WO1996007760A1 - Fusion de materiaux ferreux - Google Patents
Fusion de materiaux ferreux Download PDFInfo
- Publication number
- WO1996007760A1 WO1996007760A1 PCT/AU1995/000563 AU9500563W WO9607760A1 WO 1996007760 A1 WO1996007760 A1 WO 1996007760A1 AU 9500563 W AU9500563 W AU 9500563W WO 9607760 A1 WO9607760 A1 WO 9607760A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- carbonaceous material
- furnace
- smelting
- carbonaceous
- ferruginous
- Prior art date
Links
- 238000003723 Smelting Methods 0.000 title claims abstract description 25
- 239000000463 material Substances 0.000 title claims description 25
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 title claims description 7
- 239000003575 carbonaceous material Substances 0.000 claims abstract description 35
- 230000009257 reactivity Effects 0.000 claims abstract description 21
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 19
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 19
- 229910001018 Cast iron Inorganic materials 0.000 claims abstract description 13
- 239000008247 solid mixture Substances 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims description 30
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 27
- 230000008569 process Effects 0.000 claims description 22
- 229910052742 iron Inorganic materials 0.000 claims description 14
- 229910052751 metal Inorganic materials 0.000 claims description 11
- 239000002184 metal Substances 0.000 claims description 11
- 239000003077 lignite Substances 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 7
- 239000000446 fuel Substances 0.000 claims description 6
- 229910021382 natural graphite Inorganic materials 0.000 claims description 6
- 239000002245 particle Substances 0.000 claims description 6
- 239000010801 sewage sludge Substances 0.000 claims description 6
- 229910052595 hematite Inorganic materials 0.000 claims description 5
- LIKBJVNGSGBSGK-UHFFFAOYSA-N iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Fe+3].[Fe+3] LIKBJVNGSGBSGK-UHFFFAOYSA-N 0.000 claims description 5
- 150000002894 organic compounds Chemical class 0.000 claims description 4
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 239000008188 pellet Substances 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 3
- 239000000571 coke Substances 0.000 claims description 2
- 239000000356 contaminant Substances 0.000 claims description 2
- 239000011368 organic material Substances 0.000 claims description 2
- 239000007789 gas Substances 0.000 description 13
- 239000002893 slag Substances 0.000 description 6
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 239000000428 dust Substances 0.000 description 4
- 241000196324 Embryophyta Species 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000000292 calcium oxide Substances 0.000 description 2
- 235000012255 calcium oxide Nutrition 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 231100001261 hazardous Toxicity 0.000 description 2
- 239000011872 intimate mixture Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 238000010079 rubber tapping Methods 0.000 description 2
- 239000010865 sewage Substances 0.000 description 2
- 239000010802 sludge Substances 0.000 description 2
- 239000011343 solid material Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 230000004580 weight loss Effects 0.000 description 2
- 239000004484 Briquette Substances 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910000805 Pig iron Inorganic materials 0.000 description 1
- 229920001131 Pulp (paper) Polymers 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000005864 Sulphur Substances 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000011278 co-treatment Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000010410 dusting Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 238000010327 methods by industry Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C1/00—Refining of pig-iron; Cast iron
- C21C1/08—Manufacture of cast-iron
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B11/00—Making pig-iron other than in blast furnaces
Definitions
- the present invention relates to the production of cast iron by smelting and incorporating materials which would usually be deemed to be waste products (e.g., due to contamination) or would otherwise be source materials having characteristics unsuitable for the production of cast iron of good quality.
- Embodiments of the present invention can deal with source materials contaminated by environmentally hazardous components or which would be undesirable components for conventional smelting techniques.
- the present invention is a development of the subject matter, the subject of PCT International application AU91/00048 by the same inventor (published under publication number WO 91/12210) and entitled Co-Treatment of Sewage and Steelworks Waste.
- This prior application focused on using an intimate mixture of sewage sludge solids and steelworks dust preferably formed by using the steelworks dust to settle efficiently the sludge from sewage. After drying and agglomerating the sludge components a feed stock is produced for a bath smelting furnace.
- This process permits production of a clarified water effluent and the use of the sewage sludge as a carbon source in a form suitable for intimately contacting or enveloping and binding together steelworks dust particles and to act as a fuel in the smelting furnace .
- environmentally hazardous organic compounds are destroyed at elevated temperature, volatile metallic components are collected in a discharge system, other components accumulate in a slag and a commercially valuable cast iron is produced.
- the present invention concerns a development in the art which offers new and useful alternatives and preferred features applicable to the starting materials for and process of smelting for cast iron.
- the present invention consists in a method of producing a cast iron (which before discharge from the furnace is known in the art as "Hot Metal"), which typically comprises around 3%-4 carbon (and more generally comprises 2%-5% carbon) .
- the method comprises taking particulate ferruginous and carbonaceous materials formed into an intimate solid mixture in agglomerated form and conducting a bath smelting operation in a furnace to produce cast iron, the method being characterised by: (a) incorporating in the agglomerates carbonaceous material in selected forms to provide a significant proportion of relatively low reactivity carbon and a significant proportion of high reactivity carbon, the carbonaceous material being principally other than sewage sludge and the agglomerates optionally including or excluding other components (such as contaminants, organic material, and non-ferrous metallic components) and
- the present invention lends itself to numerous embodiments, but is especially useful where at least part of the carbonaceous material is a biosolid other than sewage sludge and generally such solids are useful in facilitating agglomeration especially in preferred embodiments where pressure is applied e.g. by briquetting or extruding.
- Such techniques permit efficient and safe handling of agglomerates by the production of relatively large particles which nevertheless can be conveyed and flow readily without disadvantageous dusting and, on insertion of such agglomerates into the furnace, there is avoidance of explosive burning of components. This avoids undesirable discharge of components with the off- gas.
- this invention has importance in recognising that a blend of carbonaceous materials is one which ensures appropriate degree of rapid reaction for initiating reduction of oxidic materials while having a portion of the carbon in a low reactivity form to ensure adequate .take-up of carbon in the cast iron.
- the invention can also be effective for embodiments in which the ferruginous material includes iron ore and the carbonaceous material may include lignite or brown coal which conventionally would not be suitable for use as a fuel in the production of cast iron.
- the ferruginous material is of particle size below 2mm and the carbonaceous material is one or two orders of magnitude smaller.
- the method preferably includes using carbonaceous material which has a degree of binding effect to facilitate the formation of aggregates and the intimate mixture of the carbonaceous material and the ferruginous material.
- the classification of carbonaceous materials as referred to in this specification is based on a standard test in which a sample of the material is heated in a small crucible for a certain length of time at a selected elevated temperature and a stream of carbon dioxide is passed over the sample. After the predetermined time, the percentage weight loss by the sample is determined as a measure of reactivity. A weight loss of the order of 5%-10% is considered typical of a low reactivity sample.
- Embodiments of the invention can incorporate numerous sources of starting materials and the invention can be especially beneficial by using scrap, waste or contaminated material.
- oil covered metal swarf can be incorporated as well as millscale and steel scrap which is best chopped into relatively small fragments.
- scrap materials which are tin or copper coated.
- the invention is practised by smelting to maintain the hot metal and the process conditions in the range 1400-1600°C and around 1500°C has been found to be generally suitable.
- the proportion of low reactivity carbonaceous material is at least 5% by weight of the carbonaceous material and generally should be in the range of 10%-15% by weight to ensure adequate carburising of the iron. However, higher proportions of up to 50% by weight of low reactivity carbonaceous material may be used in some embodiments.
- the form of furnace used may be chosen among a range of options and is preferable an alternating current or a direct current are furnace or a pneumatic bath smelting furnace. As described below the applicant prefers to use a counter-current bath smelting furnace of the type described below with reference to the drawings. Preferably this is operated in a continuous mode.
- agglomerates which can be briquetted, extruded or pelletised
- material having a binding characteristic is incorporated and it has been found that many biosolid carbonaceous materials are suitable.
- ground wood pulp and lake weed may be used.
- Figure 2 is a cross-sectional, elevation view showing schematically a second embodiment of smelting furnace; and Figure 3 is a sectional plan view of the furnace of Figure 2 and taken along the line of IV-IV of Figure 2.
- FIG. 1 shows a barrel-shaped bath smelting furnace which advantageously could be provided with a slight slope along the bottom towards a discharge point for molten foundry type iron.
- the furnace has a refractory lined body 10 with a molten iron tapping point 11 at the left hand end as shown and slightly above the refractory in the bottom of the barrel.
- a slag tapping point 12 At the right hand end is a slag tapping point 12.
- Above the right hand end is a hot gas discharge duct 13.
- In the upper central region of the barrel but slightly offset towards the pig iron duct 11 is an inlet duct 14 for hot solid composites which fall into the bath.
- burnt lime is added through an inlet 15 above the left hand end region of the bath.
- the furnace of Figure 1 operates as a counter-current furnace and vigorous turbulence within the central portion of the bath is important to ensure high through-put.
- the lances 16 and 17 achieve this turbulence by introducing air or air enriched with oxygen in jets which vigorously agitate the central portion of the bath.
- the lance 18 nearer the hot gas discharge terminates at a higher level above the slag particularly for aiding post-combustion of the CO rich gas phase.
- the furnace has a body portion 20 in its central region with first and second extensions 21 and 22 of general cylindrical form on opposite sides.
- a set of electrodes 23 extend centrally down into the bath for establishing an electric arc, the electrodes being adjacent and an inlet duct 24 for solid feed material.
- Centrally located in the bottom of the furnace of 20 is a set of gas injection jets 33 for admitting a mixing gas which is optional but can be applied to ensure vigorous turbulence of the molten bath.
- a preheating apparatus 30 As schematically shown above the furnace, a preheating apparatus 30 is provided, the apparatus having an inlet schematically shown at 31 for feeding horizontally solid feed stock material and adjacent thereto a hot gas inlet 32 from the furnace.
- This hot off-gas acts to preheat and to pre-reduce partially the solid material in the composites.
- the gas at a lower temperature, is discharged through discharge 32a for further processing including removal of zinc and other metal values.
- the equipment is operated so that temperatures in excess of 1000°C are achieved whereby any material entering the gaseous stage from the feed stock material capable of decomposition or combustion is so treated so that discharged hot gases will not contain any harmful materials such as organic chemicals.
- the feedstock material conveniently can be in briquette form or other essentially dustless form to facilitate handling. Since the solid material is immersed in the turbulent molten bath at around 1500°C, the resultant hot gases cannot contain harmful materials such as highly toxic organic compounds due to the combustion that occurs.
- haematite ore Equal proportions by weight of haematite ore and finely ground lignite were mixed.
- the haematite ore comprised 64.5% Fe and the lignite, which contained carbon in relatively high reactivity form, initially contained 55% by weight water.
- the lignite was ground to a fine particulate form with particles ranging typically from 1 micron to 100 microns. The lignite thus formed a thick paste and was intimately mixed with the ground haematite ore.
- the mixture was extruded and chopped to form pellets of approximately 2cm size which were air dried initially and further dried in a furnace at 120°C, conveniently using hot off-gases from the smelting step as a source of heat.
- the preheated pellets were then supplied to an electric furnace of the type described above with reference to Figures 2 and 3, a temperature of 1500°C being maintained in the hot metal in the furnace.
- cast iron of high quality and comprising about 4% carbon could be produced with an impurity content well within commercially acceptable limits.
- the process can also be operated by including a proportion of other ferruginous material and other sources of carbonaceous material.
- EXAMPLE II As ferruginous material steelworks dust was used and intimately mixed with carbonaceous material comprising equal quantities by weight of natural graphite and biosolid derived from dried harvested weed from a lake. It was found that the lake weed provided carbonaceous material of a type which provided a natural binder and, after agglomeration the mass was briquetted to a size of about 2cm transverse dimension.
- Example II was repeated but utilising, as a source of low reactivity carbon, comminuted scrap carbon electrodes from the aluminium industry. These carbon electrodes are seriously contaminated with environmentally harmful compounds which presents difficulty and expense in disposal due to the need to protect the environment. It was found that the source of carbon was suitable for inclusion in the process and harmful components decomposed at a high operating temperature. By using the countercurrent electric furnace of the type described above with reference to Figures 2 and 3 it was found that a high quality iron could be produced with the slag taking up components not wanted in the iron.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
On produit de la fonte à partir d'un mélange solide intime aggloméré de matériaux en particules ferrugineuses et carbonées, le matériau carboné contenant des proportions significatives de carbone à faible et à haute réactivités. Ce mélange solide est amené de façon modulée dans un four de traitement à bain métallique. En général, 10 à 50 % du poids du matériau carboné se présente sous une forme à faible réactivité.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU33763/95A AU684226B2 (en) | 1994-09-05 | 1995-09-01 | Smelting ferrous materials |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AUPM7925A AUPM792594A0 (en) | 1994-09-05 | 1994-09-05 | Smelting ferrous materials |
AUPM7925 | 1994-09-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1996007760A1 true WO1996007760A1 (fr) | 1996-03-14 |
Family
ID=3782445
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/AU1995/000563 WO1996007760A1 (fr) | 1994-09-05 | 1995-09-01 | Fusion de materiaux ferreux |
Country Status (2)
Country | Link |
---|---|
AU (1) | AUPM792594A0 (fr) |
WO (1) | WO1996007760A1 (fr) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998005800A1 (fr) * | 1996-08-02 | 1998-02-12 | Mannesmann Ag | Procede et dispositif pour produire de la fonte brute de fonderie riche en silicium |
AT405944B (de) * | 1996-04-19 | 1999-12-27 | Holderbank Financ Glarus | Verfahren zum reduzieren von oxidischen schlacken |
EP2164030A1 (fr) | 2004-01-29 | 2010-03-17 | YKK Corporation | Article equipé d'un moyen d'identification, decision dichotomique au sujet d'un tel article, et methode de controle de la distribution des marchandises |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB748334A (en) * | 1950-09-16 | 1956-04-25 | Weber Ludwig | Electric smelting of iron ores |
GB930008A (en) * | 1958-11-27 | 1963-06-26 | Elektrokemisk As | Process of reduction in electric furnaces |
GB959444A (en) * | 1959-07-27 | 1964-06-03 | Yoshimichi Murakami | Improvements in the reduction of metallic ores |
JPS62256910A (ja) * | 1986-04-30 | 1987-11-09 | 金 鶴齢 | 重質油と石炭との混合物による鉄鉱石の直接還元及び加炭方法 |
WO1991012210A1 (fr) * | 1990-02-13 | 1991-08-22 | The Illawarra Technology Corporation Ltd. | Traitement conjoint d'eaux d'egout et de dechets d'acierie |
-
1994
- 1994-09-05 AU AUPM7925A patent/AUPM792594A0/en not_active Abandoned
-
1995
- 1995-09-01 WO PCT/AU1995/000563 patent/WO1996007760A1/fr active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB748334A (en) * | 1950-09-16 | 1956-04-25 | Weber Ludwig | Electric smelting of iron ores |
GB930008A (en) * | 1958-11-27 | 1963-06-26 | Elektrokemisk As | Process of reduction in electric furnaces |
GB959444A (en) * | 1959-07-27 | 1964-06-03 | Yoshimichi Murakami | Improvements in the reduction of metallic ores |
JPS62256910A (ja) * | 1986-04-30 | 1987-11-09 | 金 鶴齢 | 重質油と石炭との混合物による鉄鉱石の直接還元及び加炭方法 |
WO1991012210A1 (fr) * | 1990-02-13 | 1991-08-22 | The Illawarra Technology Corporation Ltd. | Traitement conjoint d'eaux d'egout et de dechets d'acierie |
Non-Patent Citations (1)
Title |
---|
DERWENT ABSTRACT, Accession No. 88-031229/05, Class M-24; & JP,A,62 256 910 (KINK), 09 November 1987. * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT405944B (de) * | 1996-04-19 | 1999-12-27 | Holderbank Financ Glarus | Verfahren zum reduzieren von oxidischen schlacken |
US6241797B1 (en) | 1996-04-19 | 2001-06-05 | “Holderbank” Financiere Glarus AG | Process for reducing oxidic slags |
WO1998005800A1 (fr) * | 1996-08-02 | 1998-02-12 | Mannesmann Ag | Procede et dispositif pour produire de la fonte brute de fonderie riche en silicium |
US6235075B1 (en) | 1996-08-02 | 2001-05-22 | Mannesmann Aktiengesellschaft | Method and device for producing silicon-rich foundry iron |
EP2164030A1 (fr) | 2004-01-29 | 2010-03-17 | YKK Corporation | Article equipé d'un moyen d'identification, decision dichotomique au sujet d'un tel article, et methode de controle de la distribution des marchandises |
Also Published As
Publication number | Publication date |
---|---|
AUPM792594A0 (en) | 1994-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5531805A (en) | Smelting ferrous materials | |
US8088195B2 (en) | Method for manufacturing titanium oxide-containing slag | |
RU2144571C1 (ru) | Способ получения литейного чугуна | |
US4940487A (en) | Process for utilizing of zinc-containing metallurgical dusts and sludges | |
KR0141066B1 (ko) | 아연함유분진으로부터 아연을 회수하는 방법 | |
EP0132243B1 (fr) | Procédé de récupération de plomb à partir de déchets plombifères | |
EP0972849A1 (fr) | Procede et appareil de traitement de poussiere de production de fer | |
US6372011B1 (en) | Method for producing an iron melt using iron-containing residual smelting plant materials | |
US4765829A (en) | Treating lead- and zinc-containing steelmaking byproducts | |
CN1211629A (zh) | 一种高锌含铁粉尘的处理方法 | |
KR100560236B1 (ko) | 스테인레스 강의 제조 공정의 폐기물을 재사용하여스테인레스 강을 제조하는 방법 | |
JP2000054039A (ja) | 鉛含有材料からの金属鉛回収方法 | |
US6136066A (en) | Method of recycling iron-bearing waste material back into a basic oxygen furnace | |
US3920446A (en) | Methods of treating silicious materials to form silicon carbide for use in refining ferrous material | |
DE3347685C1 (de) | Verfahren zur Herstellung von Ferromangan | |
JP3516854B2 (ja) | 製鋼炉ダストの処理方法及びダストペレット | |
AU684226B2 (en) | Smelting ferrous materials | |
WO1996007760A1 (fr) | Fusion de materiaux ferreux | |
US4434001A (en) | Method for manufacturing metal from fine-grain metal-oxide material | |
RU2055922C1 (ru) | Способ переработки сульфидного сурьмяного сырья, содержащего благородные металлы | |
AU638559B2 (en) | Cotreatment of sewage and steelworks wastes | |
RU2105075C1 (ru) | Способ обеднения медьсодержащих шлаков | |
JP3408809B2 (ja) | 鉄化合物及び毒性元素を含む冶金廃棄物の製錬 | |
JP2000026923A (ja) | 金属含有廃棄物の炉内での乾式冶金処理方法 | |
WO1981002166A1 (fr) | Procede de fabrication de l'acier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AM AT AU BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU IS JP KE KG KP KR KZ LK LR LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TT UA UG US UZ VN |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): KE MW SD SZ UG AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
122 | Ep: pct application non-entry in european phase |