[go: up one dir, main page]

WO1996003039A1 - Microparticules spheriques comprenant un promoteur de nucleation et des composes biologiquement actifs - Google Patents

Microparticules spheriques comprenant un promoteur de nucleation et des composes biologiquement actifs Download PDF

Info

Publication number
WO1996003039A1
WO1996003039A1 PCT/EP1995/002726 EP9502726W WO9603039A1 WO 1996003039 A1 WO1996003039 A1 WO 1996003039A1 EP 9502726 W EP9502726 W EP 9502726W WO 9603039 A1 WO9603039 A1 WO 9603039A1
Authority
WO
WIPO (PCT)
Prior art keywords
spherical microparticles
wax
microparticles according
biologically active
active compound
Prior art date
Application number
PCT/EP1995/002726
Other languages
English (en)
Inventor
Rudolf Nastke
Ernst Neuenschwander
Original Assignee
Ciba-Geigy Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ciba-Geigy Ag filed Critical Ciba-Geigy Ag
Priority to EP95926861A priority Critical patent/EP0772393A1/fr
Priority to JP8505404A priority patent/JPH11505464A/ja
Priority to AU31098/95A priority patent/AU3109895A/en
Publication of WO1996003039A1 publication Critical patent/WO1996003039A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/26Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests in coated particulate form
    • A01N25/28Microcapsules or nanocapsules

Definitions

  • Spherical microparticles comprising a nucleation promoter and biologically active compounds
  • the present invention relates to spherical microparticles comprising biologically active compounds and a nucleation promoter within the microparticles.
  • the invention also relates to a process for their preparation, to the use thereof for the preparation of a composition for controlling plant pests, weeds or animal parasites, and to aqueous spray mixtures containing the novel microparticles.
  • microencapsulation of active ingredients in polymeric materials with different polymers is known and can be carried out by various methods, as described for example in Encyclopedia of Polymer Science, John Wiley Sons, 1968, Vol. 8, pp. 719-736.
  • microencapsulation methods are: coacervation, interfacial polymerisation at liquid-liquid surfaces or interfacial polycondensation, for example at a solid phase boundary.
  • other suitable methods are physical methods such as the microencapsulation of aerosols.
  • Amino resins are often used as polymeric encapsulating materials for microparticles that contain agrochemical compounds. An overview of the broad field of use of these resins for microencapsulation is given, inter alia, in Acta Polymerica 40, (1989) No. 4, pp. 243-251.
  • the applied microparticles must be comparably active in field application to e.g. emulsifiable concentrates.
  • they shall release the active ingredient uniformly over an extended period of time.
  • virtually no active ingredient shall be released on skin contact, so that a high degree of handling safety is ensured.
  • the preparation and properties of microparticles prepared with self-crosslinking amino resins are described in Acta Polymerica 40, (1989) No. 5, pp. 325-331.
  • the starting materials are solid compounds which are e.g. additionally ground to give a fine dispersion in the aqueous polymer solution and are then encapsulated.
  • the drawback of this process is that the solid materials have to be ground to an average particle size of c. 10-30 ⁇ m.
  • usually large amounts of fine dust that have to be reagglomerated are formed.
  • the addition of active ingredients in the liquid, dissolved or melt state is therefore usually of interest.
  • This recrystallisation can have such a pronounced effect on the stability to hydrolysis, on the dispersing properties during the preparation of spray mixtures, on the flow properties of the microcapsules and on the release properties of the active ingredient that the microcapsules are unfit for use.
  • the microcapsules comprise, in addition to the active ingredient, a nucleation promoter that effects a rapid recrystallisation of the fused active ingredient in the microcapsule and ensures that only small microcrystallites form that remain almost wholly encapsulated by the capsule wall. Premature release of the active ingredient is thereby prevented, the handling safety is ensured, and the release properties remain effective enough to achieve sufficiently good activity. Long-term stability is good, as the recystallisation no longer occurs during storage.
  • the active ingredient is released approximately uniformly over an extended period of time from the microparticles, so that a good activity is achieved.
  • the invention relates to essentially spherical microparticles comprising a biologically active compound which is solid and crystalline at room temperatue as core substance and a polymeric capsule material, which microparticles additionally comprise a nucleation accelerator.
  • nucleation promoters are mainly linear polymers. Regardless of the active ingredient, the nucleation promoter may suitably be a polyester, a polyacrylate, a polyamide, a polyolefin, a polyvinyl alcohol, a polyvinyl pyrrolidone or a polyether. Those skilled in the an will easily find suitable combinations by simple experimentation by mixing and fusing the components as well as subsequent determination of the crystal size, conveniently by microscopy.
  • a preferred nucleation promoter is a polyethylene glycol or a polyethylene glycol which is etherified with C ⁇ -C 8 alkyl radicals at the OH end groups, a polyvinyl pyrrolidone or a polyvinyl alcohol.
  • the average molecular weight of the polyethylene glycols is preferably 10000 to 40000, most preferably 20000 to 35 000.
  • the degree of hydrolysis is preferably greater than 75 %, most preferably 95 to 100 %.
  • the average molecular weight of the polyvinyl alcohol is preferably 120000 to 200000.
  • the average molecular weight is preferably higher than 10000.
  • the polymeric nucleation promoters can be used in an amount of 0.5 to 30 % by weight, preferably of 1 to 5 % by weight, based on the weight of the active ingredient.
  • the spherical microparticles preferably have an average diameter ofl ⁇ .5 to 500 ⁇ m. More preferably the microparticles have an average diameter of 0.5 to 100 ⁇ m and, most preferably, of 0.5 to 20 ⁇ m.
  • the polymeric wall material is preferably 5 to 40 % by weight of the total weight of the microparticles.
  • the polymeric wall material may consist of a polyacrylate, a polyurea, a polyurethane, a polyester or an amino resin.
  • the polymeric wall material is preferably an amino condensation resin, most preferably a polycondensate of melamine and formaldehyde, a wholly or partially etherified melamine-formaldehyde condensate, a urea-formaldehyde condensate, a urea-glutaralde- hyde condensate or a benzoguanamine-formaldehyde condensate.
  • an amino condensation resin most preferably a polycondensate of melamine and formaldehyde, a wholly or partially etherified melamine-formaldehyde condensate, a urea-formaldehyde condensate, a urea-glutaralde- hyde condensate or a benzoguanamine-formaldehyde condensate.
  • the molar ratios of urea to formaldehyde are 1:2.5 to 1:3.5, preferably 1:2.7 to 1: 3.2. If glutaraldehyde is used instead of formaldehyde, the molar ratios may be 1:1.5 to 1:2.5, preferably 1:1.8 to 1: 2.2.
  • the molar ratios of melamine to formaldehyde can be 1:3.5 to 1:8, preferably 1:4 to 1:6.
  • the degree of etherification of these resins can be adjusted by the molar ratio of melamine to methanol and is typically c. 1:10 to 1:20, preferably c. 1:15 to 1:18.
  • Suitable amino resins for forming microparticles will be found, inter alia, in Kirk-Othmer, Encyclopedia of Chemical Technology, 3rd edition, Vol. 2, pp. 440-469.
  • the polycondensate is most preferably a melamine-formaldehyde condensate, a wholly or partially etherified melamine-formaldehyde condensate, or a urea-formaldehyde condensate.
  • the biologically active compound is preferably a pesticide or a mixture of pesticides, and is most preferably a herbicide, an insecticide, an acaricide, a nematicide, an ectoparasiti- cide, a fungicide or a mixture thereof.
  • Typical examples of pesticides are: urea derivatives, triazines, triazoles, carbamates, phosphoric acid esters, dinitroanilines, morpholines, acylalanines, pyrethroids, benzilic acid esters and polycyclic halogenated hydrocarbons.
  • pesticides suitable for use in the practice of this invention are listed hereinbelow (common names as given in The Pesticide Manual, 9th Edition, British Crop Protection Council):
  • Halogenated acetanilides Dimethachlor, alachlor, propachlor.
  • Atrazine propazine, terbuthylazine, amerryn, aziprotryne, cyromazine.
  • Triazole derivatives
  • Etaconazole 1 -[2-(2,4-dichlorophenyl)-pent- 1 -yl]- 1H- 1 ,2,4-triazole, triadimefon, difenoconazole.
  • the microparticles may additionally contain a hydrophobic wax.
  • the hydrophobic wax may be a natural wax, a modified natural wax, or a semi-synthetic or fully synthetic wax.
  • wax which is fused together with the active ingredient to form a melt which is added to the aqueous solution, has for its object to form a wax film that surrounds the active ingredient on the inner microcapsule wall. Penetration of water into the capsule core is thereby hindered, while the release properties remain effective enough to achieve sufficiently good activity.
  • the wax is preferably a vegetable wax, an animal wax, a montan wax, a paraffin wax, a polyolefin wax or an amide wax.
  • the hydrophobic wax is a macrocrystalline paraffin wax, a microcrystalline paraffin wax or a polyethylene wax.
  • the wax preferably has a melting point of 30 to 80°C.
  • the wax is used in an amount of 1 to 20 % by weight, most preferably of 5 to 15 % by weight, based on the biologically active compound or mixture thereof in the microcapsules.
  • the invention in another of its aspects, relates to a process for encapsulating biologically active compounds in the form of essentially spherical microcapsules, comprising the steps of a) preparing an aqueous solution of surfactants, catalysts and monomers, prepolymers or polymers which are suitable for forming a capsule wall, b) forming an emulsion or dispersion of the substantially water-insoluble biologically active compound or mixture thereof in the solution a) by adding said biologically active compound or mixture thereof under high shear force, and c) forming a solid capsule wall around the biologically active compound or mixture thereof, which process comprises blending the biologically active compound or mixture thereof with a nucleation promoter before forming the emulsion or dispersion b), fusing the blend and adding the melt so obained to the solution a).
  • a preferred embodiment of the process comprises fusing the the biologically active compound or mixture thereof and the nucleation promoter together and adding the co-melt to tie reaction solution a) at a temperature which is higher than that of said reaction solution a).
  • Another preferred embodiment of the process comprises dissolving the nucleation promoter in a solvent, adding the solid active ingredient and cautiously evaporating the solvent, with stirring, to give an active ingredient powder which is coated with the nucleation promoter and which can likewise be fused and added direct to the reaction solution. If a wax is used in addition to the nucleation promoter, then the active ingredient, the nucleation promoter and the wax are preferably blended, the blend is fused, and the melt so obtained is added to the reaction mixture a).
  • the aqueous solution may contain, in addition to the monomers, prepolymers or polymers that form the capsule wall, one or more than one water-soluble monomer, oligomer or polymer as emulsifier or dispersant.
  • Suitable emulsifiers or dispersants are anionic, cationic or nonionic substances.
  • the surfactants customarily used in formulation technology are described, inter alia, in the following publications:
  • the surfactants are polyethylene glycols, polyethylene glycol monoalkyl ethers, polyethylene glycol-polypropylene glycol copolymers, polyvinyl pyrrolidones and acrylic acid-acrylamide copolymers.
  • the polymers used as surfactants usually have a lower molecular weight than that of the polymers used as nucleation promoters. This applies in particular to the polyethylene glycols and polyethylene glycol ethers.
  • the invention in another of its aspects, relates to a process for controlling plant pests, weeds or animal parasites, which comprises suspending the novel microparticles in a biologically active concentration in water and applying the suspension so obtained to the pests or to the locus thereof.
  • the invention relates to the use of the novel microparticles for the preparation of a composition for controlling plant pests, weeds or animal parasites, and to water-dilutable powders, water-dispersible granules or aqueous spray mixtures containing said micropanicles.
  • Example Al Preparation of a modified melamine-formaldehyde precondensate With stirring, 28 g of melamine (0.22 mol) are added to 124 ml of a 30 % aqueous solution of formaldehyde. The reaction mixture is adjusted with 1 N aqueous NaOH to pH 9 and heated to 94°C, whereupon the melamine dissolves while reacting with the aldehyde. The reaction mixture is then cooled to 62°C and, after addition of 120 ml of methanol (3.75 mol) and 7 ml of a 15 % aqueous solution of hydrochloric acid, the reaction is carried out at 62°C for 30 minutes.
  • Example B 1 60 ml of water and 3 g of the precondensate prepared according to Example Al as well as 0.15 g of polyethylene glycol (molecular weight 300) are charged to a reactor with temperature control.
  • the reaction mixture is heated to 60°C and acidified with 2.1 ml of 2N aqueous citric acid.
  • 12.6 g of methidathion and 0.945 g (7.5 %, based on the active ingredient) of polyethylene glycol (mol wt 20000) are fused together, homogenised and heated to 60°C.
  • the melt is added rapidly to the reaction mixture, with stirring (Ultratunax, 12000 rpm), and stirred for 10 minutes at this speed.
  • Example B2 The procedure of Example B 1 is repeated, but using 0.252 g of polyethylene glycol (mol wt 20000), corresponding to 2 %, based on the active ingedient. The mixture is cooled to give a suspension of finely paniculate spherical particles having a diameter of 1 to 10 ⁇ m. The suspension can be further used direct for a formulation or the particles can be dried to give a free-flowing powder.
  • polyethylene glycol mol wt 20000
  • Thermoanalytical measurements show that the active ingredient is mainly present in microcrystalline form in the capsule core.
  • Example B3 The procedure of Example Bl is repeated, but using 0.63 g of polyethylene glycol (mol wt >30000, degree of hydrolysis 95 %), corresponding to 5 %, based on the active ingedient.
  • the mixture is cooled to give a suspension of finely paniculate spherical particles having a diameter of 1 to 10 ⁇ m.
  • the suspension can be further used direct for a formulation or the particles can be dried to give a free-flowing powder.
  • Thermoanalytical measurements show that the active ingredient is mainly present in microcrystalline form in the capsule core.
  • Example B4 The procedure of Example B 1 is repeated, but using 0.63 g of polyethylene glycol (mol wt >10000), corresponding to 5 %, based on the active ingedient. The mixture is cooled to give a suspension of finely paniculate spherical particles having a diameter of 1 to 10 ⁇ m. The suspension can be further used direct for a formulation or the particles can be dried to give a free-flowing powder.
  • polyethylene glycol mol wt >10000
  • the suspension can be further used direct for a formulation or the particles can be dried to give a free-flowing powder.
  • Thermoanalytical measurements show that the active ingredient is mainly present in microcrystalline form in the capsule core.
  • Example B5 The procedure of Example B 1 is repeated, but using in addition to 0.252 g of polyethylene glycol (mol wt 20000), corresponding to 2 %, based on the active ingedient, 1.26 g of paraffin wax having a melting point of >40°C. The mixture is cooled to give a suspension of finely paniculate spherical particles having a diameter of 1 to 10 ⁇ m. The suspension can be further used direct for a formulation or the particles can be dried to give a free-flowing powder.
  • polyethylene glycol mol wt 20000
  • paraffin wax having a melting point of >40°C.
  • the suspension can be further used direct for a formulation or the particles can be dried to give a free-flowing powder.
  • Thermoanalytical measurements show that the active ingredient is mainly present in microcrystalline form in the capsule core.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Agronomy & Crop Science (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

La présente invention concerne des microparticules sphériques comprenant des composés biologiquement actifs et un promoteur de nucléation, ces composés et ce promoteur se trouvant à l'intérieur desdites particules. L'invention concerne également un procédé de préparation de telles particules, l'utilisation de ces particules pour préparer une composition destinée à la lutte contre les parasites végétaux, les mauvaises herbes ou les parasites animaux, ainsi que des mélanges aqueux à pulvériser, contenant ces nouvelles microparticules.
PCT/EP1995/002726 1994-07-22 1995-07-12 Microparticules spheriques comprenant un promoteur de nucleation et des composes biologiquement actifs WO1996003039A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP95926861A EP0772393A1 (fr) 1994-07-22 1995-07-12 Microparticules spheriques comprenant un promoteur de nucleation et des composes biologiquement actifs
JP8505404A JPH11505464A (ja) 1994-07-22 1995-07-12 核形成促進剤と生物学的に活性な化合物とからなる球状微粒子
AU31098/95A AU3109895A (en) 1994-07-22 1995-07-12 Spherical microparticles comprising a nucleation promoter and biologically active compounds

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH233194 1994-07-22
CH2331/94-2 1994-07-22

Publications (1)

Publication Number Publication Date
WO1996003039A1 true WO1996003039A1 (fr) 1996-02-08

Family

ID=4231324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1995/002726 WO1996003039A1 (fr) 1994-07-22 1995-07-12 Microparticules spheriques comprenant un promoteur de nucleation et des composes biologiquement actifs

Country Status (4)

Country Link
EP (1) EP0772393A1 (fr)
JP (1) JPH11505464A (fr)
AU (1) AU3109895A (fr)
WO (1) WO1996003039A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7691296B2 (en) 2002-11-25 2010-04-06 Amorepacific Corporation Method for stabilizing active components using polyol/polymer microcapsule, and cosmetic composition containing the microcapsule
US9138417B2 (en) 2011-03-11 2015-09-22 Osaka Gas Chemicals Co., Ltd. Controlled release particles and production method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2332053A1 (fr) * 1975-11-19 1977-06-17 Bayer Ag Procede de production de suspensions concentrees de pesticides
JPS6413002A (en) * 1987-07-06 1989-01-17 Sumitomo Chemical Co Organic phosphorus insecticide composition for controlling insect pest in forest
EP0380325A2 (fr) * 1989-01-24 1990-08-01 Griffin Corporation Composé actif pour l'agriculture microencapsulé

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2332053A1 (fr) * 1975-11-19 1977-06-17 Bayer Ag Procede de production de suspensions concentrees de pesticides
JPS6413002A (en) * 1987-07-06 1989-01-17 Sumitomo Chemical Co Organic phosphorus insecticide composition for controlling insect pest in forest
EP0380325A2 (fr) * 1989-01-24 1990-08-01 Griffin Corporation Composé actif pour l'agriculture microencapsulé

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 8908, Derwent World Patents Index; Class A97, AN 89-059198 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7691296B2 (en) 2002-11-25 2010-04-06 Amorepacific Corporation Method for stabilizing active components using polyol/polymer microcapsule, and cosmetic composition containing the microcapsule
US9138417B2 (en) 2011-03-11 2015-09-22 Osaka Gas Chemicals Co., Ltd. Controlled release particles and production method thereof

Also Published As

Publication number Publication date
AU3109895A (en) 1996-02-22
JPH11505464A (ja) 1999-05-21
EP0772393A1 (fr) 1997-05-14

Similar Documents

Publication Publication Date Title
AU650504B2 (en) Microcapsules and microencapsulation process
US5925464A (en) Microencapsulation process and product
US5788991A (en) Coated microparticle agglomerates
JPS58124705A (ja) マイクロカプセル化農薬及びその製造方法
CS249110B2 (en) Method of water non-miscible substance encapsulation
CZ288249B6 (en) Microcapsule and process for producing thereof
EP0772395A1 (fr) Microparticules spheriques pourvues d'un revetement de cire interieur depose autour de composes biologiquement actifs
HU213529B (en) Water-emulsifiable plant protective granulate and preparation thereof
JP6497817B2 (ja) 水分散性粒状組成物
EP1021085A1 (fr) Nouveau procede de microencapsulation eau-dans-huile et microcapsules produites au moyen de ce procede
JP4155411B2 (ja) マイクロカプセル化方法および生成物
US5773030A (en) Multiply-coated particles
WO1996003039A1 (fr) Microparticules spheriques comprenant un promoteur de nucleation et des composes biologiquement actifs
US5908632A (en) Process for the preparation of spherical microparticles containing biologically active compounds
JPH11314032A (ja) 固体物質のマイクロカプセル化方法およびマイクロカプセル組成物
HUP9904279A2 (hu) Szilárd mikrokapszulás készítmény
JPH04211415A (ja) 水非混和性物質含有ミクロカプセルの水中懸濁液よりなる組成物
Park et al. from Microparticles

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AM AU BB BG BR BY CA CN CZ EE FI GE HU IS JP KG KP KR KZ LK LR LT LV MD MG MN MX NO NZ PL RO RU SG SI SK TJ TM TT UA US UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1995926861

Country of ref document: EP

ENP Entry into the national phase

Ref country code: US

Ref document number: 1997 776455

Date of ref document: 19970121

Kind code of ref document: A

Format of ref document f/p: F

ENP Entry into the national phase

Ref country code: JP

Ref document number: 1996 505404

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1995926861

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: CA

WWW Wipo information: withdrawn in national office

Ref document number: 1995926861

Country of ref document: EP