WO1996008036A1 - Procede de fabrication de structures micromecaniques au moyen d'une technique d'attaque par ions reactifs - Google Patents
Procede de fabrication de structures micromecaniques au moyen d'une technique d'attaque par ions reactifs Download PDFInfo
- Publication number
- WO1996008036A1 WO1996008036A1 PCT/NL1995/000221 NL9500221W WO9608036A1 WO 1996008036 A1 WO1996008036 A1 WO 1996008036A1 NL 9500221 W NL9500221 W NL 9500221W WO 9608036 A1 WO9608036 A1 WO 9608036A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- silicon
- etching
- etch gas
- etched
- process according
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 111
- 230000008569 process Effects 0.000 title claims abstract description 64
- 238000001020 plasma etching Methods 0.000 title claims abstract description 61
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 98
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 93
- 239000010703 silicon Substances 0.000 claims abstract description 93
- 238000005530 etching Methods 0.000 claims abstract description 78
- 239000007789 gas Substances 0.000 claims abstract description 40
- 239000000758 substrate Substances 0.000 claims abstract description 33
- 239000001301 oxygen Substances 0.000 claims abstract description 21
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 21
- 150000008282 halocarbons Chemical class 0.000 claims abstract description 20
- 238000000151 deposition Methods 0.000 claims abstract description 19
- 239000000203 mixture Substances 0.000 claims abstract description 19
- XPDWGBQVDMORPB-UHFFFAOYSA-N Fluoroform Chemical compound FC(F)F XPDWGBQVDMORPB-UHFFFAOYSA-N 0.000 claims abstract description 7
- 238000012360 testing method Methods 0.000 claims abstract description 5
- 235000012431 wafers Nutrition 0.000 claims description 27
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 16
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 claims description 16
- 239000012212 insulator Substances 0.000 claims description 15
- 229910052751 metal Inorganic materials 0.000 claims description 13
- 239000002184 metal Substances 0.000 claims description 13
- RJCQBQGAPKAMLL-UHFFFAOYSA-N bromotrifluoromethane Chemical compound FC(F)(F)Br RJCQBQGAPKAMLL-UHFFFAOYSA-N 0.000 claims description 3
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 abstract 1
- 238000012544 monitoring process Methods 0.000 abstract 1
- SFZCNBIFKDRMGX-UHFFFAOYSA-N sulfur hexafluoride Chemical compound FS(F)(F)(F)(F)F SFZCNBIFKDRMGX-UHFFFAOYSA-N 0.000 abstract 1
- 229960000909 sulfur hexafluoride Drugs 0.000 abstract 1
- 210000002381 plasma Anatomy 0.000 description 53
- 150000002500 ions Chemical class 0.000 description 36
- 229920000642 polymer Polymers 0.000 description 31
- 229910021418 black silicon Inorganic materials 0.000 description 26
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 16
- 229910052731 fluorine Inorganic materials 0.000 description 14
- 239000011737 fluorine Substances 0.000 description 13
- 230000008021 deposition Effects 0.000 description 12
- 244000025254 Cannabis sativa Species 0.000 description 11
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 11
- 238000011068 loading method Methods 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- 238000002161 passivation Methods 0.000 description 9
- 230000003247 decreasing effect Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 230000007246 mechanism Effects 0.000 description 7
- 229910052681 coesite Inorganic materials 0.000 description 6
- 229910052906 cristobalite Inorganic materials 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- 229910052682 stishovite Inorganic materials 0.000 description 6
- 229910052905 tridymite Inorganic materials 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000000903 blocking effect Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 238000003486 chemical etching Methods 0.000 description 5
- 239000000428 dust Substances 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- 238000005452 bending Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 4
- 229910052801 chlorine Inorganic materials 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000005459 micromachining Methods 0.000 description 4
- 238000004574 scanning tunneling microscopy Methods 0.000 description 4
- 229910052814 silicon oxide Inorganic materials 0.000 description 4
- 241000894007 species Species 0.000 description 4
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 3
- 229910004014 SiF4 Inorganic materials 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 238000001471 micro-filtration Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- ABTOQLMXBSRXSM-UHFFFAOYSA-N silicon tetrafluoride Chemical compound F[Si](F)(F)F ABTOQLMXBSRXSM-UHFFFAOYSA-N 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 125000001309 chloro group Chemical group Cl* 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 125000001153 fluoro group Chemical group F* 0.000 description 2
- 230000008014 freezing Effects 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 231100001261 hazardous Toxicity 0.000 description 2
- 238000010849 ion bombardment Methods 0.000 description 2
- 238000010884 ion-beam technique Methods 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 238000001465 metallisation Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- GVGCUCJTUSOZKP-UHFFFAOYSA-N nitrogen trifluoride Chemical compound FN(F)F GVGCUCJTUSOZKP-UHFFFAOYSA-N 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 2
- 238000007788 roughening Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- 241001640034 Heteropterys Species 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 238000004380 ashing Methods 0.000 description 1
- 235000013405 beer Nutrition 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000004049 embossing Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 238000009863 impact test Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 230000002232 neuromuscular Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 235000020030 perry Nutrition 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 229920000307 polymer substrate Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 239000003870 refractory metal Substances 0.000 description 1
- 230000002000 scavenging effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/3065—Plasma etching; Reactive-ion etching
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C1/00—Manufacture or treatment of devices or systems in or on a substrate
- B81C1/00436—Shaping materials, i.e. techniques for structuring the substrate or the layers on the substrate
- B81C1/00555—Achieving a desired geometry, i.e. controlling etch rates, anisotropy or selectivity
- B81C1/00626—Processes for achieving a desired geometry not provided for in groups B81C1/00563 - B81C1/00619
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C99/00—Subject matter not provided for in other groups of this subclass
- B81C99/0055—Manufacturing logistics
- B81C99/0065—Process control; Yield prediction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y15/00—Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C2201/00—Manufacture or treatment of microstructural devices or systems
- B81C2201/01—Manufacture or treatment of microstructural devices or systems in or on a substrate
- B81C2201/0101—Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
- B81C2201/0128—Processes for removing material
- B81C2201/013—Etching
- B81C2201/0132—Dry etching, i.e. plasma etching, barrel etching, reactive ion etching [RIE], sputter etching or ion milling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C2201/00—Manufacture or treatment of microstructural devices or systems
- B81C2201/01—Manufacture or treatment of microstructural devices or systems in or on a substrate
- B81C2201/0101—Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
- B81C2201/0128—Processes for removing material
- B81C2201/013—Etching
- B81C2201/0135—Controlling etch progression
- B81C2201/0138—Monitoring physical parameters in the etching chamber, e.g. pressure, temperature or gas composition
Definitions
- the invention relates to a process for producing micro(electro)mechanical structures in a substrate using standard Reactive Ion Etching (RIE), wherein the substrate is etched with a silicon etch gas mixture.
- RIE Reactive Ion Etching
- the invention relates in particular to such a RIE process that can be carried out in a single run.
- Plasma etching can be divided into three main groups; the physical ion beam etching (IBE), the synergetic reactive ion etching (REE), and the chemical plasma etching (PE).
- IBE physical ion beam etching
- REE synergetic reactive ion etching
- PE chemical plasma etching
- IBE shows only positively tapered profiles, low etch rates, and low selectivity
- PE gives rise to isotropic profiles, high etch rates, and high selectivity.
- RLE it is possible to provide the plasma with a chemical etchant for the etching of the substrate, a passivator for blocking the etching at the sidewalls of a trench, and an ion source for the local removal of the passivation layer at the bottom of the etching trenches.
- RLE processes which use the deposition of a passivating film are called: ion-inhibitor RIE.
- etching polymers When etching polymers, it is not necessary to passivate the trench sidewalls. In these cases the etching is possible because of ion bombardment. This is a typical reactive ion beam etching (RIBE) process, but can also be fulfilled at higher pressures with an RIE apparatus. RIE processes which use only the incoming ions are called; ion-induced RIE. To increase the etch rate, standard RIE is modified to create a higher density plasma [1-6], but these etchers are expensive and therefore less attractive. Normally, halogen-based plasmas are used for the chemical etching of silicon, because of their high etch rates [1-13]. Except for the fluorine-based plasmas, these gases are particularly hazardous (e.g.
- the passivation layer can be grown: 1 from polymer precursors which are lead into the plasma [8-10], 2 by resputtering mask material [11], 3 by inserting gases which act as an oxidant (forming siliconoxyhalogen) [1,12,13], or 4 by freezing the normally volatile reaction products of the silicon with the radicals at the trench walls [3,4].
- the deposition of a halocarbon polymer film has the disadvantage that this film is thermally less stable than a growing inorganic siliconoxyhalogen film and the freezing of reaction products uses the expensive (cryogenic) coolers.
- the resputtering of mask material is not acceptable because areas which should stay clean are also contaminated.
- the passivating film is very thin the incoming ions should not be highly energetic, so the selectivity will be very high and the substrate damage will be low. Also, because of the low energy of the ions, trenching and faceting are not found and it is very easy to change the direction of the impinging ions thus changing the etched profile.
- a major problem during etching silicon vertically is the forming of "grass" on the silicon surface, because of all kinds of micromasks deposited or grown on the silicon.
- low pressure oxygen plasmas are' used for etching polymers.
- such a plasma creates a high d.c. self-bias voltage which is responsible for substrate- and mask-damage.
- etching a polymer in low pressure RIE identical grass problems are observed as in the case of etching silicon.
- Etching rates and profiles are observed to depend on feature size (i.e. aspect ratio dependent etching: ARDE) and pattern density (i.e. microloading) for Si, SiO 2 , polymers, metals and group III-V elements also referred to as microscopic non-uniformities [15].
- feature size i.e. aspect ratio dependent etching: ARDE
- pattern density i.e. microloading
- MEMS electronic mechanical systems
- RIE Reactive Ion Etching
- RIE reactive ion etching
- a third object ⁇ f the present invention is to achieve highly controllable trench profiles by means of standard RIE.
- a next object of the present invention is to achieve high etch rates with good uniformity over the wafer.
- a further object of the invention is to use high pressure RIE (> 50 mTorr) during the trench etching in order to obtain very low d.c. self-bias voltages (down to 10 V) in order to prevent electronics already in the substrate to be damaged. Due to the low bias voltage it is easy to bend the incoming ions to the sidewalls in order to create all kinds of profiles.
- the ion energy is between 10 en 90 eV, preferably between 10 and 50, particularly between 10 and 20 eV. Such low voltages are unique for relative simple RIE equipments. As a further important advantage of the low ion energy, the very high mask selectivity is mentioned. So only very thin metal layers ( ⁇ 50 nm) will suffice to etch deep trenches.
- a still further object of the invention is to add CHF 3 or another halocarbon in to the SF g 0 2 plasma to prevent the forming of grass to get very smooth sidewalls and bottoms. At the same time it is possible to control the trench profile very easy and accurate with this halocarbon adding.
- Another object of the present invention is to use the Black Silicon Method together with the profiles and d.c. bias voltage diagrams. The diagrams include the influence of the oxygen and CHF 3 content and the influence of the power and pressure on the trench profile and d.c. bias voltage. Herein, the formation of "grass" is used to find the desired profile.
- Yet another object is to prevent ARDE effects such as RIE lag and sidewall bowing by varying the gas mixture while using the BSM.
- the tip radius is smaller than 5 nm while using an insulating mask for the tip mask [17].
- the one-run multi-step process proposed according to the invention is a more sophisticated dry release technique able to extend the limits of microtechnology.
- a MEM comb-driven xy-stage is given.
- very deep trenches up to 200 ⁇ m
- high aspect ratios of about 10 or higher
- silicon and polymers can be etched using a fluorine-based plasma, such as SF 6 0 2 /CHF 3 .
- Isotropic, positively and negatively (i.e. reverse) tapered as well as tully vertical walls with smooth surfaces are achieved in silicon or in polymers by controlling the plasma chemistry, which is independent of crystal orientation and doping.
- a convenient way to find the processing conditions needed for a vertical wall is described: the Black Silicon Method. This new procedure is checked for three different Reactive Ion
- MEMS can be manufactured in a on-run multi-step dry REE process which uses e.g. commercially available silicon on insulator (SOI) wafers.
- SOI silicon on insulator
- the process comprises, after step b), the step of: c) etching the floor of the primary microstructure using said first silicon etch gas.
- the process according to the invention further comprises the step of: e) depositing a halocarbon film on the surface of the final microstructure.
- each gas has a specific function and influence, so the etched profile is easily controlled just by changing the flow rate of one of these gases.
- SF 6 produces the F* radicals for the chemical etching of the silicon forming the volatile SiF 4
- O 2 creates the O* radicals to passivate the silicon surface with SiO ⁇ F
- CHF 3 (or another halocarbon) is the source for the CF ⁇ + (or other halocarbon) ions which etch the SiO ⁇ F layer in one direction forming the volatile CO ⁇ F y .
- SF X + ions are also able to remove the oxyfluoride by way of the volatile SO ⁇ F gases, but the SF 6 flow is fixed on the 0 2 flow to ensure a vertical wall.
- the CHF 3 gas is a nearly independent source of oxyfluoride etching ions.
- the SF 6 O 2 /CHF 3 chemistry allows etching of highly controllable profiles in silicon at very low ion energies (10-90eV) and high etch rates (up to 5 ⁇ m/min).
- the low ion energy prevents substrate damage (electronics), mask erosion (the selectivity to metal masks is practically infinite), and makes it easy to change the profile of the trench.
- the ion energy is ruled by the potential which is developed between the plasma and the powered electrode; the d.c. self-bias.
- the d.c. self-bias decreases when the power decreases or the pressure increases.
- the pressure may be e.g.
- SF 6 /O 2 /CHF 3 plasma is described here as suitable for the process of the invention, the process also works with other silicon etch gases e.g. CF , NF 3 , SiF 4 , CF 3 Br, CC1 4 or Cl 2 .
- silicon etch gases e.g. CF , NF 3 , SiF 4 , CF 3 Br, CC1 4 or Cl 2 .
- every plasma mixture which consists of a chemical etchant, a passivator and an ion source can be used, even when the substrate is not silicon, but e.g. a polymer.
- trifluoromethane (CHF 3 ) can be used as a source of
- CHal ⁇ * species examples include other halomethanes and haloethanes containing a plurality of fluorine and/or chlorine atoms, preferably fluorine atoms. If the halocarbon does not contain hydrogen atoms (such as CF 4 and C 2 F 6 ), it is preferred that hydrogen (H ⁇ is added.
- the silicon loading of the substrate should be sufficiently high, e.g. at least 10%. If the substrate has a lower silicon loading, additional silicon may be added to the etching chamber in any form.
- the present process can also be used for etching polymer structures such as polyimides, polycarbonates, polyacrylates (PMMA) and polystyrene.
- THE BLACK SILICON METHOD A strong method is found to determine the vertical profile regime. This method uses the fact that the silicon is turned black when the vertical wall recipe is found. This method will be called the "Black Silicon Method". Before the Black Silicon Method is formulated below, the reason for this effect will be explained and a way to get rid of this blackening will be described. The origin of black silicon: As stated, there is a constant competition between the fluorine radicals that etch and the oxygen radicals that passivate the silicon. At a certain oxygen content there is such a balance between the etching and the passivation that a nearly vertical wall results.
- spikes will appear.
- These spikes consist of a silicon body with a thin passivating siliconoxyfluoride skin. They will become higher in time and, depending on the etch rate, they will exceed the wavelength of incoming light after some time. This light will be "caught” in the areas between the spikes and cannot leave the silicon surface any more. So, all the light is collected by the etching surface and it is turned into black. In fact, this optical diffuser could be used for all kinds of applications where the reflection of light from the surrounding is not desired, e.g. laser applications or sunlight collectors.
- An etched silicon piece under directional conditions may result in spikes which are 50 ⁇ m in height and a few ⁇ m in width.
- the origin of micromasks is caused by native oxide, dust, and so on, which is already on the wafer before etching. However, they are also formed during the etching because silicon oxide particles coming from the plasma are ad ⁇ sorbing at the silicon surface or because of the oxidation of the silicon surface together with the angle dependent ion etching of this oxide layer.
- Another source of particles during etching which will act as micromasks is the resputtering of mask material due to imparting ions.
- Preventing black silicon Spikes which are formed because of dirty wafers before etching are easily controlled by giving the wafer a precleaning step. For instance, native oxide can be removed with the help of an HF dip and dust is less a problem when using the lift-off technique in applying the mask layer, instead of the normally used chemical etching of the mask material with the help of a resist pattern.
- the micromasks which originate during etching must be controlled in a different way. First of all, the resputtering of mask material can be suppressed when the ion energy is low or when the right materials are chosen.
- the silicon oxide particles are less a problem when the selectivity between the silicon and the silicon oxide is minimised, but this only occurs when the incoming ions are highly energetic and at these moments the process is not favourable any more because of substrate damage and the just mentioned mask erosion.
- it is possible to prevent spikes from forming by constantly underetching the micromasks isotropically or etching the features with a slightly negative undercut.
- the isotropic solution makes only sense when it is used as a post etch, because otherwise the feature density is limited.
- the negative underetching is an excellent way to control the smoothness of the substrate surface barely limiting the feature size density.
- CHF 3 to an SF 6 /0 2 plasma is described and its ability to prevent grass.
- Yet another approach to attack the grass problem is the application of different masks.
- the Black Silicon Method is tested for three different REE systems. Most experiments are performed with a plan parallel plate reactor "plasmafab 340" from the STS company and a second plan parallel plate single wafer reactor “plasmathe ⁇ n 500" showed identical results.
- a third system, the hexode "AME-8100" from Applied Materials, is used for the batch fabrication of silicon wafers and is also able to achieve vertical profiles.
- the etch rates are approximately one order in magnitude lower than for the single wafer etchers and for this reason less powerful. This is because the wafers are much longer exposed to the aggressive plasma chemistry giving rise to surface roughening when etching very deep trenches in silicon. The etch rate can be increased by decreasing the reactor loading.
- Sharp positively tapered silicon tips for AFM applications can be fabricated with the BSM in allowing a controllable underetching. It is possible to fabricate spikes having an aspect ratio of 50 or more and a tip radius smaller than 5 nm. To achieve such sharp tips a remarkable phenomena is used which occurs during the REE of these tips. When an insulating mask is used for the pattern transfer, this mask will slip over after the mask is completely underetched. This is caused by electrostatic forces which exist during the REE of silicon. This mask is protecting the sharp tip after that moment from incoming energetic ions, so overetching is not a big problem.
- the Black Silicon Method was developed for silicon trench etching, but it is found that this method works for polymer trench etching as well. Although the appearance of a polymer surface after anisotropic etching is not black but rather diffuse, the mechanism is the same. For this reason a more general name for this method is chosen; the Black Substrate Method. THE BLACK SILICON METHOD (BSM) MULTI-STEP ONE-RUN To solve the problems connected with releasing the etched microstructures, a new technique has been developed which has the ability to etch, passivate, and release MEMS in one run. This technique, the so-called BSM multi-step one-run process, is developed on an Electrotech, Plasmafab 310-340 twin deposition/etch parallel-plate system operating at 13.56 MHz, but is not restricted to that system.
- the technique starts with commercially available SOI (Silicon On Insulator) wafers. After the deposition of a 30 nm (lift-off) mask for the pattern definition, the movable structures can be fabricated in only one RIE run with four individual steps): 1) The (an)isotropic REE (SF f /O ⁇ /CHF ⁇ of the top Si, 2) the REE (CHF 3 ) of the insulator together with the passivation (C ⁇ F y film) of the sidewalls of the structures, 3) the REE (SF 6 /O 2 /CHF 3 ) of the floor, and 4) the REE (SF 6 ) of the bulk Si.
- SOI Silicon On Insulator
- the process can be finished with a conformal step coverage of a C ⁇ F film to protect the released structures from the environment [14].
- these fluorocarbon (FC) films do have an extremely low surface tension and therefore they repel water and others. With this technique it is possible to release long thin Si beams successfully. Examples of the steps are summarised below:
- SIMPLE Silicon Micromachining by single step PLasma
- Anisotropic etching The profile has to be vertical with a little underetch making it possible to deposit a FC layer where no ion bombardment occurs i.e. under the "roof of the mask.
- the profile can be adjusted by using the BSM method. Also RIE-lag can be suppressed by applying this method.
- the etch process has to be stopped, to avoid unwanted under etching. This is a crucial step because when the SiO 2 is reached, the loading is decreasing causing a strong enhancement in lateral etching. The etching process is stopped by e.g. visual inspection.
- FC is a function of e.g. pressure and self-bias. This layer is protection the sidewalls during isotropic etching.
- power flux 0.3 W/cm 2
- self-bias 40 V
- pressure 75 mTorr
- Isotropic etching Before starting the isotropic etching with an SF 6 plasma it is necessary to "clear" the floor of the trenches first with an oxygen-based plasma such as SF 6 O 2 /CHF 3 .
- BSM SISI A disadvantage of the BSM SOI technique is that -after releasing the free hanging structures- deep trenches are found and the under etch rate is limited due to the relatively high Si loading.
- SISI Silicon on Insulator on Silicon on Insulator
- BSM SCS This technique is strongly correlated to the SCREAM process [9]. Differences are that the BSM SCS process is fluorine-based whereas the SCREAM process is chlorine-based and the passivation of the sidewalls is different. SCREAM uses Si0 2 which is deposited with a different apparatus and stress could be a notorious problem. BSM SCS uses "in-situ" deposited fluorocarbon (FC) to protect the sidewalls. FC has a low Youngs modulus of elasticity and therefore it does not suffer from stress effects like bending or buckling.
- BSM EPI This technique is related to the SIMPLE process [16]. However, SIMPLE is chlorine-based whereas BSM EPI is fluorine-based. Advantages of fluorine over chlorine is the much higher under etch rate for fluorine-based plasmas. Moreover, the doping level is not restricted to highly doped arsenic (As) as a doping impurity.
- the present invention is directed to a new and unique process for the fabrication of deep trenches in to a substrate using a non-toxic and non-hazardous, preferably fluorine-based mixture in an inexpensive "standard" reactive ion etcher with excellent profile control, high aspect ratio, high etch rates, good uniformity, high selectivity, low surface-damage and -roughening.
- the process provides a significant advantage in the manufacture of deep trenches at very low d.c. bias voltages for their use in e.g. submicron transistor trench isolation, MEMS applications (e.g. electrostatic actuators or smart sensors), and the fabrication of cheap silicon or polymer-based moulds.
- MEMS applications e.g. electrostatic actuators or smart sensors
- the formation of grass can be used positively in sunlight collectors and anti-reflection coatings for e.g. laser applications.
- the BSM multi-step one-run process is favourable for the releasing of MEMS with long thin beams. It includes the Black Silicon Method as an excellent tool for profile control and to suppress RIE-lag. Instead of SiO 2 , a thin metal (30 nm Cr) layer is used as a mask, which has an almost infinite selectivity with respect to Si and creates less additional stress problems (bending).
- the fluorocarbon layer has a low Young's modulus which prevents stress problems in long thin beams (buckling).
- the intermediate layer of SOI prevents the beam for hollowing out during the isotropic etch making an exact definition of the structure height possible.
- Wafers which are purposely not cleaned or even oxidised in an oxygen plasma and etched in the Black Silicon Regime can be used as an optical diffuser for e.g. laser applications. It is possible to create spikes at well-defined locations in order to form a tip for the use in AFM applications.
- FIG 1 a micromachined xy -stage is shown. The structure is etched during one run with standard REE. After the directional etching, the sidewalls are passivated using a low pressure CHF3 plasma and the xy stage is etched free with the help of an isotropic SF 6 plasma.
- the structure is passivated with a fluorocarbon layer using a high pressure CHF 3 plasma [14].
- CHF 3 plasma a high pressure CHF 3 plasma [14].
- the Black Silicon Method is described for the SF 6 /O 2 /CHF 3 plasma, it will also works for other silicon etch gases e.g. CF 4 , NF 3 , SiF 4 , CF 3 Br, CC1 4 or Cl 2 .
- every plasma mixture which consists of a chemical etchant, a passivator and an ion source can be used for the Black Silicon Method, even when the substrate is not silicon at all but e.g. a polymer. All together it is shown that the Black Silicon Method is a very strong tool for etching high structures with excellent profile control using an SF 6 /0 2 /CHF 3 plasma.
- the black silicon method is a powerful tool in finding recipes for the fabrication of MEMS building blocks (trenches, needles) such as, scanning probe tips, multi-electrodes for neuroelectronic interfaces, micro filtration systems, shadow masks, suspensions for rigid disk data storage, micromoulds, submicron trenches for IC- applications, gratings for biomedical and optical applications, membrane structures for tunable ER filters, integration of sensors and actuators with Integrated-circuits and components for liquid handling systems (e.g. pumps valves)
- MEMS building blocks such as, scanning probe tips, multi-electrodes for neuroelectronic interfaces, micro filtration systems, shadow masks, suspensions for rigid disk data storage, micromoulds, submicron trenches for IC- applications, gratings for biomedical and optical applications, membrane structures for tunable ER filters, integration of sensors and actuators with Integrated-circuits and components for liquid handling systems (e.g. pumps valves)
- deep trenches can be etched in silicon or polymers using the SF 0 2 gas mixture to which CHF 3 or another halocarbon may be added. If desired, the silicon etch process is independent of crystal orientation and doping.
- deep trenches can be etched in silicon or polymers with excellent profile control. Isotropic, positively and negatively (i.e. reverse) tapered as well as fully vertical walls are achieved by controlling the plasma chemistry (i.e the gas flows, the pressure, and the power density).
- deep trenches can be etched in silicon or polymers with aspect ratios ranging of at least 10, or in case of polymers, up to 20 or even 30.
- cryogenic cooling and/or new plasma sources such as Inductively Coupled Plasma (ICP)
- ICP Inductively Coupled Plasma
- Etch rates ranging up to 5 microns per minute and an etch uniformity better than 5%. over the wafer can be achieved.
- deep trenches can be etched in silicon or polymers with mask selectivity greater than 10,000 or even greater than 100,000 for metals and greater than a thousand for silicon dioxide.
- the deep trenches can be obtained in silicon or polymers with a surface roughness lower than 100 nm of trenches more than 100 microns deep.
- Devices can also be passivated completely with a halocarbon polymer using a high pressure CHF 3 or other halocarbon plasma.
- the deposition can be performed at the target plates (i.e. the powered electrode) of the REE, in the plasma glow, or downstream.
- the properties of the deposited coating/polymer can be varied as desired.
- Silicon sunlight collectors can be manufactured, wherein the surface etched is completely black as a result of the black silicon regime.
- the black silicon absorbs all the incoming light, making a high efficiency sunlight collector.
- Another use of the black silicon is as an anti-reflection coating in e.g. laser applications.
- micromachined xy-stage is shown fabricated with the help of the BSM
- FIG. 2 shows the essential steps of the present process.
- deep submicron trench isolation for e.g. vertical transistors can be etched.
- An important feature of the invention is the very low bias voltage which is needed to create these openings, and as a result, electronics are not damaged during the trench etching.
- the present process also allows the production of moulds for duplication applications. For these applications slightly positively tapered moulds are needed with a low surface roughness. Release of the mould is made much easier by the deposit of an anti- sticking layer on top of the freshly etched silicon mould. After the filling and hardening of the duplication polymer in the silicon mould, the duplication polymer is released easily because of the low adhesion of the anti-sticking layer.
- the anti-sticking layer can be deposited with e.g. the same RIE apparatus, using the halocarbon plasma described above.
- Scanning probe tips, needles All kinds of tips can be created with profiles and radii on request for AFM, STM, MFM applications. Sharp positively tapered silicon tips for AFM applications can be fabricated with the BSM in allowing a controllable under etching. It is possible to fabricate spikes having an aspect ratio of 50 or more and a tip radius smaller than 5 nm. Changing the chemistry in a different direction (eg. more CHF3) creates negatively tapered profiles. These probes can be used for filter or MFM applications. The same approach can be used for fabrication of an array of needles for 3D neuro-electronic interface devices for neuromuscular control and also needles for injection of DNA into cells can be fabricated.
- Microfiltration systems Micro filtration sieve membrane sieve for industrial and biomedical applications.(e.g inkjet filters for printers, blood filtration, beer filtration)) Shadow masks: For the fabrication of high resolution mask patterning in deep holes and its application to an electrical wafer feed through.
- Suspensions for rigid disk storage media Silicon micromachined slider suspension with integrated friction forces sensors for rigid disk storage media.
- Micromoulds A variety of mould inserts (in polymers, semiconductors, metals, insulators) can be fabricated, either for electroplating and/or for moulding and embossing processes. These mouldings can also be used for direct patterning in polymers. For instance for filter applications
- Gratings Gratings with dimensions of 0.1 micron up to hundreds of microns for bio-medical applications and optical applications can be constructed.
- Suhmicron structures Submicron trench etching for IC-applications (DRAM, SRAM devices).
- the black silicon one run process is a powerful tool for the fabrication of movable structures for micro electromechanical systems (MEMS) using single crystalline silicon (SCS) substrates, polymer substrates, metal substrates (Ti) or multilayer substrates (e.g. SOI, BESOI, SIMOX, epiwafers with buried layers and SISI multilayer wafers).
- SCS single crystalline silicon
- Ti metal substrates
- multilayer substrates e.g. SOI, BESOI, SIMOX, epiwafers with buried layers and SISI multilayer wafers.
- electrostatically driven xy-stages for AFM, STM, MFM and XPS applications and stepping motors for high resolution positioning over large distance;
- Other examples are accelerometers with displacement sensor, electrostatic voltameter, static friction sensor, impact test sensor, resonant microstructure, electromechanical filter, vibromotor optical shutter, tuning fork rate gyroscopes, electromechanical transistor, microgrippers, fibercutters, logic elements., micromotors, microturbines, robotics, active joints, microflies, microphones, microrelays, microswitches, and gas flow meters.
- Starting wafer p- or n-type, e.g. 300 microns thick SCS, SOI or EPI.
- a thin (e.g. 50 nm) metal layer e.g. Cr, Al, Ni, or Y
- a thin metal layer e.g. Cr, Al, Ni, or Y
- a pure SF 6 (or other fluorine-based) plasma is started, optionally mixed with nitrogen or oxygen to increase fluorine atom concentration in the plasma and thus the etch rate.
- SF 6 or other fluorine-based plasma
- nitrogen or oxygen to increase fluorine atom concentration in the plasma and thus the etch rate.
- Figure 1 shows a micromachined xy stage etched withe help of the present Black
- Step i deposition and patenting mask
- step ⁇ anisotropic etching
- step iii deposition PECVD oxide protection
- step iv local reomval
- FIG. 3 is diagram showing the influence of power, pressure and flow on the profile.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Nanotechnology (AREA)
- Chemical & Material Sciences (AREA)
- Geometry (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Automation & Control Theory (AREA)
- Plasma & Fusion (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Drying Of Semiconductors (AREA)
Abstract
L'invention concerne un procédé de fabrication de structures micromécaniques attaquées chimiquement au moyen d'une technique d'attaque par ions réactifs (RIE) qui consiste à attaquer un substrat à l'aide d'un mélange de gaz d'attaque de silicium, de sorte qu'un rapport de forme d'au moins 10 soit obtenu. Ce procédé comprend les étapes suivantes: a) attaque anisotrope au moyen d'un premier gaz d'attaque de silicium, pour la production d'une microstructure primaire; b) dépôt d'une pellicule d'hydrocarbure halogéné sur les parois de la microstructure primaire; d) attaque isotrope au moyen d'un deuxième gaz d'attaque de silicium, pour la production d'une microstructure finale; lesdites étapes étant réalisées en une seule opération. D'autres étapes éventuelles consistent à: c) attaquer le plancher de la microstructure primaire au moyen dudit premier gaz d'attaque de silicium; e) déposer une pellicule d'hydrocarbure halogéné sur la surface de la microstructure finale. On peut éventuellement appliquer une pression élevée (5 - 30 Pa) et une énergie faible (10-90 eV) et utiliser, de préférence, un plasma d'hexafluorure de soufre/oxygène/trifluorométhane. On peut commander le procédé en contrôlant le noircissement d'une surface de silicium d'essai en fonction de la variation des paramètres de traitement.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU26839/95A AU2683995A (en) | 1994-09-02 | 1995-06-22 | Process for producing micromechanical structures by means of reactive ion etching |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP94202519 | 1994-09-02 | ||
EP94202519.8 | 1994-09-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1996008036A1 true WO1996008036A1 (fr) | 1996-03-14 |
Family
ID=8217159
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/NL1995/000221 WO1996008036A1 (fr) | 1994-09-02 | 1995-06-22 | Procede de fabrication de structures micromecaniques au moyen d'une technique d'attaque par ions reactifs |
Country Status (2)
Country | Link |
---|---|
AU (1) | AU2683995A (fr) |
WO (1) | WO1996008036A1 (fr) |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL1006118C2 (nl) * | 1997-05-24 | 1998-11-25 | Koninkl Grolsch N V | Inrichting voor het filtreren van een gefermenteerde vloeistof. |
WO2000017095A1 (fr) * | 1998-09-24 | 2000-03-30 | Infineon Technologies Ag | Structure de controle pour la fabrication d'espaces creux ou de zones de gravure sous-jacente dans des composants micromecaniques et/ou microelectroniques |
DE19847455A1 (de) * | 1998-10-15 | 2000-04-27 | Bosch Gmbh Robert | Verfahren zur Bearbeitung von Silizium mittels Ätzprozessen |
US6084257A (en) * | 1995-05-24 | 2000-07-04 | Lucas Novasensor | Single crystal silicon sensor with high aspect ratio and curvilinear structures |
EP0964456A3 (fr) * | 1998-06-09 | 2000-08-09 | Siemens Aktiengesellschaft | Condensateur à sillon profond |
WO2000016041A3 (fr) * | 1998-09-12 | 2000-09-28 | Secr Defence | Formation de barreaux suspendus au moyen de substrats soi et application a la fabrication d'un gyrometre vibrant |
WO2001011666A3 (fr) * | 1999-08-11 | 2001-08-16 | Adc Telecommunications Inc | Procede d'attaque de couche de tranche au moyen des couches multiples du meme materiau photoresistant et structure ainsi formee |
US6316796B1 (en) | 1995-05-24 | 2001-11-13 | Lucas Novasensor | Single crystal silicon sensor with high aspect ratio and curvilinear structures |
WO2002029858A3 (fr) * | 2000-09-29 | 2003-02-13 | Infineon Technologies Corp | Procede de gravure de tranchees profondes destine a reduire ou eliminer la formation de silicium noir |
EP1316993A1 (fr) * | 2001-11-29 | 2003-06-04 | Denselight Semiconductors Pte Ltd. | Gravure de semi-conducteurs |
WO2002062698A3 (fr) * | 2001-02-06 | 2003-07-17 | Bosch Gmbh Robert | Procede de realisation de structures superficielles micromecaniques, et capteur |
RU2211504C1 (ru) * | 2002-07-25 | 2003-08-27 | Государственное образовательное учреждение высшего и послевузовского образования Нижегородский государственный технический университет | Способ изготовления упругих элементов из монокристаллического кремния |
WO2004016547A1 (fr) * | 2002-08-02 | 2004-02-26 | Robert Bosch Gmbh | Procede pour fabriquer un dispositif micromecanique, notamment un miroir oscillant micromecanique |
EP1220010A3 (fr) * | 2000-12-29 | 2004-10-27 | Texas Instruments Incorporated | Méthodes de revêtement des dispositifs microméchaniques |
US6946362B2 (en) | 2002-09-06 | 2005-09-20 | Hewlett-Packard Development Company, L.P. | Method and apparatus for forming high surface area material films and membranes |
WO2007051313A1 (fr) * | 2005-11-07 | 2007-05-10 | Fibics Incorporated | Procedes de montage de circuits au moyen de faisceaux electroniques a faible energie d'impact |
WO2007042521A3 (fr) * | 2005-10-10 | 2008-06-12 | X Fab Semiconductor Foundries | Production de nanostructures en aiguilles auto-organisees et utilisations diverses de ces nanostructures |
EP1786027A3 (fr) * | 2005-11-14 | 2009-03-04 | Schott AG | Gravure au plasma de structures coniques |
EP1827871A4 (fr) * | 2004-12-23 | 2009-09-16 | Lam Res Corp | Procedes destines a eliminer du silicium noir et du carbure de silicium noir de surfaces d'electrodes de silicium et de carbure de silicium pour des appareils de traitement au plasma |
EP1325884B1 (fr) * | 2001-12-18 | 2010-02-17 | Samsung Electronics Co., Ltd. | Structure MEMS ayant un support/ancre fixe dans la couche sacrificielle, et sa méthode de fabrication |
US7709285B2 (en) | 2003-10-31 | 2010-05-04 | Epcos Ag | Method of manufacturing a MEMS device and MEMS device |
US8058086B2 (en) | 2005-10-10 | 2011-11-15 | X-Fab Semiconductor Foundries Ag | Self-organized pin-type nanostructures, and production thereof on silicon |
RU2648287C1 (ru) * | 2016-12-27 | 2018-03-23 | Акционерное общество "Научно-исследовательский институт физических измерений" | Способ изготовления упругих элементов микромеханических датчиков |
RU2662499C1 (ru) * | 2017-09-01 | 2018-07-26 | Общество ограниченной ответственности "Игла" | Способ изготовления микромеханических элементов из пластин монокристаллического кремния |
RU2695771C1 (ru) * | 2018-12-29 | 2019-07-25 | Общество с ограниченной ответственностью "Игла" | Способ изготовления микроиглы в интегральном исполнении с внутренними каналами |
WO2021064070A1 (fr) * | 2019-10-04 | 2021-04-08 | Photonik-Zentrum Kaiserslautern e.V. | Structuration d'une surface d'un matériau optique actif |
CN112768348A (zh) * | 2021-01-18 | 2021-05-07 | 复旦大学 | 一种铌酸锂材料刻蚀及提高侧壁角度的优化方法 |
CN114879458A (zh) * | 2022-05-31 | 2022-08-09 | 上海稷以科技有限公司 | 一种改善谐振腔牺牲层释放效率的方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3627311A1 (de) * | 1985-08-23 | 1987-02-26 | Intel Corp | Verfahren zum aetzen von silizium |
US4968585A (en) * | 1989-06-20 | 1990-11-06 | The Board Of Trustees Of The Leland Stanford Jr. University | Microfabricated cantilever stylus with integrated conical tip |
EP0413040A1 (fr) * | 1989-08-16 | 1991-02-20 | International Business Machines Corporation | Méthode de production de pointes ultrafines en silicium pour la profilométrie AFM/STM |
US5198390A (en) * | 1992-01-16 | 1993-03-30 | Cornell Research Foundation, Inc. | RIE process for fabricating submicron, silicon electromechanical structures |
US5201992A (en) * | 1990-07-12 | 1993-04-13 | Bell Communications Research, Inc. | Method for making tapered microminiature silicon structures |
EP0536968A2 (fr) * | 1991-10-08 | 1993-04-14 | Nec Corporation | Procédé de formation de trous de contact pendant la fabrication de composants semi-conducteurs |
EP0565212A2 (fr) * | 1986-12-19 | 1993-10-13 | Applied Materials, Inc. | Procédé de décapage par iodine pour silicium et silicides |
US5268070A (en) * | 1991-01-22 | 1993-12-07 | Sony Corporation | Dry etching method |
DE4317623A1 (de) * | 1993-05-27 | 1994-12-01 | Bosch Gmbh Robert | Verfahren und Vorrichtung zum anisotropen Plasmaätzen von Substraten |
-
1995
- 1995-06-22 AU AU26839/95A patent/AU2683995A/en not_active Abandoned
- 1995-06-22 WO PCT/NL1995/000221 patent/WO1996008036A1/fr active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3627311A1 (de) * | 1985-08-23 | 1987-02-26 | Intel Corp | Verfahren zum aetzen von silizium |
EP0565212A2 (fr) * | 1986-12-19 | 1993-10-13 | Applied Materials, Inc. | Procédé de décapage par iodine pour silicium et silicides |
US4968585A (en) * | 1989-06-20 | 1990-11-06 | The Board Of Trustees Of The Leland Stanford Jr. University | Microfabricated cantilever stylus with integrated conical tip |
EP0413040A1 (fr) * | 1989-08-16 | 1991-02-20 | International Business Machines Corporation | Méthode de production de pointes ultrafines en silicium pour la profilométrie AFM/STM |
US5201992A (en) * | 1990-07-12 | 1993-04-13 | Bell Communications Research, Inc. | Method for making tapered microminiature silicon structures |
US5268070A (en) * | 1991-01-22 | 1993-12-07 | Sony Corporation | Dry etching method |
EP0536968A2 (fr) * | 1991-10-08 | 1993-04-14 | Nec Corporation | Procédé de formation de trous de contact pendant la fabrication de composants semi-conducteurs |
US5198390A (en) * | 1992-01-16 | 1993-03-30 | Cornell Research Foundation, Inc. | RIE process for fabricating submicron, silicon electromechanical structures |
DE4317623A1 (de) * | 1993-05-27 | 1994-12-01 | Bosch Gmbh Robert | Verfahren und Vorrichtung zum anisotropen Plasmaätzen von Substraten |
Non-Patent Citations (3)
Title |
---|
DAVIS R J: "IMAGE POTENTIALS AND THE DRY ETCHING OF SUBMICRON TRENCHES WITH LOW -ENERGY IONS", APPLIED PHYSICS LETTERS, vol. 59, no. 14, 30 September 1991 (1991-09-30), pages 1717 - 1719, XP000250007 * |
MASAYUKI SATO: "LOW DAMAGE MAGNETRON ENHANCED REACTIVE ION ETCHING", JAPANESE JOURNAL OF APPLIED PHYSICS, SUPPLEMENTS, 27 August 1991 (1991-08-27), pages 225 - 227, XP000279447 * |
TSENGYOU SYAU ET AL: "REACTIVE ION ETCHING OF SILICON TRENCHES USING SF6/O2 GAS MIXTURES", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 138, no. 10, 1 October 1991 (1991-10-01), pages 3076 - 3081, XP000248018 * |
Cited By (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6316796B1 (en) | 1995-05-24 | 2001-11-13 | Lucas Novasensor | Single crystal silicon sensor with high aspect ratio and curvilinear structures |
US6084257A (en) * | 1995-05-24 | 2000-07-04 | Lucas Novasensor | Single crystal silicon sensor with high aspect ratio and curvilinear structures |
EP0879635A1 (fr) * | 1997-05-24 | 1998-11-25 | Koninklijke Grolsch N.V. | Dispositif pour filtrer un liquide fermenté |
NL1006118C2 (nl) * | 1997-05-24 | 1998-11-25 | Koninkl Grolsch N V | Inrichting voor het filtreren van een gefermenteerde vloeistof. |
EP0964456A3 (fr) * | 1998-06-09 | 2000-08-09 | Siemens Aktiengesellschaft | Condensateur à sillon profond |
US6103585A (en) * | 1998-06-09 | 2000-08-15 | Siemens Aktiengesellschaft | Method of forming deep trench capacitors |
WO2000016041A3 (fr) * | 1998-09-12 | 2000-09-28 | Secr Defence | Formation de barreaux suspendus au moyen de substrats soi et application a la fabrication d'un gyrometre vibrant |
US6276205B1 (en) | 1998-09-12 | 2001-08-21 | The Secretary Of State For Defence In Her Britanic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland | Micro-machining |
EP1808672A3 (fr) * | 1998-09-12 | 2009-06-17 | Qinetiq Limited | Améliorations concernant le micro-usinage |
WO2000017095A1 (fr) * | 1998-09-24 | 2000-03-30 | Infineon Technologies Ag | Structure de controle pour la fabrication d'espaces creux ou de zones de gravure sous-jacente dans des composants micromecaniques et/ou microelectroniques |
DE19847455A1 (de) * | 1998-10-15 | 2000-04-27 | Bosch Gmbh Robert | Verfahren zur Bearbeitung von Silizium mittels Ätzprozessen |
US6469361B2 (en) | 1999-08-11 | 2002-10-22 | Adc Telecommunications, Inc. | Semiconductor wafer |
US6316282B1 (en) | 1999-08-11 | 2001-11-13 | Adc Telecommunications, Inc. | Method of etching a wafer layer using multiple layers of the same photoresistant material |
WO2001011666A3 (fr) * | 1999-08-11 | 2001-08-16 | Adc Telecommunications Inc | Procede d'attaque de couche de tranche au moyen des couches multiples du meme materiau photoresistant et structure ainsi formee |
WO2002029858A3 (fr) * | 2000-09-29 | 2003-02-13 | Infineon Technologies Corp | Procede de gravure de tranchees profondes destine a reduire ou eliminer la formation de silicium noir |
EP1220010A3 (fr) * | 2000-12-29 | 2004-10-27 | Texas Instruments Incorporated | Méthodes de revêtement des dispositifs microméchaniques |
US7651734B2 (en) | 2000-12-29 | 2010-01-26 | Texas Instruments Incorporated | Micromechanical device fabrication |
WO2002062698A3 (fr) * | 2001-02-06 | 2003-07-17 | Bosch Gmbh Robert | Procede de realisation de structures superficielles micromecaniques, et capteur |
US6867061B2 (en) | 2001-02-06 | 2005-03-15 | Robert Bosch Gmbh | Method for producing surface micromechanical structures, and sensor |
EP1316993A1 (fr) * | 2001-11-29 | 2003-06-04 | Denselight Semiconductors Pte Ltd. | Gravure de semi-conducteurs |
EP1325884B1 (fr) * | 2001-12-18 | 2010-02-17 | Samsung Electronics Co., Ltd. | Structure MEMS ayant un support/ancre fixe dans la couche sacrificielle, et sa méthode de fabrication |
RU2211504C1 (ru) * | 2002-07-25 | 2003-08-27 | Государственное образовательное учреждение высшего и послевузовского образования Нижегородский государственный технический университет | Способ изготовления упругих элементов из монокристаллического кремния |
WO2004016547A1 (fr) * | 2002-08-02 | 2004-02-26 | Robert Bosch Gmbh | Procede pour fabriquer un dispositif micromecanique, notamment un miroir oscillant micromecanique |
US7261825B2 (en) | 2002-08-02 | 2007-08-28 | Robert Bosch Gmbh | Method for the production of a micromechanical device, particularly a micromechanical oscillating mirror device |
US6946362B2 (en) | 2002-09-06 | 2005-09-20 | Hewlett-Packard Development Company, L.P. | Method and apparatus for forming high surface area material films and membranes |
US7709285B2 (en) | 2003-10-31 | 2010-05-04 | Epcos Ag | Method of manufacturing a MEMS device and MEMS device |
EP1827871A4 (fr) * | 2004-12-23 | 2009-09-16 | Lam Res Corp | Procedes destines a eliminer du silicium noir et du carbure de silicium noir de surfaces d'electrodes de silicium et de carbure de silicium pour des appareils de traitement au plasma |
US8058086B2 (en) | 2005-10-10 | 2011-11-15 | X-Fab Semiconductor Foundries Ag | Self-organized pin-type nanostructures, and production thereof on silicon |
WO2007042521A3 (fr) * | 2005-10-10 | 2008-06-12 | X Fab Semiconductor Foundries | Production de nanostructures en aiguilles auto-organisees et utilisations diverses de ces nanostructures |
US8350209B2 (en) | 2005-10-10 | 2013-01-08 | X-Fab Semiconductor Foundries Ag | Production of self-organized pin-type nanostructures, and the rather extensive applications thereof |
WO2007051313A1 (fr) * | 2005-11-07 | 2007-05-10 | Fibics Incorporated | Procedes de montage de circuits au moyen de faisceaux electroniques a faible energie d'impact |
US8466415B2 (en) | 2005-11-07 | 2013-06-18 | Fibics Incorporated | Methods for performing circuit edit operations with low landing energy electron beams |
EP1786027A3 (fr) * | 2005-11-14 | 2009-03-04 | Schott AG | Gravure au plasma de structures coniques |
RU2648287C1 (ru) * | 2016-12-27 | 2018-03-23 | Акционерное общество "Научно-исследовательский институт физических измерений" | Способ изготовления упругих элементов микромеханических датчиков |
RU2662499C1 (ru) * | 2017-09-01 | 2018-07-26 | Общество ограниченной ответственности "Игла" | Способ изготовления микромеханических элементов из пластин монокристаллического кремния |
RU2695771C1 (ru) * | 2018-12-29 | 2019-07-25 | Общество с ограниченной ответственностью "Игла" | Способ изготовления микроиглы в интегральном исполнении с внутренними каналами |
WO2021064070A1 (fr) * | 2019-10-04 | 2021-04-08 | Photonik-Zentrum Kaiserslautern e.V. | Structuration d'une surface d'un matériau optique actif |
CN112768348A (zh) * | 2021-01-18 | 2021-05-07 | 复旦大学 | 一种铌酸锂材料刻蚀及提高侧壁角度的优化方法 |
CN112768348B (zh) * | 2021-01-18 | 2022-05-20 | 复旦大学 | 一种铌酸锂材料刻蚀及提高侧壁角度的优化方法 |
CN114879458A (zh) * | 2022-05-31 | 2022-08-09 | 上海稷以科技有限公司 | 一种改善谐振腔牺牲层释放效率的方法 |
Also Published As
Publication number | Publication date |
---|---|
AU2683995A (en) | 1996-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1996008036A1 (fr) | Procede de fabrication de structures micromecaniques au moyen d'une technique d'attaque par ions reactifs | |
Jansen et al. | The black silicon method: a universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control | |
US6808953B2 (en) | Gap tuning for surface micromachined structures in an epitaxial reactor | |
US7618548B2 (en) | Silicon-containing structure with deep etched features, and method of manufacture | |
Elwenspoek et al. | Silicon micromachining | |
Rangelow | Dry etching-based silicon micro-machining for MEMS | |
Lee et al. | Thermal annealing in hydrogen for 3-D profile transformation on silicon-on-insulator and sidewall roughness reduction | |
US6355181B1 (en) | Method and apparatus for manufacturing a micromechanical device | |
US20080023441A1 (en) | Method of deep etching | |
US20180065844A1 (en) | Material Structure and Method for Deep Silicon Carbide Etching | |
WO2006138126A2 (fr) | Substrat antifrottement statique pour systeme micro-electromecanique et procede de fabrication | |
Rangelow | Reactive ion etching for high aspect ratio silicon micromachining | |
Guckel et al. | Advances in processing techniques for silicon micromechanical devices with smooth surfaces | |
US6998059B2 (en) | Method for manufacturing a silicon sensor and a silicon sensor | |
Easter et al. | Characterization of High-Pressure $\hbox {XeF} _ {2} $ Vapor-Phase Silicon Etching for MEMS Processing | |
US10570010B1 (en) | Fabrication of multilayered carbon MEMS devices | |
WO2005071721A1 (fr) | Procede de gravure au plasma | |
Subasinghe et al. | High aspect ratio plasma etching of bulk lead zirconate titanate | |
Ganji et al. | Deep trenches in silicon structure using DRIE method with aluminum as an etching mask | |
US20140322918A1 (en) | Micro-posts having improved uniformity and a method of manufacture thereof | |
O'Brien et al. | Submicron high-aspect-ratio silicon beam etch | |
EP1241703B1 (fr) | Procédé de masquage de silicium pour la gravure anisotrope par voie humide | |
Bogue | Developments in advanced silicon etching techniques by STS Systems | |
Sasaki | Silicon etching for multiple-height microstructures | |
O’Brien et al. | Deep Reactive Ion Etched Submicron Beam/Trench Characterization |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AM AT AU BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU IS JP KE KG KP KR KZ LK LR LT LU LV MD MG MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TT UA UG US UZ VN |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): KE MW SD SZ UG AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
NENP | Non-entry into the national phase |
Ref country code: CA |
|
122 | Ep: pct application non-entry in european phase |