(2) INFORMATION POUR LA SEQ ID NO: 8:
(i) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 30 paires de bases
(B) TYPE: acide nucléique
(C) NOMBRE DE BRINS: simple
(D) CONFIGURATION: linéaire
(ii) TYPE DE MOLECULE: ADN (génomique) (iii) HYPOTHETIQUE: NON (iii) ANTI-SENS: OUI
(vi), ORIGINE:
(B) SOUCHE: élément VL30 de rat
(C) INDIVIDUEL ISOLE: oligo 13
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 8: GGGCTAGCCC CATGGCAACC CCCAAAACAC 30
(2) INFORMATION POUR LA SEQ ID NO: 9: (i) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 21 paires de bases
(B) TYPE: acide nucléique
(C) NOMBRE DE BRINS: simple
(D) CONFIGURATION: linéaire
(ii) TYPE DE MOLECULE: ADN (génomique)
(iii) HYPOTHETIQUE: NON
(iii) ANTI-SENS: NON
(vi) ORIGINE:
(A) ORGANISME: élément VL30 de rat (C) INDIVIDUEL ISOLE: oligo 8
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 9: GGGCTAGCGG CAAGCCGGCC G 21
(2) INFORMATION POUR LA SEQ ID NO: 10:
(i) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 28 paires de bases
(B) TYPE: acide nucléique
(C) NOMBRE DE BRINS: simple
(D) CONFIGURATION: linéaire
(ii) TYPE DE MOLECULE: ADN (génomique)
(iii) HYPOTHETIQUE: NON
(iii) ANTI-SENS: OUI
(vi) ORIGINE:
(A) ORGANISME: élément V130 de rat (C) INDIVIDUEL ISOLE: oligo 9
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 10: GGGCTAGCCC CATGGCCGGA TCTCCCTC 28
(2) INFORMATION POUR LA SEQ ID NO: 11:
(i) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 31 paires de bases
(B) TYPE: acide nucléique
(C) NOMBRE DE BRINS: simple
(D) CONFIGURATION: linéaire
(ii) TYPE DE MOLECULE: ADN (génomique) (iii) HYPOTHETIQUE: NON (iii) ANTI-SENS: NON
(vi) ORIGINE:
(A) ORGANISME: Murine sarcoma virus
(B) SOUCHE: HaMSV
(C) INDIVIDUEL ISOLE: oligo 16 (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 11: GCTCGAGCTA GCTGCAGCGC CAGTCCTCCG T 31
(2) INFORMATION POUR LA SEQ ID NO: 12:
(i) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 28 paires de bases
(B) TYPE: acide nucléique
(C) NOMBRE DE BRINS: simple
(D) CONFIGURATION: linéaire
(ii) TYPE DE MOLECULE: ADN (génomique)
(iii) HYPOTHETIQUE: NON
(iii) ANTI-SENS: NON
(vi) ORIGINE:
(B) SOUCHE: élément VL30 de souris (oligo 3)
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 12: CCGAATTCTG GCCAGATTCT TTGTTCTG 28
(2) INFORMATION POUR LA SEQ ID NO: 13:
(i) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 29 paires de bases
(B) TYPE: acide nucléique
(C) NOMBRE DE BRINS: simple
(D) CONFIGURATION: linéaire
(ii) TYPE DE MOLECULE: ADN (génomique)
(iii) HYPOTHETIQUE: NON
(iii) ANTI-SENS: OUI
(vi) ORIGINE:
(B) SOUCHE: élément VL30 de souris (oligo 4)
( i) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 13: CCGCTAGCCC CATGGCAACT TAAAAACAG 29
(2) INFORMATION POUR LA SEQ ID NO: 14:
(i) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 28 paires de bases
(B) TYPE: acide nucléique
(C) NOMBRE DE BRINS: simple
(D) CONFIGURATION: linéaire
(ii) TYPE DE MOLECULE: ADN (génomique)
(iii) HYPOTHETIQUE: NON
(iii) ANTI-SENS: NON
(vi) ORIGINE:
(B) SOUCHE: élément VL30 de souris (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 14: CCGAATTCTG GCCAGATTCT TTGTTCTG 28
(2) INFORMATION POUR LA SEQ ID NO: 15:
(i) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 27 paires de bases
(B) TYPE: acide nucléique
(C) NOMBRE DE BRINS: simple
(D) CONFIGURATION: linéaire
(ii) TYPE DE MOLECULE: ADN (génomique)
(iii) HYPOTHETIQUE: NON
(iii) ANTI-SENS: OUI
(vi) ORIGINE:
(B) SOUCHE: élément VL30 de souris (oligo 2)
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 15: CCGCTAGCCC CATGGCGTCC CTGATCC 27
(2) INFORMATION POUR LA SEQ ID NO: 16:
(i) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 24 paires de bases
(B) TYPE: acide nucléique
(C) NOMBRE DE BRINS: simple
(D) CONFIGURATION: linéaire
(ii) TYPE DE MOLECULE: ADN (génomique)
(iii) HYPOTHETIQUE: NON
(iii) ANTI-SENS: NON
(vi) ORIGINE:
(B) SOUCHE: polylinker (oligo 5)
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 16: TGGCCAGCTG AAGCTTGCCA TGGG 24

Claims

Revendications
1. Un fragment d'ADN isolé comprenant un site interne d'entrée des ribosomes et/ou une séquence d'encapsidation, caractérisé en ce que ledit fragment est dérivé d'un rétrotransposon.
2. Un fragment d'ADN isolé selon la revendication 1 , caractérisé en ce qu'il comprend au moins 100 nucléotides correspondant à l'extrémité 5' dudit rétrotransposon en aval de la répétition directe.
3. Un fragment d'ADN isolé selon la revendication 1 ou 2, caractérisé en ce qu'il est dérivé d'un élément cellulaire mobile de type VL30 d'origine murine.
4. Un fragment d'ADN isolé selon la revendication 3, caractérisé en ce qu'il est dérivé d'un élément cellulaire mobile de type VL30 de rat.
5. Un fragment d'ADN isolé selon la revendication 4, caractérisé en ce qu'il est substantiellement homologue à la séquence présentée dans l'identificateur de séquence SEQ ID NO: 1 , (i) commençant au nucléotide 1 et se terminant au nucléotide 590 ou (ii) commençant au nucléotide 176 et se terminant au nucléotide 590.
6. Un fragment d'ADN isolé selon la revendication 3, caractérisé en ce qu'il est dérivé d'un élément cellulaire mobile de type VL30 de souris.
7. Un fragment d'ADN isolé selon la revendication 6, caractérisé en ce qu'il est substantiellement homologue à la séquence présentée dans l'identificateur de séquence SEQ ID NO: 2, commençant au nucléotide 1 et se terminant au nucléotide 788.
8. Un vecteur pour l'expression d'un ou plusieurs gène(s) d'intérêt comprenant un fragment d'ADN selon l'une des revendications 1 à 7.
9. Un vecteur selon la revendication 8, caractérisé en ce qu'il s'agit d'un vecteur plasmidique ou d'un vecteur viral dérivé d'un virus sélectionné parmi le groupe des poxvirus, adénovirus, baculovirus, virus de l'herpès, virus associé à un adénovirus et rétrovirus.
10. Un vecteur selon la revendication 8 ou 9, caractérisé en ce que ledit fragment d'ADN est positionné en amont d'un gène d'intérêt pour améliorer la traduction du produit d'expression pour lequel ledit gène code.
11. Un vecteur retroviral selon la revendications 8 ou 9, caractérisé en ce que ledit fragment d'ADN est positionné : (i) en aval du LTR 5' dudit vecteur retroviral ; et/ou
(ii) en amont d'un gène d'intérêt pour permettre l 'encapsidation dudit vecteur retroviral et/ou pour améliorer la traduction du produit d'expression pour lequel ledit gène code.
12. Un vecteur retroviral selon la revendication 10 ou 11 , caractérisé en ce qu'il comprend en outre une séquence d'encapsidation issue d'un rétrovirus.
13. Un vecteur retroviral selon la revendication 11 ou 12, caractérisé en ce que le LTR 5' dudit vecteur retroviral contrôle l'expression d'un ou plusieurs gène (s) d'intérêt.
14. Un vecteur selon l'une des revendications 8 à 13, caractérisé en ce qu'il comprend au moins deux fragments d'ADN selon l'une des revendications 1 à 7 ; lesdits fragments d'ADN étant dérivés de retrotransposons d'origines différentes.
15. Un vecteur selon la revendication 14, caractérisé en ce qu'il comprend un fragment d'ADN selon la revendication 4 ou 5 et un fragment d'ADN selon la revendication 6 ou 7.
16. Un vecteur selon l'une des revendications 8 à 15, caractérisé en ce qu'il comprend un gène d'intérêt codant pour un produit d'expression sélectionné parmi le facteur VIII, le facteur IX, la protéine CFTR, la dystrophine, l'insuline, l'interféron gamma, une interleukine et un marqueur de sélection.
17. Une particule virale générée à partir d'un vecteur viral selon l'une des revendications 8 à 16.
18. Une cellule animale comprenant un vecteur selon l'une des revendications 8 à 16 ou infectée par une particule virale selon la revendication 17.
19. Utilisation d'un vecteur selon l'une des revendications 8 à 16, d'une particule virale selon le revendication 17 ou d'une cellule animale selon la revendication 18 pour la préparation d'une composition pharmaceutique destinée au traitement et/ou à la prévention d'une maladie traitable par thérapie génique.
20. Une composition pharmaceutique comprenant à titre d'agent thérapeutique ou prophylactique, un vecteur selon l'une des revendications 8 à 16, une particule virale selon le revendication 17 ou une cellule animale selon la revendication 18 en association avec un véhicule pharmaceutiquement acceptable.
21. Une composition pharmaceutique selon la revendication 20, caractérisée en ce qu'elle comprend entre 104 et 1014 pfu, et de préférence entre 106 et 1011 pfu particules virales selon la revendication 17.
22. Un vecteur polycistronique pour l'expression d'au moins deux gènes d'intérêt comprenant un site interne d'entrée des ribosomes positionné entre deux des dits gènes d'intérêt caractérisé en ce que ledit site interne d'entrée des ribosomes dérive de la séquence d'encapsidation du rétrovirus de la leucémie murine de Moloney.
PCT/FR1995/000894 1994-07-05 1995-07-05 Nouveau site interne d'entree des ribosomes, vecteur le contenant et utilisation therapeutique WO1996001324A2 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US08/600,999 US5925565A (en) 1994-07-05 1995-07-05 Internal ribosome entry site, vector containing it and therapeutic use
AU29295/95A AU707874B2 (en) 1994-07-05 1995-07-05 New internal ribosome entry site, vector containing it and therapeutical use
EP95925007A EP0769062A2 (fr) 1994-07-05 1995-07-05 Nouveau site interne d'entree des ribosomes, vecteur le contenant et utilisation therapeutique
JP8503707A JPH10503644A (ja) 1994-07-05 1995-07-05 新規な内部リボソーム侵入部位、これを含むベクター、および治療への使用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9408300A FR2722208B1 (fr) 1994-07-05 1994-07-05 Nouveau site interne d'entree des ribosomes, vecteur le contenant et utilisation therapeutique
FR94/08300 1994-07-05

Publications (2)

Publication Number Publication Date
WO1996001324A2 true WO1996001324A2 (fr) 1996-01-18
WO1996001324A3 WO1996001324A3 (fr) 1996-02-29

Family

ID=9465025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1995/000894 WO1996001324A2 (fr) 1994-07-05 1995-07-05 Nouveau site interne d'entree des ribosomes, vecteur le contenant et utilisation therapeutique

Country Status (7)

Country Link
US (1) US5925565A (fr)
EP (1) EP0769062A2 (fr)
JP (1) JPH10503644A (fr)
AU (1) AU707874B2 (fr)
CA (1) CA2194155A1 (fr)
FR (1) FR2722208B1 (fr)
WO (1) WO1996001324A2 (fr)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996033272A1 (fr) * 1995-04-18 1996-10-24 KLINIKUM DER ALBERT-LUDWIGS-UNIVERSITäT FREIBURG Vecteurs de transfection de cellules eucaryotes, leur utilisation et cellules cibles transfectees a l'aide desdits vecteurs
FR2755975A1 (fr) * 1996-11-15 1998-05-22 Rhone Poulenc Rorer Sa Virus recombinants bicistroniques utiles pour le traitement de pathologies liees aux dyslipoproteinemies
FR2762615A1 (fr) * 1997-04-28 1998-10-30 Inst Nat Sante Rech Med Nouveau site interne d'entree des ribosomes et vecteur le contenant
WO1999025862A3 (fr) * 1997-11-19 1999-07-29 Nature Technology Inc SIGNAL D'ENCAPSIDATION VIRALE CHIMERE SANS SEQUENCES DE GENE $i(GAG)
WO1999047690A3 (fr) * 1998-03-16 1999-11-18 Introgen Therapeutics Inc Vecteurs multigenes
US6033670A (en) * 1996-12-16 2000-03-07 Merial Recombinant live avian vaccine, using as vector the avian infectious laryngotracheitis virus
WO2000044902A3 (fr) * 1999-01-29 2001-03-08 Searle & Co Biomarqueurs et dosages de carcinogenese
WO2002022839A3 (fr) * 2000-09-15 2002-05-16 Inst Nat Sante Rech Med Sites d'entree ribosome interne (ires) d'errantivirus et leurs utilisations
WO2018144087A2 (fr) 2016-11-03 2018-08-09 Temple University-Of The Commonwealth System Of Higher Education Plasmides d'adn pour la génération rapide de vecteurs de recombinaison homologues pour le développement de lignées cellulaires

Families Citing this family (177)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6605712B1 (en) * 1990-12-20 2003-08-12 Arch Development Corporation Gene transcription and ionizing radiation: methods and compositions
US20030215795A1 (en) * 1991-06-28 2003-11-20 Frey Teryl K. Highly infectious rubella virus DNA constructs and methods of production
US6958237B2 (en) 1991-06-28 2005-10-25 Georgia State Univesity Research Foundation, Inc. Highly infectious rubella virus DNA constructs and methods of production
FR2747046B1 (fr) * 1996-04-05 1998-06-19 Univ Paris Curie Nouveaux vaccins issus de plasmovirus
FR2766091A1 (fr) 1997-07-18 1999-01-22 Transgene Sa Composition antitumorale a base de polypeptide immunogene de localisation cellulaire modifiee
US20030138808A1 (en) * 1998-02-19 2003-07-24 Simard John J.L. Expression vectors encoding epitopes of target-associated antigens
AU1128400A (en) 1998-10-22 2000-05-08 Medical College Of Georgia Institute, Inc. Long terminal repeat, enhancer, and insulator sequences for use in recombinant vectors
WO2000066758A1 (fr) * 1999-04-29 2000-11-09 Aarhus University Expression de genes heterologues, a partir d'une cassette de traduction ires, dans des vecteurs retroviraux
KR100873157B1 (ko) 1999-05-06 2008-12-10 웨이크 포리스트 유니버시티 면역 반응을 유발하는 항원을 동정하기 위한 조성물과 방법
DK1471926T3 (da) 1999-06-01 2011-02-28 Baylor College Medicine Sammensætninger og fremgangsmåder til terapeutisk anvendelse af en atonal-associeret sekvens
NZ521715A (en) * 2000-04-28 2008-01-31 Mannkind Corp Method of identifying and producing antigen peptides and use thereof as vaccines
US20030215425A1 (en) * 2001-12-07 2003-11-20 Simard John J. L. Epitope synchronization in antigen presenting cells
US6861234B1 (en) 2000-04-28 2005-03-01 Mannkind Corporation Method of epitope discovery
AU2001284843A1 (en) * 2000-08-14 2002-02-25 Iogenetics, Llc Fatty liver disease resistant bovines
US7575924B2 (en) 2000-11-13 2009-08-18 Research Development Foundation Methods and compositions relating to improved lentiviral vectors and their applications
ATE541937T1 (de) * 2001-04-06 2012-02-15 Univ Chicago Chemotherapeutische einleitung der egr-1-promoter-aktivität in gentherapie
US20040242523A1 (en) * 2003-03-06 2004-12-02 Ana-Farber Cancer Institue And The Univiersity Of Chicago Chemo-inducible cancer gene therapy
US8034791B2 (en) 2001-04-06 2011-10-11 The University Of Chicago Activation of Egr-1 promoter by DNA damaging chemotherapeutics
IL160132A0 (en) 2001-08-02 2004-06-20 Inst Clayton De La Rech Methods and compositions relating to improved lentiviral vector production systems
US7647184B2 (en) * 2001-08-27 2010-01-12 Hanall Pharmaceuticals, Co. Ltd High throughput directed evolution by rational mutagenesis
US20030129203A1 (en) * 2001-08-27 2003-07-10 Nautilus Biotech S.A. Mutant recombinant adeno-associated viruses
AU2002324909A1 (en) * 2001-09-07 2003-03-24 Baylor College Of Medicine Linear dna fragments for gene expression
CA2915676C (fr) * 2001-10-02 2017-06-06 Institut Clayton De La Recherche Vecteurs lentiviraux a expression reduite
US7338656B2 (en) 2001-10-26 2008-03-04 Baylor College Of Medicine Composition and method to alter lean body mass and bone properties in a subject
EP1483378B1 (fr) * 2001-11-02 2013-01-02 Rice University Systeme de recyclage permettant la manipulation de la disponibilite intracellulaire du nadh
US8637305B2 (en) * 2001-11-07 2014-01-28 Mannkind Corporation Expression vectors encoding epitopes of target-associated antigens and methods for their design
US20030157641A1 (en) * 2001-11-16 2003-08-21 Idec Pharmaceuticals Corporation Polycistronic expression of antibodies
CN1615151A (zh) 2001-12-11 2005-05-11 阿德维希斯公司 用于治疗慢性病个体的质粒介导的补充
US20030224404A1 (en) * 2002-02-25 2003-12-04 Manuel Vega High throughput directed evolution of nucleic acids by rational mutagenesis
DK1499736T3 (da) * 2002-04-26 2009-06-08 Inst Nat Sante Rech Med Forbedrede kimære glycoproteiner og pseudotypet lentovirale vektorer
CN100543036C (zh) 2002-05-06 2009-09-23 得克萨斯州大学系统董事会 递送治疗或诊断试剂的导向蛋白质
EP2269619A1 (fr) 2002-08-12 2011-01-05 Jennerex Biotherapeutics ULC Procédés et compositions concernant des poxvirus et le cancer
US20050202438A1 (en) * 2002-09-09 2005-09-15 Rene Gantier Rational directed protein evolution using two-dimensional rational mutagenesis scanning
US20060020396A1 (en) * 2002-09-09 2006-01-26 Rene Gantier Rational directed protein evolution using two-dimensional rational mutagenesis scanning
ATE466085T1 (de) * 2002-09-09 2010-05-15 Hanall Pharmaceutical Co Ltd Protease-resistente modifizierte interferon alpha polypeptide
DK1563069T3 (da) * 2002-11-22 2012-07-23 Inst Clayton De La Rech Sammensætninger og systemer til genregulering
EP2933334B1 (fr) * 2003-02-18 2019-09-18 Baylor College of Medicine Activation induite dans des cellules dendritiques
US8481504B2 (en) 2003-03-12 2013-07-09 Vgx Pharmaceuticals, Inc. Insulin-like growth factor (IGF-I) plasmid-mediated supplementation for therapeutic applications
TW200424214A (en) * 2003-04-21 2004-11-16 Advisys Inc Plasmid mediated GHRH supplementation for renal failures
US20070224615A1 (en) * 2003-07-09 2007-09-27 Invitrogen Corporation Methods for assaying protein-protein interactions
CN1894581B (zh) 2003-07-09 2012-02-01 生命技术公司 检测蛋白-蛋白相互作用的方法
PT1649023E (pt) 2003-07-21 2008-11-20 Transgene Sa Polipéptido com actividade de citosina desaminase melhorada
WO2005047473A2 (fr) * 2003-11-10 2005-05-26 Emory University Bitherapie genique a un seul vecteur pour hypertension pulmonaire
DE602004027165D1 (de) 2003-12-31 2010-06-24 VGX Pharmaceuticals LLC Reduzierung von arthritis und lahmheit bei personen unter supllement von wachstumshormon freisetzendem hormon (ghrh)
US7998930B2 (en) 2004-11-04 2011-08-16 Hanall Biopharma Co., Ltd. Modified growth hormones
EP2468768A3 (fr) * 2005-07-21 2012-10-31 Abbott Laboratories Expression de gènes multiples incluant des constructions molles avec des polyprotéines, des pro-polyprotéines et protéolyse
US20070026012A1 (en) 2005-08-01 2007-02-01 Cornell Research Foundation, Inc. Compositions and methods for monitoring and altering protein folding and solubility
US8980246B2 (en) 2005-09-07 2015-03-17 Sillajen Biotherapeutics, Inc. Oncolytic vaccinia virus cancer therapy
US20090317421A1 (en) 2006-01-18 2009-12-24 Dominique Missiakas Compositions and methods related to staphylococcal bacterium proteins
US20080096228A1 (en) * 2006-08-08 2008-04-24 The Regents Of The University Of California Compositions And Methods Relating To Mammalian Internal Ribosome Entry Sites
CN105769931B (zh) 2006-09-15 2021-04-27 渥太华医院研究机构 溶瘤弹状病毒
AU2007310946B2 (en) 2006-10-19 2014-06-05 Baylor College Of Medicine Generating an immune response by inducing CD40 and pattern recognition receptors
KR20080084528A (ko) 2007-03-15 2008-09-19 제네렉스 바이오테라퓨틱스 인크. 종양살상형 백시니아 바이러스 암 치료
JP5813321B2 (ja) 2007-03-23 2015-11-17 ウィスコンシン アラムニ リサーチ ファンデーション 体細胞の再プログラム化
WO2009102509A2 (fr) 2008-01-10 2009-08-20 Research Development Foundation Vaccins et diagnostics pour les ehrlichioses
CA2716801A1 (fr) * 2008-03-12 2009-09-17 Wyeth Llc Procede pour identifier des cellules appropriees pour une production a grande echelle de proteines recombinantes
JP5779090B2 (ja) 2008-04-09 2015-09-16 マックスサイト インコーポレーティッド 新規に単離された細胞の治療組成物の操作および送達
KR101871192B1 (ko) 2008-06-04 2018-06-27 후지필름 셀룰러 다이내믹스, 인코포레이티드 비-바이러스 접근법을 사용한 iPS 세포의 생산 방법
CA2734128A1 (fr) * 2008-08-12 2010-02-18 Cellular Dynamics International, Inc. Procedes de production de cellules ips
US8912146B2 (en) 2008-08-18 2014-12-16 University Of Maryland, Baltimore Derivatives of APF and methods of use
DK2331680T3 (en) 2008-09-22 2017-08-21 Baylor College Medicine Methods and Compositions for Generating an Immune Response by Induction of CD-40 as well as Pattern Recognition Receptor Adapters
WO2010042481A1 (fr) 2008-10-06 2010-04-15 University Of Chicago Compositions et procédés associés aux protéines bactériennes eap, emp, et/ou adsa
PT3281947T (pt) 2009-04-03 2020-05-07 Univ Chicago Composições e métodos relacionados com variantes da proteína a (spa)
EP3150701B1 (fr) 2009-06-05 2018-10-03 FUJIFILM Cellular Dynamics, Inc. Reprogrammation de lymphocytes t et de cellules hématopoïétiques
CA2774144C (fr) 2009-09-14 2018-02-13 Jennerex, Inc. Polytherapie anticancereuse a virus de la vaccine oncolytique
RU2012122240A (ru) * 2009-10-30 2013-12-10 Эбботт Лэборетриз Конструкции sorf и экспрессия нескольких генов
MX337062B (es) 2009-12-10 2016-02-11 Ottawa Hospital Res Inst Rabdovirus oncolítico.
US10080799B2 (en) 2010-02-12 2018-09-25 Arizona Board Of Regents On Behalf Of Arizona State University Methods and compositions related to glycoprotein-immunoglobulin fusions
WO2011116276A2 (fr) 2010-03-18 2011-09-22 Matthew Delisa Préparation d'anticorps correctement pliés utilisant la présentation sur la membrane intérieure d'intermédiaires de translocation twin-arginine
US8808699B2 (en) 2010-04-05 2014-08-19 The University Of Chicago Compositions and methods related to protein A (SpA) antibodies as an enhancer of immune response
DK2560672T3 (en) 2010-04-19 2014-03-17 Res Dev Foundation RTEF-1 variants and their uses
WO2011146862A1 (fr) 2010-05-21 2011-11-24 Bellicum Pharmaceuticals, Inc. Méthodes d'induction d'une apoptose sélective
CA2802087A1 (fr) 2010-06-15 2011-12-22 Cellular Dynamics International, Inc. Compendium de modeles de cellules souches prefabriques pour l'interrogation d'une reponse biologique
EP3382008A1 (fr) 2010-06-15 2018-10-03 FUJIFILM Cellular Dynamics, Inc. Génération de cellules souches pluripotentes induites à partir de petits volumes de sang périphérique
CA2803298C (fr) 2010-07-02 2020-07-14 The University Of Chicago Compositions et methodes associees a des variants de proteine a (spa)
WO2012006440A2 (fr) 2010-07-07 2012-01-12 Cellular Dynamics International, Inc. Production de cellules endothéliales par programmation
EP2601289B1 (fr) 2010-08-04 2017-07-12 Cellular Dynamics International, Inc. Reprogrammation des lymphocytes b immortalisés
WO2012033901A2 (fr) 2010-09-08 2012-03-15 The Board Of Regents Of The University Of Texas System Thérapie anticancéreuse sur la base des récepteurs de la somatostatine
WO2012034067A1 (fr) 2010-09-09 2012-03-15 The University Of Chicago Procédés et compositions impliquant des antigènes staphylococciques protecteurs
EP2625271B1 (fr) * 2010-10-04 2017-05-31 Tree of Knowledge Patents B.V. Méthode d'extraction d'adn de cellules végétales et de nématodes
US9919047B2 (en) 2011-01-04 2018-03-20 Sillajen, Inc. Generation of antibodies to tumor antigens and generation of tumor specific complement dependent cytotoxicity by administration of oncolytic vaccinia virus
WO2012098260A1 (fr) 2011-01-21 2012-07-26 Axiogenesis Ag Système non viral pour générer des cellules souches pluripotentes induites (ips)
EP2673358B1 (fr) 2011-02-08 2019-01-09 FUJIFILM Cellular Dynamics, Inc. Production de précurseurs hématopoïétiques obtenus par programmation
US9085631B2 (en) 2011-04-08 2015-07-21 Nov Vac APS Proteins and nucleic acids useful in vaccines targeting Staphylococcus aureus
US8945588B2 (en) 2011-05-06 2015-02-03 The University Of Chicago Methods and compositions involving protective staphylococcal antigens, such as EBH polypeptides
ES2627529T3 (es) 2011-06-08 2017-07-28 Children's Hospital Of Eastern Ontario Research Institute Inc. Composiciones para tratamiento de glioblastoma
EP2732029B1 (fr) 2011-07-11 2019-01-16 FUJIFILM Cellular Dynamics, Inc. Procédés de reprogrammation cellulaire et d'ingénierie génomique
US20130101664A1 (en) 2011-08-18 2013-04-25 Donald W. Kufe Muc1 ligand traps for use in treating cancers
EP2766388A1 (fr) 2011-10-12 2014-08-20 Møller, Niels Iversen Peptides dérivés de campylobacter jejuni et leur utilisation en vaccination
KR102100092B1 (ko) 2012-02-02 2020-04-13 보드 오브 리전츠, 더 유니버시티 오브 텍사스 시스템 이종 종양-관련 항원들을 발현하는 아데노바이러스
NZ702285A (en) 2012-04-26 2016-07-29 Univ Chicago Staphylococcal coagulase antigens and methods of their use
WO2014116721A1 (fr) 2013-01-22 2014-07-31 The Arizona Board Of Regents For And On Behalf Of Arizona State University Vecteur geminiviral pour l'expression du rituximab
JP2016513115A (ja) 2013-02-21 2016-05-12 チルドレンズ ホスピタル オブ イースタン オンタリオ リサーチ インスティチュート インコーポレイテッド ワクチン組成物
US20140242595A1 (en) 2013-02-22 2014-08-28 Cellular Dynamics International, Inc. Hepatocyte production via forward programming by combined genetic and chemical engineering
WO2014132137A2 (fr) 2013-03-01 2014-09-04 Université De Genève Sélection de cellules transgéniques
US9434935B2 (en) 2013-03-10 2016-09-06 Bellicum Pharmaceuticals, Inc. Modified caspase polypeptides and uses thereof
SG11201506974XA (en) 2013-03-14 2015-10-29 Bellicum Pharmaceuticals Inc Methods for controlling t cell proliferation
WO2018140863A1 (fr) 2017-01-27 2018-08-02 Vanderbilt University Inhibiteurs de la translocation nucléaire de la protéine fus permettant la prévention de la fibrose
JP6467406B2 (ja) 2013-06-05 2019-02-13 ベリカム ファーマシューティカルズ, インコーポレイテッド カスパーゼポリペプチドを使用して部分的なアポトーシスを誘導するための方法
HK1224188A1 (zh) 2013-09-09 2017-08-18 Figene, Llc 用於软骨细胞或软骨型细胞再生的基因治疗
CA2965327C (fr) 2013-11-08 2023-05-09 The Board Of Regents Of The University Of Texas System Anticorps vh4 diriges contre les astrocytes et les neurones de la matiere grise
CA2929555A1 (fr) 2013-11-08 2015-05-14 Baylor Research Institute La localisation nucleaire de glp-1 stimule la regeneration myocardique et entraine la regression d'une insuffisance cardiaque
EP3071697B1 (fr) 2013-11-22 2019-10-16 DNAtrix, Inc. L'adénovirus exprimant des agonistes des récepteurs stimulateurs de cellules immunitaires
EP4227685A3 (fr) 2013-12-03 2024-02-28 Evaxion Biotech A/S Proteines et acides nucleiques utiles dans des vaccins ciblant staphylococcus aureus
ES2794088T3 (es) 2014-01-29 2020-11-17 Dana Farber Cancer Inst Inc Anticuerpos contra el dominio extracelular de MUC1-C (MUC1-C/ECD)
CN106132423B (zh) 2014-02-14 2020-07-31 贝里坤制药股份有限公司 用诱导型嵌合多肽活化t细胞的方法
US20170044496A1 (en) 2014-04-10 2017-02-16 H. Lee Moffitt Cancer Center And Research Institute, Inc. Enhanced Expansion of Tumor-Infiltrating Lymphocytes for Adoptive Cell Therapy
US20170107486A1 (en) 2014-04-21 2017-04-20 Cellular Dynamics International, Inc. Hepatocyte production via forward programming by combined genetic and chemical engineering
CA2954539C (fr) 2014-07-08 2021-04-20 The Children's Medical Center Corporation Compositions et procedes pour le traitement du diabete
CA2959168A1 (fr) 2014-09-02 2016-03-10 Bellicum Pharmaceuticals, Inc. Costimulation de recepteurs d'antigenes chimeriques par des polypeptides derives de myd88 et cd40
JP6718444B2 (ja) 2014-11-03 2020-07-08 アカデミッシュ ザイケンホイス レイデン (エイチ.オー.ディー.エヌ. エルユーエムシー) Bob1に対して指向されるT細胞レセプターおよびその使用
US20180169211A1 (en) 2014-11-13 2018-06-21 Evaxion Biotech Aps Peptides derived from acinetobacter baumannii and their use in vaccination
US20180057839A1 (en) 2014-11-26 2018-03-01 The Regents Of The University Of California Therapeutic compositions comprising transcription factors and methods of making and using the same
WO2016100241A2 (fr) 2014-12-15 2016-06-23 Bellicum Pharmaceuticals, Inc. Procédés d'activation ou d'élimination régulée de cellules thérapeutiques
US10434162B2 (en) 2015-01-12 2019-10-08 Evaxion Biotech Aps Proteins and nucleic acids useful in vaccines targeting Klebsiella pneumoniae
WO2016134293A1 (fr) 2015-02-20 2016-08-25 Baylor College Of Medicine Inactivation de p63 pour le traitement de l'insuffisance cardiaque
WO2016142783A2 (fr) 2015-03-10 2016-09-15 Leiden University Medical Center Récepteurs de lymphocytes t dirigés contre l'antigène exprimé de préférence dans le mélanome, et leurs utilisations
US20180201656A1 (en) 2015-07-04 2018-07-19 Evaxion Biotech Aps Proteins and nucleic acids useful in vaccines targeting Pseudomonas Aeruginosa
CA3002157A1 (fr) 2015-10-20 2017-04-27 FUJIFILM Cellular Dynamics, Inc. Procedes de differenciation dirigee de cellules souches pluripotentes en cellules immunes
US11246896B2 (en) 2015-10-28 2022-02-15 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Tumor-specific adenovirus vectors and therapeutic uses
EP3368660A4 (fr) 2015-10-30 2019-04-24 The Regents Of The University Of California Méthodes de génération de lymphocytes t à partir de cellules souches et méthodes immunothérapeutiques utilisant lesdits lymphocytes t
EP3370733B1 (fr) 2015-11-02 2021-07-14 Board of Regents, The University of Texas System Méthodes d'activation de cd40 et blocage de points de contrôle immunitaires
EP3371221A2 (fr) 2015-11-07 2018-09-12 MultiVir Inc. Méthodes et compositions comprenant une thérapie génique suppressive de tumeur et le blocage du point de contrôle immunitaire pour le traitement du cancer
FI3373968T3 (fi) 2015-11-09 2024-07-17 Childrens Hospital Philadelphia Glypikaani 2 syövän merkkiaineena ja terapeuttisena kohteena
WO2017144523A1 (fr) 2016-02-22 2017-08-31 Evaxion Biotech Aps Protéines et acides nucléiques utiles dans des vaccins ciblant staphylococcus aureus
WO2017168348A1 (fr) 2016-03-31 2017-10-05 Baylor Research Institute Protéine 8 de type angiopoïétine (angptl8)
WO2017203057A1 (fr) 2016-05-27 2017-11-30 Alk-Abelló A/S Protéines immunogènes et fragments de celles-ci à partir d'acariens allergènes
WO2017216384A1 (fr) 2016-06-17 2017-12-21 Evaxion Biotech Aps Vaccination ciblant ichthyophthirius multifiliis
WO2017220787A1 (fr) 2016-06-24 2017-12-28 Evaxion Biotech Aps Vaccin contre l'infection provoquée par aeromonas salmonicida
CA3029582A1 (fr) 2016-07-01 2018-01-04 Research Development Foundation Elimination de cellules proliferantes de greffons derives de cellules souches
EP3889167A1 (fr) 2016-07-22 2021-10-06 Evaxion Biotech ApS Protéines chimériques pour induire une immunité vis-à-vis d'une infection à s. aureus
DK3523423T3 (da) 2016-10-05 2024-09-02 Fujifilm Cellular Dynamics Inc Fremgangsmåder til målrettet differentiering af pluripotente stamceller til hla homozygote immunceller
US11339209B2 (en) 2016-11-14 2022-05-24 Novartis Ag Compositions, methods, and therapeutic uses related to fusogenic protein minion
EP3551226A1 (fr) 2016-12-12 2019-10-16 MultiVir Inc. Méthodes et compositions comprenant une thérapie génique virale et un inhibiteur de point de contrôle immunitaire pour le traitement et la prévention du cancer et des maladies infectieuses
US11298420B2 (en) 2016-12-21 2022-04-12 Memgen, Llc Armed oncolytic viruses
JP2020504767A (ja) 2016-12-21 2020-02-13 メムゲン,エルエルシー 武装した複製可能な腫瘍溶解性アデノウイルス
EP3565576A1 (fr) 2017-01-05 2019-11-13 Evaxion Biotech ApS Vaccins ciblantpseudomonas aeruginosa
DE102017103383A1 (de) 2017-02-20 2018-08-23 aReNA-Bio GbR (vertretungsberechtigter Gesellschafter: Dr. Heribert Bohlen, 50733 Köln) System und Verfahren zur Zelltyp-spezifischen Translation von RNA-Molekülen in Eukaryoten
CA3040626A1 (fr) 2017-04-05 2018-10-11 Centro De Neurociencias E Biologia Celular Compositions destinees a la reprogrammation de cellules en cellules dendritiques ou en cellules presentatrices d'antigene, procedes et utilisations associes
EP3385373A1 (fr) 2017-04-05 2018-10-10 Centro de Neurociências e Biologia Celular Compositions pour la reprogrammation de cellules en cellules dendritiques ou en cellules présentatrices d'antigènes, leurs procédés et utilisations
EP3612557B1 (fr) 2017-04-18 2022-01-19 FUJIFILM Cellular Dynamics, Inc. Lymphocytes effecteurs immunitaires spécifiques de l'antigène
WO2018208849A1 (fr) 2017-05-09 2018-11-15 Bellicum Pharmaceuticals, Inc. Procédés pour augmenter ou modifier la transduction de signal
US20200207830A1 (en) 2017-07-27 2020-07-02 Novartis Ag Trem2 mutants resistant to sheddase cleavage
EP3710466A2 (fr) 2017-11-13 2020-09-23 The University of Chicago Méthodes et compositions pour le traitement des plaies
WO2019145399A1 (fr) 2018-01-24 2019-08-01 Evaxion Biotech Aps Vaccins pour la prophylaxie d'infections par s. aureus
CN112292391A (zh) 2018-03-05 2021-01-29 芝加哥大学 用与细胞因子连接的ecm亲和肽治疗癌症的方法和组合物
AU2019322487B2 (en) 2018-03-19 2024-04-18 Multivir Inc. Methods and compositions comprising tumor suppressor gene therapy and CD122/CD132 agonists for the treatment of cancer
US11413336B2 (en) 2018-03-23 2022-08-16 Board Of Regents, The University Of Texas System Coccidioides antigens and methods of their use
US12053510B2 (en) 2018-05-01 2024-08-06 Orfoneuro Aps Treatment of neuronal ceroid lipofuscinosis
EP3843774A4 (fr) 2018-08-30 2022-08-31 Tenaya Therapeutics, Inc. Reprogrammation de cellules cardiaques avec la myocardine et ascl1
US20220111031A1 (en) 2018-10-22 2022-04-14 Evaxion Biotech Aps Vaccines targeting M. catharrhalis
JP2022521428A (ja) 2019-02-25 2022-04-07 ザ・ユニバーシティ・オブ・シカゴ 抗炎症剤に連結されたecm親和性ペプチドを用いて炎症性状態および自己免疫状態を処置するための方法および組成物
US20220143168A1 (en) 2019-02-27 2022-05-12 Evaxion Biotech A/S Vaccines targeting H. influenzae
KR20210148232A (ko) 2019-04-01 2021-12-07 테나야 테라퓨틱스, 인코포레이티드 조작된 캡시드를 갖는 아데노-연관 바이러스
US20230137971A1 (en) 2019-07-11 2023-05-04 Tenaya Therapeutics Inc. Cardiac cell reprogramming with micrornas and other factors
JP2022541538A (ja) 2019-07-19 2022-09-26 ザ・チルドレンズ・ホスピタル・オブ・フィラデルフィア グリピカン2結合ドメインを含有するキメラ抗原受容体
WO2021048381A1 (fr) 2019-09-13 2021-03-18 Evaxion Biotech Aps Procédé d'identification de peptides de liaison au cmh stable par spectrométrie de masse
US20220334129A1 (en) 2019-09-13 2022-10-20 Evaxion Biotech A/S Method for identifying T-cell epitopes
WO2021113644A1 (fr) 2019-12-05 2021-06-10 Multivir Inc. Combinaisons comprenant un activateur de lymphocytes t cd8+, un inhibiteur de point de contrôle immunitaire et une radiothérapie en vue d'obtenir des effets ciblés et abscopal pour le traitement du cancer
EP4087593A1 (fr) 2020-01-06 2022-11-16 Evaxion Biotech A/S Vaccins ciblant neisseria gonorrhoeae
EP4114421A1 (fr) 2020-03-02 2023-01-11 Tenaya Therapeutics, Inc. Régulation de vecteur génique au moyen de micro-arn exprimés par des cardiomyocytes
WO2021194343A1 (fr) 2020-03-25 2021-09-30 Erasmus University Medical Center Rotterdam Système rapporteur pour imagerie de radionucléides
PH12022553083A1 (en) 2020-05-29 2024-03-25 Fujifilm Cellular Dynamics Inc Bilayer of retinal pigmented epithelium and photoreceptors and use thereof
US20230201267A1 (en) 2020-05-29 2023-06-29 FUJIFILM Cellular Dynamics, Inc. Retinal pigmented epithelium and photoreceptor dual cell aggregates and methods of use thereof
AU2021360902A1 (en) 2020-10-15 2023-04-27 Aavocyte, Inc. Recombinant adeno-associated virus vectors with cd14 promoter and use thereof
JP2024508088A (ja) 2021-02-09 2024-02-22 ユニバーシティ オブ ヒューストン システム 全身送達及び抗腫瘍活性の向上のための腫瘍溶解性ウイルス
US20240368541A1 (en) 2021-05-03 2024-11-07 Astellas Institute For Regenerative Medicine Methods of generating mature corneal endothelial cells
WO2022235869A1 (fr) 2021-05-07 2022-11-10 Astellas Institute For Regenerative Medicine Procédés de génération d'hépatocytes matures
US20250304626A1 (en) 2021-05-26 2025-10-02 Evaxion Biotech A/S Vaccination targeting intracellular pathogens
AU2022280051A1 (en) 2021-05-26 2023-11-23 FUJIFILM Cellular Dynamics, Inc. Methods to prevent rapid silencing of genes in pluripotent stem cells
CN117915944A (zh) 2021-07-05 2024-04-19 伊沃逊生物科技股份公司 靶向淋病奈瑟氏菌的疫苗
WO2023148398A1 (fr) 2022-02-07 2023-08-10 Var2 Pharmaceuticals Aps Anticorps et fragments d'anticorps et analogues specifiques du sulfate de chondroïtine
WO2023178191A1 (fr) 2022-03-16 2023-09-21 University Of Houston System Système d'administration de gène hsv persistant
EP4508062A1 (fr) 2022-04-11 2025-02-19 Tenaya Therapeutics, Inc. Virus adéno-associé comprenant une capside modifiée
US20250288657A1 (en) 2022-05-04 2025-09-18 Evaxion Biotech A/S Staphylococcal protein variants and truncates
CN119452078A (zh) 2022-06-29 2025-02-14 富士胶片控股美国公司 Ipsc来源的星形胶质细胞及其使用方法
WO2025056665A1 (fr) 2023-09-12 2025-03-20 Evaxion Biotech A/S Variants immunogènes de la glycoprotéine b du cytomégalovirus humain

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69129897T2 (de) * 1990-10-25 1998-12-17 Clague Pitman Omaha Hodgson Methode des gentransfers mittels retrotransposons
CA2114416C (fr) * 1991-08-07 1998-07-07 W. French Anderson Vecteurs retroviraux contenant des sites de fixation internes pour les ribosomes

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996033272A1 (fr) * 1995-04-18 1996-10-24 KLINIKUM DER ALBERT-LUDWIGS-UNIVERSITäT FREIBURG Vecteurs de transfection de cellules eucaryotes, leur utilisation et cellules cibles transfectees a l'aide desdits vecteurs
FR2755975A1 (fr) * 1996-11-15 1998-05-22 Rhone Poulenc Rorer Sa Virus recombinants bicistroniques utiles pour le traitement de pathologies liees aux dyslipoproteinemies
WO1998022606A1 (fr) * 1996-11-15 1998-05-28 Rhone-Poulenc Rorer S.A. Adenovirus recombinants bicistroniques pour le traitement de pathologies liees aux dyslipoproteinemies
US6033670A (en) * 1996-12-16 2000-03-07 Merial Recombinant live avian vaccine, using as vector the avian infectious laryngotracheitis virus
FR2762615A1 (fr) * 1997-04-28 1998-10-30 Inst Nat Sante Rech Med Nouveau site interne d'entree des ribosomes et vecteur le contenant
WO1998049334A1 (fr) * 1997-04-28 1998-11-05 Institut National De La Sante Et De La Recherche Medicale (Inserm) Nouveau site interne d'entree des ribosomes et vecteur le contenant
US6783977B1 (en) 1997-04-28 2004-08-31 Institut National De La Sante Et De La Recherche Medicale (Inserm) Internal ribosome entry site and vector containing same
US6573091B1 (en) 1997-11-19 2003-06-03 Nature Technology Corporation Chimeric viral packaging signal without gag gene sequences
WO1999025862A3 (fr) * 1997-11-19 1999-07-29 Nature Technology Inc SIGNAL D'ENCAPSIDATION VIRALE CHIMERE SANS SEQUENCES DE GENE $i(GAG)
WO1999047690A3 (fr) * 1998-03-16 1999-11-18 Introgen Therapeutics Inc Vecteurs multigenes
WO2000044902A3 (fr) * 1999-01-29 2001-03-08 Searle & Co Biomarqueurs et dosages de carcinogenese
WO2002022839A3 (fr) * 2000-09-15 2002-05-16 Inst Nat Sante Rech Med Sites d'entree ribosome interne (ires) d'errantivirus et leurs utilisations
WO2018144087A2 (fr) 2016-11-03 2018-08-09 Temple University-Of The Commonwealth System Of Higher Education Plasmides d'adn pour la génération rapide de vecteurs de recombinaison homologues pour le développement de lignées cellulaires
EP4219709A1 (fr) 2016-11-03 2023-08-02 Temple University - Of The Commonwealth System of Higher Education Plasmides d'adn pour la génération rapide de vecteurs de recombinaison homologues pour le développement de lignées cellulaires

Also Published As

Publication number Publication date
US5925565A (en) 1999-07-20
AU707874B2 (en) 1999-07-22
JPH10503644A (ja) 1998-04-07
CA2194155A1 (fr) 1996-01-18
FR2722208B1 (fr) 1996-10-04
EP0769062A2 (fr) 1997-04-23
FR2722208A1 (fr) 1996-01-12
WO1996001324A3 (fr) 1996-02-29
AU2929595A (en) 1996-01-25

Similar Documents

Publication Publication Date Title
EP0769062A2 (fr) Nouveau site interne d&#39;entree des ribosomes, vecteur le contenant et utilisation therapeutique
US5885808A (en) Adenovirus with modified binding moiety specific for the target cells
US4861719A (en) DNA constructs for retrovirus packaging cell lines
CA2182303C (fr) Procede de preparation d&#39;un vecteur viral par recombinaison homologue intermoleculaire
US5747323A (en) Retroviral vectors comprising a VL30-derived psi region
EP0466815A1 (fr) Particule virale infectieuse ciblee a replication defectueuse
FR2737501A1 (fr) Nouveaux virus auxiliaires pour la preparation de vecteurs viraux recombinants
JP2008301826A (ja) ベクターおよびウイルスベクター、およびこれらを増殖するためのパッケージング細胞株
EP0912723A1 (fr) Lignees d&#39;encapsidation hautement productrices
JPH10507905A (ja) ヒト血清による溶解耐性生産者細胞系で生産されるレトロウイルスベクター
FR2732348A1 (fr) Systeme d&#39;expression conditionnel
WO1998049334A1 (fr) Nouveau site interne d&#39;entree des ribosomes et vecteur le contenant
EP1078094B1 (fr) Methodes et compositions pour la production de particules virales
JP2001507230A (ja) 核酸構成物及び細胞への直接核酸組み込みのためのその使用
JP2001502904A (ja) レトロウイルスベクター
JP2002515733A (ja) ヒト免疫不全ウイルスに対する遺伝子サプレッサーエレメント
EP1059356B1 (fr) Constructions rétrovirales capables de la réplication autonome, leur préparation et leurs utilisations pour le transfert de gènes
WO1996017071A1 (fr) Lignees cellulaires d&#39;encapsidation pour la transcomplementation de vecteurs retroviraux defectifs
JPH03500365A (ja) 多重プロモーター形質転換性レトロウィルスベクター
JP3877769B2 (ja) 組み換えレトロウイルス産生細胞
EP2138584A1 (fr) Gènes à enveloppe virale mousseuse
JP2003501066A (ja) Sivベースのパッケージング欠損ベクター
FR2820146A1 (fr) Procede d&#39;obtention de cellules d&#39;encapsidation fortement productrices de retrovirus par elimination, au sein de la culture, des cellules permissives a l&#39;infection par le retro virus produit
CA2228159A1 (fr) Vecteurs a auto-suppression pour therapie genique
FR2783839A1 (fr) Utilisation de promoteurs specifiques hybrides pour controler l&#39;expression tissulaire

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AU CA JP US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

AK Designated states

Kind code of ref document: A3

Designated state(s): AU CA JP US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 08600999

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)

Free format text: US

WWE Wipo information: entry into national phase

Ref document number: 2194155

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1995925007

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1995925007

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1995925007

Country of ref document: EP