WO1996003581A1 - Systeme de conversion de l'energie thermique des oceans - Google Patents
Systeme de conversion de l'energie thermique des oceans Download PDFInfo
- Publication number
- WO1996003581A1 WO1996003581A1 PCT/US1995/008811 US9508811W WO9603581A1 WO 1996003581 A1 WO1996003581 A1 WO 1996003581A1 US 9508811 W US9508811 W US 9508811W WO 9603581 A1 WO9603581 A1 WO 9603581A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sea water
- ammonia
- warm
- vapor
- evaporator
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 11
- 239000013535 sea water Substances 0.000 claims abstract description 214
- 238000001704 evaporation Methods 0.000 claims abstract description 50
- 239000012530 fluid Substances 0.000 claims abstract description 26
- 238000010612 desalination reaction Methods 0.000 claims abstract description 5
- 239000013505 freshwater Substances 0.000 claims description 43
- 230000005611 electricity Effects 0.000 claims description 30
- 239000007788 liquid Substances 0.000 claims description 12
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 411
- 229910021529 ammonia Inorganic materials 0.000 description 184
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 50
- 230000032258 transport Effects 0.000 description 33
- 239000007789 gas Substances 0.000 description 24
- 239000003595 mist Substances 0.000 description 20
- 238000005086 pumping Methods 0.000 description 20
- 230000008020 evaporation Effects 0.000 description 12
- 238000012546 transfer Methods 0.000 description 10
- 238000002347 injection Methods 0.000 description 8
- 239000007924 injection Substances 0.000 description 8
- 229910000975 Carbon steel Inorganic materials 0.000 description 5
- 239000010962 carbon steel Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000011084 recovery Methods 0.000 description 5
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 3
- 238000005660 chlorination reaction Methods 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 239000005708 Sodium hypochlorite Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 229920001903 high density polyethylene Polymers 0.000 description 2
- 239000004700 high-density polyethylene Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 235000012206 bottled water Nutrition 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03G—SPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
- F03G7/00—Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
- F03G7/04—Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using pressure differences or thermal differences occurring in nature
- F03G7/05—Ocean thermal energy conversion, i.e. OTEC
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/30—Energy from the sea, e.g. using wave energy or salinity gradient
Definitions
- the present invention relates to an improved ocean thermal energy conversion (OTEC) system.
- OEC ocean thermal energy conversion
- OTEC ocean thermal energy conversion
- a working fluid which is contained within the ' closed cycle, is pumped by a liquid pump 102 into evaporator 104, where heat from a warm water intake is transferred from the warm water to the working fluid to generate a working fluid vapor.
- the warm water exiting the evaporator 104 is discharged to the sea.
- the working fluid vapor enters a turbogenerator 106 in order to generate electricity by conventional techniques.
- the working fluid vapor exits the turbogenerator 106 and is condensed in condenser 108 utilizing cold sea water as a heat sink. The condensed working fluid is then fed back to the feed pump in order to complete the closed cycle.
- the conventional open-cycle OTEC system 200 utilizes a surface condenser and a direct contact condenser. A surface condenser keeps the two fluids (sea water and pure water) separate while a direct contact condenser does not.
- a majority of the steam exiting the turbine 206 is provided to a direct contact condenser in the conventional open-cycle OTEC system 200, in order to generate electricity.
- the conventional open-cycle OTEC system 200 utilizes a surface condenser to condense a small percentage of the steam generated by the turbine 206 into fresh water utilizing cold sea water as a heat sink.
- a cold sea water discharge is pumped out of the condenser 210 by a pump 212.
- the non-condensible exhaust system 212 removes non-condensible gases and a portion of the steam from the steam output from the turbine 206.
- the generation of electricity by the turbine 206 and generator 208 is the primary product and the fresh desalinated water output from the condenser 210 is the secondary product .
- evaporator 3 includes an evaporator system 302 into which warm sea water is input, of which a small fraction, vaporizes in a vacuum flash evaporator 304.
- the vapor condenses on an ammonia evaporator 306, which contains ammonia liquid, pumped from pump 308.
- the vapor from the flash evaporation system 302 condenses on the ammonia evaporator 306, producing desalinated water.
- the ammonia vapor is input to an ammonia turbine/generator 310 in order to generate electricity by conventional techniques.
- the ammonia vapor is then condensed in an ammonia condenser 312.
- the recondensed ammonia is recycled to the pump 308 to complete the closed portion of the hybrid-cycle OTEC system 300.
- the improved OTEC system of the present application includes a novel combined evaporator/condenser in contrast to the three above-identified systems.
- the combined evaporator/condenser further includes a plurality of evaporator spouts and a mist eliminator.
- the OTEC system of the present application further maintains a constant low pressure over each of the plurality of evaporator spouts.
- the OTEC system of the present application also generates fresh water as a primary product.
- the OTEC system of the present application generates only enough electricity, as a secondary product, to operate the OTEC system itself.
- One object of the present invention is to provide an improved ocean thermal energy conversion (OTEC) system. It is a further object of the present invention to provide an improved ocean thermal energy conversion (OTEC) system which evaporates a working fluid at a natural depth of the received warm sea water to produce a working vapor, generates energy from the working vapor, and condenses the working vapor with cold sea water at a natural depth of the cold sea water.
- OEC ocean thermal energy conversion
- an improved ocean thermal energy conversion (OTEC) system comprising desalination means for receiving warm sea water, flash evaporating a portion of the warm sea water to produce steam, and condensing the steam with cold sea water to produce fresh water; and energy generation means for receiving the warm sea water, evaporating a working fluid at a natural depth of the received warm sea water to produce a working vapor, generating energy from the working vapor, and condensing the working vapor with the cold sea water at a natural depth of the cold sea water.
- OEC ocean thermal energy conversion
- an OTEC system including energy- generation means including, evaporation means for receiving the warm sea water and evaporating the working fluid to produce the working vapor, said evaporation means being located at the natural depth of the warm sea water, turbine means for generating the energy from the working vapor, and condenser means for condensing the working vapor with the cold sea water, said condenser means being located at the natural depth of the cold sea water.
- Figure 1 illustrates a conventional closed-cycle OTEC system
- Figure 2 illustrates a conventional open-cycle OTEC system
- Figure 3 illustrates a conventional hybrid-cycle OTEC system
- Figures 4(a) and 4(b) illustrate the improved OTEC system of the present invention, in a preferred embodiment
- Figure 5(a) illustrates the platform which supports the improved OTEC system illustrated in Figures 4 (a) and 4 (b)
- Figure 5(b) illustrates the platform and the evaporator/condenser from an evaporator perspective
- Figure 5(c) illustrates the platform and the evaporator/condenser from a condenser perspective
- Figures- 6(a) illustrates one embodiment of the novel combined evaporator/condenser for the OTEC system illustrated in Figures 4 (a) and (b) ;
- FIGS. 6(b) through 6(d) illustrate three alternatives for collecting seed bubbles for evolving non- condensible gases
- Figures 7 illustrates another embodiment of the novel combined evaporator/condenser for the OTEC system illustrated in Figures 4 (a) and 4 (b) ,*
- Figures 8 illustrates a reservoir system for use in the OTEC system illustrated in Figures 4(a) and 4(b) ;
- Figure 9 illustrates a mist eliminator of Figure 4 (a) in one embodiment of the present invention.
- Figure 10 illustrates an alternative embodiment of the energy generation system illustrated in Figure 4 (b)
- Figure 11 illustrates an evaporator template of the ammonia evaporator sub-system
- Figures 12 and 13 illustrate an individual evaporating component of the evaporator template of Figure 11;
- FIGS 14 and 15 illustrate the electric generation sub-system of the energy generation system illustrated in Figure 10;
- Figure 16 illustrates a buckling resistor reinforcement
- Figure 17 illustrates a condenser template of the ammonia condenser sub-system
- FIGS 18 and 19 illustrate an individual condensing component of the condenser template of Figure 16;
- Figure 20 illustrates another embodiment of the improved OTEC system of the present invention
- Figures 21(a) and 21(b) illustrate the embodiment of Figure 20 in more detail
- Figure 22 illustrates the ammonia evaporator/steam condenser of Figure 20;
- Figure 23 illustrates the five (5) sub-systems of Figure 20.
- Figure 24 illustrates the ammonia evaporating sub ⁇ system, the electric generation sub-system, and the hybrid sub-system of Figures 23 in more detail.
- the improved ocean thermal energy conversion (OTEC) system 400 of the present invention in a preferred embodiment, is illustrated in Figures 4(a) and 4(b) .
- This OTEC system 400 generates three million gallons of water per day and 2.0 megawatts of gross electricity. These 2.0 megawatts of electricity are utilized to power the OTEC system 400 illustrated in Figures 4 (a) and 4 (b) , and as a result, the net electricity generated by the OTEC system 400 of the present application is zero megawatts.
- the various components of the OTEC system of the present application are sized such that the number of gallons of fresh water is maximized and the amount of electricity generated is sufficient enough to power the OTEC system 400.
- the OTEC system 400 of the present application comprises warm sea water pumping system 402 for pumping 2,500,000 pounds of warm sea water per minute.
- the warm sea water pumping system 402 is fed by six 4.83 foot ID pipes, which are each 300 feet in length.
- the 80°F warm sea water exiting the warm sea water pumping system 402 is split. 1,780,000 pounds per minute flows to flash evaporator 406 and 720,000 pounds per minute flows to . ammonia evaporator 412.
- the warm sea water enters evaporator/condenser 404 at flash evaporator 406 which is maintained at a pressure of 0.325 psi.
- the warm sea water is flash evaporated through several flash evaporator spouts 408.
- the steam is input to a mist eliminator 410 at a rate of 17,500 pounds per minute and the steam exiting from the mist eliminator 410 exits at a pressure of greater than or equal to 0.275 psia.
- This steam is input to a fresh water condenser 412 having 500,000 sq. ft. of surface area. Entering tubes of the fresh water condenser 412 is cold sea water at a rate of 1,260,000 pounds per minute at a temperature of 42.9°F.
- This cold sea water is provided by cold sea water pumping system 414 which receives 1,920,000 pounds of cold sea water per minute via six 4.83 foot ID pipes, each of which are 7,000 feet in length.
- the fresh water condenser 412 generates fresh desalinated water at a rate of 17,500 pounds per minute at a temperature of 61°F and a cold sea water discharge flow at a temperature of 58.6°F.
- the fresh water exiting the fresh water condenser 412 is the primary product of the improved OTEC system 400 of the present application.
- Figure 4(a) illustrates each of the elements necessary to generate fresh desalinated water from the OTEC system 400 of the present application.
- Figure 4(b) of the present application illustrates the components necessary to generate sufficient electricity to power the OTEC system 400.
- the warm sea water pumping system takes in 2,500,000 pounds of warm sea water per minute and outputs 1,780,000 pounds of warm sea water per minute to the flash evaporator 406. The remaining 720,000 pounds of warm sea water per minute at a temperature of 80°F is input to an ammonia evaporator 418.
- the cold sea water pumping system 414 receives cold sea water at a rate of 1,920,000 pounds per minute and outputs 1,260,000 pounds of cold sea water per minute to the fresh water condenser 412.
- the remaining 660,000 pounds of cold sea water at a temperature of 42.9°F is input to an ammonia condenser 416.
- the warm sea water heats liquid ammonia pumped by an ammonia pump 420 at a pressure of 129.5 psia to produce ammonia vapor and a warm water discharge at a temperature of 74.1°C.
- the ammonia vapor is input to a turbine 422 at a rate of 7,160 pounds of ammonia vapor per minute in order to produce a gross power generation of 2.0 megawatts.
- the ammonia vapor exiting the turbine 422 is input to the ammonia condenser 416, which also has 170,000 sq. ft. of surface area.
- the cold sea water from the cold sea water pumping system 414 is also input to the ammonia condenser 416, which outputs a cold water discharge at a temperature of 48.7°F and liquid ammonia at a pressure of 94 psia. This ammonia is recycled back to the ammonia pump 420 in order to complete the closed cycle ammonia path.
- the OTEC system 400 described in Figures 4 (a) and 4 (b) is supported by the platform 500, illustrated in Figure 5(a) .
- the platform 500 includes two decks 502 and 504, and further includes a jacket 506 which includes all of the structure below the deck 504.
- the jacket 506 extends approximately 30 feet above the water surface.
- the jacket 506 has six legs, two of which are shown in Figure 5(a) as legs 508 and 510.
- the legs which may house the 4.83 foot ID pipes, which provide the cold sea water pumping system 414 with cold sea water from a depth of 2700 feet.
- Figure 5(a) further illustrates four evaporator/condensers 400, although this number may vary depending on the desired amount of fresh water.
- Warm sea water intake pipes 512 extend down less than 100 feet and feed the four evaporator/condensers 404.
- FIG. 5(b) illustrates the platform 500, the warm sea water pumping system 402, an evaporator/condenser 404 (from an evaporator perspective) , a warm sea water discharge system 514, and a non-condensible removal system 516.
- each flash evaporator 406 includes fifteen flash evaporator spouts 408.
- Figure 5 (b) further illustrates a seed bubble generation system 518.
- Figure 5(b) further illustrates two alternative energy recovery turbines 520 and 522, each of which include a turbine blade system 524 for the extraction of power from the discharged warm sea water.
- the warm water discharge turns a turbine shaft 526 and the shaft 526 turns a right angle gear box 528, which is connected to a pump of the warm sea water pumping system 402, thereby providing auxiliary power to the pump.
- the warm water discharge turns a turbine shaft 530, which is connected to a generator 532.
- the electricity produced by the generator 532 is used as needed anywhere in the OTEC system 400 to reduce the energy consumption.
- Figure 5(c) illustrates the evaporator/condenser 404 from a condenser perspective and the cold sea water pumping system 414.
- the cold sea water enters a pump 531 of the cold sea water pumping system 414.
- the cold sea water is then pumped to an inlet manifold 533 which distributes the cold sea water through a plurality of condenser tubes 538 of the fresh water condenser 412.
- the cold sea water exits the fresh water condenser 412 through an exit manifold 534 and a cold sea water discharge pipe.
- An energy recovery turbine 522 is located in the cold water discharge and performs the same function as the energy recovery turbine 522 of Figure 5 (b) .
- Non-condensible gases and a portion of uncondensed steam are input to vacuum system 540, which compresses the mixture to condense the previously uncondensed steam and expel the non-condensible gases to the atmosphere or to the warm or cold water discharges.
- a portion of the cold sea water is input to the vacuum system 540 via pipe 542 to help cool this process.
- the evaporator/condenser 404 illustrated in Figure 4(a) , will now be described in further detail, as illustrated in Figures 6(a) .
- the flash evaporator 406, the mist eliminator 410, the fresh water condenser 412, and a predeaeration chamber 602 are housed within evaporator/condenser shell 600.
- the warm sea water from warm sea water pumping system 402 is input to the predeaeration chamber 602.
- non-condensible gases are separated from the warm sea water and the non-condensible gases are either returned in the warm water discharge pipe 622 or returned to the ocean or the atmosphere by the vacuum system 540.
- the warm sea water passes from the predeaeration chamber 602 to the flash evaporator 406 via a flash evaporator spout 408 thereby producing water vapor and mist within the flash evaporator 406.
- Flow control valve 710 controls the flow of warm sea water into the flash evaporator 406.
- the mist eliminator 410 is physically attached to the evaporator/condenser shell 600 and a separation wall 606, and separates the flash evaporator 406 from the fresh water condenser 412.
- the mist eliminator 410 traps mist on the flash evaporator side and only allows water vapor to pass through such that the water vapor may be condensed in fresh water condenser 412.
- the fresh water condenser 412 includes the plurality of condenser tubes 538 and the condensed water vapor is collected at a rate of 17,500 pounds per minute, as discussed above with respect to Figure 4(a) .
- a predeaeration chamber 602 is employed. Seed bubbles provide a catalyst for the further evolution of non-condensible gases in the predeaeration chamber 602. These seed bubbles may be collected from the warm sea water intake, the warm sea water discharge, or from the atmosphere. These three alternatives are illustrated in Figure 6 (a) .
- the warm sea water passes through a choke segment 612 and then enters the predeaeration chamber 602.
- the pressure is decreased due to the restriction in diameter and the seed bubbles of the non-condensible gases are generated.
- the choke segment 612 provides for a greater evolution of non-condensible by creating a low pressure point in the warm sea water intake flow.
- the seed bubbles can also be supplied by providing a pipe with a check valve 642 to the atmosphere.
- the seed bubbles can also be supplied from the warm sea water discharge using the three techniques illustrated in Figures 6 (b) - (d) .
- the diameter of the warm sea water outlet flow pipe 610 is reduced from D 0 to D 2 to create a stagnant region immediately downstream of Dl to separate the seed bubbles of the non-condensible gases from the warm water discharge.
- the seed bubbles are carried by the seed bubble pipe 614 and the seed bubble injection system 618 to the predeaeration chamber 602.
- a baffle 702 is placed in the warm sea water inlet flow pipe 610 to create a stagnant region due to the obstruction of the baffle 702 and the enlarged diameter of the pipe in this region.
- the separated seed bubbles of the non-condensible gases are input to predeaeration chamber 602 via the seed bubble pipe 614 and the seed bubble injection system 618.
- a region of zero vertical velocity 702 is created by horizontal pipe section 704, wherein the natural buoyancy of non-condensible gases allow separation from the warm sea water discharge to occur, generating seed bubbles, which are collected in region 706.
- the seed bubbles are then input to the predeaeration chamber 602 via the seed bubble pipe 614 and the seed bubble injection system 618.
- the predeaeration chamber 602 functions to remove as much of the non-condensible gases (NGC) from the warm sea water prior to introduction to the flash evaporator 406.
- NTC non-condensible gases
- the percentage of the non-condensible gases which are removed from the warm sea water is a function of three parameters: the pressure in the predeaeration chamber 602, the length of time the warm sea water spends in the predeaeration chamber 602, and the cross sectional area of the predeaeration chamber 602.
- the predeaeration chamber 602 illustrated in Figure 6(a) further includes baffle 616, which routes the warm sea water in an indirect fashion to the flash evaporator spouts 408. This extends the period of time the warm sea water is in the predeaeration chamber 602. As a result, the warm sea water has a greater residency time in the predeaeration chamber 602 and is more heavily seeded with bubbles, which triggers a higher percentage of non-condensible gases to be evolved and carried away at the top of the predeaeration chamber 602.
- the non-condensible gases which have gathered at the top of the predeaeration chamber 602 are then removed by the NCG removal pipes 620.
- the warm sea water discharge is then utilized to compress the non-condensible gases so that they may be either discharged at atmospheric pressure or reabsorbed into the warm sea water discharge released back into the ocean or atmosphere.
- the NCG removal pipes 620 which remove the non- condensible gases from the predeaeration chamber 602 are extended down the warm water discharge pipe 622 with a vertically-movable extension 624 to such a depth that the pressure in the warm water discharge pipe 622 is incrementally - less than the desired pressure in the predeaeration chamber 602.
- FIG. 7 illustrates an alternative embodiment of the evaporator/condenser 404 of Figure 6(a) .
- Figure 7 and Figure 6(a) include numerous common elements, which have been given the same numerals, and whose description is omitted here.
- the predeaeration chamber 602 is placed outside the shell 600 and above the evaporation spouts 408. This configuration increases NCG removal because the warm sea water spends more time in the predeaeration chamber 602. The larger volume of the predeaeration chamber 602 and its elevation above the evaporator spouts 408 provides additional control over the pressure inside the flash evaporator 406.
- the pressure within the flash evaporator 406 be controlled near 0.3 psia. Since the flash evaporator 406 includes multiple flash evaporator spouts 408, it also is necessary to maintain a constant pressure at each of the flash evaporator spouts 408. If the pressure in the flash evaporator 406 is too far above 0.3 psia, then not enough steam will be generated. If the pressure is too far below 0.3, the steam can not reach the last condenser tube 412 and the steam begins to accumulate and cause the removal of the non-condensible gases to cease.
- the OTEC system of the present application typically operates with a pressure of 0.3 psia ⁇ 0.05.
- the evaporator/condenser 404 of the present application requires relatively steady flow rates and pressures.
- a configuration such as the one illustrated in Figure 8 is utilized.
- the warm sea water inlet pipe 610 carries warm sea water into pumps 402.
- the output of warm sea water from each of the pumps 402 is fed together in pipe 1004, which feeds each flash evaporator 406.
- a static reservoir 1006 and compressed air source 1008 finely regulate the pressure in the flash evaporators 406.
- the mist eliminator 410 is a three pass chevron-style mist eliminator wherein each wall element 802 is 9.68 inches in length and 1.5 inches apart.
- the water vapor and mist from the flash evaporator 406 are input to the flash evaporator side of the mist eliminator 410.
- the larger droplets • of mist contact the wall elements 802 of the mist eliminator 410 and fall to the bottom of the flash evaporator 406, where they become part of the warm water discharge.
- FIG. 10 illustrates an energy generation system which is an alternative embodiment of the energy generation system of Figure 4 (b) .
- the energy generation system illustrated in Figure 10 may be utilized in conjunction with the desalination system of Figure 4(a) , where warm sea water pumping system 402 and cold sea water pumping system 414 are not required, as will be discussed below.
- an ammonia evaporator sub-system 418 is located at a depth of approximately 75 feet from the ocean surface. This depth is selected depending on a natural depth and desired temperature of the warm sea water which is required as a warm sea water heat source.
- the warm sea water enters the ammonia evaporator sub-system 418 and heats liquid ammonia delivered by liquid ammonia transport 4201 of ammonia transport sub-system 420 to produce ammonia vapor and a warm water discharge.
- the ammonia vapor is input to electric generation sub-system 422 in order to produce electricity.
- the electric generation sub-system 422 is located above the ocean surface.
- the ammonia vapor exiting the electric generation sub-system 422 is input to the ammonia condenser sub-system 416 via vapor ammonia transport 4202 of ammonia transport sub-system 420, which is located at a natural depth of the desired cold sea water heat sink.
- the ammonia condenser sub-system 416 is located at a depth of 2700 feet from the ocean surface.
- the cold sea water at a depth of 2700 feet is input to ammonia condenser sub-system 416 as a cold sea water heat sink and the ammonia condenser sub-system 416 outputs a cold seawater discharge and liquid ammonia.
- This liquid ammonia is recycled back to the ammonia evaporator sub- system 418 via the liquid ammonia transport 4201 of the ammonia transport sub-system 420 in order to complete the closed cycle ammonia path.
- Locating the ammonia evaporator sub-system 418 at a natural depth where the desired warm sea water intake is available alleviates the need for deployment of numerous large sea water pipes and reduces the energy cost required to pump the warm sea water to the ammonia evaporator sub ⁇ system 418. Instead of pumping water from a different depth, the warm water at the proper depth is merely pumped through the ammonia evaporator sub-system 418. Similar reductions in piping and energy costs are realized by locating the ammonia condenser sub-system 416 at a natural depth where the required cold sea water intake is readily available. In the embodiment illustrated in Figure 10, only the ammonia is pumped to different depths, not the warm and cold sea water. Since the mass flow rate of the ammonia vapor/liquid is much smaller than either of the mass flow rate of the warm sea water or the cold sea water, significant energy is saved by only pumping the ammonia vapor/liquid to different depths.
- ammonia condenser sub-system 416 is located in deep water.
- the ammonia condenser sub-system 416 must be properly anchored to withstand the pressure at such a depth.
- the ammonia evaporator sub-system 418 is located near the surface of the ocean, in shallow warm water, and the electric generation sub-system 422 is located above the ocean surface. Since the electric generation sub-system 422 generates electricity, it must be connected to on shore power distribution centers via power lines.
- the ammonia evaporator sub-system 418 receives liquid ammonia from the liquid ammonia transport 4201 of the ammonia transport sub-system 420, distributes the liquid ammonia among a plurality of evaporator templates 1100, illustrated in Figure 11.
- the ammonia evaporator sub-system 418 includes four evaporator templates 1100.
- each evaporator template 1100 includes six individual. evaporating components 1102, into which the liquid ammonia is distributed.
- An individual evaporating component 1102 is illustrated in Figure 12. Each individual evaporating component 1102 chlorinates entering warm sea water to deter biofouling inside the tubes 1202.
- the ammonia evaporator sub-system 418 collects and delivers the vaporized ammonia to the electric generation sub-system 422.
- the ammonia evaporator sub-system 418 receives 102,000 lbs/min of liquid ammonia from the liquid ammonia transport 4201 of the ammonia transport sub-system 420 and distributes the liquid ammonia among the 24 individual evaporating components 1102.
- the individual evaporating components 1102 are of the shell and tube type with ammonia on the shell side and naturally occurring warm sea water on the tube side. Each individual evaporating component 1102 is aligned vertically in such a way that the warm sea water flows in the direction of gravity. This serves two purposes. One, the warm sea water inlet is closer to the ocean surface, i.e. in more shallow water, this makes the sea water temperature slightly higher than it would be for a horizontally inclined unit. Second, the warm sea water discharge will be slightly cooler than the ambient sea water, and, as a result, will have a higher density and a consequent tendency to sink.
- Each of the 24 individual evaporating components 1102 has a tube 1202 inner diameter of 0.715 inches and a tube 1202 outer diameter of 0.75 inches, includes 19,000 tubes 1202 in the cylinder with a pitch of approximately 1.25, and has a tube length of 18 feet. Further, the shell 1204 is 18 feet long with an inner diameter of 11.2 feet, a wall thickness of greater than 1 inch, and an outer diameter of approximately 11.4 feet.
- the sea water enters the tubes 1202 via an inlet cone 1206, situated at an upper end of each individual evaporating component 1102.
- the inlet cone 1206 is 60 inches in diameter and extends uniformly at a 30 degree angle to reach the 134.4 inch diameter of the shell 1204.
- sea water pumps 1208 are employed. Reliance on natural convention or irregular sea water currents to continually move and displace the sea water would result in heat transfer coefficients which are both unpredictable and considerably lower than the forced convection design of Figure 12. Since the overall heat transfer coefficient is inversely proportional to evaporator surface area, the sea water pumps 1208 are crucial to keeping the number of tubes 1202 to a reasonable level.
- Each individual evaporator component 1102 requires a warm sea water flow rate of 815,000 lbs/min.
- the water enters at a temperature of approximately 80°F and exits 1208 at a temperature 3.6°F cooler or approximately 77.4°F.
- the sea water pumps have a large diameter, are axial, have a low head, and a high-flow rate, and are situated directly in front of the inlet cone 1206.
- Each sea water pump 1208 includes a motor connected to the electric generation sub ⁇ system 422 by appropriate electric cabling.
- the entering warm sea water may be chlorinated in one of two ways.
- the first includes a molecular chlorine reservoir 1210 located at the ocean surface or at the evaporation depth, which feed chlorine injection ducts 1212, located circumferentially around the sea water inlet cone 1206.
- the chlorine injection may occur intermittently, i.e. one hour per day, at moderate rates i.e., 100 parts per billion (ppb) , or continuously at lower rates such as 35 to 50 ppb. These injection rates depend on the type of tube material, site location, and time of year.
- a second method of chlorinating the entering warm sea water is illustrated in Figure 13 and includes an electrolytic system 1302 utilizing platinized titanium anodes 1304 and titanium cathodes 1306 to electrolyze a percentage of dissolved salt in the sea water to form sodium hypochlorite, which is as effective as molecular chlorine in deterring biofouling.
- an electrolytic system 1302 may also be employed continuously or intermittently, as discussed above.
- the vaporized ammonia exits each individual evaporating component 1102 and is carried via a network of steel tubes and pipes 1004 to one of four (4) five foot inner diameter steel pipes 1106. These pipes 1106 transport the ammonia vapor above the ocean surface to the electric generation sub-system 422.
- the electric generation sub-system 422 illustrated in Figures 14 and 15, includes seven ammonia vapor turbine expanders 1402, seven corresponding generators 1404, an inlet manifold system 1406, an outlet manifold system 1408, a control center 1410, and electric transformers (not shown) .
- the turbine expanders 1402 take thermodynamic energy from the ammonia vapor and transform it into mechanical energy.
- the ammonia vapor enters each turbine expander 1402 as a high pressure, high enthalpy, completely vaporized yet saturated vapor and exits at a lower pressure, a lower temperature, and a lower enthalpy.
- the extracted energy is transferred into rotational force of a shaft leading to one of the corresponding generators 1404.
- Each generator 1404 transforms this mechanical energy into electricity in a conventional manner.
- the electric transformers alter the generated electricity to such a voltage and frequency that it can be supplied to a local grid and to parts of the OTEC system which require electricity, namely the sea water pumps 1208 and liquid ammonia pumps 1704 (to be described later) .
- the saturated exit vapor from the seven ammonia vapor turbine expanders 1402 enters an outlet manifold system 1408 which distributes the saturated exit vapor to the vapor ammonia transport 4202 of the ammonia transport subsystem 420.
- the ammonia transport sub-system 420 includes two sets of pipelines, the vapor ammonia transport 4202 and the liquid ammonia transport 4201.
- the vapor ammonia transport 4202 carries vaporous ammonia from the electric generation sub-system 422 to the ammonia condenser sub-system 416.
- the vapor ammonia transport 4202 includes four separate pipelines each transporting an equal one fourth of the 102,000 lbs/min flow of ammonia vapor.
- the inner diameter of each pipeline is five feet and the pipelines are made of carbon steel.
- the pressure inside the pipelines remains nearly constant at approximately 95 psia. Because the vapor ammonia transport pipelines extend to depths of almost 3,000 feet, the net external pressure is very large. In order to resist buckling, the pipewall thickness must become gradually larger as the pipe extends deeper and the external hydrostatic pressure becomes greater. The range of wall thicknesses and segment lengths for these pipelines varies from one inch and 40 feet at the ocean surface to 2.25 inches and 10 feet at the ammonia condenser sub-system 416 depth. In addition, a buckling resistor reinforcement 1600, illustrated in Figure 16, is included on each of the carbon steel pipe segments 1602.
- the liquid ammonia transport includes a single pipeline 4201 extending from . the ammonia condenser sub- system 416 in the cold seawater region to the ammonia evaporator sub-system 418 in the warm sea water region.
- the single pipeline 4201 has a constant inner diameter of 2.5 feet and is also made of carbon steel.
- the single liquid ammonia transport 4201 pipeline wall thickness and segment length vary as a function of depth, in this case from 1.00 inch and 15 feet at the ammonia condenser sub-system 416 depth to 0.25 inches and 40 feet at the ammonia evaporator sub ⁇ system 418 depth.
- the ammonia condenser sub-system 416 receives vaporous ammonia from the vapor ammonia transport 4202 of ammonia transport sub-system 420, distributes the vaporous ammonia among a plurality of condenser templates 1700 illustrated in Figure 17.
- the ammonia condenser sub-system 416 includes four condenser templates 1700.
- each condenser template 1700 includes five individual condensing components 1702, into which the ammonia vapor is distributed.
- a individual condensing component 1702 is illustrated in Figure 18.
- Each individual condensing component 1702 chlorinates the entering cold sea water to deter biofouling inside tubes 1802 of the individual condensing components 1702.
- the ammonia condenser sub ⁇ system 416 collects the liquid ammonia and returns the liquified ammonia to the ammonia evaporator sub-system 418 via the ammonia transport system 420.
- the ammonia condenser sub-system 416 receives the 102,000 lbs/min of ammonia vapor from the vapor ammonia transport 4202 of ammonia transport sub-system 420 and distributes it among the 20 individual condensing components 1702.
- These individual condensing components 1702 are of the shell and tube variety with ammonia on the shell side and naturally occurring cold sea water on the tube side.
- Each individual condensing component 1702 is aligned vertically in such a way that the cold sea water flows against the direction of gravity. This serves two purposes, as discussed above with respect to the individual evaporating components 1102. The first is that the sea water inlet is further from the ocean surface, i.e. in deeper water.
- Each of the 20 individual condensing components 1702 has a tube 1802 inner diameter of 0.695 inches and a tube 1802 outer diameter of 0.75 inches, 18,000 tubes 1802 in the cylinder with a pitch of approximately 1.25, and a tube length of 18.0 feet.
- the shell 1804 is also 18 feet long with an inner diameter of 10.8 feet and an outer diameter of approximately 11.8 feet.
- the cold sea water enters the tubes 1802 via an inlet cone 1806 situated at a lower end of each of the individual condensing components 1702.
- the inlet cone 1806 is 60 inches in diameter and extends uniformly at a 30° angle to reach the 130.8 inch diameter of the shell 1804.
- sea water pumps 1308 are employed. Reliance on natural convection cr the __ egular sea water currents to continually move and displace the sea water results in heat transfer coefficients which are both unpredictable and considerably lower than the forced convention design illustrated m Figure 18. Since the overall heat transfer coefficient is inversely proportional to condenser surface area, the sea a:er pumps 1808 are crucial to keeping the number of tubes 1 ⁇ I2 to a reasonable level.
- Each individual condensing componer.: 1702 requires a cold sea water flow rate of 742,700 los/min.
- the water enters at a temperature of approximately 43.9°F and exits at a temperature of 3.9°F warmer or approximately 47.8°F.
- the sea water pumps 1808 have a large diameter, are axial, have a low head, a high flow rate, are submersible, and are situated directly in front of the inlet cone 1806.
- Each sea water pump 1808 includes a separate -notor connected to the electric generation sub-system 422 by appropriate electric cabling.
- the first option includes a molecular chlorine reservoir 1810 located at the ocean surface or at the ammonia condenser sub-system 416 depth which feed chlorine injection ducts 1812, located circumferentially around the entrance to the sea water inlet cone 1806.
- a molecular chlorine reservoir 1810 located at the ocean surface or at the ammonia condenser sub-system 416 depth which feed chlorine injection ducts 1812, located circumferentially around the entrance to the sea water inlet cone 1806.
- the cold sea water is flowing through the tubes 1802 at a sufficient rate of chlorination to resist the growth of biological organisms.
- the chlorinating injection may occur intermediately (such as one hour per day) at moderate rates
- the second method includes an electrolytic system 1902, illustrated in Figure 19 with platinized titanium anodes 1904 and titanium cathodes 1906 which deter biofouling by electrolyzing a certain percentage of dissolved salt in the cold sea water to form sodium hypochlorite, which is as effective as molecular chlorine in deterring biofouling.
- This system may also be employed continuously or intermittently.
- the liquid ammonia exits each individual condenser component 1702 and is carried via a network of steel tubes and pipes to a liquid ammonia pump 1704 for each condenser template 1700.
- the liquid ammonia pumps 1704 include a number of centrifugal pumps acting in parallel or series. Casings protect the centrifugal pump motors situated at the ammonia condenser sub-system 416 depth and connected to the electric generation sub-system 422 by underwater electric cable.
- the liquid ammonia pumps 1704 pump the liquid ammonia into the liquid ammonia transport 4201 of the ammonia transport sub-system 420 and the closed cycle is completed.
- Figure 20 illustrates the improved OTEC system of the present invention, in yet another preferred embodiment.
- Figure 20 illustrates a hybrid-cycle OTEC system 2000.
- the hybrid-cycle OTEC system 2000 includes ammonia condensing sub-system 2002, located approximately 2700 feet below the ocean surface, which condenses and pumps liquid ammonia to ammonia evaporating sub-system 2004, located approximately 50 feet below the ocean surface and to ammonia evaporator/steam condenser 2006, located on a platform above the ocean surface.
- the ammonia evaporating sub ⁇ system 2004 evaporates the liquid ammonia using a flow of warm sea water, available at the 50 foot depth, to produce ammonia vapor.
- ammonia liquid input to ammonia evaporator/steam condenser 2006 is evaporated by water vapor, which will be discussed below.
- the ammonia vapor output from ammonia evaporator/steam condenser 2006 and the ammonia vapor output from ammonia evaporating sub- system 2004 both are input to separate turbine/generators 2008 and 2010, which generate electricity.
- the ammonia vapor output from turbine/generator 2008 and turbine/generator 2010 are combined and input to ammonia condensing sub-system 2002 to complete the closed cycle ammonia loop.
- Warm sea water pump 2012 pumps warm sea water into flash evaporator 2014, wherein a portion of the warm sea water is evaporated. The remaining warm sea water is returned to the ocean as warm sea water discharge.
- the water vapor output from flash evaporator 2014 is input to the ammonia evaporator/steam condenser 2006 and thermally contacts the outside of the tubes containing the ammonia liquid from the ammonia condensing sub-system 2002 to produce fresh water and ammonia vapor.
- the ammonia condensing sub ⁇ system 2002 and the ammonia evaporating sub-system 2004 each include a shell-and-tube heat exchanger.
- the improved OTEC system of Figure 20 is illustrated in more detail in Figures 21 (a) and 21 (b) .
- the hybrid cycle OTEC system embodiment of Figures 21(a) and 21(b) generates " 25.07 megawatts (net) of electricity and 1.36 million gallons of fresh water per day (mgd) .
- the ammonia condensing sub-system 2002 receives 108,700 lbs/min of ammonia vapor at a pressure of 93.1 psia via eight (8) carbon steel pipes with an inner diameter (ID) of 3.5 feet and a length of 6,400 feet.
- the ammonia condensing sub- system 2002 also receives 1.77 x 10 7 lbs/min of cold sea water at a temperature of 43.9 °F from a cold sea water pump (not shown) .
- the cold sea water exits the ammonia condensing sub-system 2002 at a temperature of 47.5 °F and the liquid ammonia exits at 50°F and 91.6 psia.
- the liquid ammonia is pumped by an ammonia pump 2003 requiring 8.06 megawatts of p ⁇ wer, to---- the ammonia evaporating sub-system 2004.
- the liquid ammonia at 50°F and 825 psia, is transported by one (1) 3.0 foot ID carbon steel pipe which is 6,400 feet in length.
- the ammonia evaporating sub-system 2004 has a surface area of 1,343,000 ft 2 and a U tot of 360 BTU/hour* ft 2 * °F. 0.85 megawatts are required to pump the warm sea water through the ammonia evaporating sub-system 2004. 16,500 lbs/min of the liquid ammonia which exits the ammonia pump is input to ammonia evaporator/steam condenser 2006. This liquid ammonia will be discussed later.
- the ammonia vapor output from the ammonia evaporating sub-system 2004 is input to turbine/generator 2010 to generate 31.0 megawatts (gross) of electricity.
- the liquid vapor exits the turbine/generator 2010 at 50.53 °F, 90.3 psia, and with an enthalpy of 613.3 BTU/lb and is returned to the ammonia condensing sub-system 2002 to complete the closed cycle loop.
- warm sea water pump 2012 pumps 1.96 x 10 6 lbs/min of warm sea water at a temperature of 80 °F to flash evaporator 2014.
- the warm sea water pump 2012 utilizes 0.23 megawatts of power and is fed by two (2) 8.0 foot ID high density polyethylene (HDPE) pipes.
- HDPE high density polyethylene
- the flash evaporator at a pressure of 0.43 psi produces 7,848 lbs/min of fresh water steam at 73°F and 0.43 psia and also generates a warm water discharge at 75.8°F.
- the fresh water steam is input to ammonia evaporator/steam condenser 2006. Further, 16,500 lbs/min of liquid ammonia from the ammonia pump is also input to the ammonia evaporator/steam condenser 2006 at 69.8°F and 126.6 psia.
- the ammonia evaporator/steam condenser 2006 produces 16,500 lbs/min of ammonia vapor at 69.8 °C, 126.6 psia, and with an enthalpy of 629.6 BTU/lb and 7,848 lbs/min of fresh water (1.36 mgd) .
- the ammonia vapor output from the ammonia evaporator/steam condenser 2006 is input to turbine generator 2008 to produce 9.0 megawatts of power.
- the turbine/generator 2008 outputs 16,500 lbs/min of liquid ammonia at 50.5°F, 90.3 psia, and with an enthalpy of 614.1 BTU/lb per pound.
- This liquid ammonia is combined with the liquid ammonia output from turbine/generator 2010 and the combined flow is input to the ammonia condensing sub-system 2002.
- the warm sea water pump 2012, the warm sea water pump (not shown) which pumps warm sea water across the ammonia evaporating sub-system 2004 and the cold sea water pump (not shown) which pumps cold sea water across the ammonia condensing sub-system 2002 are all high flow rate, low head, axial flow, propeller pumps.
- the ammonia pump 2003 is a multistage, centrifugal device.
- the non-condensible gas (NCG) removal system 2007 is a low pressure mechanical vapor pump or a low pressure steam injector.
- the ammonia evaporator/steam condenser 2006 is further illustrated in Figure 22.
- the ammonia evaporator/steam condenser 2006 is similar to the evaporator/condenser 404, illustrated in Figure 6(a) .
- Evaporator/condenser shell 2200 houses a flash evaporation chamber 2202, a mist eliminator 2204, and a fresh water condensing chamber 2206.
- each cylinder 2006 has a 6.0 foot inner diameter, wherein a portion larger than half (in Figure 22, 200° out of 360°) is allocated to the flash evaporation chamber 2202 and a portion less than half (in Figure 22, 160° out of 360°) is dedicated to the fresh water condensing chamber 2206.
- the fresh water condensing chamber 2206 includes a number of horizontally aligned tubes 2208. The dimensions of each of the horizontally aligned tubes 2208 and the dimensions of the evaporator/condenser shell 2200 are set forth below:
- Each of the ten (10) ammonia evaporator/steam condensers 2006 has five (5) inlet pipes 2210 on the bottom half of the flash evaporation chamber 2202, each pipe having an inner diameter of 1.25 feet.
- Each flash evaporation chamber 2202 also requires five (5) discharge pipes 2212, of the same diameter, located about 1/4 of the way up the side of the cylinder.
- the fresh water condensing chamber 2206 has two (2) 1.0 foot inner diameter fresh water discharge pipes 2214 at both ends of the fresh water condensing chamber 2206 and one (1) 2.5 foot inner diameter hole on the side of the fresh water condensing chamber 2206 in order for the non-condensible gases (NCG) to be removed by a non-condensible gas (NCG) removal system 2007.
- NCG non-condensible gases
- Inlet and exit manifolding for the condenser tube fluid may also be utilized similar to inlet manifold 533 and exit manifold 534, illustrated in Figure 5(c) .
- a hybrid cycle OTEC system combines different attributes of the open and closed OTEC systems, allowing the OTEC system to produce both fresh water and electricity.
- a hybrid design integrates the fresh water and electricity systems, thereby allowing for a reduction in component parts and a greater efficiency.
- a working fluid such as ammonia
- ammonia is utilized in the closed cycle loop.
- Ammonia vapor is condensed and the liquified ammonia pressure is raised to approximately 25 psia.
- the ammonia liquid enters a heat exchanger, where on one side, the ammonia is evaporated and on the other side, fresh water is condensed.
- the condensed fresh water is pumped for use as potable water and the.
- vaporous ammonia is forced through a turbine to produce electricity.
- the ammonia is then condensed again and returned to the closed cycle loop.
- the ammonia evaporator and the fresh steam condenser are the same component , thereby reducing the number of heat exchanges required by one.
- the heat exchanger also enjoys the advantage of having fluids which do not change in phase on both sides of the heat exchanger. This ensures that the temperature of the fluids will not move toward each other and lower efficiency, as in the case of a conventional heat exchanger.
- the ammonia acts as the heat sink for the steam, and as a result, no cold water pipes or pumps are needed.
- the nature of the closed cycle ammonia loop is such that heat is taken from the surface and deposited in the cold water at the relevant depths.
- the hybrid cycle OTEC system illustrated in Figure 20 is further illustrated in Figure 23.
- the hybrid cycle OTEC system includes five (5) separate sub-systems: ammonia condensing sub-system 2002, ammonia transport sub-system 2016 . , ammonia evaporating sub-system 2004, electric generation sub ⁇ systems 2018, and hybrid sub-system 2020.
- the electric generation sub-system 2018 includes the turbine/generators 2008 and 2010 and the hybrid sub-system 2020 includes the ammonia evaporator/system condenser 20D6.
- Figure 24 illustrates the ammonia evaporating sub- system 2004, the electric generation sub-system 2018, and the hybrid sub-system 2020 in more detail.
- the ammonia transport sub-system 2016 transports liquid ammonia from the ammonia condensing sub-system 2002.
- a pipeline split 2402 directs a certain percentage of a liquid ammonia to the ammonia evaporating sub-system 2004 and a certain percentage of a liquid ammonia to the ammonia evaporator/steam condenser 2006.
- the turbine/generator 2010 includes expander-turbine 2404 which reduces the ammonia vapor to a state of lower pressure, temperature, and enthalpy, and transfers the extracted power to a generator 2406 which converts the extracted power to useful electrical output.
- Electricity is carried to an on-shore interconnection point with local utilizes via a submersible power line 2408.
- the liquid ammonia which bypasses the ammonia evaporating sub-system 2004 enters the hybrid sub-system 2020, which includes a warm surface sea water inlet pipe 2410 and the warm sea water pump 2012 for the introduction of warm surface sea water into the flash evaporation chamber 2202.
- a certain percentage of the sea water flash evaporates and the remainder falls to the floor of the flash evaporation chamber 2202, where it is discharged back into the ocean.
- the vaporized sea water passes through the mist eliminator 2204, inside the ammonia evaporator/steam condenser 2006 to remove entrained sea water droplets.
- the vapor then enters the fresh water condensing chamber 2206, where it passes across a bank of condensing tubes 2208.
- the vapor liquifies from contact with these tubes and falls to the floor of the fresh water condensing chamber 2206 to be carried to an on-shore utility interconnection site via a fresh water pipeline 2418.
- the liquid ammonia which enters the hybrid sub-system 2020 passes through the inside of the condensing tubes 2208 where it evaporates.
- the vaporized ammonia passes from the ammonia evaporator/steam condenser 2006 to turbine/generator 2008, which includes an expander-turbine 2420 and a generator 2422.
- the expander-turbine 2420 and the generator 2422 are used to produce electricity.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biodiversity & Conservation Biology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Oceanography (AREA)
- Sustainable Development (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat Treatment Of Water, Waste Water Or Sewage (AREA)
Abstract
Un système hybride de conversion de l'énergie thermique des océans comporte un sous-système de dessalement qui reçoit de l'eau de mer chaude, permet l'évaporation-éclair d'une partie de cette eau pour produire de la vapeur, et condenser cette vapeur avec un fluide de fonctionnement et fait s'évaporer ce fluide. Il comporte aussi un sous-système de production d'énergie qui reçoit de l'eau de mer chaude, fait s'évaporer le fluide de fonctionnement à la profondeur naturelle de l'eau de mer chaude ainsi reçue, pour produire une vapeur de fonctionnement, produit de l'énergie à partir de la vapeur de fonctionnement et du fluide de fonctionnement évaporé, et condense cette vapeur de fonctionnement et le fluide de fonctionnement évaporé avec de l'eau de mer froide, à la profondeur naturelle de cette dernière.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU32331/95A AU3233195A (en) | 1994-07-26 | 1995-07-14 | Ocean thermal energy conversion (otec) system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US28092394A | 1994-07-26 | 1994-07-26 | |
US08/280,923 | 1994-07-26 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO1996003581A1 true WO1996003581A1 (fr) | 1996-02-08 |
WO1996003581A9 WO1996003581A9 (fr) | 1996-05-02 |
Family
ID=23075188
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1995/008811 WO1996003581A1 (fr) | 1994-07-26 | 1995-07-14 | Systeme de conversion de l'energie thermique des oceans |
Country Status (2)
Country | Link |
---|---|
AU (1) | AU3233195A (fr) |
WO (1) | WO1996003581A1 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0830508A4 (fr) * | 1995-06-07 | 1999-06-09 | Otec Developments | Systeme de conversion de l'energie thermique des oceans |
CN112780513A (zh) * | 2021-02-02 | 2021-05-11 | 中国石油大学(华东) | 一种基于全流与三角闪蒸循环耦合的地热能发电系统 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4302682A (en) * | 1978-06-22 | 1981-11-24 | Westinghouse Electric Corp. | Ocean thermal energy conversion system |
US4372126A (en) * | 1981-05-01 | 1983-02-08 | Heat Power Products Corporation | Closed cycle system for generating usable energy from waste heat sources |
DE3841640A1 (de) * | 1987-12-14 | 1989-07-13 | Chang Yan | Verfahren zur gewinnung von waermeenergie aus umweltfluida |
WO1995016507A1 (fr) * | 1993-12-14 | 1995-06-22 | Otec Thermal Enterprises, Inc. | Systeme de conversion de l'energie thermique des mers |
-
1995
- 1995-07-14 AU AU32331/95A patent/AU3233195A/en not_active Abandoned
- 1995-07-14 WO PCT/US1995/008811 patent/WO1996003581A1/fr active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4302682A (en) * | 1978-06-22 | 1981-11-24 | Westinghouse Electric Corp. | Ocean thermal energy conversion system |
US4372126A (en) * | 1981-05-01 | 1983-02-08 | Heat Power Products Corporation | Closed cycle system for generating usable energy from waste heat sources |
DE3841640A1 (de) * | 1987-12-14 | 1989-07-13 | Chang Yan | Verfahren zur gewinnung von waermeenergie aus umweltfluida |
WO1995016507A1 (fr) * | 1993-12-14 | 1995-06-22 | Otec Thermal Enterprises, Inc. | Systeme de conversion de l'energie thermique des mers |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0830508A4 (fr) * | 1995-06-07 | 1999-06-09 | Otec Developments | Systeme de conversion de l'energie thermique des oceans |
CN112780513A (zh) * | 2021-02-02 | 2021-05-11 | 中国石油大学(华东) | 一种基于全流与三角闪蒸循环耦合的地热能发电系统 |
Also Published As
Publication number | Publication date |
---|---|
AU3233195A (en) | 1996-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5513494A (en) | Ocean thermal energy conversion (OTEC) system | |
US5582691A (en) | Ocean thermal energy conversion (OTEC) system | |
US5404937A (en) | Method of and apparatus for producing power from solar ponds | |
EP0830508A1 (fr) | Systeme de conversion de l'energie thermique des oceans | |
US6919000B2 (en) | Diffusion driven desalination apparatus and process | |
US4302297A (en) | Desalination apparatus with power generation | |
US7225620B2 (en) | Diffusion driven water purification apparatus and process | |
US7922873B2 (en) | Method and apparatus for desalinating water combined with power generation | |
Shaaban | Performance optimization of an integrated solar combined cycle power plant equipped with a brine circulation MSF desalination unit | |
KR100783686B1 (ko) | 다단계 플래시 담수화 방법 및 플랜트 | |
US3783108A (en) | Method and apparatus for distilling freshwater from seawater | |
KR20130041212A (ko) | 산업용 해양열 에너지 변환 공정 | |
US4091623A (en) | Geothermal actuated method of producing fresh water and electric power | |
WO2004074187A1 (fr) | Procede, systeme et configuration pour le dessalement de l’eau de mer | |
US8893496B2 (en) | Sea water desalination and thermal energy conversion | |
EP0044294A4 (fr) | Appareil de dessalement avec production d'energie. | |
WO2001072638A1 (fr) | Dispositif de dessalement | |
US3575814A (en) | Vaporization apparatus with filming and compression means | |
WO1995028567A1 (fr) | Systeme de conversion de l'energie thermique des oceans (otec) | |
WO1996003581A1 (fr) | Systeme de conversion de l'energie thermique des oceans | |
WO1996003581A9 (fr) | Systeme de conversion de l'energie thermique des oceans | |
US12372068B2 (en) | Geothermal desalination and pumping system | |
WO2004060812A1 (fr) | Appareil de dessalage a entrainement par diffusion et processus correspondant | |
US5220792A (en) | Method of and means for extracting heat from a hot fluid containing foreign material that interferes with heat transfer | |
MXPA97009531A (en) | System of conversion of thermal energy of the oce |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU BB BR CA JP LK LR MX |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG |
|
COP | Corrected version of pamphlet |
Free format text: PAGE 24,DESCRIPTION,REPLACED BY A NEW PAGE BEARING THE SAME NUMBER;PAGES 1/31-31/31,DRAWINGS,REPLACED BY NEW PAGES 1/30-30/30;DUE TO LATE TRANSMITTAL BY THE RECEIVING OFFICE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: CA |