[go: up one dir, main page]

WO1996003755A1 - Verfahren zur herstellung eines materials zur schwermetallabsorption oder zum analytischen nachweis von schwermetallen - Google Patents

Verfahren zur herstellung eines materials zur schwermetallabsorption oder zum analytischen nachweis von schwermetallen Download PDF

Info

Publication number
WO1996003755A1
WO1996003755A1 PCT/EP1995/002796 EP9502796W WO9603755A1 WO 1996003755 A1 WO1996003755 A1 WO 1996003755A1 EP 9502796 W EP9502796 W EP 9502796W WO 9603755 A1 WO9603755 A1 WO 9603755A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample liquid
heavy metals
heavy metal
alpha
radium
Prior art date
Application number
PCT/EP1995/002796
Other languages
English (en)
French (fr)
Inventor
Thomas Streil
Wolfram Grundke
Günther Just
Original Assignee
Thomas Streil
Wolfram Grundke
Just Guenther
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomas Streil, Wolfram Grundke, Just Guenther filed Critical Thomas Streil
Priority to US08/776,346 priority Critical patent/US5993664A/en
Priority to KR1019970700492A priority patent/KR970705147A/ko
Priority to EP95926910A priority patent/EP0772881A1/de
Priority to AU31124/95A priority patent/AU3112495A/en
Publication of WO1996003755A1 publication Critical patent/WO1996003755A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/62Heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/12Processing by absorption; by adsorption; by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/006Radioactive compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S502/00Catalyst, solid sorbent, or support therefor: product or process of making
    • Y10S502/506Method of making inorganic composition utilizing organic compound, except formic, acetic, or oxalic acid or salt thereof
    • Y10S502/509Nitrogen containing organic compound

Definitions

  • the present invention relates to a method for producing a material for heavy metal absorption or for the analytical detection of heavy metals, in particular uranium and radium.
  • the present invention has for its object to provide a method for producing a material for heavy metal absorption or for the analytical detection of heavy metals, which enables the material to be heavy metals with a high Efficiency absorbs and stores.
  • the present invention provides a method for producing a material for heavy metal absorption or for the analytical detection of heavy metals, in particular uranium and radium, which has the following method steps:
  • the present invention is based on the knowledge that the treatment of the material described above, which contains organically bound nitrogen in a polymer, forms manganese or iron penetration complexes. These manganese or iron penetration complexes bind uranium or radium with high efficiency with the nitrogen-functional groups of the polymers used (nitrile or amido groups).
  • a method for the analytical detection of heavy metals and heavy metal isotopes in a sample liquid uses the material produced according to the invention and which has the following method steps:
  • the sample liquid having a predetermined pH range and temperature range; - removing the material from the sample liquid;
  • a method for cleaning contaminated liquids which uses the material produced according to the invention and which has the following method steps:
  • An advantage of this method is that both surfaces. of specially manufactured polymers as well as of recycling material or polymer waste.
  • this material After providing a material which contains organically bound nitrogen in a polymer, this material is first treated with potassium permanganate in basic solution and then treated with iron (II) hydroxide, also in basic solution.
  • the material initially used can be, for example, acrylonitrile or polyamide.
  • a thin sensitive polyacrylic layer with an area of 4 square centimeters, which was produced according to the method described above.
  • This layer is suitable, from 100 ml of sample liquid with an activity of 2 Bq / 1 uranium or 100 Bq / 1 radium, the uranium and radium to 70 after a day of reaction time at a pH range of 6 to 8 at a temperature of 25 degrees Celsius Percentage to record and save.
  • the properties of the material according to the invention are not limited to the purification of contaminated liquids, but instead also enable analytical detection, ie quantitative determination, of heavy metals.
  • the material according to the invention is also suitable for others Heavy metals or their isotropes can be used, such as polonium, bismuth, lead and other elements of the actinium series, which have similar chemical properties, such as plutonium, actinium and protactinium of the natural and artificial radioactive families.
  • a method for the analytical detection of heavy metals in a sample liquid comprises introducing the material according to the invention into the sample liquid for a predetermined period of time, the sample liquid having a predetermined pH range and temperature range; removing the material from the sample liquid; and the alpha-spectrometric evaluation of the components taken up and stored by the material from the sample liquid.
  • the pH of the sample liquid is in the range from about 6 to 8 and is adjusted by introducing carbon dioxide or ammonia into the sample liquid.
  • the material that contains organically bound nitrogen in a polymer is spun onto a silicon wafer before it is chemically treated and then chemically treated.
  • z. B polyacrylonitrile or polyamide, which is spun as a very thin homogeneous layer with a thickness of less than one ⁇ m.
  • the silicon wafer is a surface-refined and oxidized silicon wafer.
  • the desired size is 2 cm by 2 cm.
  • a plate is exposed to a sample liquid with a pH between 6 and 8 at a fixed temperature and for a fixed period of time and then evaluated by alpha spectrometry.
  • Another device suitable for this method is produced in such a way that a very thin, homogeneous, sensitive layer is applied directly to an alpha-sensitive detector system.
  • This detector system includes, for example, an intelligent silicon microsystem which, in addition to the sensitive elements, also contains the processing electronics on the chip. Such an arrangement is also referred to as a microalpha spectrometer.
  • concentration profiles can be continuously recorded directly in the sample liquid. If the homogeneous sensitive layer reaches its saturation concentration, it is removed from the system and the system is reactivated by applying a non-saturated layer.
  • the thin, homogeneous, sensitive layer is produced directly on the microsystem
  • An advantage of this film is that it is extremely easy to replace.
  • a predetermined sensitivity is desired for a particular application, this can be adjusted by the fact that, in the production of the material according to the invention, after the deposition of the material which is in a polymer. Contains ganic nitrogen, as a thick layer or surface, the chemical treatment is carried out by a targeted process. The process is carried out in such a way that the chemical sensitization takes place only as deep (a few ⁇ m) as is prescribed by a predetermined alpha-spectrometric resolution.
  • the method described makes it possible, for example, to detect uranium and radium concentrations of 1 mBq / 1 in 100 ml of sample liquid.
  • the preparation and measuring times are in a range of up to 48 hours.
  • the saturation concentration for uranium with 100 ml sample liquid is 4 Bq / 1.
  • this saturation concentration is well over 1000 Bq / 1.
  • This aspect relates to the method for cleaning contaminated liquids by means of the material according to the invention.
  • This method involves introducing the material into the contaminated liquid, the water being at a predetermined temperature to allow the chemical reaction to occur; removing the material once it has reached saturation; and discarding the saturated material.
  • waste or waste materials made of polyacrylonitrile, polyamide and polysuretane to be treated as special waste appears to be particularly economical.
  • the cleaning process can take place in a multi-stage process depending on the initial concentration.
  • this can include, for example, fine cleaning and rough cleaning.
  • the activated surfaces are able to absorb up to 90 percent of uranium or radium of the concentration contained in the contaminated liquid with a residence time of up to 48 hours at an ambient temperature of 25 degrees Celsius. It is thus possible in the coarse cleaning step to offer a uranium / radium concentration of up to 10 Bq / 1 and then in the fine cleaning step to reduce an initial concentration from 1 Bq / 1 to 0.1 Bq / 1.
  • the activated polymers (as fibers, rags, foam or the like) are very slowly in a kind of countercurrent using a special device the direction of liquid flow moves. If the activated polymers reach the inflow region of the liquid, the place where the highest concentration prevails, the polymers are removed from the process as loaded and chemically inactive after reaching the saturation concentration.
  • the polymers with the highest chemical activity are always added to the liquid with the lowest concentration.
  • the contaminated liquid is water.
  • the polymers enriched with the heavy metals are burned in a high-temperature system, as is customary for the incineration of hazardous waste.
  • the highly active heavy metals especially uranium and radium, remain as a combustion residue in highly enriched form.
  • ashes can be sent for uranium extraction or isotope production or for final storage.
  • the method according to the invention is suitable for carrying out the decontamination of large amounts of constantly occurring mine and heap leachate water from former or still intact uranium mines and old mining in the simplest way.
  • this method can also be used in the vicinity of mixed landfills for groundwater remediation or for drinking water purification in the vicinity of geological anomalies or in the vicinity of areas contaminated by mining.
  • This process also enables uranium to be extracted from lean ore by enriching the uranium from the solution.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

Ein Verfahren zur Herstellung eines Materials zur Schwermetallabsorption oder zum analytischen Nachweis von Schwermetallen, insbesondere von Uran und Radium, weist folgende Schritte auf: Bereitstellen eines Materials, das in einem Polymer organisch gebundenen Stickstoff enthält; Behandeln des Materials mit Kaliumpermanganat in basischer Lösung; und Behandeln des Materials mit Eisen-II-Hydroxid in basischer Lösung. Das derart hergestellte Material eignet sich für ein Verfahren zum analytischen Nachweis von Schwermetallen und Schwermetallisotopen in einer Probenflüssigkeit sowie für ein Verfahren zur Reinigung von kontaminierten Flüssigkeiten.

Description

Verfahren zur Herstellung eines Materials zur Schwermetall¬ absorption oder zum analytischen Machweis von Schwermetallen
Beschreibung
Die vorliegende Erfindung bezieht sich auf ein Verfahren zur Herstellung eines Materials zur Schwermetallabsorption oder zum analytischen Nachweis von Schwermetallen, insbesondere von Uran und Radium.
Es ist in Fachkreisen bekannt, daß mit Kaliumpermanganat eingefärbte Wollfäden, bzw. Filtervliese, oder Schichten aus unterschiedlichen Materialien Radium aufnehmen. Dabei hängt das Absorptionsverhalten entscheidend von dem verwendeten Material ab. Auf diese Eigenschaft wies bereits Frau Marie Curie bei der Herstellung ihrer Radiumpräparate hin.
Die Kenntnis über die eigentliche Wechselwirkung zwischen den Schwermetallen und den organischen Komplexbildnern nach der Permanganatbehandlung sind bisher noch nicht vollständig geklärt.
Aus dem Stand der Technik sind auch Versuche bekannt, Uran auf ähnliche Art und Weise anzureichern.
Eine wirksame Anreicherung und Speicherung von die Umwelt hochbelastenden Schwermetallen und von weiteren Schwerme¬ tallen in einer Schicht ist bisher nicht bekannt.
Ausgehend von diesem Stand der Technik liegt der vorliegen¬ den Erfindung die Aufgabe zugrunde, ein Verfahren zur Her¬ stellung eines Materials zur Schwermetallabsorption oder zum analytischen Nachweis von Schwermetallen zu schaffen, das es ermöglicht, daß das Material Schwermetalle mit einem hohen Wirkungsgrad absorbiert und speichert.
Diese Aufgabe wird durch ein Verfahren nach Anspruch 1 ge¬ löst.
Die vorliegende Erfindung schafft ein Verfahren zur Her¬ stellung eines Materials zur Schwermetallabsorption oder zum analytischen Nachweis von Schwermetallen, insbesondere von Uran und Radium, das folgende Verfahrensschritte aufweist:
a) Bereitstellen eines Materials, das in einem Polymer or¬ ganisch gebundenen Stickstoff enthält;
b) Behandeln des Materials mit Kaliumpermanganat in basi¬ scher Lösung; und
c) Behandeln des Materials mit Eisen-II-Hydroxid in basi¬ scher Lösung.
Der vorliegenden Erfindung liegt die Erkenntnis zugrunde, daß sich durch die oben beschriebene Behandlung des Mate¬ rials, das in einem Polymer organisch gebundenen Stickstoff enthält, Mangan- bzw. Eisendurchdringungskomplexe bilden. Diese Mangan- bzw. Eisendurchdringungskomplexe binden mit den stickstoffunktionellen Gruppen der verwendeten Polymere (Nitril- bzw. Amidogruppen) Uran oder Radium mit hoher Ef¬ fektivität.
Gemäß einem Aspekt der vorliegenden Erfindung wird ein Ver¬ fahren zum analytischen Nachweis von Schwermetallen und Schwermetallisotopen in einer Probenflüssigkeit geschaffen, das das erfingungsgemäß hergestellte Material verwendet, das folgende Verfahrensschritte aufweist:
- Einbringen des Materials in die Probenflüssigkeit für eine vorbestimmte Zeitdauer, wobei die Probenflüssigkeit einen vorbestimmten pH-Bereich und Temperaturbereich aufweist; - Entfernen des Materials aus der Probenflüssigkeit; und
- alphaspektrometrisches Auswerten der durch das Material aus der Probenflüssigkeit aufgenommenen und gespeicherten Bestandteile.
Gemäß einem weiteren Aspekt der vorliegende Erfindung wird ein Verfahren zur Reinigung von kontaminierten Flüssigkeiten geschaffen, das das erfingungsgemäß hergestellte Material verwendet, das folgende Verfahrensschritte aufweist:
- Einbringen des Materials in die kontaminierte Flüssigkeit, wobei das Wasser auf einer vorbestimmten Temperatur ist, um die chemische Reaktion ablaufen zu lassen;
- Entfernen des Materials, sobald dieses die Sättigung er¬ reicht hat; und
- Entsorgen des gesättigten Materials.
Ein Vorteil dieses Verfahrens besteht darin, daß sowohl Oberflächer. von speziell hergestellten Polymeren als auch von Recyclingmaterial oder Polymerabfällen geeignet ist.
Folglich können für das Verfahren zur Reinigung von konta¬ minierten Flüssigkeiten große Mengen an Sondermüll der Polymere Polyacryl, Polyamid und Polyuretan, die auf Halde liegen und durch deren Hydrolyse gefährliche Stoffe ent¬ stehen, einer sinnvollen Nutzung zugeführt werden, wodurch ein bedeutender Beitrag zum Umweltschutz und zur Altlasten¬ entsorgung geleistet wird.
Bevorzugte Weiterbildungen der vorliegenden Erfindung sind in den Unteransprüchen definiert.
Bevorzugte Ausführungsbeispiele der vorliegenden Erfindung werden nachfolgend detaillierter beschrieben. Bevor spezielle Ausführungsbeispiele beschrieben werden, bei denen das erfindungsgemäße Material bei unterschiedlichen Anwendungsverfahren zum Einsatz kommt, wird im Folgenden die Herstellung dieses Materials sowie dessen Eigenschaften be¬ schrieben.
Nach dem Bereitstellen eines Materials, das in einem Polymer organisch gebundenen Stickstoff enthält, wird dieses Mate¬ rial zuerst mit Kaliumpermanganat in basischer Lösung be¬ handelt und anschließend mit Eisen-II-Hydroxid ebenfalls in basischer Lösung behandelt. Bei dem anfänglich verwendeten Material kann es sich beispielsweise um Acrylnitril oder Polyamid handeln.
Um die Wirkung des auf die oben dargestellte Art und Weise hergestellten Materials darzustellen, wird im Folgenden ein Beispiel einer Anwendung des erfindungsgemäßen Materials zur Reinigung einer kontaminierten Probe beschrieben.
Es sei zum Beispiel eine 0,7 μm dünne sensitive Polyacryl- schicht mit 4 Quadratzentimeter Fläche angenommen, die gemäß dem oben beschriebenen Verfahren hergestellt wurde. Diese Schicht ist geeignet, aus 100 ml Probenflüssigkeit mit einer Aktivität von 2 Bq/1 Uran oder 100 Bq/1 Radium das Uran und Radium nach einem Tag Reaktionszeit bei einem pH-Bereich von 6 bis 8 bei einer Temperatur von 25 Grad Celsius zu 70 Pro¬ zent aufzunehmen und zu speichern.
Dieser Prozeß ist sehr gut reproduzierbar und bis zur Schichtsättigung besteht eine Linearität zur angebotenen Ausgangskonzentration der Probe.
Die Eigenschaften des erfindungsgemäßen Materials beschrän¬ ken sich jedoch nicht auf die Reinigung von kontaminierten Flüssigkeiten, sondern sie ermöglichen ebenfalls einen ana¬ lytischen Nachweis, das heißt eine quantitative Bestimmung, von Schwermetallen. Neben dem oben beschriebenen Uran und Radium ist das erfindungsgemäße Material auch für weitere Schwermetalle bzw. deren Isotrope einsetzbar, wie zum Bei¬ spiel Polonium, Wismut, Blei und weitere Elementen der Ac- tiniumreihe, die ähnliche chemische Eigenschaften besitzen, wie zum Beispiel Plutonium, Actinium und Protactinium der natürlichen und künstlichen radioaktiven Familien.
Im Folgenden wird ein Verfahren zum analytischen Nachweis von Schwermetallen in einer Probenflüssigkeit beschrieben. Dieses Verfahren umfaßt das Einbringen des erfindungsgemäßen Materials in die Probenflüssigkeit für eine vorbestimmte Zeitdauer, wobei die Probenflüssigkeit einen vorbestimmten pH-Bereich und Temperaturbereich aufweist; das Entfernen des Materials aus der Probenflüssigkeit; und das alphaspektro- metrische Auswerten der durch das Material aus der Proben¬ flüssigkeit aufgenommenen und gespeicherten Bestandteile.
Bei einem bevorzugten Ausführungsbeispiel liegt der pH-Wert der Probenflüssigkeit im Bereich von etwa 6 bis 8 und wird durch Einbringen von Kohlendioxid oder Ammoniak in die Pro¬ benflüssigkeit eingestellt.
Nachfolgend werden einige Vorrichtungen beschrieben, die zur Verwendung mit dem erfindungsgemäßen Material bei einem Ver¬ fahren zum analytischen Nachweis von Schwermetallen geeignet sind.
Bei einer ersten Vorrichtung wird das Material, das in einem Polymer organisch gebundene Stickstoffe enthält, vor seiner chemischen Behandlung auf eine Siliziumscheibe aufgeschleu¬ dert und anschließend chemisch behandelt. Hierbei wird als Ausgangsmaterial z. B. Polyacrylnitril oder Polyamid verwen¬ det, das als sehr dünne homogene Schicht mit einer Dicke von weniger als einem μm aufgeschleudert wird. Bei diesem Aus¬ führungsbeispiel handelt sich bei der Siliziumscheibe um eine oberflächenveredelte und oxidierte Siliziumscheibe.
Nach Herstellung und der chemischen Behandlung der sehr dünnen homogenen Schicht aus Polyacrylnitril oder Polyamid werden aus der Siliziumscheibe Plättchen in einer er¬ wünschten Größe gesägt. Bei diesem Ausführungsbeispiel handelt es sich bei der erwünschten Größe um 2 cm mal 2 cm.
Bei der Durchführung des oben beschriebenen Verfahrens zum analytischen Nachweis wird ein Plättchen bei einer festen Temperatur und über eine feste Zeitdauer einer Proben¬ flüssigkeit mit einem pH-Wert zwischen 6 und 8 ausgesetzt und danach alphaspektrometrisch ausgewertet.
Eine weitere für dieses Verfahren geeignete Vorrichtung wird derart hergestellt, daß eine sehr dünne homogene sensitive Schicht direkt auf einem alphasensitiven Detektorsystem auf¬ gebracht wird. Dieses Detektorsystem umfaßt zum Beispiel ein intelligentes Siliziummikrosystem, das neben den sensitiven Elementen zusätzlich die Verarbeitungselektronik auf dem Chip enthält. Eine solche Anordnung wird auch als Mikroal- phaspektrometer bezeichnet.
Mit einem solchen System kann man direkt in der Probenflüs¬ sigkeit kontinuierlich Konzentrationsverläufe erfassen. Sollte die homogene sensitive Schicht ihre Sättigungskonzen¬ tration erreichen, so wird diese von dem System entfernt und das System durch Aufbringen einer nicht-gesättigten Schicht erneut aktiviert.
Anstelle der sehr dünnen homogenen sensitiven Schicht, die direkt auf dem Mikrosystem hergestellt wird, ist es gemäß einer weiteren Ausführung möglich, die dünne homogene sen¬ sitive Schicht als selbsttragende Folie herzustellen, die dann zum Beispiel auf das Mikrosystem aufgezogen wird. Ein Vorteil dieser Folie besteht darin, daß sie ausgesprochen leicht austauschbar ist.
Wird für eine bestimmte Anwendung eine vorbestimmte Empfind¬ lichkeit gewünscht, so kann diese dadurch eingestellt wer¬ den, daß bei der Herstellung des erfindungsgemäßen Materials nach der Abscheidung des Materials, das in einem Polymer or- ganischen gebundenen Stickstoff enthält, als dicke Schicht bzw. Oberfläche die chemische Behandlung durch eine gezielte Prozeßführung ausgeführt wird. Die Prozeßführung erfolgt derart, daß die chemische Sensibilisierung nur so tief er¬ folgt (wenige μm) , wie es durch eine vorbestimmte alphaspek- trometrische Auflösung vorgegeben ist.
Es ist offensichtlich, daß die Auflösung dieser Schichten niedriger ist, als die derjenigen Schichten auf hochpo¬ liertem Silizium mit einer Dicke von weniger 1 μm, wie es oben beschrieben wurde.
Durch das beschriebene Verfahren ist es möglich, zum Bei¬ spiel Uran- und Radiumkonzentrationen von 1 mBq/1 bei 100 ml Probenflüssigkeit nachzuweisen. Die Präparations- und Me߬ zeiten liegen hierbei in einem Bereich von bis zu 48 Stun¬ den.
Bei einer 0,7 μm dicken sensitiven Schicht mit einer Fläche von 4 Quadratzentimetern liegt die Sättigungskonzentration für Uran bei 100 ml Probenflüssigkeit bei 4 Bq/1. Für Radium liegt diese Sättigungskonzentration weit über 1000 Bq/1.
Im Folgenden wird nun ein weiterer Aspekt der vorliegenden Erfindung beschrieben. Dieser Aspekt betrifft das Verfahren zur Reinigung von kontaminierten Flüssigkeiten mittels des erfindungsgemäßen Materials. Dieses Verfahren umfaßt das Einbringen des Materials in die kontaminierte Flüssigkeit, wobei das Wasser auf einer vorbestimmten Temperatur ist, um die chemische Reaktion ablaufen zu lassen; das Entfernen des Materials, sobald dieses die Sättigung erreicht hat; und das Entsorgen des gesättigten Materials.
Für dieses Verfahren sind sowohl Oberflächen von speziell hergestellten Polymeren als auch von Recyclingmaterial oder Polymerabfällen geeignet. Eine wichtige Voraussetzung für das Verfahren besteht darin, daß das Material über eine sehr große Oberfläche verfügt. Dies trifft zum Beispiel für Fasern, Vliesen, Lumpen oder Schaumstoffen zu.
Als besonders wirtschaftlich erscheint die Nutzung der als Sondermüll zu behandelnden Abfälle bzw. Altmaterialien aus Polyacrylnitril, Polyamid und Polysuretan.
Diese Materialien werden gemäß dem erfindungsgemäßen Her¬ stellungsverfahren chemisch behandelt und somit aktiviert.
Gemäß einem Ausführungsbeispiel kann der Reinigungsprozeß abhängig von der Ausgangskonzentration in einem Mehrstufen¬ prozeß erfolgen. Bei einem Zweistufenprozeß kann dieser zum Beispiel eine Feinreinigung und eine Grobreinigung umfassen. Beispielsweise sind die aktivierten Oberflächen in der Lage bei einer Verweilzeit von bis zu 48 Stunden bei einer Um¬ gebungstemperatur von 25 Grad Celsius bis zu 90 Prozent Uran oder Radium der in der kontaminierten Flüssigkeit enthalte¬ nen Konzentration zu absorbieren. Somit ist es im Grobrei- nigungsschritt möglich, eine Uran/Radiumkonzentration von bis zu 10 Bq/1 anzubieten und danach im Feinreinigungs- schritt eine Ausgangskonzentration von 1 Bq/1 auf 0,1 Bq/1 abzubauen.
Es ist offensichtlich, daß der Einsatz der Mehrstufenpro¬ zesse von der Konzentration der in der kontaminierten Flüssigkeit enthaltenen Schwermetalle abhängig ist.
Es ist offensichtlich, daß das Verfahren nicht nur auf kleine Mengen von kontaminierter Flüssigkeit anwendbar ist, sondern daß als Reaktionsgefäße auch herkömmliche Klärbecken dienen können, die im Winter beheizt werden, um die chemische Reaktion ablaufen zu lassen.
Weiterhin ist es gemäß einem Ausführungsbeispiel möglich, die Reinigung kontinuierlich durchzuführen. Hierbei werden in einem langen Reaktionskanal die aktivierten Polymere (als Fasern, Lumpen, Schaumstoff oder ähnliches) mittels einer speziellen Vorrichtung sehr langsam in einer Art Gegenstrom der Flüssigkeitsflußrichtung entgegenbewegt. Erreichen die aktivierten Polymere den Einströmbereich der Flüssigkeit, den Ort, an dem die höchste Konzentration herrscht, so wer¬ den die Polymere nach Erreichen der Sättigungskonzentration als beladen und chemisch inaktiv dem Prozeß entnommen.
Die Polymere mit der höchsten chemischen Aktivität werden immer der Flüssigkeit mit der niedrigsten Konzentration bei¬ gegeben.
Bei einem bevorzugten Ausführungsbeispiel der Erfindung han¬ delt es sich bei der kontaminierten Flüssigkeit um Wasser.
Die mit den Schwermetallen angereicherten Polymere werden in einer Hochtemperaturanlage, wie zur SondermüllVerbrennung üblich, verbrannt. Als Verbrennungsrückstand bleiben je nach Verschmutzungsgrad in der Asche die hochaktiven Schwerme¬ talle, vor allem Uran und Radium, in hochangereicherter Form übrig.
Diese Aschen können der Urangewinnung bzw. Isotopenproduk¬ tion oder der Endlagerung zugeführt werden.
Wie aus der Beschreibung hervorgeht, ist das erfindungsge¬ mäße Verfahren dazu geeignet, auf einfachste Art und Weise die Dekontamination von großen Mengen ständig anfallenden Gruben- und Haldensickerwassers ehemaliger oder noch intak¬ ter Uranbergwerke sowie des Altbergbaus durchzuführen.
Es ist offensichtlich, daß dieses Verfahren auch in der Nähe von Mischdeponien zur Grundwassersanierung oder zur Trink¬ wasserreinigung in der Nähe geologischer Anomalitäten bzw. in der Nähe von durch den Bergbau belasteten Flächen ein¬ setzbar ist.
Weiterhin ermöglicht es dieses Verfahren, aus Magererzen Uran zu gewinnen, indem aus der Lösung das Uran angereichert wird.

Claims

Patentansprüche
1. Das Verfahren zur Herstellung eines Materials zur Schwermetallabsorption oder zum analytischen Nachweis von Schwermetallen, insbesondere von Uran und Radium, gekennzeichnet durch folgende Verfahrensschritte:
a) Bereitstellen eines Materials, das in einem Poly¬ mer organisch gebundenen Stickstoff enthält;
b) Behandeln des Materials mit Kaliumpermanganat in basischer Lösung; und
c) Behandeln des Materials mit Eisen-II-Hydroxid in basischer Lösung.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet,
daß das im Verfahrensschritt a) bereitgestellte Mate¬ rial Acrylnitrid oder Polyamid einschließt.
3. Verfahren nach Anspruch 1 oder Anspruch 2, dadurch ge¬ kennzeichnet,
daß nach dem Verfahrensschritt a) und vor dem Verfah¬ rensschritt b) das Material auf eine Siliziumscheibe aufgebracht wird.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß
die Siliziumscheibe oberflächenveredelt und oxi- diert ist;
das Material als sehr dünne homogene Schicht aufge¬ schleudert wird; und die Siliziumscheibe nach Fertigstellung in Plätt¬ chen gesägt wird.
5. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeich¬ net,
daß das Material als dünne, selbsttragende Folie herge¬ stellt wird.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet,
daß die Folie auf ein alphasensitives Detektorsystem aufgebracht wird.
7. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeich¬ net,
daß das Material als dünne homogene sensitive Schicht auf einem alphasensitiven Detektorsystem hergestellt wird.
8. Verfahren nach Anspruch 6 oder 7, dadurch gekennzeich¬ net,
daß das alphasensitive Detektorsystem ein intelligentes Siliziummikrosystem ist, das neben sensitiven Elementen auch eine Verarbeitungselektronik auf einem Chip ent¬ hält.
9. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeich¬ net,
daß die Verfahrensschritte b) und c) derart ausgeführt werden, daß sich eine chemische Sensibilisierung des Materials bis zu einer vorbestimmten Tiefe des Mate¬ rials ergibt, so daß eine ausreichende alphaspektrome- trische Auflösung gegeben ist.
10. Verfahren zum analytischen Nachweis von Schwermetallen und Schwermetallisotopen in einer Probenflüssigkeit mittels eines nach Anspruch 1 bis 9 hergestellten Ma¬ terials, gekennzeichnet durch folgende Verfahrens¬ schritte:
Einbringen des Materials in die Probenflüssigkeit für eine vorbestimmte Zeitdauer, wobei die Proben¬ flüssigkeit einen vorbestimmten pH-Bereich und Tem¬ peraturbereich aufweist;
Entfernen des Materials aus der Probenflüssigkeit; und
alphaspektrometrisches Auswerten der durch das Ma¬ terial aus der Probenflüssigkeit aufgenommenen und gespeicherten Bestandteile.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet,
daß der pH-Wert der Probenflüssigkeit im Bereich von etwa 6 bis 8 liegt und durch Einbringen von Kohlendio¬ xid oder Ammoniak in die Probenflüssigkeit eingestellt wird.
12. Verfahren nach Anspruch 10 oder 11, dadurch gekenn¬ zeichnet,
daß die Schwermetalle oder Schwermetallisotope Uran, Radium, Polonium, Wismut, Blei, Plutonium, Actinium oder Protactinium oder deren Isotope einschließen.
13. Verfahren zur Reinigung von kontaminierten Flüssigkei¬ ten mittels eines nach Anspruch 1 oder 2 hergestellten Materials, gekennzeichnet durch folgende Verfahrens¬ schritte: Einbringen des Materials in die kontaminierte Flüs¬ sigkeit, wobei das Wasser auf einer vorbestimmten Temperatur ist, um die chemische Reaktion ablaufen zu lassen;
Entfernen des Materials, sobald dieses die Sätti¬ gung erreicht hat; und
Entsorgen des gesättigten Materials.
14. Verfahren nach Anspruch 13, dadurch gekennzeichnet,
daß das Verfahren einen Grobreinigungsschritt und zu¬ mindest einen Feinreinigungsschritt umfaßt.
15. Verfahren nach Anspruch 13 oder 14, dadurch gekenn¬ zeichnet,
daß das Material eine ausreichend große Oberfläche auf¬ weist.
16. Verfahren nach einem der Ansprüche 13 bis 15, dadurch gekennzeichnet,
daß die Entsorgung durch Hochtemperaturverbrennung er¬ folgt.
PCT/EP1995/002796 1994-07-25 1995-07-17 Verfahren zur herstellung eines materials zur schwermetallabsorption oder zum analytischen nachweis von schwermetallen WO1996003755A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US08/776,346 US5993664A (en) 1994-07-25 1995-07-17 Method for producing a material for heavy metal absorption or for analytically detecting heavy metals
KR1019970700492A KR970705147A (ko) 1994-07-25 1995-07-17 중금속 흡수 물질을 제조하거나 분석적으로 중금속을 검출하는 방법
EP95926910A EP0772881A1 (de) 1994-07-25 1995-07-17 Verfahren zur herstellung eines materials zur schwermetallabsorption oder zum analytischen nachweis von schwermetallen
AU31124/95A AU3112495A (en) 1994-07-25 1995-07-17 Method of producing a material for heavy metal absorption or for analytically detecting heavy metals

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP4426266.3 1994-07-25
DE4426266A DE4426266C1 (de) 1994-07-25 1994-07-25 Verfahren zur Herstellung eines Materials zur Schwermetallabsorption

Publications (1)

Publication Number Publication Date
WO1996003755A1 true WO1996003755A1 (de) 1996-02-08

Family

ID=6524061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1995/002796 WO1996003755A1 (de) 1994-07-25 1995-07-17 Verfahren zur herstellung eines materials zur schwermetallabsorption oder zum analytischen nachweis von schwermetallen

Country Status (6)

Country Link
US (1) US5993664A (de)
EP (1) EP0772881A1 (de)
KR (1) KR970705147A (de)
AU (1) AU3112495A (de)
DE (1) DE4426266C1 (de)
WO (1) WO1996003755A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2172991C1 (ru) * 2000-04-27 2001-08-27 Санкт-Петербургский государственный университет технологии и дизайна Композиционный материал для очистки загрязненных водных сред, включающих радионуклиды
US6635171B2 (en) 2001-01-11 2003-10-21 Chevron U.S.A. Inc. Process for upgrading of Fischer-Tropsch products
RU2231838C1 (ru) * 2002-10-25 2004-06-27 Санкт-Петербургский государственный университет Плавающий композиционный материал для очистки водных сред от радионуклидов цезия и/или нефтепродуктов
CN114397229B (zh) * 2021-12-24 2023-12-05 广东省科学院化工研究所 一种重金属响应的复合乳液及其制备方法与应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5245156A (en) * 1975-10-06 1977-04-09 Hitachi Plant Eng & Constr Co Ltd Method of purifying treatment of heavy metal exhaust water containing iron
JPS52123550A (en) * 1976-04-08 1977-10-17 Osaka Soda Co Ltd Method of treating waste water containing heavy metal
JPS58166934A (ja) * 1982-03-26 1983-10-03 Hitachi Ltd 海水中ウラン採取用の吸着剤
DE3829654A1 (de) * 1988-09-01 1990-03-08 Riedel De Haen Ag Ionenaustauscher-granulat und seine verwendung zur radiocaesiumdekontamination von fluessigkeiten
FR2644772A1 (fr) * 1989-03-24 1990-09-28 Asahi Chemical Ind Procede pour eliminer des ions de metaux lourds d'eaux polluees et membrane poreuse utilisable a cet effet
WO1990011826A1 (en) * 1989-03-31 1990-10-18 LAGSTRÖM, Göran Uranium adsorbent
DD291543A5 (de) * 1990-01-15 1991-07-04 Tu Dresden Wasserwesen Bereich Hydrochemie,De Verfahren zur erzielung niedrigster schwermetallrestgehalte in komplexbildnerhaltigen abwaessern
EP0532919A1 (de) * 1991-09-19 1993-03-24 Siemens Power Corporation Verfahren zur Entfernung von Schwermetall aus einem Abfallstrom

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4097376A (en) * 1972-05-10 1978-06-27 Ciba-Geigy Corporation Process for the purification of industrial effluents
GB1404537A (en) * 1972-09-26 1975-09-03 Agency Ind Science Techn Heave metal adsorbents and process for producing same
CH590179A5 (de) * 1973-11-08 1977-07-29 Ciba Geigy Ag
JPS5845116A (ja) * 1981-09-09 1983-03-16 Ube Ind Ltd 重金属の回収方法
DE3200483A1 (de) * 1982-01-09 1983-07-21 Bayer Ag, 5090 Leverkusen Kieselsaeurehaltige formkoerper, verfahren zu ihrer herstellung und ihre verwendung
US4550034A (en) * 1984-04-05 1985-10-29 Engelhard Corporation Method of impregnating ceramic monolithic structures with predetermined amounts of catalyst
US4876232A (en) * 1987-09-28 1989-10-24 Pedro B. Macedo Supported heteropolycyclic compounds in the separation and removal of late transition metals
US5126272A (en) * 1989-03-02 1992-06-30 United States Of America System for detecting transition and rare earth elements in a matrix
US5173263A (en) * 1991-01-22 1992-12-22 The United States Of America As Represented By The United States Department Of Energy Regenerable activated bauxite adsorbent alkali monitor probe
US5434331A (en) * 1992-11-17 1995-07-18 The Catholic University Of America Removal of radioactive or heavy metal contaminants by means of non-persistent complexing agents
US5668079A (en) * 1994-09-27 1997-09-16 Syracuse University Chemically active ceramic compositions with an hydroxyquinoline moiety
US5695882A (en) * 1995-08-17 1997-12-09 The University Of Montana System for extracting soluble heavy metals from liquid solutions

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5245156A (en) * 1975-10-06 1977-04-09 Hitachi Plant Eng & Constr Co Ltd Method of purifying treatment of heavy metal exhaust water containing iron
JPS52123550A (en) * 1976-04-08 1977-10-17 Osaka Soda Co Ltd Method of treating waste water containing heavy metal
JPS58166934A (ja) * 1982-03-26 1983-10-03 Hitachi Ltd 海水中ウラン採取用の吸着剤
DE3829654A1 (de) * 1988-09-01 1990-03-08 Riedel De Haen Ag Ionenaustauscher-granulat und seine verwendung zur radiocaesiumdekontamination von fluessigkeiten
FR2644772A1 (fr) * 1989-03-24 1990-09-28 Asahi Chemical Ind Procede pour eliminer des ions de metaux lourds d'eaux polluees et membrane poreuse utilisable a cet effet
WO1990011826A1 (en) * 1989-03-31 1990-10-18 LAGSTRÖM, Göran Uranium adsorbent
DD291543A5 (de) * 1990-01-15 1991-07-04 Tu Dresden Wasserwesen Bereich Hydrochemie,De Verfahren zur erzielung niedrigster schwermetallrestgehalte in komplexbildnerhaltigen abwaessern
EP0532919A1 (de) * 1991-09-19 1993-03-24 Siemens Power Corporation Verfahren zur Entfernung von Schwermetall aus einem Abfallstrom

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 7720, Derwent World Patents Index; AN 77-35528Y *
DATABASE WPI Week 7747, Derwent World Patents Index; AN 77-84096Y *
DATABASE WPI Week 8345, Derwent World Patents Index; AN 83-811835 *
DATABASE WPI Week 9148, Derwent World Patents Index; AN 91-347130 *

Also Published As

Publication number Publication date
KR970705147A (ko) 1997-09-06
DE4426266C1 (de) 1995-12-21
US5993664A (en) 1999-11-30
EP0772881A1 (de) 1997-05-14
AU3112495A (en) 1996-02-22

Similar Documents

Publication Publication Date Title
Hseu et al. Digestion methods for total heavy metals in sediments and soils
DE69229438T2 (de) Verfahren zum Dekontaminieren von radioaktiven Materialien
DE4302166C2 (de) Verfahren zum Regenerieren von Quecksilberadsorptionsmitteln
DE69704627T2 (de) Verfahren zur extraktion durch ein überkritisches fluid
DE4312341A1 (de) In-situ-Regeneration von kontaminierten Böden und Grundwasser unter Verwendung von Calciumchlorid
DE69507905T2 (de) Verfahren zur dekontamination von radioaktiven materialien
Mohamadiun et al. Removal of cadmium from contaminated soil using iron (III) oxide nanoparticles stabilized with polyacrylic acid
DE3108991A1 (de) Verfahren zum abtrennen und sammeln von jod
DE60310272T2 (de) Verfahren zur bodensanierung und bauwerk
WO2018140995A1 (de) Verfahren zur bestimmung des kunststoffgehaltes in gewässer- und abwasserproben
Mamindy-Pajany et al. Impact of sewage sludge spreading on nickel mobility in a calcareous soil: adsorption–desorption through column experiments
DE69020886T2 (de) Behandlung von gefährlichen abfallstoffen.
DE3621313C2 (de)
DE4426266C1 (de) Verfahren zur Herstellung eines Materials zur Schwermetallabsorption
DE3525701C2 (de)
Harrison et al. A comparative study of methods for the analysis of total lead in soils
DE202022100003U1 (de) Ein System zur Sanierung von Sr(II) aus simulierten schwach radioaktiven Abfällen
DE4214763C2 (de) Verfahren zur Immobilisierung von organischen Schadstoffen und Vorrichtung zur Durchführung des Verfahrens
Norisuye et al. A method for preconcentrating Zr from large volumes of seawater using MnO2-impregnated fibers
DE4420658C2 (de) Verfahren zur Volumenreduzierung einer Mischung aus Filterfasern und einem pulverförmigen Ionenaustauscherharz
Bisdom et al. Submicroscopy and chemistry of heavy-metalcontaminated precipitates from column experiments simulating conditions in a soil beneath a landfill
Bates et al. Chemical stabilization of mixed organic and metal compounds: EPA SITE program demonstration of the silicate technology corporation process
Sachs et al. Impact of humic acid on the uranium migration in the environment
DE4105562C2 (de)
Ndiokwere The use of activated charcoal for preconcentration of trace heavy metals from river water in their analysis by thermal-neutron activation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BG BR BY CA CN CZ FI HU JP KP KR KZ NO PL RO RU SI SK UA US UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1995926910

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019970700492

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1995926910

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08776346

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1019970700492

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1995926910

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1019970700492

Country of ref document: KR