WO1996009078A1 - Formulations for delivery of osteogenic proteins - Google Patents
Formulations for delivery of osteogenic proteins Download PDFInfo
- Publication number
- WO1996009078A1 WO1996009078A1 PCT/US1995/009325 US9509325W WO9609078A1 WO 1996009078 A1 WO1996009078 A1 WO 1996009078A1 US 9509325 W US9509325 W US 9509325W WO 9609078 A1 WO9609078 A1 WO 9609078A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- particles
- fused
- sponge
- sponges
- liquid
- Prior art date
Links
- 102000004169 proteins and genes Human genes 0.000 title claims abstract description 52
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 52
- 239000000203 mixture Substances 0.000 title claims abstract description 46
- 230000002188 osteogenic effect Effects 0.000 title claims abstract description 39
- 238000009472 formulation Methods 0.000 title abstract description 21
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 86
- 229920000642 polymer Polymers 0.000 claims abstract description 30
- 239000004094 surface-active agent Substances 0.000 claims abstract description 21
- 239000002245 particle Substances 0.000 claims description 97
- 239000007788 liquid Substances 0.000 claims description 27
- 238000000034 method Methods 0.000 claims description 26
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 19
- 238000010438 heat treatment Methods 0.000 claims description 18
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 claims description 16
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 claims description 12
- 239000004310 lactic acid Substances 0.000 claims description 8
- 235000014655 lactic acid Nutrition 0.000 claims description 8
- 239000004793 Polystyrene Substances 0.000 claims description 7
- 229920002223 polystyrene Polymers 0.000 claims description 7
- 125000005233 alkylalcohol group Chemical group 0.000 claims description 6
- 238000001816 cooling Methods 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 2
- 239000011159 matrix material Substances 0.000 abstract description 15
- 239000000463 material Substances 0.000 abstract description 10
- 229920000136 polysorbate Polymers 0.000 abstract description 3
- 229950008882 polysorbate Drugs 0.000 abstract description 2
- 235000018102 proteins Nutrition 0.000 description 47
- 239000007943 implant Substances 0.000 description 15
- 230000011164 ossification Effects 0.000 description 15
- 210000000988 bone and bone Anatomy 0.000 description 14
- 230000000694 effects Effects 0.000 description 12
- 230000004927 fusion Effects 0.000 description 12
- -1 poly(vinyl alcohol) Polymers 0.000 description 10
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 9
- 229920000053 polysorbate 80 Polymers 0.000 description 9
- 230000001965 increasing effect Effects 0.000 description 8
- 239000011148 porous material Substances 0.000 description 8
- 239000007787 solid Substances 0.000 description 7
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 210000000845 cartilage Anatomy 0.000 description 6
- 229920001577 copolymer Polymers 0.000 description 6
- 239000004743 Polypropylene Substances 0.000 description 5
- 241000700159 Rattus Species 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 230000007547 defect Effects 0.000 description 5
- 229920001155 polypropylene Polymers 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 108010049931 Bone Morphogenetic Protein 2 Proteins 0.000 description 4
- 102100024506 Bone morphogenetic protein 2 Human genes 0.000 description 4
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 4
- 229930006000 Sucrose Natural products 0.000 description 4
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 4
- UCMIRNVEIXFBKS-UHFFFAOYSA-N beta-alanine Chemical compound NCCC(O)=O UCMIRNVEIXFBKS-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000008468 bone growth Effects 0.000 description 4
- 229960004275 glycolic acid Drugs 0.000 description 4
- 230000006698 induction Effects 0.000 description 4
- 239000000244 polyoxyethylene sorbitan monooleate Substances 0.000 description 4
- 229940068968 polysorbate 80 Drugs 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 239000005720 sucrose Substances 0.000 description 4
- RPAJSBKBKSSMLJ-DFWYDOINSA-N (2s)-2-aminopentanedioic acid;hydrochloride Chemical compound Cl.OC(=O)[C@@H](N)CCC(O)=O RPAJSBKBKSSMLJ-DFWYDOINSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 239000004475 Arginine Substances 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 3
- 208000027418 Wounds and injury Diseases 0.000 description 3
- 229940024606 amino acid Drugs 0.000 description 3
- 235000001014 amino acid Nutrition 0.000 description 3
- 150000001413 amino acids Chemical class 0.000 description 3
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 3
- 230000003115 biocidal effect Effects 0.000 description 3
- 238000006065 biodegradation reaction Methods 0.000 description 3
- 230000022159 cartilage development Effects 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 230000009477 glass transition Effects 0.000 description 3
- 229960003707 glutamic acid hydrochloride Drugs 0.000 description 3
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 3
- 238000000265 homogenisation Methods 0.000 description 3
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 3
- 208000014674 injury Diseases 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 3
- 239000008194 pharmaceutical composition Substances 0.000 description 3
- 239000004014 plasticizer Substances 0.000 description 3
- 230000008439 repair process Effects 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000004322 Butylated hydroxytoluene Substances 0.000 description 2
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 2
- 102000008186 Collagen Human genes 0.000 description 2
- 108010035532 Collagen Proteins 0.000 description 2
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 2
- CEAZRRDELHUEMR-URQXQFDESA-N Gentamicin Chemical compound O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N CEAZRRDELHUEMR-URQXQFDESA-N 0.000 description 2
- 229930182566 Gentamicin Natural products 0.000 description 2
- 239000004471 Glycine Substances 0.000 description 2
- ZRALSGWEFCBTJO-UHFFFAOYSA-N Guanidine Chemical compound NC(N)=N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 2
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 2
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 2
- 239000004472 Lysine Substances 0.000 description 2
- 229930195725 Mannitol Natural products 0.000 description 2
- 206010031252 Osteomyelitis Diseases 0.000 description 2
- 239000004809 Teflon Substances 0.000 description 2
- 229920006362 Teflon® Polymers 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 239000002639 bone cement Substances 0.000 description 2
- 239000007853 buffer solution Substances 0.000 description 2
- 235000010354 butylated hydroxytoluene Nutrition 0.000 description 2
- 229940095259 butylated hydroxytoluene Drugs 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Inorganic materials [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- ZOMBKNNSYQHRCA-UHFFFAOYSA-J calcium sulfate hemihydrate Chemical compound O.[Ca+2].[Ca+2].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O ZOMBKNNSYQHRCA-UHFFFAOYSA-J 0.000 description 2
- 229920001436 collagen Polymers 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 125000004494 ethyl ester group Chemical group 0.000 description 2
- BTCSSZJGUNDROE-UHFFFAOYSA-N gamma-aminobutyric acid Chemical compound NCCCC(O)=O BTCSSZJGUNDROE-UHFFFAOYSA-N 0.000 description 2
- 239000011507 gypsum plaster Substances 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 230000010874 maintenance of protein location Effects 0.000 description 2
- 239000000594 mannitol Substances 0.000 description 2
- 235000010355 mannitol Nutrition 0.000 description 2
- 239000002736 nonionic surfactant Substances 0.000 description 2
- 230000002138 osteoinductive effect Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000010188 recombinant method Methods 0.000 description 2
- 238000010079 rubber tapping Methods 0.000 description 2
- 239000003352 sequestering agent Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical compound OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229960003165 vancomycin Drugs 0.000 description 2
- MYPYJXKWCTUITO-LYRMYLQWSA-N vancomycin Chemical compound O([C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=C2C=C3C=C1OC1=CC=C(C=C1Cl)[C@@H](O)[C@H](C(N[C@@H](CC(N)=O)C(=O)N[C@H]3C(=O)N[C@H]1C(=O)N[C@H](C(N[C@@H](C3=CC(O)=CC(O)=C3C=3C(O)=CC=C1C=3)C(O)=O)=O)[C@H](O)C1=CC=C(C(=C1)Cl)O2)=O)NC(=O)[C@@H](CC(C)C)NC)[C@H]1C[C@](C)(N)[C@H](O)[C@H](C)O1 MYPYJXKWCTUITO-LYRMYLQWSA-N 0.000 description 2
- OGNSCSPNOLGXSM-UHFFFAOYSA-N (+/-)-DABA Natural products NCCC(N)C(O)=O OGNSCSPNOLGXSM-UHFFFAOYSA-N 0.000 description 1
- OORRCVPWRPVJEK-UHFFFAOYSA-N 2-oxidanylethanoic acid Chemical compound OCC(O)=O.OCC(O)=O OORRCVPWRPVJEK-UHFFFAOYSA-N 0.000 description 1
- KVZLHPXEUGJPAH-UHFFFAOYSA-N 2-oxidanylpropanoic acid Chemical compound CC(O)C(O)=O.CC(O)C(O)=O KVZLHPXEUGJPAH-UHFFFAOYSA-N 0.000 description 1
- 102100025908 5-oxoprolinase Human genes 0.000 description 1
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 1
- QYPPJABKJHAVHS-UHFFFAOYSA-N Agmatine Natural products NCCCCNC(N)=N QYPPJABKJHAVHS-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 108010007726 Bone Morphogenetic Proteins Proteins 0.000 description 1
- 102000007350 Bone Morphogenetic Proteins Human genes 0.000 description 1
- 208000020084 Bone disease Diseases 0.000 description 1
- 108090000654 Bone morphogenetic protein 1 Proteins 0.000 description 1
- 102100028728 Bone morphogenetic protein 1 Human genes 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 108010016626 Dipeptides Proteins 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 101000720962 Homo sapiens 5-oxoprolinase Proteins 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- CHJJGSNFBQVOTG-UHFFFAOYSA-N N-methyl-guanidine Natural products CNC(N)=N CHJJGSNFBQVOTG-UHFFFAOYSA-N 0.000 description 1
- 241000906034 Orthops Species 0.000 description 1
- RVGRUAULSDPKGF-UHFFFAOYSA-N Poloxamer Chemical compound C1CO1.CC1CO1 RVGRUAULSDPKGF-UHFFFAOYSA-N 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 208000007536 Thrombosis Diseases 0.000 description 1
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 1
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 1
- 102000009618 Transforming Growth Factors Human genes 0.000 description 1
- 108010009583 Transforming Growth Factors Proteins 0.000 description 1
- 108010059993 Vancomycin Proteins 0.000 description 1
- 229960000583 acetic acid Drugs 0.000 description 1
- 229920006222 acrylic ester polymer Polymers 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- QYPPJABKJHAVHS-UHFFFAOYSA-P agmatinium(2+) Chemical compound NC(=[NH2+])NCCCC[NH3+] QYPPJABKJHAVHS-UHFFFAOYSA-P 0.000 description 1
- 229940072056 alginate Drugs 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 210000001909 alveolar process Anatomy 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 230000000845 anti-microbial effect Effects 0.000 description 1
- 239000000504 antifibrinolytic agent Substances 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000003416 augmentation Effects 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 229940000635 beta-alanine Drugs 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 230000014461 bone development Effects 0.000 description 1
- 229940112869 bone morphogenetic protein Drugs 0.000 description 1
- 230000010478 bone regeneration Effects 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 230000036755 cellular response Effects 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- GICLSALZHXCILJ-UHFFFAOYSA-N ctk5a5089 Chemical compound NCC(O)=O.NCC(O)=O GICLSALZHXCILJ-UHFFFAOYSA-N 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 229960000633 dextran sulfate Drugs 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- SWSQBOPZIKWTGO-UHFFFAOYSA-N dimethylaminoamidine Natural products CN(C)C(N)=N SWSQBOPZIKWTGO-UHFFFAOYSA-N 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 229960003692 gamma aminobutyric acid Drugs 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 229940100125 glycine 25 mg Drugs 0.000 description 1
- 229960004198 guanidine Drugs 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 230000036512 infertility Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000004702 methyl esters Chemical class 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- 239000003094 microcapsule Substances 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000921 morphogenic effect Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 150000002905 orthoesters Chemical class 0.000 description 1
- 210000000963 osteoblast Anatomy 0.000 description 1
- 210000005009 osteogenic cell Anatomy 0.000 description 1
- 210000004663 osteoprogenitor cell Anatomy 0.000 description 1
- 230000003239 periodontal effect Effects 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- 229920001993 poloxamer 188 Polymers 0.000 description 1
- 229920000984 poly(propylene-co-fumarate) Polymers 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 229940068977 polysorbate 20 Drugs 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 235000010232 propyl p-hydroxybenzoate Nutrition 0.000 description 1
- 230000001012 protector Effects 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- 239000002510 pyrogen Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000013557 residual solvent Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 229960002668 sodium chloride Drugs 0.000 description 1
- 230000003381 solubilizing effect Effects 0.000 description 1
- 238000000935 solvent evaporation Methods 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- 229960005137 succinic acid Drugs 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 1
- 230000000451 tissue damage Effects 0.000 description 1
- 231100000827 tissue damage Toxicity 0.000 description 1
- MYPYJXKWCTUITO-UHFFFAOYSA-N vancomycin Natural products O1C(C(=C2)Cl)=CC=C2C(O)C(C(NC(C2=CC(O)=CC(O)=C2C=2C(O)=CC=C3C=2)C(O)=O)=O)NC(=O)C3NC(=O)C2NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(CC(C)C)NC)C(O)C(C=C3Cl)=CC=C3OC3=CC2=CC1=C3OC1OC(CO)C(O)C(O)C1OC1CC(C)(N)C(O)C(C)O1 MYPYJXKWCTUITO-UHFFFAOYSA-N 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/18—Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/18—Growth factors; Growth regulators
- A61K38/1875—Bone morphogenic factor; Osteogenins; Osteogenic factor; Bone-inducing factor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/69—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
- A61K47/6953—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a fibre, a textile, a slab or a sheet
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/22—Polypeptides or derivatives thereof, e.g. degradation products
- A61L27/227—Other specific proteins or polypeptides not covered by A61L27/222, A61L27/225 or A61L27/24
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/26—Mixtures of macromolecular compounds
Definitions
- the subject invention relates to the field of osteogenic proteins and pharmaceutical formulations thereof. More particularly, the subject invention involves pharmaceutical formulations designed to sequester osteogenic protein in sjju and to provide a bioresorbable scaffolding for a time sufficient to allow the protein to induce cartilage and/or bone formation through differentiation of uncommitted mesenchymal cells into osteoblasts.
- Osteogenic proteins are those proteins capable of inducing, or assisting in the induction of, cartilage and/or bone formation. Many such osteogenic proteins have in recent years been isolated and characterized, and some have been produced by recombinant methods. For example, so-called bone morphogenic proteins (BMP) have been isolated from demineralized bone tissue (see e.g. Urist US 4,455,256); a number of such BMP proteins have been produced by recombinant techniques (see e.g. Wang et al. US 4,877,864 and Wang et al. US 5,013,549); a family of transforming growth factors (TGF-or and TGF- ⁇ ) has been identified as potentially useful in the treatment of bone disease (see e.g.
- BMP bone morphogenic proteins
- TGF-or and TGF- ⁇ transforming growth factors
- 5,108,753 discloses that a successful carrier for OP must bind the protein, act as a slow release delivery system, accommodate each step of the cellular response during bone development, and protect the protein from nonspecific proteolysis, no formulations are suggested which contain components that specifically sequester the OP at the site where bone formation is desired.
- Ron et al., United States Patent 5, 171,579 discloses that the average surface area per porous particle is critical to optimize bone formation.
- Collagen matrices have also been used as delivery vehicles for osteogenic proteins (see e.g. Jeffries, U.S. 4,394,370), but collagen frequently causes undesirable antigenic reactions in patients. Therefore, there remains a need for a pharmaceutical formulation capable of sequestering osteogenic proteins at a site where induction of bone formation is desired for a time sufficient to allow safe, effective induction of such bone formation.
- osteogenic proteins can be sequestered at a site where bone inducing activity is desired using autogenous blood, without using antifibrinolytic agents, provided that a porous particulate polymer matrix is incorporated into the formulation.
- a porous particulate polymer matrix is incorporated into the formulation.
- Applicants have found that it is desirable to fabricate the porous particulate polymer matrix into the form of a fused sponge, which is preferably wettable and slightly malleable.
- the fused sponge may be made by wetting the porous particulate polymer matrix with a suitable liquid fusing composition.
- a preferred liquid fusing composition is comprised of 95% ethanol and 0.05% polysorbate or other non-ionic surfactant.
- the liquid composition may be added to the particles, preferably in a ratio of about 0.75 to about 0.85 liquidiparticles (v/v).
- the subject invention provides methods for preparing fused sponges useful as a carrier for osteogenic proteins.
- the invention comprises compositions comprising a pharmaceutically acceptable admixture of an osteogenic protein together with a fused sponge formed of a porous particulate polymer, the particles of which have been fused into a fused sponge form using appropriate processing.
- the formulations may optionally include other protein sequestering agents, particularly cellulosic materials.
- the methods and compositions of the present invention are useful for the preparation of formulations of osteoinductive proteins which can be used, among other uses, to promote the formation of cartilage and/or bone, for repair of tissue damage and fractures.
- the inventors have found that, by heating porous particulate polymeric material, preferably copolymers of lactic acid and glycolic acid (PLGA), to a temperature above its glass transition temperature (Tg), it is possible to fuse them together.
- Tg glass transition temperature
- heating PLGA particles alone results in co-polymer chain mobility and ultimately to particle collapse. This leads to a very dense, non-porous structure, which is undesirable.
- a liquid containing a lower alkyl alcohol i.e., -C 5
- a lower alkyl alcohol i.e., -C 5
- an external plasticizer which is a poor solvent or non-solvent for PLGA in a lower alkyl alcohol, such as ethanol, will lower the Tg of the polymer. If the external plasticizer has a low diffusion coefficient in the polymer, the surfaces of the polymer will fuse together before the particle fully collapses.
- the present invention comprises processes of preparing fused sponges of porous particulate polymer, which fused sponges are suitable for use as a carrier for osteogenic protein.
- the process comprises: a) preparing a mixture of particles of a porous particulate polymer, a lower alkyl alcohol and a surfactant; b) heating the mixture of step (a) until the particles form a fused sponge; c) optionally continuing to heat the mixture for an additional period of time at a temperature of about 45 to 60 °C; d) optionally cooling the mixture; and e) drying the mixture in the form of a fused sponge.
- the particles are made of co-polymers of lactic acid and glycolic acid.
- the porous particulate polymer matrix component useful in the practice of the subject invention is a polymeric material that can be formed into the fused sponges of porous particles as described below thereby providing in sity scaffolding for the osteogenic protein, while having biodegradable properties allowing for replacement by new bone growth.
- polymers which may be useful in the present invention include polymers of amino acids, orthoesters, anhydrides, propylene-co-fumarates, or a polymer of one or more ⁇ -hydroxy carboxylic acid monomers, (e.g. ⁇ -hydroxy acetic acid (glycolic acid) and/or ⁇ -hydroxy propionic acid (lactic acid)).
- the latter can be employed in its d- or 1- form, or as a racemic mixture, the racemic mixture being preferred.
- the preferred polymers for use in preparing the formulations of the present invention are copolymers of lactic acid and glycolic acid (PLGA).
- the molar ratio of monomers can range from 1:99 to 99: 1 depending upon the desired bioerosion lifetime which in turn depends upon the clinical indication being addressed, as more than 50% of either monomer gives longer bioerosion lifetime (slower biodegradation).
- the molecular weight of the polymer can range from about 1 ,000 to 100,000 (relative to polystyrene in CHC1 3 ) with 30,000- 50,000 being preferred when a 50:50 copolymer is employed. In general, the higher the molecular weight, the slower the biodegradation.
- the polymeric matrix component of the subject invention is used in the form of highly porous to hollow (with surface porosity) particles, hereinafter collectively referred to as "porous particles.”
- porous particles are generally spherical having diameters of 150 to 850 ⁇ m, preferably 150 to 500 ⁇ , most preferably 300 to 500 ⁇ m. This particle size creates sufficient spacing between particles to allow mammalian osteoprogenitor cells to infiltrate and be positively influenced by (evidenced by an increase in osteogenic activity/bone growth rate) the osteogenic protein.
- United States Patent 5, 171,579 discloses that the average surface area per porous particle is critical to optimize bone formation. Specifically, porous particles useful in bone formation according to the present invention should have an average surface area of from about 0.02 to 4 m 2 /g. The disclosure of United States Patent 5,171,579 is hereby incorporated herein by reference.
- WO 93/06872 further discloses that it is possible to produce porous particles having the desired surface area by introducing a "porosigen" (composition capable of imparting porosity by increasing particle surface area) into the solution used to produce the porous particles. The disclosure of WO 93/06872 is hereby incorporated herein by reference.
- a preferred method of production of the porous particles useful in the invention is, generally speaking, a solvent evaporation process comprising dissolving the polymer (in e.g. CH 2 C1 2 ), and adding a porosigen such as NaCl, mannitol or sucrose in solid and/or liquid form.
- a porosigen such as NaCl, mannitol or sucrose in solid and/or liquid form.
- Another preferred method of production of the porous particles useful in the invention is a solvent extraction method, wherein the porosigen is added in liquid form with concomitant homogenization.
- the matrix-porosigen solution takes the form of an emulsion.
- the matrix- porosigen emulsion is added to an excess aqueous solution containing surfactant such as poly(vinyl alcohol) with controlled stirring and temperature.
- surfactant such as poly(vinyl alcohol)
- PLGA particles useful in the subject invention made utilizing 50% NaCl as a porosigen have a surface area of between about 0.2 and 0.6 m 2 /g; and particles made using sucrose as a porosigen have a surface area of between about 0.04 and 0.09 m 2 /g.
- PLGA particles useful in the present invention made using liquid porosigen with homogenization have a surface area of between about 0.02 and 4 m 2 /g.
- Other methods of preparing porous particulate polymer for use in the present invention, in which the above steps can be varied and additional steps can be performed are within the skill of the art.
- the liquid useful for fusing the porous particulate polymer to form a fused sponge comprises a lower alkyl alcohol, preferably ethanol, and may further comprise a surfactant.
- the alcohol is preferably in a concentration of from about 50% to about 100% volume/volume, more preferably from about 70% to about 100% .
- the most preferred concentration of ethanol is about
- the surfactant useful in the liquid is preferably a non-ionic surfactant, such as a polyoxyester, for example polysorbate 80, polysorbate 20 or Pluronic F-68.
- the most preferred surfactants include Polysorbate 80, commercially available as Tween 80.
- the surfactant is preferably present in a range from about 0 to about 4% volume/volume, more preferably from about 0.01 to about 0.05%.
- the ratio of total liquid:solid during heating that is the ratio of ethanol and surfactant to particles, is from about 0.70 to about 0.90 volume/volume. It is most preferred that the liquid: solid ratio be in the range from about 0.75 to about 0.85.
- the container useful for heating the particles and liquid is preferably made of polystyrene. Other materials known in the art, such as polypropylene, may also be useful containers for heating the particles.
- the container is sealed.
- the container is preferably in the shape and size which is desired for the fused sponge, such as rectangular or cylindrical. Alternatively, the fused sponge may be cut to a preferred size or shape after formation of the fused sponge.
- the container is used as a mold for the formation of a fused sponge.
- the liquid and the particles may be added to the container in any order or simultaneously. After being added to the container, the liquid and particles are mixed, stirred or otherwise manipulated to ensure even distribution of the liquid and the particles.
- the liquid and particles mixture is heated at a temperature and for a period of time sufficient to form a fused sponge structure, preferably from about 1 to about 60 minutes until the particles and liquid reach a temperature of about 45 to 60°C.
- the heating may be accomplished using any suitable heating means. Heating is preferably accomplished using a circulating water bath. Fusion may be accomplished at a constant temperature, or using a temperature gradient. If a constant temperature is used, it is preferably about 60 °C and the mixture is preferably heated for a period of time suitable to allow fusion of the particles and liquid into a fused sponge, generally, about 1 to 60 minutes, most preferably about 10 minutes.
- the heating preferably begins at a temperature of about 26°C to about 40°C and the temperature increased at an acceptable rate, preferably about 1.7 ⁇ C/minute, until it reaches about 45 to 60°C, most preferably about 60°C.
- the container may be removed immediately from the bath.
- heating of the mixture at a temperature of about 45 to 60°C may continue for an additional period of time from about 1 to about 60 minutes.
- the fused sponge may be removed from the container immediately upon removal of the container from the water bath.
- the fused sponge may be allowed to cool or may be refrigerated, preferably in a 4°C water bath, for a period of time, preferably for a time of about 5 minutes or more, before removing the fused sponge from the container.
- the cooling step aids in preventing collapse of the sponge which can occur with slow cooling at room temperature. If necessary, forceps or similar means may be used to remove the fused sponge from the container. After removal from the container, the fused sponge is allowed to dry.
- the osteogenic proteins useful with the fused sponges made in accordance with the subject invention are well known to those skilled in the art and include those discussed above.
- the preferred osteogenic proteins for use herein are those of the BMP class identified as BMP-1 through BMP-12 in US 4,877,864; US 5,013,649; WO 90/11366 published October 4, 1990; WO 91/18098 published November 28, 1991; WO 93/00432, published January 7, 1993; United States Serial Numbers 08/247,908 and 08/247,904, both filed May 20, 1994; and United States Serial Number 08/217,780, filed on March 25, 1994.
- the disclosure of the above publications are hereby incorporated by reference.
- BMP-2 the full length cDNA sequence of which is described in detail in the '649 patent.
- combinations of two or more of such osteogenic proteins may be used, as may fragments of such proteins that also exhibit osteogenic activity.
- Such osteogenic proteins are known to be homodimeric species, but also exhibit activity as mixed heterodimers.
- Heterodimeric forms of osteogenic proteins may also be used in the practice of the subject invention.
- BMP heterodimers are described in WO93/09229, the disclosure of which is hereby incorporated by reference. Recombinant proteins are preferred over naturally occurring isolated proteins.
- the amount of osteogenic protein useful herein is that amount effective to stimulate increased osteogenic activity of infiltrating progenitor cells, and will depend upon the size and nature of defect being treated as discussed in more detail below, such amounts being orders of magnitude less than the amount of porous particulate polymer matrix employed, generally in the range of 1-50 ⁇ g of protein for each 10 mg of fused sponge employed and more preferably in the range of 0.5-10 ⁇ g protein for each milligram of fused sponge employed (assuming approximately 0.2 g/cc density).
- the osteogenic proteins can be utilized in the form of a pharmaceutically acceptable solution (including reconstitution from a lyophilized form).
- solubilize the osteogenic protein at concentrations of at least about 1 mg/ml, preferably about 2 to 8 mg/ml, so that a pharmaceutically effective amount of protein can be delivered without undue volumes of carrier being necessary. For some applications, concentrations above 2 mg/ml may be desirable.
- Amino acids having a net positive charge e.g. net 1 + species such as arginine, histidine, lysine and the ethyl esters of glycine and beta-alanine
- a net 2+ charge e.g. the ethyl ester of histidine, the methyl esters of lysine and arginine, and agmatine
- Amino acids having a net zero charge are useful in this regard provided that the positive charge of the compound is sufficiently distant (at least 2-3 CH 2 units away) from the neutralizing negative charge (e.g. net neutral species such as gamma-amino butyric acid, beta-amino propionic acid, and glycine-glycine dipeptide).
- neutralizing negative charge e.g. net neutral species such as gamma-amino butyric acid, beta-amino propionic acid, and glycine-glycine dipeptide.
- solubilizing agents useful herein include poly(sorbate), dextran sulfate, guanidine, heparin, sodium chloride, glutamic acid hydrochloride, acetic acid and succinic acid.
- preferred solubilizing agents include arginine and histidine (including esters thereof) and glutamic acid hydrochloride.
- a preferred solubilizing agent is glutamic acid hydrochloride (HC1).
- a preferred formulation of osteogenic protein at 4.0 mg/ml comprises the following components listed in Table 1 : TABLE 1 osteogenic protein 4.0 mg/ml (11.42% wt) buffer solution: glutamic acid HC1 0.918 mg/ml ( 2.62% wt) glycine 25 mg/ml (71.39% wt) sucrose 5 mg/ml (14.28% wt) polysorbate 80 0.1 mg/ml ( 0.29% wt)
- the porous nature of the particles useful in the present invention creates sufficient surface area for protein adsorption and increases biodegradation, the desirable extent of both being dependent upon the clinical indication being addressed.
- Surface area can be measured by any conventional technique. For example, BET surface area analysis can be employed using a Micromeritics ASAP 2000 system, which measures surface area based upon adsorption and desorption of Krypton gas at the surface and within the pores of the solid sample. The unit calculates and prints out the surface area:
- V volume absorb at pressure
- P P 0 saturation pressure
- P/Po relative pressure
- P pressure
- the amount of sponge used to treat a particular defect will, of course, depend upon the size of the defect being treated, and on the effective amount required to adsorb the osteogenic protein.
- Additional optional components useful in the practice of the subject application include, e.g. cryogenic protectors such as mannitol, sucrose, lactose, glucose, or glycine (to protect the formulation from degradation during lyophilization), antimicrobial preservatives such as methyl and propyl parabens and benzyl alcohol, antioxidants such as EDTA, citrate, and BHT (butylated hydroxytoluene), and surfactants such as poly(sorbates) and poly(oxyethylenes), etc.
- cryogenic protectors such as mannitol, sucrose, lactose, glucose, or glycine (to protect the formulation from degradation during lyophilization)
- antimicrobial preservatives such as methyl and propyl parabens and benzyl alcohol
- antioxidants such as EDTA,
- the formulations of the subject invention may be used in combination with various bone cements, including erodible bone cements such as poly(propylene-co-fumarate) and certain hydroxyapatite cements. Also, certain of these uses will utilize bioerodible hardware such as erodible plates, screws, etc.
- the dosage regimen will be determined by the clinical indication being addressed, as well as by various patient variables (e.g. weight, age, sex) and clinical presentation (e.g. extent of injury, site of injury, etc.). In general, the dosage of osteogenic protein will be in the range of from about 10 to 1000 ⁇ g, preferably from about 10 to 100 ⁇ g per 100 ⁇ L sponge volume.
- the osteogenic protein and fused sponges of porous particulate polymers of the formulations may be provided to the clinic as a single formulation, or the formulation may be provided as a multicomponent kit wherein, e.g. the osteogenic protein is provided in one vial and the porous particulate polymeric fused sponge is provided separately.
- the formulations of the subject invention provide malleable implants that allow therapeutically effective amounts of osteoinductive protein to be delivered to an injury site where cartilage and/or bone formation is desired.
- Such an implant may be used as a substitute for autologous bone graft in fresh and non-union fractures, spinal fusions, and bone defect repair in the orthopaedic field; in cranio/maxillofacial reconstructions; for prosthesis integration, especially as a surface coating to improve fixation of prosthetic implants such as hydroxyapatite coated prostheses; in osteomyelitis for bone regeneration; and in the dental field for augmentation of the alveolar ridge and periodontal defects and tooth extraction sockets.
- the osteogenic protein When used to treat osteomyelitis or for bone repair with minimal infection, the osteogenic protein may be used in combination with porous microparticles and antibiotics, with the addition of protein sequestering agents such as alginate, cellulosics, especially carboxymethylcellulose, diluted using aqueous glycerol.
- the antibiotic is selected for its ability to decrease infection while having minimal adverse effects on bone formation.
- Preferred antibiotics for use in the devices of the present invention include vancomycin and gentamycin.
- the antibiotic may be in any pharmaceutically acceptable form, such as vancomycin HCl or gentamycin sulfate.
- the antibiotic is preferably present in a concentration of from about 0.1 mg/mL to about 10.0 mg/mL.
- the vials are capped and immersed in a circulated water bath at 45 °C for 10 minutes.
- the vials are then removed and decanted.
- the fused sponge formed is removed from the tube and allowed to air dry overnight.
- the resulting cylinder is 7 mm in diameter and approximately 40 mm in length.
- the fused sponge is sectioned into pieces 5 mm in length [approximately 200 ⁇ l] and tested for wettability with water and the buffer solution shown in Table 1 above.
- Rectangular fused sponges are also made using disposable cuvettes as molds. The cuvettes are sealed with two layers of aluminum foil and parafilm. Additional fused sponges are made with 95% ethanol and 0.05% Tween 80 surfactant using 1.5 ml Eppendorf tubes.
- Structural Integrity The fused sponges show a surprisingly high resistance to tensile forces and maintain their shape under high strain. Fused sponges made without any additives have the highest structural integrity. They show a relatively high degree of resistance to tension. Rectangular fused sponges have a higher resistance than cylindrical fused sponges.
- PLGA particles of diameter of approximately 300 to 500 ⁇ are placed in a suitable container and wetted with 95% ethanol, 0.5% Tween 80 surfactant in a ratio of 0.75 (v/v) ethanol/PLGA particles to form a slurry.
- the resulting slurry is stirred to ensure even distribution of the particles throughout the ethanol and to remove any large air bubbles which may exist.
- the mold is sealed and the sponge is heated in a circulating water bath. After heating, the mold is unsealed and allowed to cool before the fused sponge is removed from the mold and allowed to dry. Removal is accomplished by inverting the mold, and depending upon the mold material, either lightly shaking or vigorously tapping the mold against a hard surface until the fused sponge is loosened.
- Fused sponges were made at water bath temperatures ranging from 30 to 75 °C. Temperatures are selected to exceed glass transition temperatures of the PLGA particles to ensure that some fusion would take place at the lowest temperature (30 °C). Higher temperatures were examined to see how porosity is affected by more extreme conditions.
- thermocouple Two starting temperatures were used for the temperature gradients: 26.4°C and 40.0°C. Once the molds were placed in the water bath, the temperature was set for 60.0°C and the water bath was allowed to heat up at an average rate of 1.7°C/min. Once the water bath reached 60°, the fused sponges were either removed immediately or held for 5 minutes before removal, the temperature inside and outside the mold was monitored using a thermocouple in order to better understand sponge and pore formation.
- Density of the fused sponges was measured at 0,5, 10 and 15 minutes. The time of heating has little effect on density. The average density of the fused sponges is 0.17 g/cc. Effect of Ethanol/Surfactant:PLGA Ratio:
- Tg glass transition temperature
- ethanol/Tween was added to PLGA particles in volume-to-volume ratios ranging from 0.60 to 0.90.
- the liquid to solid (ethanol/surfactant:PLGA) ratio should therefore be in the range of about 0.70 to about 0.90.
- the fused sponge is harder and more rigid than that made at 0.9 and maintains the shape better than at 0.70.
- preferred liquid to solid ratios are in the range of about 0.75 to about 0.85.
- Fused sponges made with polystyrene as a mold typically contain interparticle pores greater than 300 ⁇ m, but contain relatively few pores which are in the range 40-300 ⁇ m. Fused sponges made using polypropylene tend to have more interparticle pores in the range 40-300 ⁇ . Because PLGA particles are porous, all fused sponges have intraparticle pores less than 40 ⁇ m. Fused sponges made with polypropylene tended to have higher density than those made with polystyrene. For this reason, polystyrene is the preferred mold material, although both polypropylene and teflon may be acceptable.
- implants comprised of unfused porous PLGA particles in an autologous blood clot matrix, as described in U.S. 5, 171,579.
- the control implants contained 10 ⁇ g rhBMP-2/100 ⁇ L implant.
- the results of the rat ectopic study are summarized in Table 2.
- the fused sponges of PLGA particles achieved average bone scores between 1.0 and 2.0. No significant differences were found between underfused and overfused devices in either of the doses (10, 40 ⁇ g/lOO ⁇ l rhBMP-2) evaluated. This suggests that the loss of microporosity resulting from overfusion of PLGA does not significantly impact bone formation in this model. All rhBMP-2 containing devices showed evidence of some bone growth on both the periphery and the interior of the implant, although homogeneity of interior bone growth varied among groups.
- Control Unfused PL GA particles in bio od clot matrix
- PLGA/ A Particles fused at 60° C for 60 minutes
- PLGA/C Particles fused at 65 °C for 10 minutes ("overfused")
- Residual Bioerodible Particles or residual matrix within implants were scored on a scale of none (0), low (1), medium (3) or high (5) for the presence of residual BEP in the implant.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- Medicinal Chemistry (AREA)
- Dermatology (AREA)
- Transplantation (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Pharmacology & Pharmacy (AREA)
- Zoology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Gastroenterology & Hepatology (AREA)
- Immunology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials For Medical Uses (AREA)
Abstract
A formulation is disclosed comprising a pharmaceutically acceptable admixture of an osteogenic protein; and a sponge of porous particulate polymer matrix. The sponge may be prepared by treating the porous particulate polymer matrix with a suitable fusing material such as ethanol and a surfactant such as a polysorbate.
Description
TITLE OF THE INVENTION FORMULAΗONS FOR DELIVERY OF OSTEOGENIC PROTEINS
BACKGROUND OF THE I VE ION The subject invention relates to the field of osteogenic proteins and pharmaceutical formulations thereof. More particularly, the subject invention involves pharmaceutical formulations designed to sequester osteogenic protein in sjju and to provide a bioresorbable scaffolding for a time sufficient to allow the protein to induce cartilage and/or bone formation through differentiation of uncommitted mesenchymal cells into osteoblasts.
Osteogenic proteins are those proteins capable of inducing, or assisting in the induction of, cartilage and/or bone formation. Many such osteogenic proteins have in recent years been isolated and characterized, and some have been produced by recombinant methods. For example, so-called bone morphogenic proteins (BMP) have been isolated from demineralized bone tissue (see e.g. Urist US 4,455,256); a number of such BMP proteins have been produced by recombinant techniques (see e.g. Wang et al. US 4,877,864 and Wang et al. US 5,013,549); a family of transforming growth factors (TGF-or and TGF-β) has been identified as potentially useful in the treatment of bone disease (see e.g. Derynck et al., EP 154,434); a protein designated Vgr-1 has been found to be expressed at high levels in osteogenic cells (see Lyons et al. (1989) Proc. Nat'l. Acad. Sci. USA £6, 4554-4558); and proteins designated OP-1 , COP-5 and COP-7 have purportedly shown bone inductive activity (see Oppermann, et al. U.S. 5,001 ,691).
Various attempts have been made at developing formulations designed to deliver osteogenic proteins to a site where induction of bone formation is desired. For example, certain polymeric matrices such as acrylic ester polymer (Urist, US 4,526,909) and lactic acid polymer (Urist, US 4,563,489) have been utilized, but these formulations do not sequester the osteogenic protein for a time sufficient to optimally induce bone formation, and further have been found to erode too slowly for optimal bone formation.
A biodegradable matrix of porous particles for delivery of an osteogenic protein designated as OP is disclosed in Kuberasampath, U.S. 5,108,753. While U.S. 5,108,753 discloses that a successful carrier for OP must bind the protein, act as a slow release delivery system, accommodate each step of the cellular response during bone development, and protect the protein from nonspecific proteolysis, no formulations are suggested which contain components that specifically sequester the OP at the site where bone formation is desired.
Ron et al., United States Patent 5, 171,579 discloses that the average surface area per porous particle is critical to optimize bone formation.
Brekke et al., United States Patents 4, 186,448 and 5,133,755 describe methods of forming highly porous biodegradable materials composed of polymers of lactic acid ("OPLA"). Okada et al., US 4,652,441, US 4,711,782, US 4,917,893 and US 5,061,492 and Yamamoto et al. , US 4,954,298 disclose a prolonged-release microcapsule comprising a polypeptide drug and a drug-retaining substance encapsulated in an inner aqueous layer surrounded by a polymer wall substance in an outer oil layer. Yamazaiα et al., Clin. Orthop. and Related Research. 234:240-249 (1988) disclose the use of implants comprising 1 mg of bone morphogenetic protein purified from bone and 5 mg of Plaster of Paris. United States Patent 4,645,503 discloses composites of hydroxyapatite and Plaster of Paris as bone implant materials.
Collagen matrices have also been used as delivery vehicles for osteogenic proteins (see e.g. Jeffries, U.S. 4,394,370), but collagen frequently causes undesirable antigenic reactions in patients. Therefore, there remains a need for a pharmaceutical formulation capable of sequestering osteogenic proteins at a site where induction of bone formation is desired for a time sufficient to allow safe, effective induction of such bone formation.
SUMMARY OF THE INVENTION In United States Patent 5,171 ,579, it is disclosed that osteogenic proteins can be sequestered at a site where bone inducing activity is desired using autogenous blood, without using antifibrinolytic agents, provided that a porous particulate polymer matrix is incorporated into the formulation. To reduce the preparation time and improve the above formulation's handling characteristics, Applicants have found that it is desirable to fabricate the porous particulate polymer matrix into the form of a fused sponge, which is preferably wettable and
slightly malleable. The fused sponge may be made by wetting the porous particulate polymer matrix with a suitable liquid fusing composition. A preferred liquid fusing composition is comprised of 95% ethanol and 0.05% polysorbate or other non-ionic surfactant. The liquid composition may be added to the particles, preferably in a ratio of about 0.75 to about 0.85 liquidiparticles (v/v).
In one embodiment, the subject invention provides methods for preparing fused sponges useful as a carrier for osteogenic proteins. In another embodiment, the invention comprises compositions comprising a pharmaceutically acceptable admixture of an osteogenic protein together with a fused sponge formed of a porous particulate polymer, the particles of which have been fused into a fused sponge form using appropriate processing. The formulations may optionally include other protein sequestering agents, particularly cellulosic materials.
The methods and compositions of the present invention are useful for the preparation of formulations of osteoinductive proteins which can be used, among other uses, to promote the formation of cartilage and/or bone, for repair of tissue damage and fractures. The inventors have found that, by heating porous particulate polymeric material, preferably copolymers of lactic acid and glycolic acid (PLGA), to a temperature above its glass transition temperature (Tg), it is possible to fuse them together. However, heating PLGA particles alone results in co-polymer chain mobility and ultimately to particle collapse. This leads to a very dense, non-porous structure, which is undesirable. The inventors have surprisingly found that this undesirable effect can be overcome by adding a liquid containing a lower alkyl alcohol (i.e., -C5), preferably ethanol, and heating the composition in a sealed container. Adding an external plasticizer which is a poor solvent or non-solvent for PLGA in a lower alkyl alcohol, such as ethanol, will lower the Tg of the polymer. If the external plasticizer has a low diffusion coefficient in the polymer, the surfaces of the polymer will fuse together before the particle fully collapses.
DETAILED DESCRIPTION OF THE INVENTION Accordingly, the present invention comprises processes of preparing fused sponges of porous particulate polymer, which fused sponges are suitable for use as a carrier for osteogenic protein. Generally, the process comprises: a) preparing a mixture of particles of a porous particulate polymer, a lower alkyl alcohol
and a surfactant; b) heating the mixture of step (a) until the particles form a fused sponge; c) optionally continuing to heat the mixture for an additional period of time at a temperature of about 45 to 60 °C; d) optionally cooling the mixture; and e) drying the mixture in the form of a fused sponge.
In a preferred embodiment, the particles are made of co-polymers of lactic acid and glycolic acid.
The porous particulate polymer matrix component useful in the practice of the subject invention is a polymeric material that can be formed into the fused sponges of porous particles as described below thereby providing in sity scaffolding for the osteogenic protein, while having biodegradable properties allowing for replacement by new bone growth. Examples are polymers which may be useful in the present invention include polymers of amino acids, orthoesters, anhydrides, propylene-co-fumarates, or a polymer of one or more α-hydroxy carboxylic acid monomers, (e.g. α-hydroxy acetic acid (glycolic acid) and/or α-hydroxy propionic acid (lactic acid)). The latter can be employed in its d- or 1- form, or as a racemic mixture, the racemic mixture being preferred. The preferred polymers for use in preparing the formulations of the present invention are copolymers of lactic acid and glycolic acid (PLGA).
When copolymers of lactic acid and glycolic acid are employed (PLGA), the molar ratio of monomers can range from 1:99 to 99: 1 depending upon the desired bioerosion lifetime which in turn depends upon the clinical indication being addressed, as more than 50% of either monomer gives longer bioerosion lifetime (slower biodegradation). The molecular weight of the polymer can range from about 1 ,000 to 100,000 (relative to polystyrene in CHC13) with 30,000- 50,000 being preferred when a 50:50 copolymer is employed. In general, the higher the molecular weight, the slower the biodegradation.
The polymeric matrix component of the subject invention is used in the form of highly porous to hollow (with surface porosity) particles, hereinafter collectively referred to as "porous particles." These porous particles are generally spherical having diameters of 150 to 850 μm, preferably 150 to 500 μ , most preferably 300 to 500 μm. This particle size creates sufficient spacing between particles to allow mammalian osteoprogenitor cells to infiltrate and be positively
influenced by (evidenced by an increase in osteogenic activity/bone growth rate) the osteogenic protein.
United States Patent 5, 171,579 discloses that the average surface area per porous particle is critical to optimize bone formation. Specifically, porous particles useful in bone formation according to the present invention should have an average surface area of from about 0.02 to 4 m2/g. The disclosure of United States Patent 5,171,579 is hereby incorporated herein by reference. WO 93/06872 further discloses that it is possible to produce porous particles having the desired surface area by introducing a "porosigen" (composition capable of imparting porosity by increasing particle surface area) into the solution used to produce the porous particles. The disclosure of WO 93/06872 is hereby incorporated herein by reference. It is also possible to control the bioerosion rate by subjecting the porous particles to sterilizing doses of γ radiation. The higher the y radiation dose, the faster the bioerosion. Particles useful herewith have a porosity such that the surface area of the particles is increased about 2-250 fold over the surface area of non-porous particles of comparable size. A preferred method of production of the porous particles useful in the invention is, generally speaking, a solvent evaporation process comprising dissolving the polymer (in e.g. CH2C12), and adding a porosigen such as NaCl, mannitol or sucrose in solid and/or liquid form. When porosigen is added in solid form, the matrix-porosigen solution takes the form of a suspension. Another preferred method of production of the porous particles useful in the invention is a solvent extraction method, wherein the porosigen is added in liquid form with concomitant homogenization. When porosigen is added in liquid form with homogenization, the matrix-porosigen solution takes the form of an emulsion. With either method, the matrix- porosigen emulsion is added to an excess aqueous solution containing surfactant such as poly(vinyl alcohol) with controlled stirring and temperature. The resultant porous particles are hardened by extracting or evaporating residual solvent, and dried. PLGA particles useful in the subject invention made utilizing 50% NaCl as a porosigen have a surface area of between about 0.2 and 0.6 m2/g; and particles made using sucrose as a porosigen have a surface area of between about 0.04 and 0.09 m2/g. PLGA particles useful in the present invention made using liquid porosigen with homogenization have a surface area of between about 0.02 and 4 m2/g. Other methods of preparing porous particulate polymer for use in the present invention,
in which the above steps can be varied and additional steps can be performed are within the skill of the art.
The liquid useful for fusing the porous particulate polymer to form a fused sponge comprises a lower alkyl alcohol, preferably ethanol, and may further comprise a surfactant. The alcohol is preferably in a concentration of from about 50% to about 100% volume/volume, more preferably from about 70% to about 100% . The most preferred concentration of ethanol is about
95%. Substances other than lower alkyl alcohols may also be useful provided that they have a low diffusion coefficient in PLGA, are able to wet the PLGA particles and are able to create vapor pressure to create voids or pores between the particles. The surfactant useful in the liquid is preferably a non-ionic surfactant, such as a polyoxyester, for example polysorbate 80, polysorbate 20 or Pluronic F-68. The most preferred surfactants include Polysorbate 80, commercially available as Tween 80. The surfactant is preferably present in a range from about 0 to about 4% volume/volume, more preferably from about 0.01 to about 0.05%. Preferably the ratio of total liquid:solid during heating, that is the ratio of ethanol and surfactant to particles, is from about 0.70 to about 0.90 volume/volume. It is most preferred that the liquid: solid ratio be in the range from about 0.75 to about 0.85.
The container useful for heating the particles and liquid is preferably made of polystyrene. Other materials known in the art, such as polypropylene, may also be useful containers for heating the particles. Preferably, the container is sealed. The container is preferably in the shape and size which is desired for the fused sponge, such as rectangular or cylindrical. Alternatively, the fused sponge may be cut to a preferred size or shape after formation of the fused sponge.
The container is used as a mold for the formation of a fused sponge. The liquid and the particles may be added to the container in any order or simultaneously. After being added to the container, the liquid and particles are mixed, stirred or otherwise manipulated to ensure even distribution of the liquid and the particles.
The liquid and particles mixture is heated at a temperature and for a period of time sufficient to form a fused sponge structure, preferably from about 1 to about 60 minutes until the particles and liquid reach a temperature of about 45 to 60°C. The heating may be
accomplished using any suitable heating means. Heating is preferably accomplished using a circulating water bath. Fusion may be accomplished at a constant temperature, or using a temperature gradient. If a constant temperature is used, it is preferably about 60 °C and the mixture is preferably heated for a period of time suitable to allow fusion of the particles and liquid into a fused sponge, generally, about 1 to 60 minutes, most preferably about 10 minutes. If a temperature gradient is used, the heating preferably begins at a temperature of about 26°C to about 40°C and the temperature increased at an acceptable rate, preferably about 1.7βC/minute, until it reaches about 45 to 60°C, most preferably about 60°C. Once the mixture reaches the desired temperature, the container may be removed immediately from the bath. Optionally, heating of the mixture at a temperature of about 45 to 60°C may continue for an additional period of time from about 1 to about 60 minutes.
The fused sponge may be removed from the container immediately upon removal of the container from the water bath. Alternatively, the fused sponge may be allowed to cool or may be refrigerated, preferably in a 4°C water bath, for a period of time, preferably for a time of about 5 minutes or more, before removing the fused sponge from the container. The cooling step aids in preventing collapse of the sponge which can occur with slow cooling at room temperature. If necessary, forceps or similar means may be used to remove the fused sponge from the container. After removal from the container, the fused sponge is allowed to dry.
The osteogenic proteins useful with the fused sponges made in accordance with the subject invention are well known to those skilled in the art and include those discussed above. The preferred osteogenic proteins for use herein are those of the BMP class identified as BMP-1 through BMP-12 in US 4,877,864; US 5,013,649; WO 90/11366 published October 4, 1990; WO 91/18098 published November 28, 1991; WO 93/00432, published January 7, 1993; United States Serial Numbers 08/247,908 and 08/247,904, both filed May 20, 1994; and United States Serial Number 08/217,780, filed on March 25, 1994. The disclosure of the above publications are hereby incorporated by reference. The most preferred is BMP-2, the full length cDNA sequence of which is described in detail in the '649 patent. Of course, combinations of two or more of such osteogenic proteins may be used, as may fragments of such proteins that also exhibit osteogenic activity. Such osteogenic proteins are known to be homodimeric species, but also exhibit activity as mixed heterodimers. Heterodimeric forms of osteogenic proteins may
also be used in the practice of the subject invention. BMP heterodimers are described in WO93/09229, the disclosure of which is hereby incorporated by reference. Recombinant proteins are preferred over naturally occurring isolated proteins. The amount of osteogenic protein useful herein is that amount effective to stimulate increased osteogenic activity of infiltrating progenitor cells, and will depend upon the size and nature of defect being treated as discussed in more detail below, such amounts being orders of magnitude less than the amount of porous particulate polymer matrix employed, generally in the range of 1-50 μg of protein for each 10 mg of fused sponge employed and more preferably in the range of 0.5-10 μg protein for each milligram of fused sponge employed (assuming approximately 0.2 g/cc density). The osteogenic proteins can be utilized in the form of a pharmaceutically acceptable solution (including reconstitution from a lyophilized form). It is optimal to solubilize the osteogenic protein at concentrations of at least about 1 mg/ml, preferably about 2 to 8 mg/ml, so that a pharmaceutically effective amount of protein can be delivered without undue volumes of carrier being necessary. For some applications, concentrations above 2 mg/ml may be desirable. Amino acids having a net positive charge (e.g. net 1 + species such as arginine, histidine, lysine and the ethyl esters of glycine and beta-alanine), preferably a net 2+ charge (e.g. the ethyl ester of histidine, the methyl esters of lysine and arginine, and agmatine), are useful in this regard. Amino acids having a net zero charge are useful in this regard provided that the positive charge of the compound is sufficiently distant (at least 2-3 CH2 units away) from the neutralizing negative charge (e.g. net neutral species such as gamma-amino butyric acid, beta-amino propionic acid, and glycine-glycine dipeptide). Other solubilizing agents useful herein include poly(sorbate), dextran sulfate, guanidine, heparin, sodium chloride, glutamic acid hydrochloride, acetic acid and succinic acid. For use in solubilizing dimeric BMP, such as BMP-2, 3, 4, 5, 6, 7, 8, 9 and 10 and heterodimers of BMPs such as BMP-2/6 and BMP-2/7, preferred solubilizing agents include arginine and histidine (including esters thereof) and glutamic acid hydrochloride. A preferred solubilizing agent is glutamic acid hydrochloride (HC1). The above formulations may be lyophilized and reconstituted with water, providing for advantages in storage, shipping and stability. A preferred formulation of osteogenic protein at 4.0 mg/ml comprises the following components listed in Table 1 :
TABLE 1 osteogenic protein 4.0 mg/ml (11.42% wt) buffer solution: glutamic acid HC1 0.918 mg/ml ( 2.62% wt) glycine 25 mg/ml (71.39% wt) sucrose 5 mg/ml (14.28% wt) polysorbate 80 0.1 mg/ml ( 0.29% wt)
The porous nature of the particles useful in the present invention creates sufficient surface area for protein adsorption and increases biodegradation, the desirable extent of both being dependent upon the clinical indication being addressed. Surface area can be measured by any conventional technique. For example, BET surface area analysis can be employed using a Micromeritics ASAP 2000 system, which measures surface area based upon adsorption and desorption of Krypton gas at the surface and within the pores of the solid sample. The unit calculates and prints out the surface area:
1 = Qzl (P/Po) + _ VA[(Po/P)-l] VmC VmC
V = volume absorb at pressure P P0 = saturation pressure P/Po = relative pressure P = pressure
C = constant A = gas cross sectional area
Vm = Monolayer Capacity
By plotting 1 vs P/P0, the slope being
VA((Po P)-l
CJ. and the intercept being 1 . the surface area
VmC V„C
S, = VmNA where N = Avogadro's number and V = molar volume. V
The amount of sponge used to treat a particular defect will, of course, depend upon the size of the defect being treated, and on the effective amount required to adsorb the osteogenic protein.
Additional optional components useful in the practice of the subject application include, e.g. cryogenic protectors such as mannitol, sucrose, lactose, glucose, or glycine (to protect the formulation from degradation during lyophilization), antimicrobial preservatives such as methyl and propyl parabens and benzyl alcohol, antioxidants such as EDTA, citrate, and BHT (butylated hydroxytoluene), and surfactants such as poly(sorbates) and poly(oxyethylenes), etc. Of course, the traditional preparation of formulations in pharmaceutically acceptable form (i.e. pyrogen free, appropriate pH and isotonicity, sterility, etc.) is well within the skill in the art and is applicable to the formulations of the subject invention.
In certain uses, the formulations of the subject invention may be used in combination with various bone cements, including erodible bone cements such as poly(propylene-co-fumarate) and certain hydroxyapatite cements. Also, certain of these uses will utilize bioerodible hardware such as erodible plates, screws, etc. The dosage regimen will be determined by the clinical indication being addressed, as well as by various patient variables (e.g. weight, age, sex) and clinical presentation (e.g. extent of injury, site of injury, etc.). In general, the dosage of osteogenic protein will be in the range of from about 10 to 1000 μg, preferably from about 10 to 100 μg per 100 μL sponge volume.
The osteogenic protein and fused sponges of porous particulate polymers of the formulations may be provided to the clinic as a single formulation, or the formulation may be provided as a multicomponent kit wherein, e.g. the osteogenic protein is provided in one vial and the porous particulate polymeric fused sponge is provided separately.
The formulations of the subject invention provide malleable implants that allow therapeutically effective amounts of osteoinductive protein to be delivered to an injury site where cartilage and/or bone formation is desired. Such an implant may be used as a substitute for autologous bone graft in fresh and non-union fractures, spinal fusions, and bone defect repair in the orthopaedic field; in cranio/maxillofacial reconstructions; for prosthesis integration, especially as a surface coating to improve fixation of prosthetic implants such as hydroxyapatite coated prostheses; in osteomyelitis for bone regeneration; and in the dental field for augmentation of the alveolar ridge and periodontal defects and tooth extraction sockets. When used to treat osteomyelitis or for bone repair with minimal infection, the osteogenic protein may be used in combination with porous microparticles and antibiotics, with the addition of protein
sequestering agents such as alginate, cellulosics, especially carboxymethylcellulose, diluted using aqueous glycerol. The antibiotic is selected for its ability to decrease infection while having minimal adverse effects on bone formation. Preferred antibiotics for use in the devices of the present invention include vancomycin and gentamycin. The antibiotic may be in any pharmaceutically acceptable form, such as vancomycin HCl or gentamycin sulfate. The antibiotic is preferably present in a concentration of from about 0.1 mg/mL to about 10.0 mg/mL.]
The following examples are illustrative of the present invention and are not limiting in any manner. Modifications, variations and minor enhancements are contemplated and are within the present invention. EXAMPLE 1
PREPARATION OF POROUS PARTICULATE POLYMERIC MATRIX Porous particles of PLGA are produced in accordance with the methods described in International Patent Application WO 93/00050, and United States Patent 5, 171,579, the disclosure of which is hereby incorporated by reference herein. EXAMPLE 2
PREPARATION OF SPONGES OF POROUS PARTICULATE POLYMERIC MATRIX A. Sponge Integrity and Wettabilitv
PLGA particles of diameter of approximately 300 to 500 μm are placed in a 1.5 ml Eppendorf vial [internal diameter = 8 mm, length = 43 mm] with screw caps. 95% ethanol, or 95% ethanol and 0.05% Tween 80 (polysorbate 80) surfactant, is then added and the PLGA particles are packed as tightly as possible by tapping the vial against a hard surface. The vials are capped and immersed in a circulated water bath at 45 °C for 10 minutes. The vials are then removed and decanted. The fused sponge formed is removed from the tube and allowed to air dry overnight. The resulting cylinder is 7 mm in diameter and approximately 40 mm in length. The fused sponge is sectioned into pieces 5 mm in length [approximately 200 μl] and tested for wettability with water and the buffer solution shown in Table 1 above. Rectangular fused sponges are also made using disposable cuvettes as molds. The cuvettes are sealed with two layers of aluminum foil and parafilm. Additional fused sponges are made with 95% ethanol and 0.05% Tween 80 surfactant using 1.5 ml Eppendorf tubes.
Structural Integrity: The fused sponges show a surprisingly high resistance to tensile forces and maintain their shape under high strain. Fused sponges made without any additives have the highest structural integrity. They show a relatively high degree of resistance to tension. Rectangular fused sponges have a higher resistance than cylindrical fused sponges. Wettability: After being allowed to dry for approximately 24 hours, both the fused sponges with ethanol and those made with ethanol and surfactant wicked quickly and easily. Over time, the fused sponges made with only ethanol gradually lose their quick wicking ability. Those made with surfactant retain their wickability. The cylindrical sponges wick water slightly better than the rectangular sponges. Newly formed cylindrical sponges, both with and without added surfactant, are able to wick approximately 2/3 of their volume per ml of sponge.
B. Process parameter optimization:
PLGA particles of diameter of approximately 300 to 500 μ are placed in a suitable container and wetted with 95% ethanol, 0.5% Tween 80 surfactant in a ratio of 0.75 (v/v) ethanol/PLGA particles to form a slurry. The resulting slurry is stirred to ensure even distribution of the particles throughout the ethanol and to remove any large air bubbles which may exist. The mold is sealed and the sponge is heated in a circulating water bath. After heating, the mold is unsealed and allowed to cool before the fused sponge is removed from the mold and allowed to dry. Removal is accomplished by inverting the mold, and depending upon the mold material, either lightly shaking or vigorously tapping the mold against a hard surface until the fused sponge is loosened.
Effect of temperature:
Fused sponges were made at water bath temperatures ranging from 30 to 75 °C. Temperatures are selected to exceed glass transition temperatures of the PLGA particles to ensure that some fusion would take place at the lowest temperature (30 °C). Higher temperatures were examined to see how porosity is affected by more extreme conditions.
Fusion at a constant temperature as well as with a temperature gradient was studied.
Two starting temperatures were used for the temperature gradients: 26.4°C and 40.0°C. Once the molds were placed in the water bath, the temperature was set for 60.0°C and the water bath was allowed to heat up at an average rate of 1.7°C/min. Once the water bath reached 60°, the
fused sponges were either removed immediately or held for 5 minutes before removal, the temperature inside and outside the mold was monitored using a thermocouple in order to better understand sponge and pore formation.
In general, friability decreased as fusion temperature increased. However, deformation of both the PLGA particles and the fused sponge itself was more prevalent as fusion temperature increased. At a temperature of 60°C, sufficient fusion is achieved without completely melting the PLGA particles and with minimum friability. At temperatures greater than 60°C, the PLGA particles lose their structure and overfusion occurs. All of the fused sponges made using a temperature gradient have good porosity. Those removed from the water bath immediately after it reached 60 °C also have excellent sponge shape. The fused sponges held for 5 minutes at 60 °C were noticeably more difficult to remove from the mold. Forceps had to be used to facilitate removal, resulting in deformation of the fused sponge.
Regardless of whether a temperature gradient was used, the inside of the mold approaches the temperature of the surrounding water bath within 2.5 minutes. When 26°C is the initial temperature, the temperature inside the mold is always slightly below that of the water bath. Acceptable fused sponges are formed using both of these methods. Effect of Time:
Sponges were heated from 1 to 60 minutes at 60°C. After 1 minute, fusion has already occurred. However, at 1 and 2 minutes, the sponges are prone to a noticeable amount of shedding of particles from the edges when the fused sponge is handled. Friability and shedding noticeably decreases as time is increased. After 1 hour, shedding and friability are minimal. Porosity increases with heating up to 10 minutes. After 10 minutes, further heating only serves to decrease friability.
Removal of fused sponges from the molds becomes increasingly difficult as time increases. At 10 and 15 minutes, a spatula was needed to facilitate removal. However, this does not appear to have a negative effect on the dimensions of the fused sponge when compared to those that did not require the use of a spatula.
Density of the fused sponges was measured at 0,5, 10 and 15 minutes. The time of heating has little effect on density. The average density of the fused sponges is 0.17 g/cc.
Effect of Ethanol/Surfactant:PLGA Ratio:
A mixture of ethanol and surfactant, such as Tween 80, is added to the PLGA particles to act as an external plasticizer and to lower the glass transition temperature (Tg). To determine an optimal ratio of ethanol/surfactant:PLGA particles, ethanol/Tween was added to PLGA particles in volume-to-volume ratios ranging from 0.60 to 0.90.
At low ratios (<0.70), sponge deformation tended to occur. This may be due to the possibility that not all of the particles are adequately covered with ethanol. Thus, some particles may have undergone bulk chain mobility and collapse. At ratios of 0.9 or higher, the resulting fused sponges tend to be soft and friable. The greater the amount of ethanol present, the greater the total volume of the slurry and the greater the average distance between particles in the slurry. Thus, at high ethanol volumes, there is less particle-to-particle contact resulting in less, and weaker points of fusion. The liquid to solid (ethanol/surfactant:PLGA) ratio should therefore be in the range of about 0.70 to about 0.90. At a ratio of 0.75, the fused sponge is harder and more rigid than that made at 0.9 and maintains the shape better than at 0.70. Thus, preferred liquid to solid ratios are in the range of about 0.75 to about 0.85.
Effect of Ethanol Concentration:
Sponges were made at 60 °C for 1 hour with ethanol concentrations ranging from 50 to 100% in water. It was found that porosity decreases and sponge deformation increases with decreasing ethanol concentration. However, no appreciable differences in the overall structural integrity existed among the fused sponges. Effect of Particle Size:
Upon addition of ethanol to the PLGA particles in the mold, a particle density gradient was observed with those particles less than 500 μ . More particles were present at the bottom of the mold than at the top. The gradient was visually less severe as particle size increased. In order to better distribute the particles, molds were tapped for a longer period of time. No density gradient was observed with particles greater than 500 μm in size.
All fused sponges made with particles less than 500 μm were similar in final appearance. Slight porosity gradients were observed with those fused sponges made from 150-250 μm particles. This is most likely a direct result of the particle density gradient. However, all of these fused sponges ( < 500 μm) had good porosity, shape and structural integrity.
Fused sponges made with 500-710 μm particles were noticeably less rigid and more friable than those made with smaller particles. These sponges were easily broken when removed from the mold and had slightly greater porosity than the other fused sponges. Because these particles are bigger, there is less contact between particles which could account for the decrease in structural integrity. These fused sponges were also more difficult to remove from the molds intact because of the large pores present. When dry, it was noticed that there was a significant amount of shedding of the particles from the fused sponge when it was handled. This was not the case with fused sponges made from particles less than 500 μm. Effect of Mold Material: Fused sponges made with polystyrene as a mold typically contain interparticle pores greater than 300 μm, but contain relatively few pores which are in the range 40-300 μm. Fused sponges made using polypropylene tend to have more interparticle pores in the range 40-300 μ . Because PLGA particles are porous, all fused sponges have intraparticle pores less than 40 μm. Fused sponges made with polypropylene tended to have higher density than those made with polystyrene. For this reason, polystyrene is the preferred mold material, although both polypropylene and teflon may be acceptable.
Removal of the fused sponges from polypropylene and teflon is easier than from polystyrene. Removal from a stainless steel mold was very difficult.
EXAMPLE 3 RAT ECTOPIC STUDY
Long-Evans male rats were divided into test groups of five rats each. Each received a subcutaneous implant, 200 μL in size, with a PLGA sponge fused at 60°C for 60 minutes with rhBMP-2 doses of 0, 10, 20 and 40 μg/100 μL implant. Two alternate formulations of PLGA sponges were prepared which varied the extent of PLGA fusion (underfused = 60 °C for 10 minutes; overfused = 65°C for 10 minutes) which were tested at rhBMP-2 doses 10 and 40 μg/100 μL implant to determine of extent of fusion effects the efficacy of the device. After 14 days, the rats were sacrificed and each animal was evaluated for bone formation. As a control, implants comprised of unfused porous PLGA particles in an autologous blood clot matrix, as described in U.S. 5, 171,579. The control implants contained 10 μg rhBMP-2/100 μL implant.
The results of the rat ectopic study are summarized in Table 2. The fused sponges of PLGA particles achieved average bone scores between 1.0 and 2.0. No significant differences were found between underfused and overfused devices in either of the doses (10, 40 μg/lOOμl rhBMP-2) evaluated. This suggests that the loss of microporosity resulting from overfusion of PLGA does not significantly impact bone formation in this model. All rhBMP-2 containing devices showed evidence of some bone growth on both the periphery and the interior of the implant, although homogeneity of interior bone growth varied among groups.
TABLE 2
Test Group Cartilage Bone BEP/ Matrix Implant
Residual Wet Weight
Score (Grams)
ControϊV 10 0.1 0.85 1.6 0.597 ±0.47 ±0.268
PLGA/A/0 0 0 2.4 0.081 ±0.051
PLGA/A/10 0.2 1.05 2.6 0.122 ±1.07 ±0.049
PLGA/ A/20 0.15 1.35 2.3 0.259 ±0.85 ±0.179
PLGA/ A/40 0.05 1.7 2.6 0.174 ±0.82 ±0.072
PLGA/B/10 0.2 1.25 2.2 0.129 ±0.92 ±0.050
PLGA/B/40 0.15 2.1 2.4 0.269 ±0.88 ±0.141
PLGA/C/10 0.1 1.3 2.4 0.220 ±0.92 ±0.167
PLGA/C/40 0 2.0 2.6 0.272 ±0.67 ±0.183
Control = Unfused PL GA particles in bio od clot matrix
PLGA/ A = Particles fused at 60° C for 60 minutes
PLGA/B = Particles fused at 60°C for 10 minutes ("underfused")
PLGA/C = Particles fused at 65 °C for 10 minutes ("overfused")
Bone and Cartilage scores: Samples were scored on a scale of 0-5 for presence of new bone as per the following table: 5= 80-100% of the section; 4= 60-80% of the section; 3 = 40-60% of the section; 2= 20-40% of the section; 1 = 10-20% of the section; 0.5= < 10% of the section (not significant); 0 = not observed in the section
Residual Bioerodible Particles (BEP) or residual matrix within implants were scored on a scale of none (0), low (1), medium (3) or high (5) for the presence of residual BEP in the implant.
Claims
1. A method of making a fused sponge suitable for use as a carrier for osteogenic protein, said method comprising: a) preparing a mixture of particles of a porous particulate polymer, a lower alkyl alcohol and a surfactant; b) heating the mixture of step (a) until the particles form a fused sponge; c) optionally continuing to heat the mixture for an additional period of time at a temperature of about 45 to 60° C; d) optionally cooling the mixture; and e) drying the mixture in the form of a fused sponge.
2. The method of claim 1, wherein the porous particulate polymer comprises co¬ polymers of lactic acid and glycolic acid.
3. The method of claim 1 wherein step (b) comprises immersing the particles and liquid in a circulating water bath.
4. The method of claim 3, wherein the starting temperature of the circulating water bath is about 26°C.
5. The method of claim 3, wherein the starting temperature of the circulating water bath is about 40°C.
6. The method of claim 1 wherein the container is made of polystyrene.
7. The method of claim 1 wherein the particles have an average size of approximately 150 to about 500 μm.
8. The method of claim 1 wherein the particles have an average size of approximately 300 to about 500 μm.
9. The method of claim 1 wherein the ratio of liquid to particles is from about 0.70 to about 0.90.
10. The method of claim 1 , wherein the ratio of liquid to particles is from about 0.75 to about 0.85.
11. A method of making a fused sponge suitable for use as a carrier for osteogenic protein, said method comprising: a) preparing particles of a porous particulate polymer comprising lactic acid and glycolic acid; b) placing the particles in a container together with a liquid containing ethanol and a surfactant; c) heating the container containing the particles and liquid for a period of time from about 1 to about 60 minutes at a temperature of about 60°C; d) optionally cooling the container for a period of about 5 minutes or more at a temperature of about 4°C; and e) removing the particles and liquid in the form of a fused sponge from the container.
12. A fused sponge made by the method of claim 1.
13. A composition comprising a fused sponge of porous particulate polymer and an osteogenic protein.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU31042/95A AU3104295A (en) | 1994-09-19 | 1995-07-24 | Formulations for delivery of osteogenic proteins |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/308,787 US5520923A (en) | 1994-09-19 | 1994-09-19 | Formulations for delivery of osteogenic proteins |
US08/308,787 | 1994-09-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1996009078A1 true WO1996009078A1 (en) | 1996-03-28 |
Family
ID=23195392
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1995/009325 WO1996009078A1 (en) | 1994-09-19 | 1995-07-24 | Formulations for delivery of osteogenic proteins |
Country Status (3)
Country | Link |
---|---|
US (1) | US5520923A (en) |
AU (1) | AU3104295A (en) |
WO (1) | WO1996009078A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998041246A3 (en) * | 1997-03-20 | 1998-10-22 | Creative Biomolecules Inc | Osteogenic devices and methods of use thereof for repair of bone |
EP1880739A1 (en) * | 2005-12-23 | 2008-01-23 | Herbert P. Prof. Dr. Jennissen | Process for the immobilization of proteins on an implant |
WO2009054006A3 (en) * | 2007-10-26 | 2010-03-11 | National Institute Of Immunology | Biodegradable polymer scaffold and process for preparation thereof |
US8372805B1 (en) | 1997-03-20 | 2013-02-12 | Stryker Corporation | Osteogenic devices and methods of use thereof for repair of endochondral bone, osteochondral and chondral defects |
Families Citing this family (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5904717A (en) * | 1986-01-28 | 1999-05-18 | Thm Biomedical, Inc. | Method and device for reconstruction of articular cartilage |
US6150328A (en) * | 1986-07-01 | 2000-11-21 | Genetics Institute, Inc. | BMP products |
US20080070842A1 (en) * | 1991-11-04 | 2008-03-20 | David Israel | Recombinant bone morphogenetic protein heterodimers, compositions and methods of use |
KR100259827B1 (en) * | 1991-11-04 | 2000-06-15 | 브루스 엠. 에이센, 토마스 제이 데스로저 | Recombinant bone morphogenetic protein heterodimer, composition thereof and method of use |
US6291206B1 (en) * | 1993-09-17 | 2001-09-18 | Genetics Institute, Inc. | BMP receptor proteins |
WO1995011707A1 (en) * | 1993-10-28 | 1995-05-04 | Thm Biomedical, Inc. | Improved process and device for treating and healing a bone void |
EP0733109B9 (en) | 1993-12-07 | 2006-07-05 | Genetics Institute, LLC | Bmp-12, bmp-13 and tendon-inducing compositions thereof |
US5981825A (en) * | 1994-05-13 | 1999-11-09 | Thm Biomedical, Inc. | Device and methods for in vivo culturing of diverse tissue cells |
TW369414B (en) * | 1994-09-30 | 1999-09-11 | Yamanouchi Pharma Co Ltd | Bone formation transplant |
US5645084A (en) * | 1995-06-07 | 1997-07-08 | Danek Medical, Inc. | Method for spinal fusion without decortication |
US5902785A (en) * | 1995-06-06 | 1999-05-11 | Genetics Institute, Inc. | Cartilage induction by bone morphogenetic proteins |
US5674292A (en) | 1995-06-07 | 1997-10-07 | Stryker Corporation | Terminally sterilized osteogenic devices and preparation thereof |
ES2192623T3 (en) * | 1995-12-18 | 2003-10-16 | Jens Schug | MEDICAL IMPLANT |
US5919234A (en) * | 1996-08-19 | 1999-07-06 | Macropore, Inc. | Resorbable, macro-porous, non-collapsing and flexible membrane barrier for skeletal repair and regeneration |
US6153231A (en) * | 1997-06-25 | 2000-11-28 | Wm. Wrigley Jr. Company | Environmentally friendly chewing gum bases |
US7923250B2 (en) | 1997-07-30 | 2011-04-12 | Warsaw Orthopedic, Inc. | Methods of expressing LIM mineralization protein in non-osseous cells |
ES2320603T3 (en) | 1997-07-30 | 2009-05-25 | Emory University | EXPRESSION SYSTEMS, VECTORS, DNA, OSEA MINERALIZATION PROTEINS NOVEDOSOS. |
US6309659B1 (en) * | 1997-09-02 | 2001-10-30 | Gensci Orthobiologics, Inc. | Reverse phase connective tissue repair composition |
US6648916B1 (en) | 1997-12-10 | 2003-11-18 | Sdgi Holdings, Inc. | Osteogenic fusion device |
US20010001129A1 (en) * | 1997-12-10 | 2001-05-10 | Mckay William F. | Osteogenic fusion device |
DE19812195C2 (en) * | 1998-03-19 | 2000-03-30 | Uwe Storch | Process for producing a tissue-forming implant and its use |
US6727224B1 (en) * | 1999-02-01 | 2004-04-27 | Genetics Institute, Llc. | Methods and compositions for healing and repair of articular cartilage |
PT1223990E (en) | 1999-10-15 | 2004-12-31 | Fidia Advanced Biopolymers Srl | HYALURONIC ACID FORMULATIONS FOR ADMINISTRATION OF OSTEOGENIC PROTEINS |
EP1231869B1 (en) * | 1999-10-29 | 2005-09-21 | Children's Hospital of Los Angeles | Bone hemostasis method and materials |
US9616150B2 (en) | 1999-10-29 | 2017-04-11 | Children's Hospital Los Angeles | Bone hemostasis method and materials |
US6761738B1 (en) * | 2000-09-19 | 2004-07-13 | Sdgi Holdings, Inc. | Reinforced molded implant formed of cortical bone |
ATE330567T1 (en) | 2000-10-24 | 2006-07-15 | Sdgi Holdings Inc | DEVICE AND METHOD FOR BONE-FORMING PLUNGING |
US20030082233A1 (en) * | 2000-12-01 | 2003-05-01 | Lyons Karen M. | Method and composition for modulating bone growth |
US6949251B2 (en) * | 2001-03-02 | 2005-09-27 | Stryker Corporation | Porous β-tricalcium phosphate granules for regeneration of bone tissue |
US7226587B2 (en) * | 2001-06-01 | 2007-06-05 | Wyeth | Compositions and methods for systemic administration of sequences encoding bone morphogenetic proteins |
TWI267378B (en) * | 2001-06-08 | 2006-12-01 | Wyeth Corp | Calcium phosphate delivery vehicles for osteoinductive proteins |
US7205337B2 (en) * | 2001-12-21 | 2007-04-17 | Isotis Orthobiologics, Inc. | End-capped polymers and compositions containing such compounds |
AU2002357898A1 (en) * | 2001-12-21 | 2003-07-15 | Gensci Orthobiologics, Inc. | End-capped polyalkylene glycols and compositions containing such compounds |
WO2003070292A1 (en) * | 2002-02-22 | 2003-08-28 | Biomatera Inc. | Biodegradable bone implant |
TW200638946A (en) * | 2002-05-17 | 2006-11-16 | Wyeth Corp | Injectable solid hyaluronic acid carriers for delivery of osteogenic proteins |
TWI367113B (en) * | 2003-02-12 | 2012-07-01 | Syncera Inc | Random and non-random alkylene oxide polymer alloy compositions |
ITMI20031302A1 (en) * | 2003-06-26 | 2004-12-27 | Mediolanum Pharmaceuticals Ltd | USE OF ETHANOL AS A PLASTICIZER TO PREPARE SUBCUTANEOUS IMPLANTS CONTAINING THERMALABLE ACTIVE PRINCIPLES DISPERSED IN A PLGA MATRIX. |
DK1675608T3 (en) * | 2003-09-12 | 2007-07-09 | Wyeth Corp | Injectable solid calcium phosphate rods for administration of osteogenic proteins |
US20060166251A1 (en) * | 2005-01-26 | 2006-07-27 | Archambault Joanne M | Use of sFRPs as markers of BMP activity |
AU2006230434A1 (en) * | 2005-03-30 | 2006-10-05 | Wyeth | Methods for stimulating hair growth by administering BMPs |
CA3048850A1 (en) | 2010-05-11 | 2011-11-17 | Howmedica Osteonics Corp. | Organophosphorous, multivalent metal compounds, & polymer adhesive interpenetrating network compositions & methods |
WO2012158527A2 (en) | 2011-05-13 | 2012-11-22 | Howmedica Osteonics | Organophosphorous & multivalent metal compound compositions & methods |
ITTO20130284A1 (en) * | 2013-04-09 | 2014-10-10 | Fond Istituto Italiano Di Tecnologia | PROCEDURE FOR THE PRODUCTION OF SHAPED POLYMERIC MICROPARTELS |
US10743996B2 (en) | 2017-03-24 | 2020-08-18 | Robert L. Bundy | Amnion putty for cartilage repair |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4595713A (en) * | 1985-01-22 | 1986-06-17 | Hexcel Corporation | Medical putty for tissue augmentation |
US5171579A (en) * | 1991-10-11 | 1992-12-15 | Genetics Institute, Inc. | Formulations of blood clot-polymer matrix for delivery of osteogenic proteins |
WO1993000050A1 (en) * | 1991-06-21 | 1993-01-07 | Genetics Institute, Inc. | Pharmaceutical formulations of osteogenic proteins |
EP0567391A1 (en) * | 1992-04-24 | 1993-10-27 | Bristol-Myers Squibb Company | A biodegradable tgf-beta delivery system for bone regeneration |
WO1993020859A1 (en) * | 1992-04-20 | 1993-10-28 | Board Of Regents Of The University Of Washington | Sustained release compositions for delivery of growth factors |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4186448A (en) * | 1976-04-16 | 1980-02-05 | Brekke John H | Device and method for treating and healing a newly created bone void |
US4164794A (en) * | 1977-04-14 | 1979-08-21 | Union Carbide Corporation | Prosthetic devices having coatings of selected porous bioengineering thermoplastics |
US4455256A (en) * | 1981-05-05 | 1984-06-19 | The Regents Of The University Of California | Bone morphogenetic protein |
US4394370A (en) * | 1981-09-21 | 1983-07-19 | Jefferies Steven R | Bone graft material for osseous defects and method of making same |
JPS60100516A (en) * | 1983-11-04 | 1985-06-04 | Takeda Chem Ind Ltd | Preparation of sustained release microcapsule |
US4526909A (en) * | 1984-01-09 | 1985-07-02 | Regents Of The University Of California | Polymethylmethacrylate delivery system for bone morphogenetic protein |
US4563489A (en) * | 1984-02-10 | 1986-01-07 | University Of California | Biodegradable organic polymer delivery system for bone morphogenetic protein |
EP0154434B1 (en) * | 1984-02-17 | 1993-01-27 | Genentech, Inc. | Human transforming growth factor and precursor or fragment thereof, cells, dna, vectors and methods for their production, compositions and products containing them, and related antibodies and diagnostic methods |
DE3678308D1 (en) * | 1985-02-07 | 1991-05-02 | Takeda Chemical Industries Ltd | METHOD FOR PRODUCING MICROCAPSULES. |
US4645503A (en) * | 1985-08-27 | 1987-02-24 | Orthomatrix Inc. | Moldable bone-implant material |
US5133755A (en) * | 1986-01-28 | 1992-07-28 | Thm Biomedical, Inc. | Method and apparatus for diodegradable, osteogenic, bone graft substitute device |
US4877864A (en) * | 1987-03-26 | 1989-10-31 | Genetics Institute, Inc. | Osteoinductive factors |
US5013649A (en) * | 1986-07-01 | 1991-05-07 | Genetics Institute, Inc. | DNA sequences encoding osteoinductive products |
WO1988004818A1 (en) * | 1986-12-15 | 1988-06-30 | Institut Problem Modelirovania V Energetike Akadem | Optical memorizing device |
US5108753A (en) * | 1988-04-08 | 1992-04-28 | Creative Biomolecules | Osteogenic devices |
US5266683A (en) * | 1988-04-08 | 1993-11-30 | Stryker Corporation | Osteogenic proteins |
-
1994
- 1994-09-19 US US08/308,787 patent/US5520923A/en not_active Expired - Lifetime
-
1995
- 1995-07-24 WO PCT/US1995/009325 patent/WO1996009078A1/en active Application Filing
- 1995-07-24 AU AU31042/95A patent/AU3104295A/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4595713A (en) * | 1985-01-22 | 1986-06-17 | Hexcel Corporation | Medical putty for tissue augmentation |
WO1993000050A1 (en) * | 1991-06-21 | 1993-01-07 | Genetics Institute, Inc. | Pharmaceutical formulations of osteogenic proteins |
US5171579A (en) * | 1991-10-11 | 1992-12-15 | Genetics Institute, Inc. | Formulations of blood clot-polymer matrix for delivery of osteogenic proteins |
WO1993006872A1 (en) * | 1991-10-11 | 1993-04-15 | Genetics Institute, Inc. | Formulations of blood clot-polymer matrix for delivery of osteogenic proteins |
WO1993020859A1 (en) * | 1992-04-20 | 1993-10-28 | Board Of Regents Of The University Of Washington | Sustained release compositions for delivery of growth factors |
EP0567391A1 (en) * | 1992-04-24 | 1993-10-27 | Bristol-Myers Squibb Company | A biodegradable tgf-beta delivery system for bone regeneration |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1719531A3 (en) * | 1997-03-20 | 2011-07-20 | Stryker Corporation | Osteogenic devices and methods of use thereof for repair of bones |
US7041641B2 (en) | 1997-03-20 | 2006-05-09 | Stryker Corporation | Osteogenic devices and methods of use thereof for repair of endochondral bone and osteochondral defects |
US7410947B2 (en) | 1997-03-20 | 2008-08-12 | Stryker Corporation | Osteogenic devices and methods of use thereof for repair of endochondral bone and osteochondral defects |
WO1998041246A3 (en) * | 1997-03-20 | 1998-10-22 | Creative Biomolecules Inc | Osteogenic devices and methods of use thereof for repair of bone |
EP1719532A3 (en) * | 1997-03-20 | 2011-07-20 | Stryker Corporation | Osteogenic devices and methods of use thereof for repair of bones |
US8354376B2 (en) | 1997-03-20 | 2013-01-15 | Stryker Corporation | Osteogenic devices and methods of use thereof for repair of endochondral bone, osteochondral and chondral defects |
US8372805B1 (en) | 1997-03-20 | 2013-02-12 | Stryker Corporation | Osteogenic devices and methods of use thereof for repair of endochondral bone, osteochondral and chondral defects |
US8802626B2 (en) | 1997-03-20 | 2014-08-12 | Stryker Corporation | Osteogenic devices and methods of use thereof for repair of endochondral bone, osteochondral and chondral defects |
EP1880739A1 (en) * | 2005-12-23 | 2008-01-23 | Herbert P. Prof. Dr. Jennissen | Process for the immobilization of proteins on an implant |
WO2009054006A3 (en) * | 2007-10-26 | 2010-03-11 | National Institute Of Immunology | Biodegradable polymer scaffold and process for preparation thereof |
CN101873869A (en) * | 2007-10-26 | 2010-10-27 | 国家免疫学研究所 | Biodegradable polymer scaffold and method for its preparation |
US8268342B2 (en) | 2007-10-26 | 2012-09-18 | National Institute Of Immunology | Biodegradable polymer scaffold and process for preparation thereof |
AU2008315318B2 (en) * | 2007-10-26 | 2014-02-06 | National Institute Of Immunology | Biodegradable polymer scaffold and process for preparation thereof |
Also Published As
Publication number | Publication date |
---|---|
AU3104295A (en) | 1996-04-09 |
US5520923A (en) | 1996-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5520923A (en) | Formulations for delivery of osteogenic proteins | |
US5597897A (en) | Pharmaceutical formulations of osteogenic proteins | |
JP3336010B2 (en) | Formulation of clot-polymer matrix for delivery of osteogenic proteins | |
AU695374B2 (en) | Formulations for delivery of osteogenic proteins | |
CA2439813C (en) | Porous beta-tricalcium phosphate granules and methods for producing same | |
EP0411105B1 (en) | Bone collagen matrix for implants | |
US9101694B2 (en) | Pliable medical device and method of use | |
US10960109B2 (en) | Autologous bone graft substitute | |
US11596712B2 (en) | Autologous bone graft substitute composition | |
AU2002306592B2 (en) | Porous beta-tricalcium phosphate granules and methods for producing same | |
Kempen et al. | Controlled drug release from a novel injectable biodegradable microsphere/scaffold composite based on PPF | |
AU2002306592A1 (en) | Porous beta-tricalcium phosphate granules and methods for producing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU CA FI JP KP KR NO |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |