WO1996005509A1 - Procede et dispositif permettant de determiner des substances dissoutes - Google Patents
Procede et dispositif permettant de determiner des substances dissoutes Download PDFInfo
- Publication number
- WO1996005509A1 WO1996005509A1 PCT/CH1995/000178 CH9500178W WO9605509A1 WO 1996005509 A1 WO1996005509 A1 WO 1996005509A1 CH 9500178 W CH9500178 W CH 9500178W WO 9605509 A1 WO9605509 A1 WO 9605509A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- determination
- substances
- dissolved
- measuring probe
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 19
- 239000000126 substance Substances 0.000 title claims abstract description 16
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 35
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 35
- 239000001301 oxygen Substances 0.000 claims abstract description 35
- 239000000523 sample Substances 0.000 claims abstract description 28
- 238000004140 cleaning Methods 0.000 claims abstract description 10
- 239000003651 drinking water Substances 0.000 claims abstract description 3
- 235000020188 drinking water Nutrition 0.000 claims abstract description 3
- 239000002351 wastewater Substances 0.000 claims abstract description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 16
- 229910052742 iron Inorganic materials 0.000 claims description 8
- 229910045601 alloy Inorganic materials 0.000 claims description 6
- 239000000956 alloy Substances 0.000 claims description 6
- 229910000831 Steel Inorganic materials 0.000 claims description 5
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 5
- 229910021397 glassy carbon Inorganic materials 0.000 claims description 5
- 239000007770 graphite material Substances 0.000 claims description 5
- 239000010959 steel Substances 0.000 claims description 5
- 229910052725 zinc Inorganic materials 0.000 claims description 5
- 239000011701 zinc Substances 0.000 claims description 5
- 238000005516 engineering process Methods 0.000 claims description 4
- 230000010287 polarization Effects 0.000 claims description 4
- 239000010970 precious metal Substances 0.000 claims description 4
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 3
- 239000000460 chlorine Substances 0.000 claims description 3
- 229910052801 chlorine Inorganic materials 0.000 claims description 3
- 229920001940 conductive polymer Polymers 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 229910000510 noble metal Inorganic materials 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 239000004332 silver Substances 0.000 claims description 3
- 238000001514 detection method Methods 0.000 claims 1
- 230000002452 interceptive effect Effects 0.000 claims 1
- 108090000623 proteins and genes Proteins 0.000 claims 1
- 239000007772 electrode material Substances 0.000 abstract description 7
- 229910052751 metal Inorganic materials 0.000 abstract description 5
- 239000002184 metal Substances 0.000 abstract description 5
- 230000000694 effects Effects 0.000 abstract description 2
- 238000004519 manufacturing process Methods 0.000 abstract 1
- 230000000144 pharmacologic effect Effects 0.000 abstract 1
- 238000005259 measurement Methods 0.000 description 8
- 239000004094 surface-active agent Substances 0.000 description 6
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 4
- 229910000497 Amalgam Inorganic materials 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000003945 anionic surfactant Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000003889 chemical engineering Methods 0.000 description 1
- 239000012459 cleaning agent Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000000645 desinfectant Substances 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- GVGUFUZHNYFZLC-UHFFFAOYSA-N dodecyl benzenesulfonate;sodium Chemical compound [Na].CCCCCCCCCCCCOS(=O)(=O)C1=CC=CC=C1 GVGUFUZHNYFZLC-UHFFFAOYSA-N 0.000 description 1
- 238000003411 electrode reaction Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000010327 methods by industry Methods 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 229940080264 sodium dodecylbenzenesulfonate Drugs 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/49—Systems involving the determination of the current at a single specific value, or small range of values, of applied voltage for producing selective measurement of one or more particular ionic species
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
- G01N27/38—Cleaning of electrodes
Definitions
- the invention relates to a method for operating an open measuring probe with mechanical self-cleaning and a three-electrode arrangement according to claim 1 and a corresponding device for this according to claim 5.
- the measurement of dissolved oxygen is carried out, for example, according to DIN 38408, with either iodometric titration according to Winkler (DIN 38408-G21) being used, or the dissolved oxygen being determined by measurement with a membrane-covered oxygen probe (DIN 38408-G22).
- the membrane-covered oxygen probes include, for example, the Clark sensors, the Mackereth sensors, and the sensors according to Connery, Taylor and Muly. These differ essentially in the design of the sensor and the type of electrode material used.
- the measuring principle on which these oxygen probes are based is identical and is shown below: A portion of the dissolved oxygen corresponding to the total concentration is converted electrochemically on one of the electrodes. The current flowing and registered as the primary measurement signal is functionally dependent on the oxygen concentration.
- the electrode potential required for implementation is generated either by polarization using an external voltage source or by suitable electrode reactions in the system itself.
- a device of the latter type is known from EP 144 '325.
- an arrangement of two electrodes is described, which essentially consist of different materials, both electrodes, with the exception of their effective free end faces, being completely embedded in insulating material.
- a movable, driven grinding member is used to clean these electrode end surfaces provided, with which the shape, the size and the mutual distance of the effective electrode surfaces remain unchanged as the electrodes and the insulating material continue to be ground down.
- the effect is exploited that a current flows between an amalgam electrode (cathode) and an iron or zinc electrode (anode), the size of which depends on the current oxygen concentration. The polarization thus takes place only through the potentials that form at the anode.
- FIG. 2 embodiment of an oxygen probe with three electrodes arrangement
- FIG. 3 embodiment of an oxygen probe with three electrodes arrangement in plan view
- Fig. 6 oxygen signal with three-electrode arrangement in a surfactant-containing solution
- Fig. 1 shows the principle of the three-electrode arrangement in a schematic representation.
- the container 1 which contains a solution with dissolved substances 2, there is a working electrode 4, a counter electrode 5 and a reference electrode 6.
- the dissolved substances 2 are preferably those which are accessible for amperometric determination, that is to say with the specified Polarisa ⁇ tion voltage are electrochemically active, such as oxygen, chlorine, and other disinfectants and heavy metals.
- the working electrode 4 consists, for example, of noble metal, noble metal alloys, steel, graphite materials, glassy carbons or conductive polymers.
- the counter electrode 5 mostly consists of precious metal, steel, pure metals, graphite materials, or glassy carbon.
- the reference electrode 6 consists of iron, zinc, silver, copper or alloys.
- the reference electrode 6 is located in the immediate vicinity of the working electrode 4 in order to achieve the lowest possible ohmic voltage drop.
- a modified potentiostat 7 is provided, which via lines 8, respectively. 9, the opposite electrode 5, respectively. connects the reference electrode 6.
- the working electrode 4 is connected to the ground point of the potentiostat 7 via the line 10.
- the potentiostat 7 essentially contains a controllable regulator 11, the output of which provides a selectable voltage at the output 12 which is defined with respect to the potential of the reference electrode.
- the modified potentiostat 7 contains a constant current source 13, which is connected such that the reference electrode in a secondary circuit is constantly loaded with a constant current density.
- the main circuit of the measuring arrangement is guided by the potentiostat 7 via the line 8, the counter electrode 5, the solution with the dissolved substances 2, the working electrode 4 and the line 10.
- the instrument 14 is used to measure the current in the line 8.
- the solution with the dissolved substances 2 is an electrolyte, the conductivity of which depends on the type of the dissolved substances and can vary within wide limits.
- any polarization voltages can be defined or set in a defined manner, thus minimizing cross influences, improving the linearity and stabilizing the zero points.
- advantages described so far regarding elimination of cross influences, improvement of linearity and stability there are much greater flexibility and possible combinations with the electrode materials.
- a constant current load of a defined size can reduce the oxygen dependency of such a current-carrying reference electrode to an unexpectedly small value of a maximum of ⁇ 10 mV.
- the potential surprisingly shows only extremely low sensitivity to accompanying substances, especially sulfide and iron.
- the good constant potential ensures a potentiostatic mode of operation of an open three-electrode arrangement with mechanical self-cleaning.
- other pure metals such as zinc, silver and copper and alloys can also be used as the electrode material.
- FIG. 2 shows an exemplary embodiment of such a measuring probe with a three-electrode arrangement, which is provided as a submersible probe with a carrying handle 18. All three electrodes lie within one probe cup 16 in one plane.
- the necessary electronics are part of the probe and housed in the housing of the drive motor 15. This has the advantage that only two wires 17a and 17b are necessary for signal transmission, and that transmission paths of a few hundred meters are possible.
- FIG. 3 shows the embodiment of such a measuring probe with a three-electrode arrangement in a top view.
- the working electrode 4, the reference electrode 6 and the counter electrode 5 are designed concentrically, but other geometrical arrangements are also possible.
- the area of the reference electrode 6 is very small compared to the area of the working electrode 4, which in turn is smaller than that of the counter electrode 5. All three electrodes are constantly cleaned by the grinding device 19.
- oxygen signals (S12-3E) determined according to the invention are linear over the entire possible measuring range from 0 to approx. 50 mg / 1.
- the signal of the previously described oxygen probe (S12) kinks from the straight line from approx. 15 mg / 1. The good linearity results in a simple calibration even in the upper measuring range.
- FIG. 5 shows oxygen signals with a three-electrode arrangement measured in a sulfide-containing solution.
- the oxygen concentration was increased from 0.5 to 8 mg / 1.
- the electrode poisoning on the oxygen probe described so far means that the measurement signal (S12) has no relation to the actual oxygen content of the solution.
- the probe signal (S12-3E) of the three-electrode arrangement is surprisingly hardly influenced.
- the method and device of the type described are used in the determination of dissolved substances in process engineering plants, in particular in wastewater and drinking water treatment systems, in food technology, in pharmaceutical technology and in biotechnology, and in chemical engineering processes.
- the solution to the problem according to the invention is characterized by: an open, membrane-free system in a potentiostatic three-electrode arrangement with mechanical self-cleaning, a novel possibility for generating the necessary reference potential by means of a current-loaded metal electrode, the possibility of using a wide variety of electrode materials , the integration of the potentiostat in the measuring probe, the possibility to record different analytes, and the elimination of cross-sensitivities.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8506887A JPH09504376A (ja) | 1994-08-12 | 1995-08-11 | 溶質の定量方法および装置 |
KR1019960701847A KR960705204A (ko) | 1994-08-12 | 1995-08-11 | 용해된 물질의 측정을 위한 방법 및 장치(method and device for the determination of substances in solution) |
EP95926823A EP0729576A1 (fr) | 1994-08-12 | 1995-08-11 | Procede et dispositif permettant de determiner des substances dissoutes |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH2496/94-1 | 1994-08-12 | ||
CH249694 | 1994-08-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1996005509A1 true WO1996005509A1 (fr) | 1996-02-22 |
Family
ID=4235120
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CH1995/000178 WO1996005509A1 (fr) | 1994-08-12 | 1995-08-11 | Procede et dispositif permettant de determiner des substances dissoutes |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP0729576A1 (fr) |
JP (1) | JPH09504376A (fr) |
KR (1) | KR960705204A (fr) |
CN (1) | CN1134191A (fr) |
CA (1) | CA2173464A1 (fr) |
WO (1) | WO1996005509A1 (fr) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000004379A1 (fr) * | 1998-07-15 | 2000-01-27 | Johnson Matthey Public Limited Company | Ph-metre comprenant un courant constant applique entre l'electrode de captage en metal de transition et l'electrode de reference |
EP1191334A1 (fr) * | 2000-09-25 | 2002-03-27 | Kempe GmbH | Capteur de mesure de concentrations d'oxygène dans des liquides |
EP1061362A3 (fr) * | 1999-06-07 | 2004-05-19 | Framatome ANP GmbH | Procédé et capteur de gaz pour déterminer la pression partielle d'oxygène |
DE102004017653A1 (de) * | 2004-04-05 | 2005-11-03 | Aqua Rotter Gmbh | Voltammetrisches Verfahren |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10315338A1 (de) * | 2003-04-03 | 2004-10-14 | Mettler-Toledo Gmbh | Sicherungsvorrichtung für eine Einbauelektrodenvorrichtung |
EP2188625A1 (fr) * | 2007-09-03 | 2010-05-26 | LAR Process Analysers AG | Procédé et dispositif de détermination des besoins chimiques en oxygène d'eau ou d'eaux usées |
JP2008203274A (ja) * | 2008-05-27 | 2008-09-04 | Tacmina Corp | 残留塩素計およびこれを用いた液体殺菌装置 |
CN101498681B (zh) * | 2009-03-13 | 2012-05-09 | 吴守清 | 测量微量溶解氧的电极 |
US9579765B2 (en) * | 2012-09-13 | 2017-02-28 | General Electric Technology Gmbh | Cleaning and grinding of sulfite sensor head |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4077861A (en) * | 1976-01-28 | 1978-03-07 | Teledyne Industries, Inc. | Polarographic sensor |
US4440603A (en) * | 1982-06-17 | 1984-04-03 | The Dow Chemical Company | Apparatus and method for measuring dissolved halogens |
WO1984004814A1 (fr) * | 1983-06-02 | 1984-12-06 | Zuellig Ag | Installation pour la determination electrochimique de la teneur en oxygene de liquides |
-
1995
- 1995-08-11 WO PCT/CH1995/000178 patent/WO1996005509A1/fr active Application Filing
- 1995-08-11 KR KR1019960701847A patent/KR960705204A/ko not_active Withdrawn
- 1995-08-11 EP EP95926823A patent/EP0729576A1/fr not_active Withdrawn
- 1995-08-11 JP JP8506887A patent/JPH09504376A/ja active Pending
- 1995-08-11 CA CA002173464A patent/CA2173464A1/fr not_active Abandoned
- 1995-08-11 CN CN95190763A patent/CN1134191A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4077861A (en) * | 1976-01-28 | 1978-03-07 | Teledyne Industries, Inc. | Polarographic sensor |
US4440603A (en) * | 1982-06-17 | 1984-04-03 | The Dow Chemical Company | Apparatus and method for measuring dissolved halogens |
WO1984004814A1 (fr) * | 1983-06-02 | 1984-12-06 | Zuellig Ag | Installation pour la determination electrochimique de la teneur en oxygene de liquides |
EP0144325A1 (fr) * | 1983-06-02 | 1985-06-19 | Zuellig Ag | Installation pour la determination electrochimique de la teneur en oxygene de liquides. |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000004379A1 (fr) * | 1998-07-15 | 2000-01-27 | Johnson Matthey Public Limited Company | Ph-metre comprenant un courant constant applique entre l'electrode de captage en metal de transition et l'electrode de reference |
EP1061362A3 (fr) * | 1999-06-07 | 2004-05-19 | Framatome ANP GmbH | Procédé et capteur de gaz pour déterminer la pression partielle d'oxygène |
EP1191334A1 (fr) * | 2000-09-25 | 2002-03-27 | Kempe GmbH | Capteur de mesure de concentrations d'oxygène dans des liquides |
US6652721B2 (en) | 2000-09-25 | 2003-11-25 | Biotechnologie Kempe Gmbh | Sensor for determination of O2 concentration in liquids |
DE102004017653A1 (de) * | 2004-04-05 | 2005-11-03 | Aqua Rotter Gmbh | Voltammetrisches Verfahren |
DE102004017653B4 (de) * | 2004-04-05 | 2008-05-21 | Aqua Rotter Gmbh | Voltammetrisches Verfahren |
Also Published As
Publication number | Publication date |
---|---|
KR960705204A (ko) | 1996-10-09 |
CN1134191A (zh) | 1996-10-23 |
CA2173464A1 (fr) | 1996-02-22 |
JPH09504376A (ja) | 1997-04-28 |
EP0729576A1 (fr) | 1996-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0220694B1 (fr) | Appareil pour stabiliser une électrode de référence à gaz | |
WO2010136258A1 (fr) | Procédé et dispositif pour déterminer la demande chimique en oxygène d'un échantillon liquide présentant une demande en oxygène par oxydation sur une électrode de diamant dopé au bore | |
DE4223228C2 (de) | Verfahren zur Bestimmung von Persäuren | |
WO1996005509A1 (fr) | Procede et dispositif permettant de determiner des substances dissoutes | |
EP0282441B1 (fr) | Procédé de détermination de la demande chimique en oxygène de l'eau | |
DE10322894A1 (de) | Chloritsensor | |
EP0780685B1 (fr) | Capteur ampérométrique à deux électrodes. | |
DE2349579A1 (de) | Potentiometrischer sauerstoff-sensor | |
DE2928324A1 (de) | Einrichtung zur messung von ozon in wasser | |
DE10042846C2 (de) | Verfahren zur qualitativen und/oder quantitativen Charakterisierung polarer Bestandteile in Flüssigkeiten, Elektrodenanordnung zur Durchführung dieses Verfahrens sowie Anwendung des Verfahrens und der Elektrodenanordnung | |
DE102004019641B4 (de) | FET-basierter Gassensor | |
EP0834739A2 (fr) | Méthode et appareil pour la détermination de l'oxidabilité des substances contenues dans des eaux usées | |
DE2927346A1 (de) | Verfahren zum bestimmen des membranverschmutzungsgrades einer elektrochemischen zelle | |
DE3814735A1 (de) | Potentiometrischer sensor zur bestimmung des sauerstoff-partialdrucks | |
DE4240068C1 (de) | Elektrochemischer Sensor | |
WO2008012127A1 (fr) | Capteur de gaz pour la dÉtermination dans des mÉlanges de gaz combustibles de composants de gaz contenant de l'hydrogÈne | |
DE10001923C1 (de) | Verfahren zur Bestimmung redoxaktiver Stoffe | |
DE2950920C2 (de) | Verfahren und Vorrichtung zur kontinuierlichen elektrochemischen Bestimmung der Konzentration von gelösten Stoffen | |
DE2135949A1 (de) | Verfahren und Vorrichtung zum Bestimmen des Sauerstoffbedarfs wasseriger Proben | |
DE102005007539A1 (de) | Einrichtung zur Bestimmung redoxaktiver Stoffe | |
EP0062250A2 (fr) | Procédé d'analyse électrochimique avec compensation d'erreur et appareil pour l'utilisation du procédé | |
DE2123701C3 (de) | Ozon-Analysiereinrichtung | |
DE3330977A1 (de) | Verfahren und anordnung zur bestimmung von elektrischen potentialen und/oder deren aenderungen in elektrolyten | |
WO2021110215A1 (fr) | Procédé et dispositif pour la détermination sans produit chimique de la demande chimique en oxygène (dco) d'échantillons aqueux | |
EP0012415A1 (fr) | Procédé et appareil pour la mesure en continu de traces de gaz |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 95190763.8 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CA CN JP KR US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2173464 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 1996 624533 Country of ref document: US Date of ref document: 19960412 Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |