WO1996001992A1 - Complex gas analysis - Google Patents
Complex gas analysis Download PDFInfo
- Publication number
- WO1996001992A1 WO1996001992A1 PCT/DE1995/000610 DE9500610W WO9601992A1 WO 1996001992 A1 WO1996001992 A1 WO 1996001992A1 DE 9500610 W DE9500610 W DE 9500610W WO 9601992 A1 WO9601992 A1 WO 9601992A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sensor
- sensors
- sensor array
- array according
- contact
- Prior art date
Links
- 238000004868 gas analysis Methods 0.000 title description 7
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 11
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 11
- 239000004065 semiconductor Substances 0.000 claims abstract description 7
- 239000000758 substrate Substances 0.000 claims abstract description 7
- 239000003054 catalyst Substances 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 7
- 238000002161 passivation Methods 0.000 claims description 5
- 239000011149 active material Substances 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 239000002019 doping agent Substances 0.000 claims description 3
- 239000010410 layer Substances 0.000 claims 8
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims 1
- 150000001875 compounds Chemical class 0.000 claims 1
- 239000012044 organic layer Substances 0.000 claims 1
- 239000007789 gas Substances 0.000 description 24
- 238000005259 measurement Methods 0.000 description 6
- 238000003491 array Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 229910006404 SnO 2 Inorganic materials 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 239000007767 bonding agent Substances 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003891 environmental analysis Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000005405 multipole Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/0004—Gaseous mixtures, e.g. polluted air
- G01N33/0009—General constructional details of gas analysers, e.g. portable test equipment
- G01N33/0027—General constructional details of gas analysers, e.g. portable test equipment concerning the detector
- G01N33/0031—General constructional details of gas analysers, e.g. portable test equipment concerning the detector comprising two or more sensors, e.g. a sensor array
Definitions
- the invention relates to a sensor array with metal oxide semiconductor gas sensors, wherein, at least in part, the sensors have different dimensions in relation to the other sensors.
- Metal oxide semiconductor gas sensors are known and are used in many areas for the detection of particles in air.
- Sn0 2 sensors are precisely defined resistance elements that are operated discretely (conductivity sensors).
- the sensors are constructed in such a way that contact electrodes are applied directly to an inert carrier.
- the sensors are active Layer is sputtered polycrystalline Sn0 2 , for example, which is then deposited on the contact electrodes.
- An integrated heater is usually provided for setting the working temperature, e.g. on the
- a thin SiO 2 layer is provided, for example, which can be applied directly, for example on the substrate.
- Gas reactions on or on the surface are specifically used promoter catalysts. Sensors modified in this way are used for a large number of gases.
- FIG. 1 and FIG. 2 show such sensors, the sensor-active layer consisting of an SnO 2 material.
- Such sensors are used in particular for the detection of gases such as CO x , NO x , CH 4 , C 2 H 5 OH, H 2 and NH 3 .
- metal oxide gas sensors described above lies in the thermodynamic stability of the active layers up to high temperatures and in the simple manufacture of the sensors by standard methods such as thin-film technologies.
- metal oxide gas sensors can be influenced by catalysts and dopants in their preferred gas reactions. It is precisely the combination of technical stability and simple processing that qualify metal oxide gas sensors for expenditures in which large quantities that can be produced inexpensively are required. These include special areas, such as continuous workplace and household monitoring as well as environmental analysis.
- the metal oxide gas sensors described above are mixed gas sensors, the selectivity in the analysis of complex gas mixtures is insufficient. In the most favorable case, only preferred gas reactions can also be generated by specific surface and / or volume modifications.
- sensor arrays are an arrangement of several sensors, different sensor-active layers being used here.
- sensor arrays with differently modified sensors with regard to their surfaces should make a more complex gas analysis possible. Accordingly, e.g. For a gas atmosphere consisting of 4 gases, at least four gas sensors with different preferred gas reactions are used in order to be able to carry out a corresponding quantitative gas analysis.
- gas atmosphere consisting of 4 gases
- gas sensors with different preferred gas reactions are used in order to be able to carry out a corresponding quantitative gas analysis.
- such sensors can only be produced with an unreasonably high outlay and that these sensors, since they are also mixed gas sensors, have an insufficient selectivity.
- a sensor array in that the dimensions of the sensors differ. It has been shown that preferred gas reactions then occur even using a uniform sensor material, for example Sn0 2 . It is essential in the solution according to the invention that, at least in part of the sensors, there is a different contact distance L to neighboring sensors and / or that a different area of the sensor-active layer and / or a different contact interface A between the contact and the sensor-active layer is present.
- a preferred embodiment of the invention proposes that the thickness of the sensor-active layer is additionally varied, so that the selectivity can be improved again.
- Another preferred embodiment relates to the variation of the size of the contact pad and the variation of the passivation window. These measures also contribute to a further increase in the selectivity.
- the sensor array proposed according to the invention is particularly characterized in that its geometry can be implemented in one structuring step. Additional work steps for volume and surface modification are no longer necessary or only to a limited extent. As a result, complex sensor arrays can now be produced in just a few steps the.
- the sensor arrays according to the invention are therefore characterized in that not only complex gas mixtures can be analyzed, but particularly in that the manufacture is very simple and inexpensive.
- FIG. 4 shows a sensor array according to FIG. 3 mounted for measurement
- Fig. 5 measurement results related to a CO measurement.
- Single sensors known in the art consist of a mechanical carrier 2, which is a silicon substrate here.
- a mechanical carrier 2 which is a silicon substrate here.
- an integrated heater 8 in the sensor 1 according to FIG. 1 on the back of the substrate 2 sensorically active layer 6 is sputtered polycrystalline SnO 2 , which is deposited directly on the contact electrodes 3, 4, here platinum and tantalum electrodes.
- the electrodes 3, 4 are electrically passivated to the substrate by an SiO 2 layer 7.
- a thin tantalum bonding agent is installed between the electrodes 3, 4 and 8 and the passivation view 7 for the adhesion of the electrodes 3, 4. 1, the sensitive layer 6 is additionally coated with a catalyst layer 5, which may also contain promoters.
- the sensor 1 according to FIG. 2 differs only in that here the heater 8 is arranged on the same side as the sensitive layer 6. In this case, an additional passivation layer 9 is then necessary.
- the array consists of four contact zones, each having six contact pads.
- the integrated heater and the catalytic converter are not shown in FIG. 1, since it is not necessary for understanding the invention.
- the structure of an element corresponds in principle to that described in FIGS. 1 and 2.
- the sensor array consists of four rows of individual sensors arranged in parallel, six sensors being arranged in each row.
- the sensor-active layer is designed in the form of a strip that is guided in a row over all sensors.
- the contact distance L varies in a row, starting from 10 ⁇ m (gap 1) up to 500 ⁇ m (gap 5).
- the sensor-active surface varies, namely in such a way that a differently wide strip is provided in each row.
- the change in the sensor-active area is also associated with a change in the contact interface between the sensor-active area and the individual contact pad.
- the contact interface is identified, for example, in FIG. 3 by the symbol A in the first row. This makes it clear that the contact interface A can change both in the individual rows and in a single row because the strip of the sensor-active surface is not completely guided over a single contact pad.
- the contact is a platinum contact and the sensitive layer is a Sn0 2 layer.
- the layout of the sensor array presented here is exemplary.
- the invention here encompasses all variants in which at least the contact distance L and / or the contact interface A and / or the sensor-active surface varies, at least in part of the sensors.
- the invention thus also encompasses all arrangements if at least more than 3 sensors are provided.
- the upper limit (number) of sensors is only due to technical reasons and can be 1,000,000. It is also possible for different individual sensors to be picked out and then bridged again to form a circuit.
- the contact geometry ie the size of the contact pads, is the same in all cases. According to the invention, however, this is also possible since the size of the contact pads changes, as does the thickness of the sensitive layer.
- the thickness of the sensor-active layer can be in a range from 0.01 ⁇ m to 10 ⁇ m and the area of the contact pads in the range from 1 ( ⁇ m) 2 to 1 (mm) 2 .
- the invention encompasses all metal oxide semiconductor gas sensors, in particular those described in FIGS. 1 and 2.
- Particularly preferred sensor-active materials are those according to claims 11-14.
- FIG. 4 now shows how the sensor array according to FIG. 3 is mounted for measurement.
- the sensor array 10 as described above in FIG. 3, is glued onto a glass cuboid 11.
- the construction then remains in an air-circulating oven for some time at the elevated temperature to harden the adhesive.
- the wires of the heater are then connected to the base pins 12 to 23 and the bond wires are attached.
- the sample is electrically connected to the measuring device via the 12 base pins 12 to 23, in that the pins are led out of the measuring chamber in a gas-tight manner.
- Pins 12 and 14 are connected to the heater, pins 13, 15, 17 and 19 are applied to the contact pads and pins 18 and 20 are connected to temperature sensors.
- the invention basically comprises sensor structures as are already known from the prior art, here in particular from P 43 34 410.
- the invention thus also includes all sensor modifications with regard to the choice of material. It is also independent of the design of the sensor array described above possible that more complex designs are used. In particular, these can be: transistors (e.g.
- resistor constructed as a field effect transistor FET
- Hall crosses diodes
- capacitors inductors
- circuits e.g. bridge circuit for differential measurement.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Food Science & Technology (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
Abstract
A sensor array with metal oxide semiconductor gas sensors operated as resistor components, in which each sensor consists of a contact electrode (contact pad) applied to a substrate and a sensor-active layer deposited thereon, in which at least part of the sensors have a different contact spacing L of the contact pads in relation to the other sensors and/or a different dimensions of the area of the sensor-active layer and/or a different contact border area A between the contact and the sensor-active layer.
Description
Komplexe Gasanalyse Complex gas analysis
Die Erfindung betrifft ein Sensorarray mit Metall¬ oxid-Halbleiter-Gassensoren, wobei, zumindest ein Teil, der Sensoren in Bezug zu den weiteren Sensoren eine unterschiedliche Dimensionierung aufweist.The invention relates to a sensor array with metal oxide semiconductor gas sensors, wherein, at least in part, the sensors have different dimensions in relation to the other sensors.
Metalloxid-Halbleiter-Gassensoren sind bekannt und werden in vielen Bereichen für den Nachweis von Teil- chen in Luft verwendet.Metal oxide semiconductor gas sensors are known and are used in many areas for the detection of particles in air.
Halbleiter-Gassensoren auf Metalloxidbasis, insbeson¬ dere Sn02-Sensoren, sind ebenfalls bekannt ( . Göpel et al. Sensors; Comprehensive Survey, Vol. II; Chemi- cal and Biochemical Sensors, Part 1 VCH-Verlag Wein¬ heim 1991) .Semiconductor gas sensors based on metal oxides, in particular SnO 2 sensors, are also known (. Göpel et al. Sensors; Comprehensive Survey, Vol. II; Chemical and Biochemical Sensors, Part 1 VCH-Verlag Wein¬heim 1991).
Diese bekannten Sn02-Sensoren sind exakt definierte Widerstandselemente, die diskret betrieben werden (Leitfähigkeitssensoren) . Die Sensoren sind dabei so aufgebaut, daß direkt auf einem inerten Träger Kon¬ taktelektroden aufgebracht sind. Die Sensoren aktive
Schicht ist z.B. gesputteres polykristallines Sn02, das dann auf der Kontaktelektroden abgeschieden wird.These known Sn0 2 sensors are precisely defined resistance elements that are operated discretely (conductivity sensors). The sensors are constructed in such a way that contact electrodes are applied directly to an inert carrier. The sensors are active Layer is sputtered polycrystalline Sn0 2 , for example, which is then deposited on the contact electrodes.
Zur Einstellung der Arbeitstemperatur ist meist eine integrierte Heizung vorgesehen, die z.B. auf derAn integrated heater is usually provided for setting the working temperature, e.g. on the
Rückseite des Substrates angeordnet sein kann. Zur Passivierung sowohl für die Kontaktelektroden als auch für die Heizung ist z.B. eine dünne Siθ2-Schicht vorgesehen, die direkt, z.B. auf dem Substrat, aufge- bracht sein kann. Zur spezifischen Aktivierung vonBack of the substrate can be arranged. For the passivation both for the contact electrodes and for the heating, a thin SiO 2 layer is provided, for example, which can be applied directly, for example on the substrate. For the specific activation of
Gasreaktionen an bzw. auf der Oberfläche werden dabei gezielt Promotoren-Katalysatoren verwendet. So modi¬ fizierte Sensoren werden für eine Vielzahl von Gasen eingesetzt.Gas reactions on or on the surface are specifically used promoter catalysts. Sensors modified in this way are used for a large number of gases.
Fig. 1 und Fig. 2 zeigen derartige Sensoren, wobei die sensoraktive Schicht aus einem Sn02-Material be¬ steht. Derartige Sensoren werden insbesondere zur Detektion von Gasen, wie COx, NOx, CH4, C2H5OH, H2 und NH3 eingesetzt.1 and FIG. 2 show such sensors, the sensor-active layer consisting of an SnO 2 material. Such sensors are used in particular for the detection of gases such as CO x , NO x , CH 4 , C 2 H 5 OH, H 2 and NH 3 .
Der Vorteil der vorstehend beschriebenen Metalloxid- Gassensoren liegt in der thermodynamisehen Stabilität der aktiven Schichten bis hin zu hohen Temperaturen und in der einfachen Herstellung der Sensoren durch Standardverfahren wie Dünnschichttechnologien. Dar¬ über hinaus lassen sich Metalloxid-Gassensoren durch Katalysatoren und Dotierstoffe in ihren bevorzugten Gasreaktionen beeinflussen. Gerade die Kombination aus technischer Stabilität und einfacher Verarbeitung qualifizieren Metalloxid-Gassensoren für Aufwendun¬ gen, bei denen hohe Stückzahlen, die kostengünstig herstellbar sind, verlangt werden. Hierzu zählen ins-
besondere Bereiche, wie kontinuierliche Arbeitsplatz- und Haushaltsüberwachung sowie die Umweltanalytik.The advantage of the metal oxide gas sensors described above lies in the thermodynamic stability of the active layers up to high temperatures and in the simple manufacture of the sensors by standard methods such as thin-film technologies. In addition, metal oxide gas sensors can be influenced by catalysts and dopants in their preferred gas reactions. It is precisely the combination of technical stability and simple processing that qualify metal oxide gas sensors for expenditures in which large quantities that can be produced inexpensively are required. These include special areas, such as continuous workplace and household monitoring as well as environmental analysis.
Da jedoch die vorstehend beschriebenen Metalloxid- Gassensoren Mischgassensoren sind, ist die Selektivi¬ tät bei der Analyse von komplexen Gasgemischen unzu¬ reichend. Auch durch spezifische Oberflächen- und/ oder Volumenmodifikationen können im günstigsten Fall nur bevorzugte Gasreaktionen erzeugt werden.However, since the metal oxide gas sensors described above are mixed gas sensors, the selectivity in the analysis of complex gas mixtures is insufficient. In the most favorable case, only preferred gas reactions can also be generated by specific surface and / or volume modifications.
Eine Entwicklungsrichtung zur Beseitigung dieses Nachteiles besteht nun darin, sog. Sensorarrays her¬ zustellen. Bei derartigen Sensorarrays handelt es sich um eine Anordnung von mehreren Sensoren, wobei hier unterschiedliche sensoraktive Schichten einge¬ setzt werden. Durch derartige Sensorarrays mit unter¬ schiedlich modifizierten Sensoren in Bezug auf ihre Oberflächen sollte eine komplexere Gasanalyse möglich sein. Demnach sollte z.B. für eine Gasatmosphäre, bestehend aus 4-Gasen, mindestens vier Gassensoren mit unterschiedlich bevorzugten Gasreaktionen einge¬ setzt werden, um eine entsprechende quantitive Gas¬ analyse durchführen zu können. Es hat sich jedoch gezeigt, daß derartige Sensoren nur mit einem unver- tretbar hohen Aufwand herzustellen sind und daß auch diese Sensoren, da sie ja ebenfalls Mischgassenoren sind, eine unzureichende Selektivität aufweisen.One development direction for eliminating this disadvantage now consists in producing so-called sensor arrays. Such sensor arrays are an arrangement of several sensors, different sensor-active layers being used here. Such sensor arrays with differently modified sensors with regard to their surfaces should make a more complex gas analysis possible. Accordingly, e.g. For a gas atmosphere consisting of 4 gases, at least four gas sensors with different preferred gas reactions are used in order to be able to carry out a corresponding quantitative gas analysis. However, it has been shown that such sensors can only be produced with an unreasonably high outlay and that these sensors, since they are also mixed gas sensors, have an insufficient selectivity.
Ausgehend hiervon, ist es die Aufgabe der vorliegen- den Erfindung, ein Sensorarray für die komplexe Gas¬ analyse vorzuschlagen, das eine hinreichende Selekti¬ vität besitzt und das kostengünstig und einfach her¬ stellbar ist.
Die Aufgabe wird durch die kennzeichnenden Merkmale des Patentanspruchs 1 gelöst. Die Unteransprüche zei¬ gen vorteilhafte Weiterbildungen auf.Proceeding from this, it is the object of the present invention to propose a sensor array for complex gas analysis, which has sufficient selectivity and which is inexpensive and easy to manufacture. The object is achieved by the characterizing features of patent claim 1. The subclaims show advantageous further developments.
Erfindungsgemäß wird demnach vorgeschlagen, ein Sen¬ sorarray dadurch zu realisieren, daß die Sensoren sich in ihrer Dimensionierung unterscheiden. Es hat sich dabei gezeigt, daß sich auch unter Verwendung eines einheitlichen Sensormaterials, z.B. Sn02, dann bevorzugte Gasreaktionen einstellen. Wesentlich bei der erfindungsgemäßen Lösung ist, daß, zumindest bei einem Teil der Sensoren, ein unterschiedlicher Kon¬ taktabstand L zu benachbarten Sensoren vorliegt und/- oder, daß eine unterschiedliche Fläche der sensorak- tiven Schicht und/oder eine unterschiedliche Berüh¬ rungsgrenzfläche A zwischen dem Kontakt und der sen¬ soraktiven Schicht vorhanden ist.Accordingly, it is proposed according to the invention to implement a sensor array in that the dimensions of the sensors differ. It has been shown that preferred gas reactions then occur even using a uniform sensor material, for example Sn0 2 . It is essential in the solution according to the invention that, at least in part of the sensors, there is a different contact distance L to neighboring sensors and / or that a different area of the sensor-active layer and / or a different contact interface A between the contact and the sensor-active layer is present.
Eine bevorzugte Ausführungsform der Erfindung schlägt vor, daß zusätzlich noch die Dicke der sensoraktiven Schicht variiert wird, dadurch kann eine nochmalige Verbesserung der Selektivität erreicht werden. Eine weitere bevorzugte Ausführungsform betrifft die Vari¬ ierung der Größe des Kontaktpads und die Variation des Passivierungsfensters. Auch diese Maßnahmen tra¬ gen zu einer nochmaligen Steigerung der Selektivität bei.A preferred embodiment of the invention proposes that the thickness of the sensor-active layer is additionally varied, so that the selectivity can be improved again. Another preferred embodiment relates to the variation of the size of the contact pad and the variation of the passivation window. These measures also contribute to a further increase in the selectivity.
Der erfindungsgemäß vorgeschlagene Sensorarray zeich- net sich besonders dadurch aus, daß dessen Geometrie in einem Strukturierungsschritt realisierbar ist. Zusätzliche Arbeitsschritte zur Volumen- und Oberflä¬ chenmodifikation werden nicht mehr oder nur einge¬ schränkt nötig. Dadurch können nun komplexe Sensorar- rays in nur wenigen Arbeitsschritten hergestellt wer-
den. Die erfindungsgemäßen Sensorarrays zeichnen sich demnach dadurch aus, daß nicht nur komplexe Gasgemi¬ sche analysiert werden können, sondern besonders da¬ durch, daß die Herstellung sehr einfach und kosten- günstig möglich ist.The sensor array proposed according to the invention is particularly characterized in that its geometry can be implemented in one structuring step. Additional work steps for volume and surface modification are no longer necessary or only to a limited extent. As a result, complex sensor arrays can now be produced in just a few steps the. The sensor arrays according to the invention are therefore characterized in that not only complex gas mixtures can be analyzed, but particularly in that the manufacture is very simple and inexpensive.
Weitere Merkmale, Einzelheiten und Vorzüge der Erfin¬ dung ergeben sich aus der folgenden Beschreibung ei¬ nes bevorzugten Ausführungsbeispiels der Erfindung, sowie anhand der Zeichnungen. Hierbei zeigen:Further features, details and advantages of the invention result from the following description of a preferred exemplary embodiment of the invention and from the drawings. Here show:
Fig. 1 einen Querschnitt eines C02.Dünnschichtgassen- sors mit einer auf der Unterseite aufge brach ten Heizung,1 shows a cross section of a C0 2. Thin-film gas sensor with a heater opened on the underside,
Fig. 2 einen Querschnitt eines C02-Dünnschichtgasse nors, wobei die Heizung auf der gleichen Seite wie die sensitive Schicht aufgebracht ist,2 shows a cross section of a C0 2 thin-layer gate, the heater being applied on the same side as the sensitive layer,
Fig. 3 ein erfindungsgemäßes Sensorarray mit vier Kontaktzonen,3 shows an inventive sensor array with four contact zones,
Fig. 4 ein zur Messung montiertes Sensorarray nach Fig. 3,4 shows a sensor array according to FIG. 3 mounted for measurement,
Fig. 5 Meßergebnisse bezüglich einer CO-Messung.Fig. 5 measurement results related to a CO measurement.
Fig. 1 und Fig. 2 zeigen dabei den prinzipiellen Auf¬ bau von Einzelsensoren 1, wie sie auch für das Array verwendet werden können. Diese aus dem Stand der1 and 2 show the basic structure of individual sensors 1 as they can also be used for the array. This from the state of the
Technik bekannten Einzelsensoren bestehen dabei aus einem mechanischen Träger 2, der hier ein Silizium¬ substrat ist. Zur Einstellung der Arbeitstemperatur befindet sich beim Sensor 1 nach Fig. 1 auf der Rück- seite des Substrats 2 eine integrierte Heizung 8. Die
sensorisch aktive Schicht 6 ist gesputtertes polykri¬ stallines Sn02, das direkt auf die Kontaktelektroden 3, 4, hier Platin- und Tantalelektroden, abgeschieden wird. Die Elektroden 3, 4 sind zum Substrat elek- trisch durch eine Si02-Schicht 7 passiviert. Zur Haf¬ tung der Elektroden 3, 4 ist ein dünner Tantalhaft¬ vermittler zwischen den Elektroden 3, 4 und 8 und der Passivierungssicht 7 eingebaut. Beim Sensor 1 nach Fig. 1 ist zusätzlich die sensitive Schicht 6 mit einer Katalysatorschicht 5 überzogen, die noch Promo¬ toren enthalten kann.Single sensors known in the art consist of a mechanical carrier 2, which is a silicon substrate here. To set the working temperature, there is an integrated heater 8 in the sensor 1 according to FIG. 1 on the back of the substrate 2 sensorically active layer 6 is sputtered polycrystalline SnO 2 , which is deposited directly on the contact electrodes 3, 4, here platinum and tantalum electrodes. The electrodes 3, 4 are electrically passivated to the substrate by an SiO 2 layer 7. A thin tantalum bonding agent is installed between the electrodes 3, 4 and 8 and the passivation view 7 for the adhesion of the electrodes 3, 4. 1, the sensitive layer 6 is additionally coated with a catalyst layer 5, which may also contain promoters.
Der Sensor 1 nach Fig. 2 unterscheidet sich lediglich dadurch, daß hier die Heizung 8 auf der gleichen Sei- te, wie die sensitive Schicht 6 angeordnet ist. In diesem Fall ist dann noch eine zusätzliche Passivie- rungsschicht 9 nötig.The sensor 1 according to FIG. 2 differs only in that here the heater 8 is arranged on the same side as the sensitive layer 6. In this case, an additional passivation layer 9 is then necessary.
Die vorstehend beshriebenen Sensoren nach Fig. 1 und Fig. 2 sind ausführlich in einer noch unveröffent¬ lichten Anmeldung der Anmelderin (P 43 34 410.0-52) beschrieben. Auf den Offenbarungsgehalt wird hier insbesondere in bezug auf die Variation der Promoto¬ ren und/oder Katalysatoren und/oder der Dotierungen ausdrücklich Bezug genommen.1 and 2 are described in detail in an as yet unpublished application by the applicant (P 43 34 410.0-52). Reference is expressly made here to the disclosure content, in particular with regard to the variation of the promoters and / or catalysts and / or the doping.
Fig. 3 zeigt nun eine mögliche Ausführungsform, wie ein erfindungsgemäßes Array aufgebaut sein kann. Im Ausführungsbeispiel nach Fig. 3 besteht das Array aus vier Kontaktzonen, die jeweils sechs Kontaktpads auf¬ weisen. In Fig. 1 ist die integrierte Heizung und der Katalysator nicht abgebildet, da er für das Verständ¬ nis der Erfindung nicht notwendig ist. Der Aufbau eines Elementes entspricht im Prinzip denen, wie sie in Fig. 1 und Fig. 2 beschrieben worden sind.
Im Beispielsfall nach Fig. 3 besteht demnach der Sen¬ sorarray aus vier parallel angeordneten Reihen von Einzelsensoren, wobei in jeder Reihe sechs Sensoren angeordnet sind. Die sensoraktive Schicht ist hierbei in Form eines Streifens ausgebildet, der über alle Sensoren in einer Reihe geführt ist. Der Kontaktab¬ stand L variiert hierbei in einer Reihe, ausgehend von 10 μm (Spalt 1) bis zu 500 μm (Spalt 5) . Gleich¬ zeitig mit der Änderung des Kontaktabstandes L vari- iert die sensoraktive Fläche, nämlich in der Weise, daß in jeder Reihe ein unterschiedlich breiter Strei¬ fen vorgesehen ist. In der Ausführungsform nach Fig. 2 ist mit der Änderung der sensoraktiven Fläche auch eine Änderung der Berührungsgrenzfläche zwischen der sensoraktiven Fläche und dem einzelnen Kontaktpad verbunden. Die Berührungsgrenzfläche ist beispielhaft in Fig. 3 in der ersten Reihe durch das Symbol A ge¬ kennzeichnet. Damit wird deutlich, daß sich auch die Berührungsgrenzfläche A sowohl in den einzelnen Rei- hen, wie auch in einer Einzelreihe dadurch ändern kann, daß nämlich der Streifen der sensoraktiven Flä¬ che nicht vollständig über einen einzelnen Kontaktpad geführt ist. Im Beispielsfall nach Fig. 3 ist der Kontakt ein Platinkontakt und die sensitive Schicht eine Sn02-Schicht.3 now shows a possible embodiment of how an array according to the invention can be constructed. In the exemplary embodiment according to FIG. 3, the array consists of four contact zones, each having six contact pads. The integrated heater and the catalytic converter are not shown in FIG. 1, since it is not necessary for understanding the invention. The structure of an element corresponds in principle to that described in FIGS. 1 and 2. In the example according to FIG. 3, the sensor array consists of four rows of individual sensors arranged in parallel, six sensors being arranged in each row. The sensor-active layer is designed in the form of a strip that is guided in a row over all sensors. The contact distance L varies in a row, starting from 10 μm (gap 1) up to 500 μm (gap 5). Simultaneously with the change in the contact distance L, the sensor-active surface varies, namely in such a way that a differently wide strip is provided in each row. In the embodiment according to FIG. 2, the change in the sensor-active area is also associated with a change in the contact interface between the sensor-active area and the individual contact pad. The contact interface is identified, for example, in FIG. 3 by the symbol A in the first row. This makes it clear that the contact interface A can change both in the individual rows and in a single row because the strip of the sensor-active surface is not completely guided over a single contact pad. In the example according to FIG. 3, the contact is a platinum contact and the sensitive layer is a Sn0 2 layer.
Das hier vorgestellte Layout des Sensorarrays ist beispielhaft. Die Erfindung umfaßt hier alle Varian¬ ten, bei denen zumindest der Kontaktabstand L und/- oder die Berührungsgrenzfläche A, und/oder die sen¬ soraktive Fläche, zumindest bei einem Teil der Senso¬ ren, variiert. Von der Erfindung werden somit alle Anordnungen mitumfaßt, sofern zumindest mehr als 3 Sensoren vorgesehen sind. Die obere Grenze (Anzahl) der Sensoren ist hierbei lediglich technisch bedingt
und kann bei 1.000.000 liegen. Möglich ist es auch, daß verschiedene Einzelsensoren herausgegriffen wer¬ den und diese dann wieder zu einer Schaltung ver¬ brückt werden. In der Ausführungsform nach Fig. 1 ist die Kontaktgeometrie, d.h. die Größe der Kontaktpads in allen Fällen gleich. Erfindungsgemäß ist dies je¬ doch auch möglich, da sich die Größe der Kontaktpads ändert, wie auch die Dicke der sensitiven Schicht.The layout of the sensor array presented here is exemplary. The invention here encompasses all variants in which at least the contact distance L and / or the contact interface A and / or the sensor-active surface varies, at least in part of the sensors. The invention thus also encompasses all arrangements if at least more than 3 sensors are provided. The upper limit (number) of sensors is only due to technical reasons and can be 1,000,000. It is also possible for different individual sensors to be picked out and then bridged again to form a circuit. In the embodiment according to FIG. 1, the contact geometry, ie the size of the contact pads, is the same in all cases. According to the invention, however, this is also possible since the size of the contact pads changes, as does the thickness of the sensitive layer.
Die Dicke der sensoraktiven Schicht kann in einem Be¬ reich von 0,01 μm bis 10 μm liegen und die Fläche der Kontaktpads im Bereich von l(μm)2 bis l(mm)2.The thickness of the sensor-active layer can be in a range from 0.01 μm to 10 μm and the area of the contact pads in the range from 1 (μm) 2 to 1 (mm) 2 .
Aus stofflicher Sicht umfaßt die Erfindung alle Me- talloxid-Halbleitergassensoren, insbesondere die in Fig. 1 und Fig. 2 beschriebenen. Als sensoraktive Materialien sind besonders die nach Anspruch 11-14 bevorzugt.From a material point of view, the invention encompasses all metal oxide semiconductor gas sensors, in particular those described in FIGS. 1 and 2. Particularly preferred sensor-active materials are those according to claims 11-14.
Fig. 4 zeigt nun, wie der Sensorarray nach Fig. 3 zur Messung montiert ist. Der, wie vorstehend in Fig. 3 beschriebene, Sensorarray 10 wird dazu auf einen Glasquader 11 geklebt. Die Konstruktion verbleibt dann zur Aushärung des Klebstoffs einige Zeit bei erhöhter Temperatur in einem Umluftofen. Anschließend werden die Drähte der Heizung mit den Sockelpins 12 bis 23 verbunden und die Bonddrähtchen angebracht. Über die 12 Sockelpins 12 bis 23 wird demnach die Probe mit dem Meßgerät elektrisch verbunden, indem die Pins gasdicht aus der Meßkammer herausgeführt werden. Pin 12 und 14 sind dabei mit der Heizung ver¬ bunden, Pin 13, 15, 17 und 19 sind auf die Kontakt¬ pads aufgebracht und Pin 18 und 20 sind mit Tempera¬ turfühlern verbunden.
Fig. 5 zeigt nun die Messung bezüglich CO in synthe¬ tischer Luft bei ca. 270° C und 50% relativer Luft¬ feuchtigkeit, wobei ein Meßaufbau analog Fig. 4 ein¬ gesetzt wird. Ausgewählt wurde lediglich der sch al- ste und breiteste Streifen (5 μm und 100 μm) . Deut¬ lich ist zu sehen, daß die Sensitivität bezüglich CO bei dem kleinsten Kontaktabstand und breitesten Sn02- Streifen am größten ist. Für N02 ist der schmälste Sn02-Streifen. Der breite Streifen ist empfindlicher gegenüber der Feuchtigkeit. Empfindlichkeiten gegen¬ über CH4 ist ähnlich wie CO beim breiten Metalloxid¬ streifen größer. Dieses reicht aus, um mit dem abge¬ bildeten Sensorarray eine qunatitative Gasanalyse eines Gasgemisches aus CO, CH4, N02 und Wasserdampf in Luft durchführen zu können. Damit wird deutlich, daß einzig und allein durch das unterschiedliche Lay¬ out, wobei hier noch ein kostengünstiges und einfa¬ ches Verfahren zur Herstellung möglich ist, eine se¬ lektive Gasanalyse möglich ist, ohne daß dabei unter- schiedliche Oberflächenmodifikationen mit diversen Katalysatoren oder Dotierungen nötig sind.FIG. 4 now shows how the sensor array according to FIG. 3 is mounted for measurement. For this purpose, the sensor array 10, as described above in FIG. 3, is glued onto a glass cuboid 11. The construction then remains in an air-circulating oven for some time at the elevated temperature to harden the adhesive. The wires of the heater are then connected to the base pins 12 to 23 and the bond wires are attached. Accordingly, the sample is electrically connected to the measuring device via the 12 base pins 12 to 23, in that the pins are led out of the measuring chamber in a gas-tight manner. Pins 12 and 14 are connected to the heater, pins 13, 15, 17 and 19 are applied to the contact pads and pins 18 and 20 are connected to temperature sensors. FIG. 5 now shows the measurement with respect to CO in synthetic air at approximately 270 ° C. and 50% relative atmospheric humidity, a measuring setup analogous to FIG. 4 being used. Only the narrowest and widest strip (5 μm and 100 μm) was selected. It can clearly be seen that the sensitivity to CO is greatest with the smallest contact spacing and the widest SnO 2 strips. The narrowest Sn0 2 strip is for N0 2 . The wide stripe is more sensitive to moisture. Sensitivity to CH 4 is similar to that of CO in the broad metal oxide strip. This is sufficient to be able to use the sensor array shown to perform a quantitative gas analysis of a gas mixture of CO, CH 4 , N0 2 and water vapor in air. This makes it clear that a selective gas analysis is possible solely due to the different layout, whereby an inexpensive and simple method of production is still possible, without different surface modifications using various catalysts or doping are necessary.
Erfindungsgemäß ist es natürlich aber auch möglich, sensitive Schichten einzusetzen, bei denen verschie- dene sensoraktive Materialien eingesetzt werden und/- oder daß Dotierungen, Promotoren und/oder Katalysato¬ ren verwendet werden. Wie bereits bei der Beschrei¬ bung der Fig. l und 2 erläutert, umfaßt die Erfindung ja grundsätzlich Sensoraufbauten, wie sie bereits auf dem Stand der Technik, hier insbesondere aus der P 43 34 410, bekannt sind. Die Erfindung schließt somit auch alle Sensormodifikationen im Bezug auf die Stoffauswahl mit ein. Unabhängig von der vorstehend beschriebenen Bauform des Sensorarray ist es auch
möglich, daß komplexere Bauformen benutzt werden. Insbesondere können dies sein: Transistoren (z.B. Widerstand als Feldeffekttransistor FET aufgebaut) , Hall-Kreuze, Dioden, Kondensatoren, Induktivitäten, Mehrpole ( (Vierstreifen-/Vierpunktstruktur, van der Pauw-Geometrien = Vierpole) und Schaltungen (z.B. Brückemschaltung zur Differenzmessung) .
According to the invention, however, it is of course also possible to use sensitive layers in which different sensor-active materials are used and / or that dopants, promoters and / or catalysts are used. As already explained in the description of FIGS. 1 and 2, the invention basically comprises sensor structures as are already known from the prior art, here in particular from P 43 34 410. The invention thus also includes all sensor modifications with regard to the choice of material. It is also independent of the design of the sensor array described above possible that more complex designs are used. In particular, these can be: transistors (e.g. resistor constructed as a field effect transistor FET), Hall crosses, diodes, capacitors, inductors, multi-poles ((four-stripe / four-point structure, van der Pauw geometries = four-pole) and circuits (e.g. bridge circuit for differential measurement).
Claims
1. Sensorarray mit Metalloxid-Halbleitergassenso¬ ren, die als Widerstandselemente betrieben wer¬ den, wobei jeder Sensor aus einer auf einem Sub¬ strat aufgebrachten Kontaktelektrode (Kontakt¬ pad) und einer darauf abgeschiedenen sensorakti- ven Schicht besteht, dadurch g e k e n n z e i c h n e t , daß zu¬ mindest bei einem Teil der Sensoren im Verhält¬ nis zu den weiteren Sensoren ein unterschiedli¬ cher Kontaktabstand L der Kontaktpads zueinander vorhanden ist und/oder eine unterschiedliche1. Sensor array with metal oxide semiconductor gas sensors which are operated as resistance elements, each sensor consisting of a contact electrode (contact pad) applied to a substrate and a sensor-active layer deposited thereon, characterized in that to ¬ at least in some of the sensors in relation to the other sensors there is a different contact distance L of the contact pads from one another and / or a different one
Dimensionierung der Fläche der sensoraktiven Schicht und/oder eine unterschiedliche Berüh¬ rungsgrenzfläche A zwischen dem Kontakt und der sensoraktiven Schicht vorliegt.Dimensioning of the area of the sensor-active layer and / or a different contact interface A between the contact and the sensor-active layer is present.
2. Sensorarray nach Anspruch 1, dadurch gekennzeichnet, daß zumindest bei einem Teil der Sensoren im Verhältnis zu den weiteren Sensoren eine unterschiedliche Dicke der sensor- aktiven Schicht vorliegt, wobei die Dicke im2. Sensor array according to claim 1, characterized in that at least in some of the sensors in relation to the other sensors there is a different thickness of the sensor-active layer, the thickness in
Bereich von 0,0100 μm bis 10 μm liegt.Range is from 0.0100 μm to 10 μm.
3. Sensorarray nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß zumindest bei einem Teil der Sensoren im Verhältnis zu den weiteren3. Sensor array according to claim 1 or 2, characterized in that at least in part of the sensors in relation to the others
Sensoren die Dimensionierung des Kontaktpads unterschiedlich ist, wobei die Fläche des Kon¬ taktpads im Bereich von l(μm)2 bis l(mm)2 liegt. The dimensions of the contact pad are different for sensors, the area of the contact pad being in the range from 1 (μm) 2 to 1 (mm) 2 .
4. Sensorarray nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, zumindest bei einem Teil der Sensoren im Verhältnis zu den weiteren Sen- soren unterschiedlich große Passivierungsfenster vorliegen.4. Sensor array according to at least one of claims 1 to 3, characterized in that at least some of the sensors have differently sized passivation windows in relation to the other sensors.
5. Sensorarray nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Array aus minde¬ stens zwei parallel angeordneten Reihen von 3 bis 1.000.000 Sensoren besteht.5. Sensor array according to at least one of claims 1 to 4, characterized in that the array consists of at least two parallel rows of 3 to 1,000,000 sensors.
6. Sensorarray nach Anspruch 5, dadurch gekennzeichnet, daß der Kontaktabstand L zumindest in einer Reihe variiert und dabei im Bereich von 0,1 μm bis 100 mm liegt.6. Sensor array according to claim 5, characterized in that the contact distance L varies at least in one row and is in the range of 0.1 microns to 100 mm.
7. Sensorarray nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß die sensoraktive7. Sensor array according to claim 5 or 6, characterized in that the sensor-active
Fläche in den einzelnen Reihen jeweils gleich ist, jedoch in mindestens zwei Reihen unter¬ schiedlich groß.The area in the individual rows is the same, but in different sizes in at least two rows.
8. Sensorarray nach mindestens einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, daß die sensoraktive Fläche in jeder einzelnen Reihe als ein über die Reihe der Kontaktpads verlaufender Streifen aus- gebildet ist.8. Sensor array according to at least one of claims 5 to 7, characterized in that the sensor-active surface in each individual row is designed as a strip running over the row of contact pads.
9. Sensorarray nach Anspruch 8, dadurch gekennzeichnet, daß die Breite des Streifens im Bereich von 1 μm bis 100 mm liegt. 9. Sensor array according to claim 8, characterized in that the width of the strip is in the range of 1 micron to 100 mm.
10. Sensorarray nach mindestens einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die sensoraktive Schicht aus einem einheitlichen Material be- steht.10. Sensor array according to at least one of claims 1 to 9, characterized in that the sensor-active layer consists of a uniform material.
11. Sensorarray nach mindestens einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß das sensoraktive Material ausgewählt ist aus der Gruppe Sn02,11. Sensor array according to at least one of claims 1 to 10, characterized in that the sensor-active material is selected from the group Sn0 2 ,
TiO, ZnO, FexOy, Zr02, Ga203, CuO, LaxCuy02, In03, CO3O4, W03 oder Mischungen davon.TiO, ZnO, Fe x O y , Zr0 2 , Ga 2 0 3 , CuO, La x Cu y 0 2 , In0 3 , CO 3 O 4 , W0 3 or mixtures thereof.
12. Sensorarray nach mindestens einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß die sensoraktive Schicht zumindest teilweise Katalysatoren und/oder Promotoren und/oder Dotierungen ent¬ hält.12. Sensor array according to at least one of claims 1 to 11, characterized in that the sensor-active layer at least partially contains catalysts and / or promoters and / or dopants.
13. Sensorarray nach mindestens einem der Ansprüche 1 bis 12. dadurch gekennzeichnet, daß die Einzelsensoren oder die einzelnen Streifen der sensoraktiven Schicht unterschiedliche sensoraktive Schichten aufweisen, wobei das Sensormaterial ausgewählt ist aus der Gruppe der Verbindungen nach Patent¬ anspruch 11.13. Sensor array according to at least one of claims 1 to 12, characterized in that the individual sensors or the individual strips of the sensor-active layer have different sensor-active layers, the sensor material being selected from the group of compounds according to claim 11.
14. Sensorarray nach mindestens einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß das sensoraktive Material ausgewählt ist aus Halbleitermateria- lien, wie Si, GaAs oder InP oder aus organischen Schichten, wie Biomoleküle.14. Sensor array according to at least one of claims 1 to 13, characterized in that the sensor-active material is selected from semiconductor material lien, such as Si, GaAs or InP or from organic layers, such as biomolecules.
15. Sensorarray nach mindestens einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß das Sensorarray mit einer Heizung versehen ist. 15. Sensor array according to at least one of claims 1 to 14, characterized in that the sensor array is provided with a heater.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19944424342 DE4424342C1 (en) | 1994-07-11 | 1994-07-11 | Sensor array |
DEP4424342.1 | 1994-07-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1996001992A1 true WO1996001992A1 (en) | 1996-01-25 |
Family
ID=6522807
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE1995/000610 WO1996001992A1 (en) | 1994-07-11 | 1995-05-05 | Complex gas analysis |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE4424342C1 (en) |
WO (1) | WO1996001992A1 (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004019638A1 (en) * | 2004-04-22 | 2005-11-17 | Siemens Ag | FET-based sensor for the detection of particularly reducing gases, manufacturing and operating methods |
RU2291416C1 (en) * | 2005-08-18 | 2007-01-10 | Государственное образовательное учреждение высшего профессионального образования "Московский энергетический институт (технический университет)" (ГОУВПО "МЭИ (ТУ)") | Transducer for determining gas concentration |
RU2291417C1 (en) * | 2005-09-05 | 2007-01-10 | Государственное образовательное учреждение высшего профессионального образования "Московский энергетический институт (технический университет") (ГОУВПО "МЭИ (ТУ)") | Gas concentration sensor |
US7198766B1 (en) | 1999-11-05 | 2007-04-03 | Nippon Shokubai Co., Ltd. | Method for production of acrylic acid and apparatus for production of acrylic acid |
US7459732B2 (en) | 2005-03-31 | 2008-12-02 | Micronas Gmbh | Gas-sensitive field-effect transistor with air gap |
US7553458B2 (en) | 2001-03-05 | 2009-06-30 | Micronas Gmbh | Alcohol sensor using the work function measurement principle |
US7707869B2 (en) | 2004-04-22 | 2010-05-04 | Micronas Gmbh | FET-based gas sensor |
US7772617B2 (en) | 2005-03-31 | 2010-08-10 | Micronas Gmbh | Gas sensitive field-effect-transistor |
US7946153B2 (en) | 2004-04-22 | 2011-05-24 | Micronas Gmbh | Method for measuring gases and/or minimizing cross sensitivity in FET-based gas sensors |
US7992426B2 (en) | 2004-04-22 | 2011-08-09 | Micronas Gmbh | Apparatus and method for increasing the selectivity of FET-based gas sensors |
GB2520251A (en) * | 2013-11-12 | 2015-05-20 | Emma Newton | Hand held device for the detection of trace gases |
US10132769B2 (en) | 2016-07-13 | 2018-11-20 | Vaon, Llc | Doped, metal oxide-based chemical sensors |
CN110476059A (en) * | 2017-03-31 | 2019-11-19 | 盛思锐股份公司 | For measuring the sensor of gas concentration |
US10802008B2 (en) | 2017-02-28 | 2020-10-13 | Vaon, Llc | Bimetal doped-metal oxide-based chemical sensors |
US11203183B2 (en) | 2016-09-27 | 2021-12-21 | Vaon, Llc | Single and multi-layer, flat glass-sensor structures |
US11275051B2 (en) | 2016-03-23 | 2022-03-15 | Vaon, Llc | Metal oxide-based chemical sensors |
US11467138B2 (en) | 2016-09-27 | 2022-10-11 | Vaon, Llc | Breathalyzer |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19710456C1 (en) * | 1997-03-13 | 1998-08-13 | Fraunhofer Ges Forschung | Thin layer gas sensor |
DE19718584C1 (en) * | 1997-05-05 | 1998-11-19 | Fraunhofer Ges Forschung | Gas sensor with parallel-connected metal oxide detector strips |
DE19841814A1 (en) * | 1998-09-12 | 2000-03-16 | Sandler Helmut Helsa Werke | Breakthrough control on a gaseous adsorber comprises sensor array of semiconductor probes with sensitivity specific to a controlled species |
DE10144900B4 (en) | 2001-09-12 | 2005-08-04 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Method for producing a metal oxide semiconductor gas sensor |
EP2833127A1 (en) * | 2013-07-30 | 2015-02-04 | Sensirion AG | Integrated resistive-type sensor array arrangement, each sensor comprising a sensitive metal oxide layer each having a different length between the electrodes |
GB2575803A (en) * | 2018-07-23 | 2020-01-29 | Sumitomo Chemical Co | Semiconductor gas sensor |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0527258A1 (en) * | 1991-08-14 | 1993-02-17 | Siemens Aktiengesellschaft | Gas sensor array for the detection of individual gas components in a gas mixture |
WO1994010559A2 (en) * | 1992-10-26 | 1994-05-11 | THE UNITED STATES OF AMERICA, as represented by UNITED STATES DEPARTMENT OF COMMERCE | Temperature-controlled, micromachined arrays for chemical sensor fabrication and operation |
EP0603945A1 (en) * | 1992-12-23 | 1994-06-29 | ENIRICERCHE S.p.A. | Gas sensor based on semiconductor oxide, for gaseous hydrocarbon determination |
-
1994
- 1994-07-11 DE DE19944424342 patent/DE4424342C1/en not_active Expired - Fee Related
-
1995
- 1995-05-05 WO PCT/DE1995/000610 patent/WO1996001992A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0527258A1 (en) * | 1991-08-14 | 1993-02-17 | Siemens Aktiengesellschaft | Gas sensor array for the detection of individual gas components in a gas mixture |
WO1994010559A2 (en) * | 1992-10-26 | 1994-05-11 | THE UNITED STATES OF AMERICA, as represented by UNITED STATES DEPARTMENT OF COMMERCE | Temperature-controlled, micromachined arrays for chemical sensor fabrication and operation |
EP0603945A1 (en) * | 1992-12-23 | 1994-06-29 | ENIRICERCHE S.p.A. | Gas sensor based on semiconductor oxide, for gaseous hydrocarbon determination |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7198766B1 (en) | 1999-11-05 | 2007-04-03 | Nippon Shokubai Co., Ltd. | Method for production of acrylic acid and apparatus for production of acrylic acid |
US7553458B2 (en) | 2001-03-05 | 2009-06-30 | Micronas Gmbh | Alcohol sensor using the work function measurement principle |
US7707869B2 (en) | 2004-04-22 | 2010-05-04 | Micronas Gmbh | FET-based gas sensor |
US7992426B2 (en) | 2004-04-22 | 2011-08-09 | Micronas Gmbh | Apparatus and method for increasing the selectivity of FET-based gas sensors |
US7946153B2 (en) | 2004-04-22 | 2011-05-24 | Micronas Gmbh | Method for measuring gases and/or minimizing cross sensitivity in FET-based gas sensors |
DE102004019638A1 (en) * | 2004-04-22 | 2005-11-17 | Siemens Ag | FET-based sensor for the detection of particularly reducing gases, manufacturing and operating methods |
US7459732B2 (en) | 2005-03-31 | 2008-12-02 | Micronas Gmbh | Gas-sensitive field-effect transistor with air gap |
US7772617B2 (en) | 2005-03-31 | 2010-08-10 | Micronas Gmbh | Gas sensitive field-effect-transistor |
RU2291416C1 (en) * | 2005-08-18 | 2007-01-10 | Государственное образовательное учреждение высшего профессионального образования "Московский энергетический институт (технический университет)" (ГОУВПО "МЭИ (ТУ)") | Transducer for determining gas concentration |
RU2291417C1 (en) * | 2005-09-05 | 2007-01-10 | Государственное образовательное учреждение высшего профессионального образования "Московский энергетический институт (технический университет") (ГОУВПО "МЭИ (ТУ)") | Gas concentration sensor |
GB2520251A (en) * | 2013-11-12 | 2015-05-20 | Emma Newton | Hand held device for the detection of trace gases |
US11275051B2 (en) | 2016-03-23 | 2022-03-15 | Vaon, Llc | Metal oxide-based chemical sensors |
US10132769B2 (en) | 2016-07-13 | 2018-11-20 | Vaon, Llc | Doped, metal oxide-based chemical sensors |
US11009475B2 (en) | 2016-07-13 | 2021-05-18 | Vaon, Llc | Doped, metal oxide-based chemical sensors |
US11203183B2 (en) | 2016-09-27 | 2021-12-21 | Vaon, Llc | Single and multi-layer, flat glass-sensor structures |
US11467138B2 (en) | 2016-09-27 | 2022-10-11 | Vaon, Llc | Breathalyzer |
US10802008B2 (en) | 2017-02-28 | 2020-10-13 | Vaon, Llc | Bimetal doped-metal oxide-based chemical sensors |
CN110476059A (en) * | 2017-03-31 | 2019-11-19 | 盛思锐股份公司 | For measuring the sensor of gas concentration |
Also Published As
Publication number | Publication date |
---|---|
DE4424342C1 (en) | 1995-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1996001992A1 (en) | Complex gas analysis | |
DE4423289C1 (en) | Gas sensor for reducing or oxidizing gases | |
EP1623217B1 (en) | Sensor for detecting particles | |
DE3504401C2 (en) | ||
EP0781993B1 (en) | Gas sensor | |
DE10210819B4 (en) | Microstructured gas sensor with control of the gas sensitive properties by applying an electric field | |
DE2933971C2 (en) | Gas sensor of high sensitivity and stability for the detection and measurement of the contamination content of air on the basis of metal oxide semiconductors | |
DE19544303A1 (en) | Device and method for controlling the selectivity of gas-sensitive chemical compounds via external potentials | |
DE4334410C3 (en) | Thin-film gas sensor | |
EP1583957B1 (en) | Ion-sensitive field effect transistor and method for producing an ion-sensitive field effect transistor | |
DE60004843T2 (en) | METAL OXIDE CHEMICAL GAS SENSOR AND RELATED PRODUCTION METHOD | |
EP3822624B1 (en) | Capacitive sensor element for detecting at least one property of a liquid medium in at least one measuring chamber and method for manufacturing the sensor element | |
EP1425573A1 (en) | Chromium/titanium oxide semiconductor gas sensor and method for production thereof | |
EP1103808B1 (en) | Gas sensor | |
DE19718584C1 (en) | Gas sensor with parallel-connected metal oxide detector strips | |
DE19924083C2 (en) | Conductivity sensor for the detection of ozone | |
DE3151891C2 (en) | ||
WO2006122875A1 (en) | Circuit assembly for operating a gas sensor array | |
DE10315190A1 (en) | Gas sensor with membrane, sensitive layer, heater and evaluation structures, includes second evaluation structure and functional layer on membrane | |
DE19606272C2 (en) | Semiconductor gas sensor | |
EP2141491A1 (en) | Gas sensor | |
EP3887805A1 (en) | Gas sensor device, and methods for the production and operation of said device | |
DE10219726A1 (en) | Production of a bridge-like semiconductor gas sensor comprises preparing a SOI element, forming an electrode arrangement on an electrically insulating layer | |
DE10308799A1 (en) | Gas sensor to detect the presence of unburned hydrocarbons in automotive exhaust gases has a promoter layer with an oxide from a neighboring group of the periodic table | |
DE19710456C1 (en) | Thin layer gas sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |