[go: up one dir, main page]

WO1996018105A1 - Recepteur de lymphocyte t monocatenaire - Google Patents

Recepteur de lymphocyte t monocatenaire Download PDF

Info

Publication number
WO1996018105A1
WO1996018105A1 PCT/US1995/015696 US9515696W WO9618105A1 WO 1996018105 A1 WO1996018105 A1 WO 1996018105A1 US 9515696 W US9515696 W US 9515696W WO 9618105 A1 WO9618105 A1 WO 9618105A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell receptor
cell
domain
single chain
chain
Prior art date
Application number
PCT/US1995/015696
Other languages
English (en)
Inventor
Jack L. Strominger
Shan Chung
Original Assignee
The President And Fellows Of Harvard College
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The President And Fellows Of Harvard College filed Critical The President And Fellows Of Harvard College
Publication of WO1996018105A1 publication Critical patent/WO1996018105A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/7051T-cell receptor (TcR)-CD3 complex
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5091Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing the pathological state of an organism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • T-cell receptors are recognition molecules present on the surface of T lymphocytes. Although closely related to antibody molecules, T-cell receptors have numerous properties which distinguish them from antibodies. One fundamental difference between T-cell receptors and antibody molecules is that antibody molecules exist in two alternative forms: cell surface molecules or soluble secreted molecules. Native T-cell receptors exists, however, only as cell surface molecules.
  • the T-cell receptors which are found most commonly on the surface of T-cells are comprised of two glycoprotein subunits which are referred to as the ⁇ and ⁇ chains. Both chains have a molecular weight of about 40 kDa and possess a variable and a constant domain.
  • the genes which encode the ⁇ and ⁇ chains are organized in a manner which is similar to antibody gene organization in that there are libraries of V, D and J regions from which the genes are formed by genetic rearrangement.
  • TCRs recognize antigen which is presented by an antigen presenting cell as a part of a complex with a specific self-molecule encoded by a histocompatibility gene.
  • the most potent histocompatibility genes are known as the major histocompatibility complex (MHC) .
  • MHC major histocompatibility complex
  • T-cell receptor which retains specificity for an antigenic peptide presented by an antigen presenting cell as a component of a complex including the MHC is useful in a variety of contexts which are discussed in greater detail below.
  • Several approaches have been employed to produce soluble, recombinant T-cell receptors.
  • the transmembrane/cytoplasmic regions of the ⁇ and ⁇ chains were replaced with sequences from lipid-linked proteins (GPI anchor) , the CD3-f chain or with immunoglobulin (Ig) heavy or light chains. Soluble T-cell receptors were recovered either as secreted proteins (Ig constructs) or obtained by enzymatic cleavage of the
  • GPI-anchor or the CD3-f chain All of these approaches rely, however, on the assembly of the heterodimer which is inefficient. In addition, high level expression of the human T-cell receptor ⁇ chain in transfected eukaryotic cells is not stable.
  • the present invention relates in one aspect to a single chain T-cell receptor which binds specifically to an MHC/peptide ligand.
  • the single chain T-cell receptor of the present invention has been demonstrated to be soluble in aqueous media.
  • the single chain T-cell receptor is a 3-domain single chain T-cell receptor comprising an ⁇ chain variable domain (V ⁇ ) , a ⁇ chain variable domain (V ⁇ ) and a constant domain.
  • a single chain T-cell receptor wherein the V ⁇ -J ⁇ domain of the ⁇ chain variable domain is linked to the N-terminus of the ⁇ chain variable domain by a flexible amino acid linker and the C-terminal region of the ⁇ chain variable domain is linked to the ⁇ chain constant domain (C ⁇ ) .
  • the invention in another aspect, relates to a self- signaling single chain T-cell receptor which binds specifically to an MHC/peptide ligand.
  • the self- signaling T-cell receptor is preferably comprised of: 1) a soluble T-cell receptor domain comprising an ⁇ chain variable domain, a ⁇ chain variable domain and a constant domain; and 2) a transmembrane and intracellular signaling domain from a transmembrane receptor.
  • the self-signaling T-cell receptor When displayed on the surface of a T-cell, the self-signaling T-cell receptor has the ability to transduce signal following specific binding to MHC/peptide ligand.
  • the invention also relates to nucleic acid molecules which encode the single chain T-cell receptors described above, expression vectors containing such nucleic acid molecules, and cells which carry expressible copies of such nucleic acid molecules.
  • the invention relates to methods for diagnosing viral infection in a patient. Disclosed are methods which employ both the single chain T-cell receptor, and the self-signaling embodiment of the single chain T-cell receptor.
  • FIG. 1 is a diagrammatic representation of T-cell receptor ⁇ - and /3-chain genes and various chimeric constructs which employs the following designations:
  • S—S disulfide bond
  • L leader
  • V variable segment
  • J joining segment
  • C constant region
  • TM transmembrane region
  • Cy cytoplasmic region
  • ATG start codon
  • Li 15-residue peptide linker containing three repeats of GGGGS
  • PI GPI domain of human placental alkaline phosphatase with the sequence --APPAGTTDAAHPGRSV ⁇ -ALLPLLAGTLLLL (SEQ ID NO. 3).
  • the ⁇ region contains transmembrane and cytoplasmic domains of the marine CD3 f chain starting at position 31 (Engel et al., Science 256 : 1318 (1992)).
  • the present invention is based on experiments which resulted in the synthesis of a single chain T-cell receptor which binds specifically to a predetermined MHC/peptide ligand which is presented by an antigen presenting cell (e.g, a macrophage) .
  • the MHC component of the MHC/peptide ligand can be Class I or Class II.
  • the term "single chain" is used to describe an amino acid copolymer having a single N-terminus and a single C-terminus. This single chain T-cell receptor is to be contrasted with the native T-cell receptor which is comprised of two glycoprotein subunits which are referred to as the ⁇ and ⁇ chains.
  • the single chain T-cell receptor of the present invention is soluble in an aqueous medium.
  • aqueous medium includes, for example, physiologically compatible buffered solutions. It has been determined, for example, that the single chain T- cell receptor of the present invention is soluble in phosphate buffered saline up to a concentration of 1 mg/ml.
  • the native T-cell receptor is comprised of two glycoprotein subunits which are referred to as the and ⁇ chains.
  • Each of the glycoprotein subunit chains comprise two domains, one variable and one constant.
  • the glycoprotein subunits are encoded by genes which are formed by rearrangement of segments (V, D and J segments ( ⁇ chain) , and V and J segments ( ⁇ chain) ) from libraries found in discrete chromosomal regions.
  • the single chain T-cell receptor is a 3-domain single chain T-cell receptor comprising a leader sequence and an ⁇ chain variable domain, a ⁇ chain variable domain and a constant domain.
  • Such a molecule can be prepared in a variety of ways. For example, conventional synthetic techniques may be employed to produce the desired amino acid copolymer from its component amino acids (see e.g., Houghton et al., Proc. Natl . Acad. Sci . USA 82 : 5135 (1985)).
  • DNA encoding the single chain T-cell receptor is generated at the genetic level by combining elements from isolated T-cell receptor genes by recombinant DNA techniques (see e.g., Maniatis et al., Molecular Cloning: A Laboratory Manual , Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1982)). In order to practice such methods it is first necessary to isolate nucleic acid which encodes the ⁇ and ⁇ chains of the T-cell receptor having the desired specificity.
  • DNA encoding the ⁇ and ⁇ chains which comprise a T-cell receptor which binds specifically with a predetermined epitope of the human myelin basic protein (MBP) when presented in association with an MHC Class II protein, is described in detail in the Examples which follow.
  • MBP myelin basic protein
  • the procedures specified in connection with the isolation of DNA encoding a T-cell receptor specific for an epitope of the human MBP are applicable to the isolation of T-cell receptor genes which encode a T-cell receptor which binds specifically to any predetermined MHC/peptide ligand.
  • an initial step in obtaining DNA encoding T-cell receptor genes which encode a T-cell receptor which binds specifically to any predetermined MHC/peptide ligand is to isolate an antigen specific T- cell clone from a mammal (preferably a human) which is known to possess the antigen of interest in its tissue.
  • a mammal preferably a human
  • the predetermined MHC/peptide ligand contains a peptide representing a T-cell epitope from an HIV virus, an individual infected with the virus would be selected.
  • a peripheral blood cell preparation is obtained from the selected individual by conventional techniques (Wucherpfennig et al., Science 248 : 1018 (1990); Wucherpfennig et al., J . Immunol . 152 : 5581 (1989)).
  • the peripheral blood cell population is stimulated by contacting the cells with the predetermined antigen using conventional techniques intended to expand the population of T-cells which bind specifically to the antigen of interest.
  • stimulation is carried out with a purified peptide known to contain a T-cell epitope, or with an enzymatically degraded protein preparation (e.g., a partial trypsin digest) comprising a mixture of peptides.
  • This stimulation procedure enriches the T-cell population for those T-cells which specifically bind to an epitope of the antigen of interest.
  • a clonal population of cells encoding a single T-cell receptor specific for the antigen of interest is isolated.
  • DNA encoding the ⁇ and ⁇ chains which comprise a T- cell receptor is then prepared from the clonal T-cell population using spliced mRNA as template.
  • spliced mRNA One way in which this can be accomplished is through the construction of a cDNA library from a clonal cell culture of the type described above.
  • the isolation of mRNA and the synthesis and cloning of double stranded cDNA molecules encoded by the mRNA is a routine procedure (see e.g., Maniatis et al., Molecular Cloning: A Laboratory Manual , Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1982) ) .
  • the cDNA library is then screened using probes specific for the constant region of the T-cell receptor ⁇ or ⁇ chains (see e.g., Davis et al., Nature 334 : 395 (1988)).
  • a variety of alternative approaches can also be used to prepare DNA encoding the ⁇ or ⁇ chains from mRNA isolated from a cell culture demonstrating the desired binding specificity.
  • Such methods include the use of a standard PCR protocol using first-strand cDNA template prepared from the isolated mRNA. The latter method is, in fact, the method which was used to generate DNA encoding the ⁇ chain in the experiments described in detail in Example 1 which follows.
  • Yet another alternative is the anchored PCR technique described by (Loh et al., Science 243 : 217 (1989)). Using standard recombinant DNA techniques, a 3-part single chain T-cell receptor of the type described herein can be assembled from domains isolated from the ⁇ and ⁇ chain DNA.
  • a leader sequence must be included for proper intracellular processing of the single chain T-cell receptor.
  • a leader sequence In genomic DNA, a leader sequence is always linked to the DNA encoding the ⁇ chain variable domain such that in the encoded product, the leader sequence is located at the N-terminus. Therefore, in the T-cell receptor of the present invention, a leader sequence is located at the N-terminus of the molecule and is considered to be an element of the V ⁇ domain. It will be recognized, however, that although a specific leader sequence is linked to a specific V ⁇ domain in genomic DNA, leader sequences can be exchanged using recombinant DNA techniques without a detrimental affect on the intracellular processing of the encoded fusion.
  • the V ⁇ - J ⁇ domain of the ⁇ chain variable domain is linked to C- terminus of a leader sequence.
  • the V ⁇ -J ⁇ domain of the o chain variable domain is also linked to the N-terminus of the ⁇ chain variable domain by a flexible amino acid linker and the C- terminal region of the ⁇ chain variable domain is linked to the ⁇ chain constant domain.
  • these domains which must be present at a minimum, it may be possible to add additional segments without interfering with the essential properties of the encoded molecule.
  • the identity of individual amino acids in the amino acid linker, and the number of amino acids which comprise the amino acid linker are variable.
  • the purpose of this linker is to provide sufficient flexibility within the molecule to enhance the binding characteristics of the soluble T-cell receptor.
  • a linker comprised of about 10 to 30 amino acid residues would be considered sufficient.
  • glycine is preferred in light of the fact that a glycine polymer exhibits increased flexibility relative to other mono-amino acid polymers due to the fact that it lacks j8-carbons.
  • amino acids which tend to increase solubility in an aqueous solution are preferred (e.g. , serine, glutamine, aspartic acid, arginine, etc.).
  • T-cell receptor variable region i.e., the portion of the variable region other than the CDRs
  • CDR complimentarity determining region
  • the scope of the present invention is intended to encompass derivatives of the T-cell receptor of the invention wherein the addition of the derivatizing group would not be expected to substantially alter the binding characteristics of the soluble T-cell receptor.
  • modifications include, for example, the addition of a radiolabel group or the conjugation of a toxin molecule.
  • conservative substitution refers to the substitution of a second amino acid residue for a first amino acid residue, both residues having an R group exhibiting substantially similar chemical properties. Standard biochemistry textbooks provide groupings of amino acid residues according to substantial similarity in R group chemistry.
  • DNA encoding the single chain T-cell receptor produced in the manner described above, can be expressed in eukaryotic or prokaryotic cells by placing the DNA under the control of regulatory sequences appropriate for expression in the cell type of interest, and introducing the construct into the cell type of interest. Regulatory sequences appropriate for expression can exert their influence at many levels including, for example, the transcriptional, translational and post-translational levels.
  • the DNA encoding the single chain T-cell receptor, together with appropriate regulatory sequences are typically carried within a larger DNA molecule (often referred to as an expression construct) which facilitates the introduction and expression of the expressible nucleic acid encoding the single chain T-cell receptor.
  • An extrachromosomal plasmid is an example of an expression vector which could be used to facilitate prokaryotic expression.
  • Modified eukaryotic viral DNA capable of integrating into the chromosome of a host-cell is an example of an expression vector which could be used to facilitate eukaryotic expression.
  • the selection of expression vectors and appropriate regulatory signals is highly dependent upon the particular application. Given a particular experimental goal, the choice of an appropriate vector and appropriate regulatory sequences would be clear to one of skill in the art based on fundamental and well established principles.
  • the present invention relates to a self-signaling single chain T-cell receptor which binds specifically to an MHC/peptide ligand when presented by an antigen presenting cell.
  • the native T- cell receptor is not a self-signaling molecule. Rather, the signaling function of the native T-cell receptor is mediated by a number of ancillary proteins. Briefly, there are two major classes of T-cells: cytotoxic T lymphocytes (CTLs) and helper T (T H ) lymphocytes. CTLs have the ability to lyse cells which display a foreign antigen on their cell surface (in association with an MHC component) .
  • CTLs cytotoxic T lymphocytes
  • T H helper T lymphocytes
  • T H lymphocytes recognize the degradation products of foreign antigens and, in response, secrete stimulatory factors which induce response by other immune system components.
  • CTLs can be distinguished from T H lymphocytes based on the presence of certain surface proteins. More specifically, CTLs typically have the CD8 protein on their cell surface while T H lymphocytes typically have CD4 protein on their cell surface.
  • the interaction between the antigenic peptide/MHC complex on an antigen presenting cell, and the T-cell receptor on the T-cell, is thought to involve either a class I MHC-CD8 interaction or a class II MHC-CD4 interaction.
  • a variety of other proteins also participate in the effector signaling process which results ultimately in the secretion of protein factors by both classes of T-cells (the secreted protein factors include, for example, factors which induce cell lysis in the case of CTLs, and lymphokines in the case of T H lymphocytes) .
  • T-cell receptor proteins which participate in the signaling process
  • proteins which participate in the signaling process include, for example, the CD3 complex of proteins which are tightly bound to the T-cell receptor, as well as a tyrosine kinase protein encoded by the lck gene which is bound to both CD4 and CD8.
  • CD3 complex of proteins which are tightly bound to the T-cell receptor as well as a tyrosine kinase protein encoded by the lck gene which is bound to both CD4 and CD8.
  • tyrosine kinase protein encoded by the lck gene which is bound to both CD4 and CD8.
  • the self-signaling T-cell receptor of the present invention differs from the native form in that a signaling domain is incorporated as a component of the fusion protein.
  • the self-signaling T-cell receptor of the present invention includes all of the elements of the single chain T-cell receptor described above (i.e., an a chain variable domain, a ⁇ chain variable domain and a constant domain) as well as a transmembrane and intracellular signaling domain from a transmembrane receptor.
  • a leader sequence is essential for intracellular processing and is located at the N-terminus of the molecule.
  • the C-terminus of the leader sequence is linked to the N-terminus of the V ⁇ -J ⁇ domain of the ⁇ chain variable domain. This, in turn is linked at its C-terminus to the N-terminus of the ⁇ chain variable domain by a flexible amino acid linker.
  • the C-terminal region of the ⁇ chain variable domain is linked to the ⁇ chain constant domain and the C-terminal region of the ⁇ chain constant region is linked to the N-terminal region of the transmembrane and intracellular signaling domain from a transmembrane receptor.
  • construction of the self-signaling single chain T-cell receptor is preferably carried out at the genetic level although alternative methods are well known in the art.
  • DNA encoding the transmembrane/signaling domain of the transmembrane receptor is also isolated according to well established experimental steps protocols including, for example, standard PCR.
  • the identity of the transmembrane receptor from which the transmembrane and intracellular signaling domain is derived depends upon the nature of the signal which is preferred. For example, if it is desired that self-signaling T-cell receptor is to be displayed on the surface of a T-cell with the ultimate goal being the stimulation of a response which mimics the T-cell response in vivo (e.g., secretion of protein factors such as lymphokines (T H lymphocytes) or factors which induce cell lysis (CTLs) ) , the preferred transmembrane and intracellular domains are derived from the CD3 f chain.
  • T H lymphocytes lymphokines
  • CTLs cell lysis
  • T-cell clone having: 1) a predetermined MHC/peptide ligand specificity; and 2) the ability to mimic activity of cytotoxic T lymphocyte following binding to the MHC/peptide ligand offers the opportunity for a new method of therapeutic intervention which is discussed in greater detail below.
  • transmembrane/signaling domains can be used. Based on previous work with chimeric transmembrane receptors, it would be predicted with a high degree of certainty that the fusion of the extracellular domain of the single chain T-cell receptor of this invention, with the transmembrane/signaling domain of virtually any transmembrane receptor, would result in the production of a chimeric single chain T- cell receptor in which the signaling function would be operable following specific binding of the extracellular domain of the single chain T-cell receptor to the MHC/peptide ligand for which it is specific.
  • tyrosine kinase receptor the intracellular and transmembrane domains of a tyrosine kinase receptor can be used.
  • Many transmembrane tyrosine kinase receptors have been identified (for reviews see, e.g.. Hanks, Current Opinion in Structural Biology 1 : 369 (1991) and Pawson and Bernstein, Trends in Genetics 6 : 350 (1990)).
  • Such a receptor when stimulated, functions to phosphorylate intracellular protein targets.
  • an increase in intracellular phosphorylation could be detected using specific antibodies (i.e., anti- phosphotyrosine antibodies such as antibody 4G10 which is available commercially from Upstate Biotechnology Incorporated) thereby providing a positive indication of specific binding of the self-signaling T-cell receptor to its MHC/peptide ligand binding partner.
  • specific antibodies i.e., anti- phosphotyrosine antibodies such as antibody 4G10 which is available commercially from Upstate Biotechnology Incorporated
  • Such a detection method would be useful, for example, in connection with a diagnostic embodiment of the present invention which is described below.
  • the self-signaling single chain T-cell receptor is expressed in a T lymphocyte which is then clonally expanded.
  • any T lymphocyte can be employed as a host-cell for expression of the self- signaling T-cell receptor.
  • expression in a cytotoxic T lymphocyte is preferred.
  • T lymphocytes to be used as host-cells can be purified from the peripheral blood cells of an individual.
  • established T lymphocyte tumor cell lines can be employed. Many such tumor cell lines have been reported in the literature. Expression is accomplished by the introduction of an expressible genetic construct carrying DNA encoding the self- signaling single chain T-cell receptor into the T lymphocyte. As discussed previously, the ability to design and synthesize such an expressible genetic construct is a matter of routine experimentation given the current state of the art.
  • the single chain T- cell receptor and related compositions are useful in a method for diagnosing viral infection in a patient.
  • a single chain T-cell receptor which binds specifically to an antigenic peptide from the virus when presented by an antigen presenting cell in association with an MHC is produced as described previously.
  • the soluble T-cell receptor may be labeled with a reporter group (e.g., a radiolabeling group) .
  • a peripheral blood cell preparation from the individual to be tested for viral infection is then incubated with the soluble single chain T-cell receptor under conditions appropriate for binding of the soluble single chain T-cell receptor to the MHC/peptide ligand for which it is specific.
  • Such conditions include, for example, incubation in a physiologically compatible buffer at a temperature of about 4° C. Following an appropriate incubation period (e.g., 30 minutes) the cells are pelleted and resuspended in a wash solution to remove labeled single chain T-cell receptor which is not specifically complexed with an MHC/peptide ligand on the surface of antigen presenting cells.
  • the amount of radiolabel associated with the cellular fraction is determined. This determination can be made using a variety of standard techniques depending upon the identity of the label employed. Values determined in this manner are then compared with values determined in an otherwise identical incubation using a peripheral blood cell preparation from an individual known to be noninfected with the virus of interest. Viral infection is indicated by the detection of substantially greater signal (i.e., at least about 2- fold) from the peripheral blood cell preparation from the individual to be tested for viral infection when compared with the signal detected using the peripheral blood cell preparation from the individual known to be noninfected.
  • the method of diagnosing viral infection discussed above can also be modified to employ a self-signaling T- cell receptor of the type described above.
  • this method of diagnosis it is not necessary that the signal produced by receptor binding to the MHC/peptide ligand result in a T-cell response which mimics the T-cell response n vivo (i.e., secretion of protein factors). Rather, all that is required is that specific binding of the self-signaling single chain T-cell receptor to the MHC/peptide ligand result in the generation of a specific and detectable signal.
  • the transmembrane/signaling domain of the self-signaling T- cell receptor can be selected from virtually any transmembrane receptor possessing both a transmembrane and a signaling domain. It will be recognized, of course, that the transmembrane/signaling domain from a transmembrane receptor known to participate in a signaling process which stimulates a T-cell response which mimics the T-cell response in vivo can be used.
  • An example of such a transmembrane receptor is the CD3 f-chain.
  • DNA encoding the self-signaling single chain T-cell receptor is introduced in expressible form into a mammalian T-cell. When incubated under conditions appropriate for metabolic activity, the self-signaling single chain T-cell receptor is expressed and displayed on the surface of the host-cell.
  • a peripheral blood cell preparation from an individual to be tested for infection is provided.
  • the peripheral blood cell preparation is subsequently fixed in solution using a fixing agent (e.g. , paraformaldehyde) .
  • a fixing agent e.g. , paraformaldehyde
  • fixing the antigen presenting cell ensures that any cytokine secretion subsequently detected is secreted from the T-cell.
  • the fixed cells and the cells bearing the self-signaling single chain T-cell receptor are incubated together under conditions appropriate for binding of a T-cell receptor to the MHC/peptide target for which it is specific.
  • the self-signaling single chain T-cell receptor to the MHC/peptide ligand for which it is specific results in a triggering of the signaling domain of the self-signaling receptor.
  • Signal is then detected by conventional techniques. For example, if the signaling domain is from a tyrosine kinase receptor, signal is detected using anti-phosphotyrosine antibodies. If, on the other hand the signaling domain is from a transmembrane receptor having the properties CD3 f-chain, signal is detected for example by the detection of secreted lymphokine (e.g., IL-2) using appropriate immunological reagents.
  • secreted lymphokine e.g., IL-2
  • the level of signal determined is then compared with levels determined in an otherwise identical experiment using a peripheral blood cell preparation from an individual known to be noninfected.
  • the soluble single chain T-cell receptor of the present invention (and the self- signaling counterpart) can be used in a therapeutic context. Soluble T-cell receptors with proper specificity, either alone or with another functional group (such as toxins) can be used to block specific immune response or target malignant or virus-infected cells.
  • the self-signaling single chain T-cell receptor when expressed in a suitable host-cell, can be applied to regulate specific immune response or to target malignant or virus-infected cells.
  • the single chain design of the T-cell receptors of this invention will also facilitate the construction of T-cell receptor phage libraries similar to those made for single chain antibodies (Clackson et al, Nature 352 : 624 (1992)).
  • the success in producing a bacterially- expressed three-domain single chain design supports this application.
  • Such libraries are powerful tools for the isolation of T-cell receptors with defined specificity and/or high affinity.
  • the present example discloses studies in which different single chain T-cell receptor designs were evaluated in transfected eukaryotic cells with respect to surface expression of T-cell receptor molecules, proper folding and recognition of the appropriate MHC/peptide ligand.
  • a single-chain three-domain construct (V ⁇ -linker-VjS-CS) was stably expressed on the cell surface when linked to a glycosyl- phosphatidylinostol (GPI) anchor and recognized by a conformation dependent Ab specific for the VS17 segment.
  • GPI glycosyl- phosphatidylinostol
  • T-cell receptor ⁇ and ⁇ chains were prepared from mRNA of 2H9 cells with Superscript reverse transcriptase (BRL) and an oligo(dT) primer (Sigma) and were amplified by PCR using Vent DNA polymerase (New England Biolabs) and primers 5'- GCTCGAGGCGGCGATGGAAACTCTCCTGGGAGT-3' (A5) (SEQ ID NO.
  • a Ban I site was engineered after the fifth amino acid residue beyond the last cysteine by oligonucleotide-directed utagenesis. The region 3' of the Ban I site was then replaced with a Ban 1-Not I fragment encoding the GPI signal domain from the human placental alkaline phosphatase.
  • variable domains of the 2H9 T- cell receptor ⁇ and ⁇ chains were prepared by PCR using primers A5 and 5'-CAGAGCTCACGGATGAACAATAAGGCTGGT-3' (SEQ ID NO.
  • 5'GTGGGAGATCTCTGCTTCTGATGGCTCAAAC (SEQ ID NO. 11) and B5 for the V ⁇ domain in AB-PI-2
  • 5'- CACGGATCCCCGTCTGCTCTACCCCAGGC (SEQ ID NO. 12) and B5 for the V ⁇ and C ⁇ domains in ABC-PI
  • CACGGATCCCCGTCTGCTCTACCCCAGGC-3' (SEQ ID NO. 13) and B5 for the V ⁇ and C ⁇ domains in ABC-f.
  • the cDNA encoding the transmembrane and cytoplasmic domains of murine CD3 f chain (Engel et al., Science 256 : 1318 (1992)) was employed. Convenient restriction sites were engineered at the end of each fragment to aid in the assembly of the construct.
  • the linker was a 15-amino acid motif of GGGGS repeated three times (Huston et al., Int . Rev. Immunol . 10 : 195 (1992)) with Sac I at the 5' end and -EcoRV at the 3*" end.
  • ⁇ -PI was cloned into pBJ-neo, which carries the G418-resistance gene.
  • ⁇ -PI was cloned into pCEP-4 (Invitrogen) , which bears the hygromycin-resistance gene. All constructs were verified by multiple restriction digests and by sequencing with the Sequenase kit (United States Biochemical) .
  • Recombinant T-cell receptor molecules were generated by using the T-cell receptor ⁇ - and 3-chain sequences of the human myelin basic protein (MBP) specific T-cell clone Hy.2H9 (Wucherpfennig et al..
  • This clone T-cell receptor is composed of the V ⁇ 3.1 and V317.1 segments and is specific for the immunodominant MBP peptide MBP-(85-99) in the context of HLA-DR2 (DRA, DRB1*1602) (Wucherpfennig et al., J. Immunol . 152 : 5581 (1994)).
  • Usage of the V017.1 segment allowed the proper folding of recombinant T-cell receptors to be probed using the superantigen SEB (Choi et al., Proc . Natl . Acad . Sci .
  • ⁇ Fl and 0F1 recognize nonconformational epitopes located in the C region of the T-cell receptor ⁇ and ⁇ chains, respectively.
  • Surface expression of the T-cell receptor ⁇ chain is independent of heterodimer formation and assembly of the CD3 complex (Lin et al., Science 249 : 677 (1990)).
  • high-level expression of ⁇ -PI was confirmed by staining with 3F1.
  • V3l7-specific Cl epitope is conformational and dependent on the proper pairing of T-cell receptor ⁇ and ⁇ chains and can therefore be used to assess the proper folding of recombinant T-cell receptors bearing a V017 sequence.
  • C ⁇ domain was added to the sc construct.
  • a complete C ⁇ domain should provide enough distance for the Va-V ⁇ domains to be expressed on the cell surface and, more importantly, should allow surface expression to be monitored with another antibody, jSFl (Brenner et al., J. Immunol . 138 : 1502 (1987)).
  • This three-domain sc T-cell receptor was constructed by extending the T- cell receptor S-chain sequences to the residue right before the last cysteine (the sixth cysteine) , which was then fused to the GPI domain. The last cysteine was deleted to prevent dimerization between C ⁇ domains.
  • the molecule could be efficiently cleaved from the cell surface with PI-PLC.
  • Soluble three-domain single chain T-cell receptor was purified from transfectants after PI-PLC cleavage followed by affinity chromatography using the 3F1 antibody. More specifically, after transfection and G418 selection (Engel et al. Science 256 : 1318 (1992)), cells expressing a high level of GPI-linked three-domain single chain T-cell receptor (ABC-PI) were isolated by three rounds of sorting. The resulting cells were grown in spinner culture to a density of 10 6 per ml and harvested by centrifugation.
  • the pellet was washed twice with phosphate-buffered saline (PBS) and resuspended in PBS containing 2 mM Pefabloc protease inhibitor (•••) (Centerchen, Inc., Stamford, CT) to a density of 5 X 10 7 per ml with PI-PLC (Sigma) added at 1 unit/ml. Cells were incubated at 37°C for 1 hr with constant rocking. The supernatant was collected by centrifugation and by passage through a 0.45- ⁇ m filter and applied to a column of Acti-gel (•••) (Sterogen, Inc., Arcadia, CA) with immobilized 0F1.
  • the column was washed with 10 volumes of PBS and the soluble T-cell receptor was eluted with 0.15 M glycine (pH 2.8). Fractions were immediately neutralized with 0.1 volume of saturated Tris. The soluble T-cell receptor was then dialyzed against > 100 volumes of PBS at 4°C with at least four changes and concentrated to 0.5 mg/ml by vacuum dialysis against PBS. Five micrograms of purified soluble three-domain single chain T-cell receptor was analyzed by SDS/PAGE under reducing conditions. The purified three-domain single chain T-cell receptor appeared as multiple bands at 50-70 kDa after SDS/PAGE.
  • the observed heterogeneity of single chain T- cell receptor is probably the result of variable glycosylation; its polypeptide size calculated from amino acid composition is 40 kDa.
  • the structural integrity of the three-domain single chain T-cell receptor was verified by a two-antibody ELISA. The molecules were first captured by the 0F1 antibody immobilized to the plate and then assessed for reactivity with the Cl antibody.
  • the single chain T-cell receptor from the eukaryotic system gave 10-20 times higher Cl reactivity.
  • the purified three-domain single chain T-cell receptor was stable and could be stored in PBS at 4°C for months without significant loss of Cl reactivity.
  • a self- signaling single chain T-cell receptor was produced by replacing the GPI domain with the transmembrane and cytoplasmic domains of the CD3 ⁇ chain. These regions have been shown to be sufficient for signal transduction when its extracellular fusion partner is crosslinked by an antibody or by the proper ligand (Engel et al. Science 256 : 1318 (1992); Irving et al. , Cell 64 : 891 (1991); Romeo et al., Cell 64 : 1037 (1991)).
  • a linker containing a thrombin cleavage site was inserted into the junction of three-domain single chain T-cell receptor and the f domain.
  • the construct (ABC-f) was transfected into BW " cells and the rat basophilic leukemia cell line RBL-2H3 (RBL) (Engel et al. Science 256 : 1318 (1992)), and the populations displaying high-level expression of three- domain single chain T-cell receptor were isolated by three rounds of cytofluorometric sorting using the antibody ⁇ Tl .
  • the ABC-f-transfected cells were first stimulated with various antibodies to confirm the self- signaling nature of this recombinant molecule.
  • ABC-f-transfected BW5147 / 8 ⁇ ' jS " cells (5 X 10 4 per well) were cultured in a 96-well round-bottom plate to which various antibodies had been immobilized (1 ⁇ g per well) .
  • the supematants were collected after 24 hr and interleukin 2 (IL-2) production was assessed in a bioassay using an IL-2- dependent-cell line (CTLL) and the CellTiter-96 nonradioactive proliferation assay (Promega) .
  • IL-2 interleukin 2
  • ABC-f transfectants displayed a concentration- dependent response toward SEB when the superantigen was presented by transformed B-cell lines with high-level expression of DR1 (DRA, DRB1*0101; cell line LG2) or DR2 (DRA, DRB1*1602; cell line 9016).
  • DR1 DRB1*0101; cell line LG2
  • DR2 DRB1*1602; cell line 9016
  • DRB1*1601 and DRB1*1602 differ only at position 67 in the D-R/Sl domain; this T-cell receptor contact-residue substitution does, however, abolish recognition of the peptide by the parent T-cell clone (Wucherpfennig, et al, J. Immunol . 152 : 5581 (1994)).
  • the ABC-f transfected BW " cells secreted IL-2 in response to peptide-pulsed 9016 cells, but not to peptide-pulsed 9009 cells. Similar results were obtained with RBL transfectants, as serotonin release was dependent on the concentration of the MBP peptide used to pulse 9016 cells. The signal appeared to be weak when compared with antibody stimulation.
  • T-cell receptor could be obtained from the ABC-f transfectants by thrombin cleavage and affinity purification.
  • T-cell receptor ⁇ and ⁇ chain sequences of the human yelin basic protein (MBP) specific T-cell clone Hy.2H9 as described in Example 1.
  • MBP human yelin basic protein
  • This T-cell receptor is composed of the V ⁇ 3.l and Vj8l7.l segments and is specific for the immunodominant MBP(85- 99) peptide in the context of HLA-DR2 (DRA, DRB1*1602) .
  • cDNAs for the T-cell receptor ⁇ and ⁇ chains of the Hy.2H9 cells were prepared as described in Example 1.
  • DNA fragments corresponding to the variable or constant domains of the ⁇ and ⁇ chains were prepared by PCR using cDNA template with convenient restriction sites engineered at the ends of each fragment.
  • the ⁇ and ⁇ - chain domains were connected by a 15-residue peptide linker with the primary sequence of GGGGS GGGGS GGGGS (SEQ ID NO. 14) (Huston et al., Proc . Natl . Acad . Sci . USA 85: 5879 (1988)).
  • the assembled single chain T-cell receptor was cloned in frame into a bacterial expression vector with PelB signal sequence and an isopropyl j8-D- thiogalactopyronoside (IPTG) inducible Tac promoter.
  • IPTG isopropyl j8-D- thiogalactopyronoside
  • E. coli strain BMH transformed with the single chain T-cell receptor plasmid was grown in Luria broth containing 15 ⁇ g/ml tetracycline and 2% glucose (w/v) at 30°C to a density at A ⁇ of 0.5 to 1.0. Cells were then pelleted by centrifugation and washed once with Luria broth. The cells were resuspended in fresh Luria broth containing 1 mM IPTG, grown for a further 8- 12 hours at 37°C before being harvested by centrifugation.
  • the cell pellet was resuspended in 10 ml/3g cell paste of 50 mM Tris-HCl (pH 8.0)/l mM EDTA/lysozyme (1 mg/ml)/l mM phenylmethylsulfonyl fluoride (PMSF) and incubated on ice for 30 min.
  • DNase and MgCl 2 were added to final concentrations of 10 ⁇ g/ml and 10 mM respectively and the suspension was incubated for 30 min at room temperature.
  • EDTA was added to a concentration of 20 mM and the suspension was subjected to 2 cycles of freeze/thaw. An additional 20 mM MgCl 2 was added to the suspension and incubated at room temperature for a further 15 min.
  • the cell suspension was centrifuged at 10,000 xg for 30 min at 4°C. The supernatant was removed and the cell pellet containing inclusion bodies was washed twice with 0.5% Triton x-100/50 mM Tris-HCl (pH 8.0)/l00 mM NaCl/0.1% sodium azide. After a final wash in 50 mM Tris-HCl (pH 8.0)/100 mM NaCl, the pellet containing inclusion bodies was solubilized in 8M urea/100 mM NaHPO ⁇ /lO mM Tris-HCl (urea buffer) (pH 8.0).
  • the suspension was centrifuged at 10,000 xg for 30 min, and the supernatant was loaded onto a Ni-NTA column (Qiagen) and washed with 10 volumes of urea buffer (pH 8.0) and then 5 volumes of urea buffer (pH 6.3). Protein was eluted in fractions from the column in 2 volumes of urea buffer (pH 4.5). Protein content was determined by a Coomassie blue protein assay, and fractions containing proteins were pooled and diluted in refolding buffer to a protein concentration of 50 ⁇ g/ l.
  • the final refolding buffer contained 3M urea/50 mM Tris-HCl (pH 8.0)/l mM EDTA/0.3 mM oxidized glutathione/3 mM reduced glutathione/1 mM PMSF.
  • the refolding solution was incubated at 4°C with gentle mixing for 48 hours and then dialyzed against 100 volume of PBS at 4°C with at least 4 changes.
  • Refolded protein was first concentrated in an Amicon stir cell with a YM10 membrane to a volume of 25-50 ml, then further concentrated by vacuum dialysis against PBS.
  • Binding was detected with streptavidin- conjugated alkaline phosphatase (Sigma) after the addition of substrate (Bio-rad) . Absorbence at 410 nm was determined using a 96-well plate reader. For the direct-binding ELISA, soluble T-cell receptors in serial dilution were immobilized on the plate. After the blocking step, Cl antibody was added to the wells followed by an alkaline phosphatase conjugated anti- mouse immunoglobulin antibody. The binding was measured after the addition of the substrate as described above.
  • the present example relates to the expression of a three-domain single chain T-cell receptor in bacteria.
  • the final construct for bacterial expression bears a three-domain design similar to its eukaryotic counterpart described in Example 1, with a few modifications. More specifically, the N-terminal endogenous ⁇ -chain leader sequence was deleted, a histidine tag was added to the C-Terminus for convenient purification with Ni-NTA resin and additional amino acid residues created convenient restriction sites at these junction regions.
  • This three-domain single chain T-cell receptor was cloned into a bacterial expression vector in frame with a N-terminal PelB signal sequence.
  • the presence of the PelB sequence was intended to allow recombinant proteins to be expressed as secretory proteins and to be isolated from either the growth medium or the periplasmic space. However, it was determined that the yield from these preparations was extremely low and the majority of the proteins were accumulated in bacteria as inclusion bodies. Based on these observations, the three-domain single chain T-cell receptors were isolated from inclusion bodies. The recombinant proteins were subsequently purified with a one-step Ni-NTA chromatography procedure through the binding of histidine tag engineered at its C-terminus. SDS-PAGE analysis of the induction of the three-domain single chain T-cell receptor, the inclusion body preparation, the flowthrough of the NI-NTA column and purified proteins eluted from the column was performed.
  • the recombinant protein could be purified from each liter of bacteria culture.
  • the purified protein which was reduced and denatured following the NI-NTA column chromatography step was subsequently refolded with glutathione.
  • the efficiency of refolding was evaluated with a two- antibody ELISA where the fraction of Cl reactive protein was measured.
  • Cl had been demonstrated to recognize a Vj8 17 specific epitope. Further, it had been shown and that the formation of this epitope is dependent upon the proper folding and pairing of the T- cell receptor ⁇ and ⁇ chains.
  • the eukaryotically expressed three-domain single chain T-cell receptor was used as a control in the two-antibody ELISA.
  • the eukaryotically produced single chain T-cell receptor was purified from the cell surface after the PI-PLC cleavage and likely consists of T-cell receptors completely folded in their native conformation. Based on a determination of Cl reactivity between the two preparations, 5-10% of the bacterially-expressed three- domain single chain T-cell receptor was properly folded. To confirm the importance of the C ⁇ domain, a two- domain single chain T-cell receptor based on the design of scFv was constructed and purified in the manner described above in connection with the three-domain single chain T-cell receptor. The folding of the two- domain T-cell receptor was assayed by direct-binding
  • the Cl reactive fraction of the bacterially expressed three-domain single chain T-cell receptor can be further separated from the refolded protein solution using a Cl-affinity column. Consistent with the result from the two-antibody ELISA, 5-10% of the protein was recovered from the Cl column. Additionally, the Cl purified three-domain single chain T-cell receptor appeared as a single band in a non-reduced SDS-PAGE, in contrast to the multiple bands observed from the refolded protein solution. Furthermore, in a two- antibody ELISA, the Cl purified protein displayed comparable Cl reactivity to the eukaryotically expressed three-domain single chain T-cell receptor preparation.
  • CAG AAA GGA GAT ATA GCT GAA GGG TAC AGC GTC TCT CGG GAG AAG AAG 672 Gin Lys Gly Asp lie Ala Glu Gly Tyr Ser Val Ser Arg Glu Lys Lys 210 215 220
  • CAC ACC CAA AAG GCC ACA CTG GTG TGC CTG GCC ACA GGT ATC TTC CCT 864 Hie Thr Gin Lys Ala Thr Leu Val Cys Leu Ala Thr Gly lie Phe Pro 275 280 285
  • ATC CAT CAC CAT CAC CAT CAC TAA 1176 lie His His His His His His His 385 390
  • Lys Thr Ser lie Asn Asn Leu Gin Trp Tyr Arg Gin Asn Ser Gly Arg 50 55 60
  • MOLECULE TYPE cDNA

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Urology & Nephrology (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Biophysics (AREA)
  • Physiology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

L'invention a pour objet un récepteur de lymphocyte T monocaténaire qui se lie de manière spécifique à un ligand de peptide système HL.A. Le récepteur de lymphocyte T monocaténaire est un produit de recombinaison à trois domaines, comprenant un domaine variable à chaîne α; un domaine variable à chaîne β et un domaine constant. L'invention a également pour objet un récepteur de lymphocyte T monocaténaire d'auto-signalisation qui se lie, de manière spécifique, à un ligand de système HL.A peptide et assure la médiation de la transduction des signaux.
PCT/US1995/015696 1994-12-06 1995-12-04 Recepteur de lymphocyte t monocatenaire WO1996018105A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US34991594A 1994-12-06 1994-12-06
US08/349,915 1994-12-06

Publications (1)

Publication Number Publication Date
WO1996018105A1 true WO1996018105A1 (fr) 1996-06-13

Family

ID=23374511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1995/015696 WO1996018105A1 (fr) 1994-12-06 1995-12-04 Recepteur de lymphocyte t monocatenaire

Country Status (1)

Country Link
WO (1) WO1996018105A1 (fr)

Cited By (113)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5986065A (en) * 1997-03-10 1999-11-16 Sunol Molecular Corporation Antibodies for inhibiting blood coagulation and methods of use thereof
WO2000031239A1 (fr) * 1998-11-19 2000-06-02 Yeda Research And Development Co. Ltd. Cellules immunitaires a specificite biologique predefinie, comprenant un recepteur de lymphocytes t chimerique
EP1019439A4 (fr) * 1997-10-02 2002-11-06 Sunol Molecular Corp Proteines solubles du recepteur des lymphocytes t a chaine unique
US6534633B1 (en) * 1998-10-21 2003-03-18 Altor Bioscience Corporation Polyspecific binding molecules and uses thereof
WO2004033685A1 (fr) * 2002-10-09 2004-04-22 Avidex Ltd Recepteurs de lymphocytes t de recombinaison a chaine unique
WO2004056845A3 (fr) * 2002-12-19 2004-08-26 Univ Mainz Johannes Gutenberg Procede pour stabiliser l'expression et ameliorer la fonction effecteur specifique a des constructions genetiques reconnaissant les antigenes simple brin (scarc) et recepteurs de cellules sct specifiques a la proteine mdm2 ayant subi une mutagenese rationnelle correspondante
EP1159457A4 (fr) * 1999-02-23 2004-11-17 Baylor College Medicine Sequence vbeta-dbeta-jbeta du recepteur de leucocytes t et procedes de sa detection
US7166697B1 (en) 1998-03-06 2007-01-23 Diatech Pty. Ltd. V-like domain binding molecules
WO2007073147A1 (fr) * 2005-12-20 2007-06-28 Erasmus University Medical Center Rotterdam Complexes de protéines induisant une apoptose et leur utilisation thérapeutique
US7749498B2 (en) 1997-03-10 2010-07-06 Genentech, Inc. Antibodies for inhibiting blood coagulation and methods of use thereof
US7968094B2 (en) 1997-03-10 2011-06-28 Genentech, Inc. Use of anti-tissue factor antibodies for treating thromboses
US8007795B2 (en) 2001-10-29 2011-08-30 Genentech, Inc. Anti-tissue factor antibodies and methods of use thereof
US8772451B2 (en) 2003-11-10 2014-07-08 Altor Bioscience Corporation Soluble TCR molecules and methods of use
EP2894164A1 (fr) 2006-07-05 2015-07-15 F-Star Biotechnologische Forschungs- und Entwicklungsges.m.b.H Procédé pour synthétiser par génie génétique des récepteurs de lymphocytes T
WO2017193107A2 (fr) 2016-05-06 2017-11-09 Juno Therapeutics, Inc. Cellules génétiquement modifiées et leurs procédés de fabrication
WO2018005556A1 (fr) 2016-06-27 2018-01-04 Juno Therapeutics, Inc. Épitopes à restriction cmh-e, molécules de liaison et procédés et utilisations associés
WO2018005559A1 (fr) 2016-06-27 2018-01-04 Juno Therapeutics, Inc. Procédé d'identification d'épitopes peptidiques, molécules qui se lient à de tels épitopes et utilisations associées
WO2018067618A1 (fr) 2016-10-03 2018-04-12 Juno Therapeutics, Inc. Molécules se liant spécifiquement au vph
WO2018071873A2 (fr) 2016-10-13 2018-04-19 Juno Therapeutics, Inc. Méthodes et compositions d'immunothérapie impliquant des modulateurs de la voie métabolique du tryptophane
WO2018085731A2 (fr) 2016-11-03 2018-05-11 Juno Therapeutics, Inc. Polythérapie de type thérapie cellulaire t et inhibiteur de btk
WO2018093591A1 (fr) 2016-11-03 2018-05-24 Juno Therapeutics, Inc. Polythérapie de thérapie cellulaire et d'inhibiteur de la microglie
WO2018102785A2 (fr) 2016-12-03 2018-06-07 Juno Therapeutics, Inc. Méthodes et compositions pour l'utilisation de lymphocytes t thérapeutiques en association avec des inhibiteurs de kinase
WO2018102786A1 (fr) 2016-12-03 2018-06-07 Juno Therapeutics, Inc. Procédés de modulation de lymphocytes t modifiés par car
WO2018102787A1 (fr) 2016-12-03 2018-06-07 Juno Therapeutics, Inc. Procédés de détermination de dosage de lymphocytes car-t
WO2018106732A1 (fr) 2016-12-05 2018-06-14 Juno Therapeutics, Inc. Production de cellules modifiées pour une thérapie cellulaire adoptive
WO2018132739A2 (fr) 2017-01-13 2018-07-19 Agenus Inc. Récepteurs de lymphocytes t qui se lient à ny-eso-1 et méthodes d'utilisation de ces derniers
WO2018132518A1 (fr) 2017-01-10 2018-07-19 Juno Therapeutics, Inc. Analyse épigénétique de thérapie cellulaire et méthodes associées
WO2018134691A2 (fr) 2017-01-20 2018-07-26 Juno Therapeutics Gmbh Conjugués de surface cellulaire et compositions cellulaires et méthodes associées
WO2018157171A2 (fr) 2017-02-27 2018-08-30 Juno Therapeutics, Inc. Compositions, articles manufacturés et méthodes associées au dosage en thérapie cellulaire
WO2018170188A2 (fr) 2017-03-14 2018-09-20 Juno Therapeutics, Inc. Procédés de stockage cryogénique
WO2018185564A2 (fr) 2017-04-07 2018-10-11 Uti Limited Partnership Dosage pour mesurer la puissance d'interactions ligand-récepteur dans des nanomédicaments
WO2018187791A1 (fr) 2017-04-07 2018-10-11 Juno Therapeutics, Inc Cellules génétiquement modifiées exprimant un antigène membranaire spécifique de la prostate (psma) ou une forme modifiée de celui-ci et procédés associés
WO2018191723A1 (fr) 2017-04-14 2018-10-18 Juno Therapeutics, Inc. Procédés d'évaluation de la glycosylation de surface cellulaire
WO2018204427A1 (fr) 2017-05-01 2018-11-08 Juno Therapeutics, Inc. Combinaison d'une thérapie cellulaire et d'un composé immunomodulateur
WO2018223101A1 (fr) 2017-06-02 2018-12-06 Juno Therapeutics, Inc. Articles de fabrication et procédés de traitement utilisant une thérapie cellulaire adoptive
WO2018223098A1 (fr) 2017-06-02 2018-12-06 Juno Therapeutics, Inc. Articles de fabrication et procédés liés à la toxicité associée à la thérapie cellulaire
WO2019006427A1 (fr) 2017-06-29 2019-01-03 Juno Therapeutics, Inc. Modèle murin pour évaluer des toxicités associées à des immunothérapies
WO2019027850A1 (fr) 2017-07-29 2019-02-07 Juno Therapeutics, Inc. Réactifs d'expansion de cellules exprimant des récepteurs recombinants
WO2019032929A1 (fr) 2017-08-09 2019-02-14 Juno Therapeutics, Inc. Procédés et compositions de préparation de cellules génétiquement modifiées
WO2019032927A1 (fr) 2017-08-09 2019-02-14 Juno Therapeutics, Inc. Procédés de production de compositions de cellules génétiquement modifiées et compositions associées
WO2019046832A1 (fr) 2017-09-01 2019-03-07 Juno Therapeutics, Inc. Expression génique et évaluation d'un risque de développement d'une toxicité suite à une thérapie cellulaire
WO2019046856A1 (fr) 2017-09-04 2019-03-07 Agenus Inc. Récepteurs de lymphocytes t qui se lient à des phosphopeptides spécifiques de la leucémie de lignée mixte (mll) et méthodes d'utilisation de ces derniers
WO2019051335A1 (fr) 2017-09-07 2019-03-14 Juno Therapeutics, Inc. Procédés d'identification de caractéristiques cellulaires relatives à des réponses associées à une thérapie cellulaire
WO2019070541A1 (fr) 2017-10-03 2019-04-11 Juno Therapeutics, Inc. Molécules de liaison spécifique à l'hpv
WO2019089884A2 (fr) 2017-11-01 2019-05-09 Editas Medicine, Inc. Procédés, compositions et composants pour l'édition crispr-cas9 de tgfbr2 dans des cellules t pour l'immunothérapie
WO2019090364A1 (fr) 2017-11-06 2019-05-09 Juno Therapeutics, Inc. Association d'une thérapie cellulaire et d'un inhibiteur de gamma secrétase
WO2019090004A1 (fr) 2017-11-01 2019-05-09 Juno Therapeutics, Inc. Procédé pour la production d'une composition de lymphocytes t
WO2019089858A2 (fr) 2017-11-01 2019-05-09 Juno Therapeutics, Inc. Procédés d'évaluation ou de surveillance d'une réponse à une thérapie cellulaire
WO2019090202A1 (fr) 2017-11-06 2019-05-09 Editas Medicine, Inc. Procédés, compositions et composants pour l'édition crispr-cas9 de cblb dans des lymphocytes t pour l'immunothérapie
WO2019089855A1 (fr) 2017-11-01 2019-05-09 Juno Therapeutics, Inc. Procédé de génération de compositions thérapeutiques de cellules modifiées
WO2019089848A1 (fr) 2017-11-01 2019-05-09 Juno Therapeutics, Inc. Procédés associés à une charge tumorale pour évaluer une réponse à une thérapie cellulaire
WO2019089982A1 (fr) 2017-11-01 2019-05-09 Juno Therapeutics, Inc. Procédé d'évaluation de l'activité de récepteurs antigéniques de recombinaison
WO2019109053A1 (fr) 2017-12-01 2019-06-06 Juno Therapeutics, Inc. Procédés de dosage et de modulation de cellules génétiquement modifiées
WO2019113556A1 (fr) 2017-12-08 2019-06-13 Juno Therapeutics, Inc. Formulation de milieux sans sérum pour la culture de cellules et ses procédés d'utilisation
WO2019113559A2 (fr) 2017-12-08 2019-06-13 Juno Therapeutics, Inc. Marqueurs phénotypiques pour thérapie cellulaire et procédés associés
WO2019113557A1 (fr) 2017-12-08 2019-06-13 Juno Therapeutics, Inc. Procédé de production d'une compositions de lymphocytes t modifiés
WO2019152743A1 (fr) 2018-01-31 2019-08-08 Celgene Corporation Polythérapie utilisant une thérapie cellulaire adoptive et un inhibiteur de point de contrôle
WO2019195486A1 (fr) 2018-04-05 2019-10-10 Juno Therapeutics, Inc. Récepteurs de lymphocytes t et cellules modifiées les exprimant
WO2019195492A1 (fr) 2018-04-05 2019-10-10 Juno Therapeutics, Inc. Procédés de production de cellules exprimant un récepteur recombinant et compositions associées
WO2020018715A1 (fr) 2018-07-17 2020-01-23 Massachusetts Institute Of Technology Protéines de fusion à base d'échafaudage d'immunoglobuline multimère soluble et leurs utilisations
WO2020033916A1 (fr) 2018-08-09 2020-02-13 Juno Therapeutics, Inc. Procédés pour évaluer des acides nucléiques intégrés
WO2020033927A2 (fr) 2018-08-09 2020-02-13 Juno Therapeutics, Inc. Procédés de génération de cellules modifiées et compositions associées
WO2020056047A1 (fr) 2018-09-11 2020-03-19 Juno Therapeutics, Inc. Procédés d'analyse par spectrométrie de masse de compositions cellulaires modifiées
WO2020089343A1 (fr) 2018-10-31 2020-05-07 Juno Therapeutics Gmbh Procédés de sélection et de stimulation de cellules et appareil associé
WO2020097132A1 (fr) 2018-11-06 2020-05-14 Juno Therapeutics, Inc. Procédé de production de cellules t génétiquement modifiées
WO2020097403A1 (fr) 2018-11-08 2020-05-14 Juno Therapeutics, Inc. Procédés et combinaisons pour le traitement et la modulation de lymphocytes t
WO2020113194A2 (fr) 2018-11-30 2020-06-04 Juno Therapeutics, Inc. Méthodes pour le traitement par thérapie cellulaire adoptive
WO2020113188A2 (fr) 2018-11-30 2020-06-04 Juno Therapeutics, Inc. Méthodes de dosage et de traitement de malignités de lymphocytes b au moyen d'une thérapie cellulaire adoptive
WO2020223535A1 (fr) 2019-05-01 2020-11-05 Juno Therapeutics, Inc. Cellules exprimant un récepteur recombinant à base d'un locus modifié du tgfbr2, et polynucléotides et méthodes associés
WO2020247832A1 (fr) 2019-06-07 2020-12-10 Juno Therapeutics, Inc. Culture de lymphocytes t automatisée
WO2020252218A1 (fr) 2019-06-12 2020-12-17 Juno Therapeutics, Inc. Combinaison thérapeutique d'une thérapie cytotoxique à médiation cellulaire et d'un inhibiteur d'une protéine de la famille bcl2 pro-survie
US10905773B2 (en) 2012-10-11 2021-02-02 Uti Limited Partnership Methods and compositions for treating multiple sclerosis and related disorders
WO2021035194A1 (fr) 2019-08-22 2021-02-25 Juno Therapeutics, Inc. Polythérapie basée sur une thérapie par lymphocytes t et un inhibiteur de protéine-2 homologue de l'activateur de zeste (ezh2) et procédés associés
US10988516B2 (en) 2012-03-26 2021-04-27 Uti Limited Partnership Methods and compositions for treating inflammation
WO2021084050A1 (fr) 2019-10-30 2021-05-06 Juno Therapeutics Gmbh Dispositifs de sélection et/ou stimulation de cellules et procédés d'utilisation
US11000596B2 (en) 2010-11-12 2021-05-11 UTI Limited Parttiership Compositions and methods for the prevention and treatment of cancer
WO2021113770A1 (fr) 2019-12-06 2021-06-10 Juno Therapeutics, Inc. Procédés liés à la toxicité et à la réponse associées à une thérapie cellulaire pour le traitement de tumeurs malignes des lymphocytes b
WO2021154887A1 (fr) 2020-01-28 2021-08-05 Juno Therapeutics, Inc. Procédés pour la transduction de lymphocytes t
WO2021191870A1 (fr) 2020-03-27 2021-09-30 Dcprime B.V. Utilisation ex vivo de cellules modifiées d'origine leucémique pour améliorer l'efficacité d'une thérapie cellulaire adoptive
WO2021191871A1 (fr) 2020-03-27 2021-09-30 Dcprime B.V. Utilisation in vivo de cellules modifiées d'origine leucémique pour améliorer l'efficacité d'une thérapie cellulaire adoptive
WO2021231657A1 (fr) 2020-05-13 2021-11-18 Juno Therapeutics, Inc. Procédés d'identification de caractéristiques associées à une réponse clinique et leurs utilisations
WO2021231661A2 (fr) 2020-05-13 2021-11-18 Juno Therapeutics, Inc. Procédé de production de lots de cellules donneuses exprimant un récepteur recombinant
WO2021260186A1 (fr) 2020-06-26 2021-12-30 Juno Therapeutics Gmbh Lymphocytes t modifiés exprimant un récepteur recombiné, polynucléotides et procédés associés
WO2022060904A1 (fr) 2020-09-16 2022-03-24 Obsidian Therapeutics, Inc. Compositions et procédés pour l'expression de récepteurs de lymphocytes t avec cd40l régulé par petites molécules dans les lymphocytes t
WO2022097068A1 (fr) 2020-11-05 2022-05-12 Dcprime B.V. Utilisation d'antigènes indépendants de tumeurs dans des immunothérapies
US11338024B2 (en) 2013-11-04 2022-05-24 Uti Limited Partnership Methods and compositions for sustained immunotherapy
WO2022133030A1 (fr) 2020-12-16 2022-06-23 Juno Therapeutics, Inc. Polythérapie de thérapie cellulaire et d'inhibiteur de bcl2
WO2022183167A1 (fr) 2021-02-25 2022-09-01 Alaunos Therapeutics, Inc. Vecteurs recombinants comprenant des cassettes d'expression polycistronique et leurs procédés d'utilisation
WO2022187406A1 (fr) 2021-03-03 2022-09-09 Juno Therapeutics, Inc. Combinaison d'une thérapie par lymphocytes t et d'un inhibiteur de dgk
WO2022204070A1 (fr) 2021-03-22 2022-09-29 Juno Therapeutics, Inc. Procédés de détermination de la puissance d'une composition de cellules thérapeutiques
WO2022212400A1 (fr) 2021-03-29 2022-10-06 Juno Therapeutics, Inc. Méthodes de dosage et de traitement au moyen d'une combinaison d'une thérapie par inhibiteur de point de contrôle et d'une thérapie par lymphocytes car t
WO2022234009A2 (fr) 2021-05-06 2022-11-10 Juno Therapeutics Gmbh Méthodes de stimulation et de transduction de lymphocytes t
WO2023047089A1 (fr) 2021-09-21 2023-03-30 Oslo Universitetssykehus Hf Protéines de liaison pour désoxynucléotidyl transférase terminale (tdt)
WO2023147515A1 (fr) 2022-01-28 2023-08-03 Juno Therapeutics, Inc. Procédés de fabrication de compositions cellulaires
WO2023150562A1 (fr) 2022-02-01 2023-08-10 Alaunos Therapeutics, Inc. Méthodes d'activation et d'expansion de lymphocytes t
WO2023213969A1 (fr) 2022-05-05 2023-11-09 Juno Therapeutics Gmbh Protéine de liaison virale et réactifs, articles et méthodes d'utilisation associés
WO2023223185A1 (fr) 2022-05-16 2023-11-23 Mendus B.V. Utilisation de cellules dérivées de la leucémie pour améliorer la thérapie des cellules tueuses naturelles (nk)
WO2023230548A1 (fr) 2022-05-25 2023-11-30 Celgene Corporation Procédé de prédiction d'une réponse à une thérapie par lymphocyte t
US11845803B2 (en) 2017-02-17 2023-12-19 Fred Hutchinson Cancer Center Combination therapies for treatment of BCMA-related cancers and autoimmune disorders
WO2024006960A1 (fr) 2022-06-29 2024-01-04 Juno Therapeutics, Inc. Nanoparticules lipidiques pour l'administration d'acides nucléiques
WO2024054944A1 (fr) 2022-09-08 2024-03-14 Juno Therapeutics, Inc. Combinaison de thérapie cellulaire t et de dosage continu ou intermittent d'inhibiteurs de dgk
WO2024100604A1 (fr) 2022-11-09 2024-05-16 Juno Therapeutics Gmbh Procédés de fabrication de cellules immunitaires modifiées
WO2024124132A1 (fr) 2022-12-09 2024-06-13 Juno Therapeutics, Inc. Procédés d'apprentissage automatique pour prédire un phénotype cellulaire au moyen d'une imagerie holographique
US12011480B2 (en) 2015-05-06 2024-06-18 Uti Limited Partnership Nanoparticle compositions for sustained therapy
US12024559B2 (en) 2020-10-23 2024-07-02 Asher Biotherapeutics, Inc. Fusions with CD8 antigen binding molecules for modulating immune cell function
WO2024161021A1 (fr) 2023-02-03 2024-08-08 Juno Therapeutics Gmbh Procédés de fabrication non virale de cellules immunitaires modifiées
WO2024220588A1 (fr) 2023-04-18 2024-10-24 Juno Therapeutics, Inc. Essai cytotoxique pour évaluer la puissance de compositions de cellules thérapeutiques
WO2024243365A2 (fr) 2023-05-23 2024-11-28 Juno Therapeutics, Inc. Marqueurs d'activation de lymphocytes t et procédé d'évaluation de l'activation de lymphocytes t
WO2025147545A1 (fr) 2024-01-03 2025-07-10 Juno Therapeutics, Inc. Nanoparticules lipidiques pour l'administration d'acides nucléiques et procédés et utilisations associés
US12364758B2 (en) 2020-06-30 2025-07-22 Mendus B.V. Use of leukemia-derived cells in ovarian cancer vaccines
US12397055B2 (en) 2021-01-22 2025-08-26 Mendus B.V. Methods of tumor vaccination
US12397038B2 (en) 2017-11-29 2025-08-26 Uti Limited Partnership Ubiquitous antigens for treatment of autoimmune or inflammatory diseases
US12404331B2 (en) 2019-04-19 2025-09-02 Tcrcure Biopharma Corp. Anti-PD-1 antibodies and uses thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991018019A1 (fr) * 1990-05-15 1991-11-28 E.R. Squibb & Sons, Inc. Recepteurs solubles de lymphocytes t monocatenaires
US5359046A (en) * 1990-12-14 1994-10-25 Cell Genesys, Inc. Chimeric chains for receptor-associated signal transduction pathways

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991018019A1 (fr) * 1990-05-15 1991-11-28 E.R. Squibb & Sons, Inc. Recepteurs solubles de lymphocytes t monocatenaires
US5359046A (en) * 1990-12-14 1994-10-25 Cell Genesys, Inc. Chimeric chains for receptor-associated signal transduction pathways

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANNUAL REVIEW OF BIOCHEMISTRY, Volume 59, 1990, DAVIS, "T Cell Receptor Gene Diversity and Selection", pages 475-496. *
PROC. NATL. ACAD. SCI. U.S.A., Volume 91, September 1994, V. HILYARD et al., "Binding of Soluble Natural Ligands to a Soluble Human T-Cell Receptor Fragment Produced in Escherichia Coli", pages 9057-9061. *

Cited By (153)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6555319B2 (en) 1997-03-10 2003-04-29 Sunol Molecular Corporation Antibodies for inhibiting blood coagulation and methods of use thereof
US5986065A (en) * 1997-03-10 1999-11-16 Sunol Molecular Corporation Antibodies for inhibiting blood coagulation and methods of use thereof
US7968094B2 (en) 1997-03-10 2011-06-28 Genentech, Inc. Use of anti-tissue factor antibodies for treating thromboses
US7824677B2 (en) 1997-03-10 2010-11-02 Genentech, Inc. Method for using antibodies for inhibiting blood coagulation
US7749498B2 (en) 1997-03-10 2010-07-06 Genentech, Inc. Antibodies for inhibiting blood coagulation and methods of use thereof
EP1019439A4 (fr) * 1997-10-02 2002-11-06 Sunol Molecular Corp Proteines solubles du recepteur des lymphocytes t a chaine unique
US7405288B2 (en) 1998-03-06 2008-07-29 Diatech Pty. Ltd. V-like domain binding molecules and polynucleotides encoding therefor
US7166697B1 (en) 1998-03-06 2007-01-23 Diatech Pty. Ltd. V-like domain binding molecules
US6534633B1 (en) * 1998-10-21 2003-03-18 Altor Bioscience Corporation Polyspecific binding molecules and uses thereof
WO2000031239A1 (fr) * 1998-11-19 2000-06-02 Yeda Research And Development Co. Ltd. Cellules immunitaires a specificite biologique predefinie, comprenant un recepteur de lymphocytes t chimerique
EP1159457A4 (fr) * 1999-02-23 2004-11-17 Baylor College Medicine Sequence vbeta-dbeta-jbeta du recepteur de leucocytes t et procedes de sa detection
US8007795B2 (en) 2001-10-29 2011-08-30 Genentech, Inc. Anti-tissue factor antibodies and methods of use thereof
US7569664B2 (en) 2002-10-09 2009-08-04 Immunocore Limited Single chain recombinant T cell receptors
WO2004033685A1 (fr) * 2002-10-09 2004-04-22 Avidex Ltd Recepteurs de lymphocytes t de recombinaison a chaine unique
WO2004056845A3 (fr) * 2002-12-19 2004-08-26 Univ Mainz Johannes Gutenberg Procede pour stabiliser l'expression et ameliorer la fonction effecteur specifique a des constructions genetiques reconnaissant les antigenes simple brin (scarc) et recepteurs de cellules sct specifiques a la proteine mdm2 ayant subi une mutagenese rationnelle correspondante
US8772451B2 (en) 2003-11-10 2014-07-08 Altor Bioscience Corporation Soluble TCR molecules and methods of use
US9290560B2 (en) 2003-11-10 2016-03-22 Altor Bioscience Corporation Soluble TCR molecules and methods of use
WO2007073147A1 (fr) * 2005-12-20 2007-06-28 Erasmus University Medical Center Rotterdam Complexes de protéines induisant une apoptose et leur utilisation thérapeutique
EP2894164A1 (fr) 2006-07-05 2015-07-15 F-Star Biotechnologische Forschungs- und Entwicklungsges.m.b.H Procédé pour synthétiser par génie génétique des récepteurs de lymphocytes T
US11000596B2 (en) 2010-11-12 2021-05-11 UTI Limited Parttiership Compositions and methods for the prevention and treatment of cancer
US10988516B2 (en) 2012-03-26 2021-04-27 Uti Limited Partnership Methods and compositions for treating inflammation
US10905773B2 (en) 2012-10-11 2021-02-02 Uti Limited Partnership Methods and compositions for treating multiple sclerosis and related disorders
US11338024B2 (en) 2013-11-04 2022-05-24 Uti Limited Partnership Methods and compositions for sustained immunotherapy
US12011480B2 (en) 2015-05-06 2024-06-18 Uti Limited Partnership Nanoparticle compositions for sustained therapy
WO2017193107A2 (fr) 2016-05-06 2017-11-09 Juno Therapeutics, Inc. Cellules génétiquement modifiées et leurs procédés de fabrication
EP3992632A1 (fr) 2016-06-27 2022-05-04 Juno Therapeutics, Inc. Épitopes restreints au cmh-e, molécules de liaison et procédés et utilisations associés
WO2018005559A1 (fr) 2016-06-27 2018-01-04 Juno Therapeutics, Inc. Procédé d'identification d'épitopes peptidiques, molécules qui se lient à de tels épitopes et utilisations associées
WO2018005556A1 (fr) 2016-06-27 2018-01-04 Juno Therapeutics, Inc. Épitopes à restriction cmh-e, molécules de liaison et procédés et utilisations associés
US11072660B2 (en) 2016-10-03 2021-07-27 Juno Therapeutics, Inc. HPV-specific binding molecules
WO2018067618A1 (fr) 2016-10-03 2018-04-12 Juno Therapeutics, Inc. Molécules se liant spécifiquement au vph
EP4190335A1 (fr) 2016-10-13 2023-06-07 Juno Therapeutics, Inc. Procédés et compositions d'immunothérapie impliquant des modulateurs de la voie métabolique du tryptophane
US11896615B2 (en) 2016-10-13 2024-02-13 Juno Therapeutics, Inc. Immunotherapy methods and compositions involving tryptophan metabolic pathway modulators
WO2018071873A2 (fr) 2016-10-13 2018-04-19 Juno Therapeutics, Inc. Méthodes et compositions d'immunothérapie impliquant des modulateurs de la voie métabolique du tryptophane
WO2018085731A2 (fr) 2016-11-03 2018-05-11 Juno Therapeutics, Inc. Polythérapie de type thérapie cellulaire t et inhibiteur de btk
WO2018093591A1 (fr) 2016-11-03 2018-05-24 Juno Therapeutics, Inc. Polythérapie de thérapie cellulaire et d'inhibiteur de la microglie
US11590167B2 (en) 2016-12-03 2023-02-28 Juno Therapeutic, Inc. Methods and compositions for use of therapeutic T cells in combination with kinase inhibitors
WO2018102787A1 (fr) 2016-12-03 2018-06-07 Juno Therapeutics, Inc. Procédés de détermination de dosage de lymphocytes car-t
WO2018102786A1 (fr) 2016-12-03 2018-06-07 Juno Therapeutics, Inc. Procédés de modulation de lymphocytes t modifiés par car
WO2018102785A2 (fr) 2016-12-03 2018-06-07 Juno Therapeutics, Inc. Méthodes et compositions pour l'utilisation de lymphocytes t thérapeutiques en association avec des inhibiteurs de kinase
EP4279136A2 (fr) 2016-12-03 2023-11-22 Juno Therapeutics, Inc. Méthodes pour déterminer le dosage de céllules car-t
WO2018106732A1 (fr) 2016-12-05 2018-06-14 Juno Therapeutics, Inc. Production de cellules modifiées pour une thérapie cellulaire adoptive
WO2018132518A1 (fr) 2017-01-10 2018-07-19 Juno Therapeutics, Inc. Analyse épigénétique de thérapie cellulaire et méthodes associées
US11821027B2 (en) 2017-01-10 2023-11-21 Juno Therapeutics, Inc. Epigenetic analysis of cell therapy and related methods
WO2018132739A2 (fr) 2017-01-13 2018-07-19 Agenus Inc. Récepteurs de lymphocytes t qui se lient à ny-eso-1 et méthodes d'utilisation de ces derniers
US11517627B2 (en) 2017-01-20 2022-12-06 Juno Therapeutics Gmbh Cell surface conjugates and related cell compositions and methods
WO2018134691A2 (fr) 2017-01-20 2018-07-26 Juno Therapeutics Gmbh Conjugués de surface cellulaire et compositions cellulaires et méthodes associées
US11845803B2 (en) 2017-02-17 2023-12-19 Fred Hutchinson Cancer Center Combination therapies for treatment of BCMA-related cancers and autoimmune disorders
EP4353818A2 (fr) 2017-02-27 2024-04-17 Juno Therapeutics, Inc. Compositions, articles manufacturés et procédés associés au dosage en thérapie cellulaire
US12163952B2 (en) 2017-02-27 2024-12-10 Juno Therapeutics, Inc. Determining toxicity risk in CAR T-cell therapy
WO2018157171A2 (fr) 2017-02-27 2018-08-30 Juno Therapeutics, Inc. Compositions, articles manufacturés et méthodes associées au dosage en thérapie cellulaire
WO2018170188A2 (fr) 2017-03-14 2018-09-20 Juno Therapeutics, Inc. Procédés de stockage cryogénique
WO2018187791A1 (fr) 2017-04-07 2018-10-11 Juno Therapeutics, Inc Cellules génétiquement modifiées exprimant un antigène membranaire spécifique de la prostate (psma) ou une forme modifiée de celui-ci et procédés associés
WO2018185564A2 (fr) 2017-04-07 2018-10-11 Uti Limited Partnership Dosage pour mesurer la puissance d'interactions ligand-récepteur dans des nanomédicaments
US12379375B2 (en) 2017-04-14 2025-08-05 Juno Therapeutics, Inc. Methods for assessing cell surface glycosylation
WO2018191723A1 (fr) 2017-04-14 2018-10-18 Juno Therapeutics, Inc. Procédés d'évaluation de la glycosylation de surface cellulaire
US11796534B2 (en) 2017-04-14 2023-10-24 Juno Therapeutics, Inc. Methods for assessing cell surface glycosylation
WO2018204427A1 (fr) 2017-05-01 2018-11-08 Juno Therapeutics, Inc. Combinaison d'une thérapie cellulaire et d'un composé immunomodulateur
EP4327878A2 (fr) 2017-05-01 2024-02-28 Juno Therapeutics, Inc. Combinaison d'une thérapie cellulaire et d'un composé immunomodulateur
US11740231B2 (en) 2017-06-02 2023-08-29 Juno Therapeutics, Inc. Articles of manufacture and methods related to toxicity associated with cell therapy
WO2018223101A1 (fr) 2017-06-02 2018-12-06 Juno Therapeutics, Inc. Articles de fabrication et procédés de traitement utilisant une thérapie cellulaire adoptive
US11944647B2 (en) 2017-06-02 2024-04-02 Juno Therapeutics, Inc. Articles of manufacture and methods for treatment using adoptive cell therapy
WO2018223098A1 (fr) 2017-06-02 2018-12-06 Juno Therapeutics, Inc. Articles de fabrication et procédés liés à la toxicité associée à la thérapie cellulaire
US11413310B2 (en) 2017-06-02 2022-08-16 Juno Therapeutics, Inc. Articles of manufacture and methods for treatment using adoptive cell therapy
WO2019006427A1 (fr) 2017-06-29 2019-01-03 Juno Therapeutics, Inc. Modèle murin pour évaluer des toxicités associées à des immunothérapies
EP4549554A2 (fr) 2017-07-29 2025-05-07 Juno Therapeutics, Inc. Reactifs pour l'expansion de cellules exprimant des recepteurs recombines
WO2019027850A1 (fr) 2017-07-29 2019-02-07 Juno Therapeutics, Inc. Réactifs d'expansion de cellules exprimant des récepteurs recombinants
WO2019032929A1 (fr) 2017-08-09 2019-02-14 Juno Therapeutics, Inc. Procédés et compositions de préparation de cellules génétiquement modifiées
WO2019032927A1 (fr) 2017-08-09 2019-02-14 Juno Therapeutics, Inc. Procédés de production de compositions de cellules génétiquement modifiées et compositions associées
US12215348B2 (en) 2017-08-09 2025-02-04 Juno Therapeutics, Inc. Methods for producing genetically engineered cell compositions and related compositions
EP4516896A2 (fr) 2017-08-09 2025-03-05 Juno Therapeutics, Inc. Procédés et compositions pour préparer des cellules génétiquement modifiées
US11851678B2 (en) 2017-08-09 2023-12-26 Juno Therapeutics, Inc. Methods for producing genetically engineered cell compositions and related compositions
WO2019046832A1 (fr) 2017-09-01 2019-03-07 Juno Therapeutics, Inc. Expression génique et évaluation d'un risque de développement d'une toxicité suite à une thérapie cellulaire
WO2019046856A1 (fr) 2017-09-04 2019-03-07 Agenus Inc. Récepteurs de lymphocytes t qui se lient à des phosphopeptides spécifiques de la leucémie de lignée mixte (mll) et méthodes d'utilisation de ces derniers
WO2019051335A1 (fr) 2017-09-07 2019-03-14 Juno Therapeutics, Inc. Procédés d'identification de caractéristiques cellulaires relatives à des réponses associées à une thérapie cellulaire
US11952408B2 (en) 2017-10-03 2024-04-09 Juno Therapeutics, Inc. HPV-specific binding molecules
WO2019070541A1 (fr) 2017-10-03 2019-04-11 Juno Therapeutics, Inc. Molécules de liaison spécifique à l'hpv
EP4215543A2 (fr) 2017-10-03 2023-07-26 Juno Therapeutics, Inc. Molécules de liaison spécifiques du vph
US12258580B2 (en) 2017-11-01 2025-03-25 Juno Therapeutics, Inc. Process for generating therapeutic compositions of engineered cells
EP4512823A2 (fr) 2017-11-01 2025-02-26 Juno Therapeutics, Inc. Procédé de génération de compositions thérapeutiques de cellules modifiées
US11564946B2 (en) 2017-11-01 2023-01-31 Juno Therapeutics, Inc. Methods associated with tumor burden for assessing response to a cell therapy
WO2019089884A2 (fr) 2017-11-01 2019-05-09 Editas Medicine, Inc. Procédés, compositions et composants pour l'édition crispr-cas9 de tgfbr2 dans des cellules t pour l'immunothérapie
US12031975B2 (en) 2017-11-01 2024-07-09 Juno Therapeutics, Inc. Methods of assessing or monitoring a response to a cell therapy
WO2019090004A1 (fr) 2017-11-01 2019-05-09 Juno Therapeutics, Inc. Procédé pour la production d'une composition de lymphocytes t
WO2019089858A2 (fr) 2017-11-01 2019-05-09 Juno Therapeutics, Inc. Procédés d'évaluation ou de surveillance d'une réponse à une thérapie cellulaire
US12168027B2 (en) 2017-11-01 2024-12-17 Juno Therapeutics, Inc. Methods associated with tumor burden for assessing response to a cell therapy
WO2019089855A1 (fr) 2017-11-01 2019-05-09 Juno Therapeutics, Inc. Procédé de génération de compositions thérapeutiques de cellules modifiées
WO2019089848A1 (fr) 2017-11-01 2019-05-09 Juno Therapeutics, Inc. Procédés associés à une charge tumorale pour évaluer une réponse à une thérapie cellulaire
WO2019089982A1 (fr) 2017-11-01 2019-05-09 Juno Therapeutics, Inc. Procédé d'évaluation de l'activité de récepteurs antigéniques de recombinaison
WO2019090202A1 (fr) 2017-11-06 2019-05-09 Editas Medicine, Inc. Procédés, compositions et composants pour l'édition crispr-cas9 de cblb dans des lymphocytes t pour l'immunothérapie
US12193994B2 (en) 2017-11-06 2025-01-14 Juno Therapeutics, Inc. Combination of a cell therapy and a gamma secretase inhibitor
WO2019090364A1 (fr) 2017-11-06 2019-05-09 Juno Therapeutics, Inc. Association d'une thérapie cellulaire et d'un inhibiteur de gamma secrétase
US12397038B2 (en) 2017-11-29 2025-08-26 Uti Limited Partnership Ubiquitous antigens for treatment of autoimmune or inflammatory diseases
WO2019109053A1 (fr) 2017-12-01 2019-06-06 Juno Therapeutics, Inc. Procédés de dosage et de modulation de cellules génétiquement modifiées
WO2019113557A1 (fr) 2017-12-08 2019-06-13 Juno Therapeutics, Inc. Procédé de production d'une compositions de lymphocytes t modifiés
US12161670B2 (en) 2017-12-08 2024-12-10 Juno Therapeutics, Inc. Phenotypic markers for cell therapy and related methods
WO2019113559A2 (fr) 2017-12-08 2019-06-13 Juno Therapeutics, Inc. Marqueurs phénotypiques pour thérapie cellulaire et procédés associés
WO2019113556A1 (fr) 2017-12-08 2019-06-13 Juno Therapeutics, Inc. Formulation de milieux sans sérum pour la culture de cellules et ses procédés d'utilisation
WO2019152743A1 (fr) 2018-01-31 2019-08-08 Celgene Corporation Polythérapie utilisant une thérapie cellulaire adoptive et un inhibiteur de point de contrôle
WO2019195492A1 (fr) 2018-04-05 2019-10-10 Juno Therapeutics, Inc. Procédés de production de cellules exprimant un récepteur recombinant et compositions associées
WO2019195486A1 (fr) 2018-04-05 2019-10-10 Juno Therapeutics, Inc. Récepteurs de lymphocytes t et cellules modifiées les exprimant
US11471489B2 (en) 2018-04-05 2022-10-18 Juno Therapeutics, Inc. T cell receptors and engineered cells expressing same
WO2020018715A1 (fr) 2018-07-17 2020-01-23 Massachusetts Institute Of Technology Protéines de fusion à base d'échafaudage d'immunoglobuline multimère soluble et leurs utilisations
WO2020033927A2 (fr) 2018-08-09 2020-02-13 Juno Therapeutics, Inc. Procédés de génération de cellules modifiées et compositions associées
WO2020033916A1 (fr) 2018-08-09 2020-02-13 Juno Therapeutics, Inc. Procédés pour évaluer des acides nucléiques intégrés
US12366580B2 (en) 2018-09-11 2025-07-22 Juno Therapeutics, Inc. Methods for mass spectrometry analysis of engineered cell compositions
WO2020056047A1 (fr) 2018-09-11 2020-03-19 Juno Therapeutics, Inc. Procédés d'analyse par spectrométrie de masse de compositions cellulaires modifiées
WO2020089343A1 (fr) 2018-10-31 2020-05-07 Juno Therapeutics Gmbh Procédés de sélection et de stimulation de cellules et appareil associé
WO2020097132A1 (fr) 2018-11-06 2020-05-14 Juno Therapeutics, Inc. Procédé de production de cellules t génétiquement modifiées
WO2020097403A1 (fr) 2018-11-08 2020-05-14 Juno Therapeutics, Inc. Procédés et combinaisons pour le traitement et la modulation de lymphocytes t
US12263190B2 (en) 2018-11-08 2025-04-01 Juno Therapeutics, Inc. Methods and combinations for treatment and T cell modulation
EP4393547A2 (fr) 2018-11-30 2024-07-03 Juno Therapeutics, Inc. Procédés de dosage et de traitement de tumeurs malignes de lymphocytes b dans une thérapie cellulaire adoptive
WO2020113194A2 (fr) 2018-11-30 2020-06-04 Juno Therapeutics, Inc. Méthodes pour le traitement par thérapie cellulaire adoptive
EP4427810A2 (fr) 2018-11-30 2024-09-11 Juno Therapeutics, Inc. Procédés de traitement utilisant une thérapie cellulaire adoptive
WO2020113188A2 (fr) 2018-11-30 2020-06-04 Juno Therapeutics, Inc. Méthodes de dosage et de traitement de malignités de lymphocytes b au moyen d'une thérapie cellulaire adoptive
US12404331B2 (en) 2019-04-19 2025-09-02 Tcrcure Biopharma Corp. Anti-PD-1 antibodies and uses thereof
WO2020223535A1 (fr) 2019-05-01 2020-11-05 Juno Therapeutics, Inc. Cellules exprimant un récepteur recombinant à base d'un locus modifié du tgfbr2, et polynucléotides et méthodes associés
WO2020247832A1 (fr) 2019-06-07 2020-12-10 Juno Therapeutics, Inc. Culture de lymphocytes t automatisée
WO2020252218A1 (fr) 2019-06-12 2020-12-17 Juno Therapeutics, Inc. Combinaison thérapeutique d'une thérapie cytotoxique à médiation cellulaire et d'un inhibiteur d'une protéine de la famille bcl2 pro-survie
WO2021035194A1 (fr) 2019-08-22 2021-02-25 Juno Therapeutics, Inc. Polythérapie basée sur une thérapie par lymphocytes t et un inhibiteur de protéine-2 homologue de l'activateur de zeste (ezh2) et procédés associés
WO2021084050A1 (fr) 2019-10-30 2021-05-06 Juno Therapeutics Gmbh Dispositifs de sélection et/ou stimulation de cellules et procédés d'utilisation
WO2021113770A1 (fr) 2019-12-06 2021-06-10 Juno Therapeutics, Inc. Procédés liés à la toxicité et à la réponse associées à une thérapie cellulaire pour le traitement de tumeurs malignes des lymphocytes b
WO2021154887A1 (fr) 2020-01-28 2021-08-05 Juno Therapeutics, Inc. Procédés pour la transduction de lymphocytes t
WO2021191870A1 (fr) 2020-03-27 2021-09-30 Dcprime B.V. Utilisation ex vivo de cellules modifiées d'origine leucémique pour améliorer l'efficacité d'une thérapie cellulaire adoptive
WO2021191871A1 (fr) 2020-03-27 2021-09-30 Dcprime B.V. Utilisation in vivo de cellules modifiées d'origine leucémique pour améliorer l'efficacité d'une thérapie cellulaire adoptive
US12091681B2 (en) 2020-03-27 2024-09-17 Mendus B.V. Ex vivo use of modified cells of leukemic origin for enhancing the efficacy of adoptive cell therapy
WO2021231657A1 (fr) 2020-05-13 2021-11-18 Juno Therapeutics, Inc. Procédés d'identification de caractéristiques associées à une réponse clinique et leurs utilisations
WO2021231661A2 (fr) 2020-05-13 2021-11-18 Juno Therapeutics, Inc. Procédé de production de lots de cellules donneuses exprimant un récepteur recombinant
WO2021260186A1 (fr) 2020-06-26 2021-12-30 Juno Therapeutics Gmbh Lymphocytes t modifiés exprimant un récepteur recombiné, polynucléotides et procédés associés
US12364758B2 (en) 2020-06-30 2025-07-22 Mendus B.V. Use of leukemia-derived cells in ovarian cancer vaccines
WO2022060904A1 (fr) 2020-09-16 2022-03-24 Obsidian Therapeutics, Inc. Compositions et procédés pour l'expression de récepteurs de lymphocytes t avec cd40l régulé par petites molécules dans les lymphocytes t
US12024559B2 (en) 2020-10-23 2024-07-02 Asher Biotherapeutics, Inc. Fusions with CD8 antigen binding molecules for modulating immune cell function
WO2022097068A1 (fr) 2020-11-05 2022-05-12 Dcprime B.V. Utilisation d'antigènes indépendants de tumeurs dans des immunothérapies
WO2022133030A1 (fr) 2020-12-16 2022-06-23 Juno Therapeutics, Inc. Polythérapie de thérapie cellulaire et d'inhibiteur de bcl2
US12397055B2 (en) 2021-01-22 2025-08-26 Mendus B.V. Methods of tumor vaccination
WO2022183167A1 (fr) 2021-02-25 2022-09-01 Alaunos Therapeutics, Inc. Vecteurs recombinants comprenant des cassettes d'expression polycistronique et leurs procédés d'utilisation
WO2022187406A1 (fr) 2021-03-03 2022-09-09 Juno Therapeutics, Inc. Combinaison d'une thérapie par lymphocytes t et d'un inhibiteur de dgk
WO2022204070A1 (fr) 2021-03-22 2022-09-29 Juno Therapeutics, Inc. Procédés de détermination de la puissance d'une composition de cellules thérapeutiques
WO2022212400A1 (fr) 2021-03-29 2022-10-06 Juno Therapeutics, Inc. Méthodes de dosage et de traitement au moyen d'une combinaison d'une thérapie par inhibiteur de point de contrôle et d'une thérapie par lymphocytes car t
WO2022234009A2 (fr) 2021-05-06 2022-11-10 Juno Therapeutics Gmbh Méthodes de stimulation et de transduction de lymphocytes t
WO2023047089A1 (fr) 2021-09-21 2023-03-30 Oslo Universitetssykehus Hf Protéines de liaison pour désoxynucléotidyl transférase terminale (tdt)
WO2023147515A1 (fr) 2022-01-28 2023-08-03 Juno Therapeutics, Inc. Procédés de fabrication de compositions cellulaires
WO2023150562A1 (fr) 2022-02-01 2023-08-10 Alaunos Therapeutics, Inc. Méthodes d'activation et d'expansion de lymphocytes t
WO2023213969A1 (fr) 2022-05-05 2023-11-09 Juno Therapeutics Gmbh Protéine de liaison virale et réactifs, articles et méthodes d'utilisation associés
WO2023223185A1 (fr) 2022-05-16 2023-11-23 Mendus B.V. Utilisation de cellules dérivées de la leucémie pour améliorer la thérapie des cellules tueuses naturelles (nk)
WO2023230548A1 (fr) 2022-05-25 2023-11-30 Celgene Corporation Procédé de prédiction d'une réponse à une thérapie par lymphocyte t
WO2024006960A1 (fr) 2022-06-29 2024-01-04 Juno Therapeutics, Inc. Nanoparticules lipidiques pour l'administration d'acides nucléiques
WO2024054944A1 (fr) 2022-09-08 2024-03-14 Juno Therapeutics, Inc. Combinaison de thérapie cellulaire t et de dosage continu ou intermittent d'inhibiteurs de dgk
WO2024100604A1 (fr) 2022-11-09 2024-05-16 Juno Therapeutics Gmbh Procédés de fabrication de cellules immunitaires modifiées
WO2024124132A1 (fr) 2022-12-09 2024-06-13 Juno Therapeutics, Inc. Procédés d'apprentissage automatique pour prédire un phénotype cellulaire au moyen d'une imagerie holographique
WO2024161021A1 (fr) 2023-02-03 2024-08-08 Juno Therapeutics Gmbh Procédés de fabrication non virale de cellules immunitaires modifiées
WO2024220588A1 (fr) 2023-04-18 2024-10-24 Juno Therapeutics, Inc. Essai cytotoxique pour évaluer la puissance de compositions de cellules thérapeutiques
WO2024243365A2 (fr) 2023-05-23 2024-11-28 Juno Therapeutics, Inc. Marqueurs d'activation de lymphocytes t et procédé d'évaluation de l'activation de lymphocytes t
WO2025147545A1 (fr) 2024-01-03 2025-07-10 Juno Therapeutics, Inc. Nanoparticules lipidiques pour l'administration d'acides nucléiques et procédés et utilisations associés

Similar Documents

Publication Publication Date Title
WO1996018105A1 (fr) Recepteur de lymphocyte t monocatenaire
Chung et al. Functional three-domain single-chain T-cell receptors.
Chang et al. A general method for facilitating heterodimeric pairing between two proteins: application to expression of alpha and beta T-cell receptor extracellular segments.
US7939640B2 (en) Antibodies that bind B7L-1
CA2305630C (fr) Proteines solubles du recepteur des lymphocytes t a chaine unique
US7569664B2 (en) Single chain recombinant T cell receptors
US20070191278A1 (en) Cd8 as an inhibitor of the cellular immune system
KR20200066347A (ko) 세포
KR20210073612A (ko) T 세포 수용체
CN110776562B (zh) 一种识别afp抗原的t细胞受体
US20230082787A1 (en) Hla class i-restricted t cell receptors against ras with g12v mutation
CN113195526B (zh) 针对过继性t细胞疗法中的突变myd88l265p蛋白表位的特异性t细胞受体
CN109575121B (zh) 识别afp抗原短肽的t细胞受体
CA2257861A1 (fr) Proteines de fusion hexameres et utilisations associees
US20240165230A1 (en) Hla-dr-specific gamma delta tcr constructs and use thereof
CN113072636B (zh) 一种识别afp的t细胞受体及其编码序列
WO1990013644A2 (fr) Domaine cytoplasmique soluble du recepteur de glycoproteine cd2 humaine
WO1995016462A1 (fr) PROCEDE D'IMMUNO-REGULATION SPECIFIQUE D'UN ANTIGENE PAR LA CHAINE α DES LYMPHOCYTES T
JP2004535778A (ja) hdm2蛋白質―特異的なネズミα/βT−細胞受容体のポリペプチド、これらをコードする核酸およびそれらの使用
WO1992001715A1 (fr) Proteines dimeres solubles de surface cellulaire
CN117106059A (zh) 一种识别mage的t细胞受体及其应用
CN116836260A (zh) 一种识别mage-a4的t细胞受体及其编码序列和应用
CN115677847A (zh) 一种识别ssx2的t细胞受体及其编码序列
Robb Structure—Function Relations for the Interleukin-2 Receptor
CN115490767A (zh) 一种识别afp抗原的tcr及其编码序列

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase