[go: up one dir, main page]

WO1996031650A1 - Papierleimungsmittelmischungen - Google Patents

Papierleimungsmittelmischungen Download PDF

Info

Publication number
WO1996031650A1
WO1996031650A1 PCT/EP1996/001315 EP9601315W WO9631650A1 WO 1996031650 A1 WO1996031650 A1 WO 1996031650A1 EP 9601315 W EP9601315 W EP 9601315W WO 9631650 A1 WO9631650 A1 WO 9631650A1
Authority
WO
WIPO (PCT)
Prior art keywords
paper
cationic
starch
starches
finely divided
Prior art date
Application number
PCT/EP1996/001315
Other languages
English (en)
French (fr)
Inventor
Roland Ettl
Primoz Lorencak
Wolfgang Reuther
Johann Bonn
Arnold De Clercq
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to DE59602009T priority Critical patent/DE59602009D1/de
Priority to EP96908139A priority patent/EP0819193B1/de
Priority to DK96908139T priority patent/DK0819193T3/da
Priority to JP52994296A priority patent/JP3805367B2/ja
Publication of WO1996031650A1 publication Critical patent/WO1996031650A1/de

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/03Non-macromolecular organic compounds
    • D21H17/05Non-macromolecular organic compounds containing elements other than carbon and hydrogen only
    • D21H17/17Ketenes, e.g. ketene dimers
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/21Macromolecular organic compounds of natural origin; Derivatives thereof
    • D21H17/24Polysaccharides
    • D21H17/28Starch
    • D21H17/29Starch cationic
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/71Mixtures of material ; Pulp or paper comprising several different materials not incorporated by special processes
    • D21H17/72Mixtures of material ; Pulp or paper comprising several different materials not incorporated by special processes of organic material
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/16Sizing or water-repelling agents

Definitions

  • the invention relates to paper sizing mixtures
  • aqueous dispersions specified under (A) and (B) belong to the prior art.
  • US Pat. No. 3,130,118 discloses aqueous alkyldiketene dispersions which can be obtained by dispersing the alkyldiketenes in water in the presence of cationic starch.
  • Dispersions which are prepared in the presence of cationic condensates and optionally cationic starch are known, for example, from DE-A-30 00 502 and DE-A-33 16 179.
  • Stabilized aqueous alkyldiketene dispersions are known from EP-B-0 437 764 which can contain up to 40% by weight of alkyldiketene in dispersed form and which, as stabilizer, contain long-chain fatty acid esters and / or urethanes in addition to cationic starch.
  • Aqueous polymer dispersions which are a sizing agent for paper are described, for example, in the following references: JP-A-58/115 196, EP-B-0 257 412, EP-B-0 267 770, EP-B-0 051 144, EP-A-0 058 313 and EP-A-0 150 003. These references are referenced in the aforementioned WO-A-94/05855.
  • paper sizing mixtures consist of emulsions of C 4 to C 2 o-alkyldiketenes and finely divided polymer dispersions containing copolymerized nitrogen-containing monomers and which consist of the abovementioned EP-B-0 051 144 are known.
  • These sizing mixtures are prepared by combining a fatty alkyl diketene emulsion with an aqueous, finely divided polymer dispersion or are formed in the paper stock before sheet formation by adding the emulsified fatty alkyl diketene and the finely divided aqueous dispersion to the paper stock at the same time and mixing the system well. Mixtures which can only be obtained by stirring in cationic, finely divided aqueous polymer dispersions in fatty alkyl diketene dispersions are not sufficiently stable in storage.
  • EP-B-0 353 212 discloses sizing agents in the form of aqueous emulsions which contain a hydrophobic cellulose-reactive sizing agent, e.g. Fatty alkyl diketene and a cationic starch with an amylopectin content of at least 85% and a degree of cationization (D.S.) from 0.045 to 0.40.
  • the proportion of amylopectin in the cationic starch is preferably 98 to 100%.
  • Starch which is preferably used is waxy corn starch.
  • alkyldiketene dispersions which contain up to 30% by weight of ketene dimer.
  • Other essential components of these alkyldiketene dispersions are cationic starch, preferably cationic waxy maize starches, aluminum sulfate, carboxylic acids with 1 to 10 carbon atoms, and sulfonates, such as lignosulfonic acid or condensation products of formaldehyde and naphthalenesulfonic acids.
  • the object of the present invention is to provide an improved paper sizing agent containing fatty alkyl diketenes which, when used as a mass sizing agent, results in adequate instant sizing and does not impair the whiteness of the paper or in comparison the known mixtures has improved shear and storage stability.
  • amylopectin content of the cationic starch of component (A) is at least 95%.
  • the amylopectin content of the cationic starch is preferably 98 to 100%.
  • Suitable starches of this type are preferably cationic waxy maize starches.
  • the invention also relates to a process for producing paper size mixtures by mixing
  • the invention also relates to the use of the paper sizing mixtures described above as mass and surface sizing agents for paper, cardboard and cardboard.
  • component (A) For the preparation of component (A) one starts from C 1 -C 22 -alkyldiketenes or from mixtures of such alkyldiketenes.
  • Alkyldiketenes are known and commercially available. They are produced, for example, from the corresponding carboxylic acid chlorides by splitting off hydrogen chloride with tertiary amines.
  • Suitable fatty alkyldiketenes are, for example, tetradecyldiketene, hexadecyldiketene, octadecyldiketene, alkosyldiketene, docosyldiketene, palmityldiketene, stearyldiketene and behenyldiketene.
  • diketenes with different alkyl groups for example stearylpalmithyldiketene, behenylstearyldiketene, behenyl oleyldiketene or palmithylbehenyldiketene.
  • Stearyldiketene, palmithtyldiketene, behenyldiketene or mixtures of stearyldiketene and palmithyldiketene or mixtures of behenyldiketene and stearyldiketene are preferably used.
  • the diketenes are present in the aqueous emulsions in concentrations of 5 to 60, preferably 10 to 40,% by weight.
  • the alkyldiketenes are emulsified in water in the presence of cationic starch, which according to the invention has an amylopectin content of at least 95, preferably 98 to 100%.
  • Such starches can be obtained, for example, by fractionation of conventional native starches or by breeding measures from plants which produce practically pure amylopectin starch, cf. Günther Tegge, Starch and Starch Derivatives, Hamburg, Bers-Verlag 1984, pages 157 to 160.
  • Cationic starches with an amylopectin content of at least 95, preferably 98 to 100% by weight are available on the market.
  • the amylopectin starches have a branched structure and have a high degree of polymerization.
  • the molecular weights (number average) are, for example, 200 million to 400 million. For waxy maize starch with an amylopectin content of 99 to 100%, average molar masses (number average) of approx
  • cationized starches are used whose amylopectin content is at least 95%.
  • the degree of cationization of the starch is indicated with the aid of the degree of substitution (D.S.). This value reflects the number of cationic groups per monosaccharide unit in the cationic starch.
  • the degree of substitution (D.S. value) of the cationic starches is, for example, 0.010 to 0.150. In most cases it is below 0.045, e.g. the cationic starches in question preferably have a degree of substitution (D.S.) of 0.020 to 0.040.
  • the starch containing at least 95% by weight of amylopectin is cationized by introducing groups which contain tertiary or quaternary nitrogen atoms, e.g. by reacting the starches in question, in particular waxy corn starch, with dialkylaminoalkyl epoxides of the formula
  • R 2 , R 3 and R 4 are alkyl, aryl, aralkyl or hydrogen
  • R 1 is an alkylene group, for example Ci-C ß- alkylene.
  • Examples of such compounds are 3-chloro-2-hydroxypropyltrimethylammonium chloride or glycidyltrimethylammonium chloride.
  • wax potato starch In addition to the preferred waxy maize starch, wax potato starch, waxy wheat starch or mixtures of the starches mentioned are each suitable in cationized form.
  • the cationic starches with amylopectin contents of at least 95% are contained in the aqueous alkyldiketene dispersion in an amount of 0.5 to 5, preferably 1 to 3,% by weight; the finely divided, aqueous dispersions of component (A) are usually so prepared that the starches containing at least 95% amylopectin are first converted into a water-soluble form. This can be done, for example, with the aid of oxidative or hydrolytic degradation in the presence of acids or simply by heating the cationic starches.
  • the starch is preferably digested in a jet cooker at temperatures in the range from 100 to 150.degree.
  • At least one C 1 -C 22 -alkyldiketene is then dispersed in the aqueous solution of the cationic starch with a minimum amylopectin content of at least 95% by weight at temperatures above 70 ° C., for example in the range from 70 to 85 ° C.
  • the alkyldiketene dispersion is then cooled so that the alkyldiketenes are in solid form.
  • Finely divided aqueous alkyldiketene dispersions having an average particle diameter of, for example, 0.5 to 2.5, preferably 0.8 to 1.5, are obtained.
  • the dispersion of the alkyldiketenes in water can optionally additionally in the presence of lignosulfonic acid, condensates of formaldehyde and naphthalene sulfonic acids, polymers containing styrene sulfonic acid groups or the alkali metal and / or ammonium salts of the compounds containing said sulfonic acid groups.
  • lignosulfonic acid condensates of formaldehyde and naphthalene sulfonic acids, polymers containing styrene sulfonic acid groups or the alkali metal and / or ammonium salts of the compounds containing said sulfonic acid groups.
  • lignosulfonic acid condensates of formaldehyde and naphthalene sulfonic acids
  • polymers containing styrene sulfonic acid groups or the alkali metal and / or ammonium salts of the compounds containing said
  • alkyldiketene emulsions In the preparation of the alkyldiketene emulsions it is possible to use, in addition to the cationic wax starches, other customary protective colloids which have hitherto been used in the preparation of alkyldiketene emulsions, e.g. Water-soluble cellulose ethers, polyacrylamides, polyvinyl alcohols, polyvinyl pyrrolidones, polyamides, polyamidoamines and mixtures of the compounds mentioned.
  • Component (A) may optionally contain further substances which are common in alkyldiketene dispersions, e.g. Ci to Cio carboxylic acids, e.g. Formic acid, acetic acid or propionic acid.
  • the acids are used in amounts of 0.01 to 1% by weight.
  • the alkyldiketene dispersions can optionally also contain conventional biocides, which can be used in amounts of up to 1% by weight.
  • Component (B) of the paper sizing mixtures according to the invention consists of finely divided, aqueous polymer dispersions which are a sizing agent for paper.
  • Such polymer dispersions are known, for example, from EP-B-0 051 144, EP-B-0 257 412, EP-B-0 276 770, EP-B-0 058 313 and EP-B-0 150 003 .
  • Such polymer dispersions which act as paper sizing agents are obtainable, for example, by mixing 1 to 32 parts by weight of a mixture
  • di-Ci to C 4 -alkylamino-C2 to C-alkyl (meth) acrylates which may optionally be protonated or quaternized
  • nonionic, hydrophobic, ethylenically unsaturated monomers in the case of these monomers, if they are polymerized on their own, form hydrophobic polymers and, if appropriate
  • a solution copolymer is first prepared in which the monomers of groups (1) and (2) and optionally (3) are copolymerized in a water-miscible organic solvent.
  • Suitable solvents are, for example, C 1 -C 3 -carboxylic acids, such as formic acid, acetic acid and propionic acid, or C 1 -C 4 -alcohols, such as methanol, ethanol, n-propanol or isopropanol, and ketones such as acetone.
  • the group (1) monomers used are preferably dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate, dimethylaminopropyl methacrylate and dimethylaminopropylacrylate.
  • the monomers in group (1) are preferably used in protonated or quaternized form. Suitable quaternizing agents are, for example, methyl chloride, dimethyl sulfate or benzyl chloride.
  • the group (2) monomers used are nonionic, hydrophobic, ethylenically unsaturated compounds which, when polymerized on their own, form hydrophobic polymers. These include, for example, styrene, methylstyrene, Ci bis
  • Ci ⁇ -alkyl esters of acrylic acid or methacrylic acid for example methyl acrylate, ethyl acrylate, N-propyl acrylate, isopropyl acrylate, n-butyl acrylate, tert-butyl acrylate and isobutyl acrylate as well as isobutyl methacrylate, n-butyl methacrylate and tert-butyl methacrylate.
  • Acrylonitrile, methacrylonitrile, vinyl acetate, vinyl propionate and vinyl butyrate are also suitable.
  • Mixtures of the group 2 monomers can also be used in the copolymerization, for example mixtures of styrene and isobutyl acrylate.
  • the solution copolymers used as emulsifiers can optionally also contain copolymerized monomers of group (3), for example monoethylenically unsaturated C 3 - to Cs-carboxylic acids or their anhydrides, for example acrylic acid, methacrylic acid, itaconic acid, maleic acid, maleic acid anhydride or itaconic anhydride.
  • the molar ratio of (1): (2): (.3) is 1: 2.5 to 10: 0 to 1.5.
  • the copolymer solutions obtained in this way are diluted with water and in this form serve as a protective colloid for the polymerization of the above-mentioned monomer mixtures of components (a) and (b) and optionally (c).
  • Suitable monomers of group (a) are styrene, acrylonitrile, methacrylonitrile or mixtures of styrene and acrylonitrile or of styrene and methacrylonitrile.
  • the group (b) monomers used are acrylic acid and / or methacrylic acid esters of C 1 -C 4 -alcohols and / or vinyl esters of saturated C 2 -C 4 -carboxylic acids. This group of monomers corresponds to the monomers of group (2), which has already been described above.
  • Preferably used as the monomer of group (b) are butyl acrylate and butyl methacrylate, for example isobutyl acrylate, n-butyl acrylate and isobutyl methacrylate.
  • Monomers of group (c) are, for example, C 3 - to C 5 -monoethylenically unsaturated carboxylic acids, acrylamidomethylpropanesulfonic acid, sodium vinyl sulfonate, vinyl imidazole, N-vinyl formamide, acrylamide, methacrylamide and N-vinyl imidazoline.
  • 1 to 32 parts by weight of a monomer mixture of components (a) to (c) are used per 1 part by weight of the copolymer.
  • the monomers of components (a) and (b) can be copolymerized in any ratio, for example in the molar ratio 0.1: 1 to 1: 0.1.
  • the monomers of group (c) are used to modify the properties of the copolymers.
  • the finely divided, aqueous dispersions described as sizing agents for paper which are known from EP-0 257 412 and EP-B-0 276 770, are preferably used. These dispersions are obtained by copolymerizing
  • These starches have been subjected to oxidative, thermal, acidolytic or enzymatic degradation. All native starches can be used for this degradation, for example starches from potatoes, wheat, rice, tapioca and corn, and starches with amylopectin contents of at least 95, preferably 98 to 100% by weight, for example waxy corn starch, waxy potato starch, wax white Zen starch or mixtures of the starches mentioned.
  • chemically modified starches can be used, such as starches containing hydroxyethyl, hydroxypropyl or quaternized aminoalkyl groups with viscosities in the range given above.
  • Oxidatively degraded potato starches, cationized, degraded potato starches or hydroxyethyl starch are particularly suitable.
  • the mixture of size-acting copolymer dispersion and an undigested starch is preferably stirred at 85 ° C. for at least 10 minutes. This unlocks the strength.
  • the degraded starches act as emulsifiers in the copolymerization of the monomers (a) to (c) in an aqueous medium in the manner of an emulsion polymerization.
  • the monomers are copolymerized in an aqueous solution containing 1 to 21, preferably 3 to
  • 15 contains 15% by weight of broken down starch.
  • 10 to 140 preferably 40 to 100 parts by weight of the monomer mixture of (a) and (b) and optionally (c) are polymerized in 100 parts by weight of such a solution.
  • the diameter of the dispersed polymer particles is 50 to 350, preferably 100 to 250 nm.
  • group (b) are also vinyl esters of C 2 - to C 4 -saturated carboxylic acids.
  • Suitable monomers of group (c) are, for example, acrylamide, methacrylamide, stearyl acrylate, stearyl methacrylate, palmityl acrylate, acrylic acid, methacrylic acid, maleic acid, maleic anhydride, itaconic acid,
  • the paper sizing mixtures according to the invention are produced by known processes, cf. DE-A-32 35 529 and W0-A-94/05855.
  • the procedure is, for example, that (A) finely divided, aqueous dispersions of C 14 -C 22 -alkyldiketenes which are dispersed in water by dispersing the alkyldiketenes
  • the starches having been converted into a water-soluble form and emulsifying finely divided, aqueous polymer dispersions which are a sizing agent for paper at temperatures of at least 70 ° C.
  • the emulsification is preferably carried out here under the action of high shear forces, e.g. in so-
  • the resulting emulsions are preferably rapidly cooled to room temperature.
  • the resulting dispersions of paper size mixtures have one pH in the range from 2 to 4, preferably the pH is 3.
  • the paper sizing mixtures can also be prepared by mixing components (A) and (B), for example in a stirred kettle, and adding this mixture - 5 if homogenized under the action of high shear forces at temperatures of, for example, 20 to 70 ° C.
  • the paper sizing mixtures according to the invention contain, for example, 1 to 55, preferably 10 to 30% by weight of alkyldiketenes and 1 to 60, preferably 3 to 25% by weight of finely divided polymer dispersions, 10 in each case based on the solids.
  • component (B) 15 parts of polymer dispersion of component (B), based on the solids.
  • component (B) 15 parts of polymer dispersion of component (B), based on the solids.
  • 20 polymer dispersions is, for example, 50 to 400, preferably 100 to 250 nm.
  • the sizing agent mixtures according to the invention are stable on storage, i.e. they do not tend to separate and do not become solid. They also have a very low viscosity (for example after storage of
  • the viscosities are below 100 mPas, measured in a Brookfield viscometer at 100 rpm, and a temperature of 25 ° C with spindle No. 1) and are also characterized by a high stability against the action of Shear forces, such as those used for pumping
  • the sizing mixtures are used as mass and surface sizing agents for paper, cardboard and cardboard. Use as a mass sizing agent in the manufacture of paper is preferred.
  • Starch A is a degraded cationic potato starch with a viscosity ⁇ i of 0.47 dl / g, a degree of substitution of 0.015-COOH and 0.027 N mol / mol glucose units and a solids content of 83%.
  • Starch B is a degraded, cationic potato starch with a viscosity ⁇ of 1.16, a degree of substitution of 0.07 N mol / mol of glucose units and a solids content of 83%.
  • the temperature of the reaction mixture is kept at 85 ° C.
  • a dispersion with a solids content of 41.0% and a particle diameter (without starch shell) of 100-150 nm is obtained.
  • the dispersion is diluted to a solids content of 33% by adding water.
  • a mixture of 20 parts (1.92 mol) of styrene, 7 parts (0.41 mol) of dimethylaminopropylmethacryla id. 3.5 parts of 45 (0.486 mol) of acrylic acid and 10 parts of acetic acid were pumped into a kettle heated to 90 ° C. within 1 hour using a pump. Simultaneously and also within 1 hour 2 parts of azoisobutyronitrile and 10 parts of acetic acid were added using another metering device. The mixture was heated to a temperature of 90 ° C. for 30 minutes and then dissolved in 180 parts of water.
  • the initially coarse suspension is passed through a homogenizer twice at a temperature of 85 ° C. and a pressure of 150 bar and then rapidly cooled to room temperature.
  • a commercial cationic waxy maize starch (D.S. 0.04, amylopectin content 100%) is soaked in water in such an amount.
  • the mixture is first treated with an Ultraturrax and then twice in a homogenizer under a pressure of 150 bar and a temperature of 85 ° C. and then rapidly cooled to room temperature.
  • a 5.13% strength aqueous suspension of a commercially available cationic starch (D.S. 0.02, amylopectin content 70%) is first prepared, and 50 parts of the suspension were added to 50 parts of this suspension
  • Polymer dispersion 1 and the starch by heating for 10 minutes in the mixture with the polymer dispersion 1 at a temperature of 85 ° C.
  • the properties of the dispersion are given in Table 1.
  • Example 1 was repeated with the changes that a 5.13% strength aqueous suspension of a commercially available cationic starch (degree of substitution 0.02, amylopectin content 75%) was prepared, mixed with 50 parts of polymer dispersion 2 and the
  • the shear stability of the sizing agent mixtures described in the examples and comparative examples was determined by pumping the mixtures through a 400 ⁇ m filter using a centrifugal pump. 500 ml of the paper size mixture was used in each case and the temperature of the mixture was kept at 25 ° C. during the test. Table 2 shows the times after which the filter became blocked or the test was terminated.

Landscapes

  • Paper (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)
  • Thermotherapy And Cooling Therapy Devices (AREA)
  • Making Paper Articles (AREA)

Abstract

Papierleimungsmittelmischungen aus (A) feinteiligen, wäßrigen Dispersionen von C14- bis C22-Alkyldiketenen, die durch Dispergieren der Alkyldiketene in Wasser in Gegenwart von kationischer Stärke mit einem Amylopektingehalt von mindestens 95 Gew.-% erhältlich sind, und (B) feinteiligen, wäßrigen Polymerdispersionen, die ein Leimungsmittel für Papier sind, Verfahren zur Herstellung der Papierleimungsmittelmischungen durch Mischen der Komponenten (A) und (B) sowie die Verwendung der Papierleimungsmittelmischungen als Masse- und Oberflächenleimungsmittel für Papier, Pappe und Karton.

Description

Papierleimungsmittelmischungen
Beschreibung
Die Erfindung betrifft Papierleimungsmittelmischungen aus
(A) feinteiligen, wäßrigen Dispersionen von Cι - bis C22-Alkyldi- ketenen, die durch Dispergieren der Alkyldiketene in Wasser in Gegenwart von kationischer Stärke erhältlich sind und
(B) Polymerdispersionen, die ein Leimungsmittel für Papier sind,
Verfahren zur Herstellung der genannten Papierlei ungsmittel- mischungen durch Mischen der Komponenten (A) und (B) oder durch Emulgieren von Cι - bis C22~Alkyldiketenen in einer Mischung aus wäßrigen Suspensionen von kationischen Stärken und feinteiligen, wäßrigen Polymerdispersionen, die ein Leimungsmittel für Papier sind, bei Temperaturen von mindestens 70°C und Verwendung der Pa- pierleimungsmittelmischungen als Masse- und Oberflächenleimungs- mittel für Papier, Pappe und Karton.
Die oben angegebenen Papierleimungsmittelmischungen sowie ihre Herstellung und Verwendung sind aus der WO-A 94/05855 bekannt.
Die unter (A) und (B) angegebenen wäßrigen Dispersionen gehören zum Stand der Technik. So sind beispielsweise aus der US-A-3 130 118 wäßrige Alkyldiketen-Dispersionen bekannt, die durch Dispergieren der Alkyldiketene in Wasser in Gegenwart von kationischer Stärke erhältlich sind. Fettalkyldiketen-
Dispersionen, die in Gegenwart von kationischen Kondensaten und gegebenenfalls kationischer Stärke hergestellt werden, sind bei¬ spielsweise aus der DE-A-30 00 502 und der DE-A-33 16 179 be¬ kannt. Aus der EP-B-0 437 764 sind stabilisierte wäßrige Alkyldi- keten-Dispersionen bekannt, die bis zu 40 Gew.-% Alkyldiketen dispergiert enthalten können und die als Stabilisator neben kat¬ ionischer Stärke langkettige Fettsäureester und/oder Urethane enthalten.
Wäßrige Polymerdispersionen, die ein Leimungsmittel für Papier sind, werden beispielsweise in folgenden Literaturstellen be¬ schrieben: JP-A-58/115 196, EP-B-0 257 412, EP-B-0 267 770, EP-B-0 051 144, EP-A-0 058 313 und EP-A-0 150 003. Diese Literaturstellen werden in der obengenannten WO-A-94/05855 refe- riert. Aus der DE-A-3 235 529 sind Papierleimungsmittelmischungen be¬ kannt, die aus Emulsionen von Cι4- bis C2o-Alkyldiketenen und feinteiligen, stickstoffhaltigen Monomere einpolymerisiert ent¬ haltenden Polymerdispersionen bestehen, die aus der obengenannten EP-B-0 051 144 bekannt sind. Diese Leimungsmittelmischungen wer¬ den durch Vereinigen einer Fettalkyldiketen-Emulsion mit einer wäßrigen, feinteiligen Polymerdispersion hergestellt oder erst im Papierstoff vor der Blattbildung dadurch gebildet, daß man das emulgierte Fettalkyldiketen und die feinteilige wäßrige Disper- sion gleichzeitig zum Papierstoff zugibt und das System gut durchmischt. Mischungen, die lediglich durch Einrühren von kat¬ ionischen feinteiligen wäßrigen Polymerdispersionen in Fettalkyl- diketen-Dispersionen erhältlich sind, sind nicht ausreichend lagerstabil.
Aus der EP-B-0 353 212 sind Leimungsmittel in Form von wäßrigen Emulsionen bekannt, die ein hydrophobes cellulose-reaktives Lei¬ mungsmittel, z.B. Fettalkyldiketen, und eine kationische Stärke mit einem Amylopektingehalt von mindestens 85 % und einem Katio- nisierungsgrad (D.S.) von 0,045 bis 0,40 enthalten. Der Anteil an Amylopektin in der kationischen Stärke beträgt vorzugsweise 98 bis 100 %. Bevorzugt eingesetzte Stärke ist Wachsmaisstärke.
Aus der EP-B-0 369 328 sind wäßrige Alkyldiketen-Dispersionen be- kannt, die bis zu 30 Gew.-% Ketendimer enthalten. Weitere essen¬ tielle Bestandteile dieser Alkyldiketen-Dispersionen sind kat¬ ionische Stärke, bevorzugt kationische Wachsmaisstärken, Aluminiumsulfat, Carbonsäuren mit 1 bis 10 Kohlenstoffatomen, und Sulfonate, wie Ligninsulfonsäure oder Kondensationsprodukte von Formaldehyd und Naphtha1insulfonsäuren.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein ver¬ bessertes Papierleimungsmittel mit einem Gehalt an Fettalkyldike- tenen zur Verfügung zu stellen, das bei der Anwendung als Masse- leimungsmittel eine ausreichende Sofortleimung ergibt und das nicht zu einer Beeinträchtigung der Weiße des Papiers führt und gegenüber den bekannten Mischungen eine verbesserte Scher- und Lagerstabilität aufweist.
Die Aufgabe wird erfindungsgemäß gelöst mit Papierleimungsmittel¬ mischungen aus
(A) feinteiligen, wäßrigen Dispersionen von Cι - bis C22-Alkyldi- ketenen, die durch Dispergieren der Alkyldiketene in Wasser in Gegenwart von kationischer Stärke erhältlich sind und (B) feinteiligen, wäßrigen Polymerdispersionen, die ein Leimungs¬ mittel für Papier sind,
wenn der Amylopektingehalt der kationischen Stärke der Kompo- nente (A) mindestens 95 % beträgt. Der Amylopektingehalt der kat¬ ionischen Stärke beträgt vorzugsweise 98 bis 100 %. Geeignete Stärken dieser Art sind vorzugsweise kationische Wachsmaisstär¬ ken.
Gegenstand der Erfindung ist außerdem ein Verfahren zur Herstel¬ lung von Papierleimungsmittelmischungen durch Mischen von
(A) feinteiligen, wäßrigen Dispersionen von Cι4- bis C.22-Alkyldi- ketenen, die durch Dispergieren der Alkyldiketene in Wasser in Gegenwart von kationischer Stärke erhältlich sind, mit
(B) feinteiligen, wäßrigen Polymerdispersionen, die ein Leimungs¬ mittel für Papier sind,
oder durch Emulgieren von Cι - bis C.22-Alkyldiketenen in einer Mischung aus wäßrigen Suspensionen von kationischen Stärken von feinteiligen, wäßrigen Polymerdispersionen, die ein Leimungsmit¬ tel für Papier sind, bei Temperaturen von mindestens 70°C. Das Verfahren ist dadurch gekennzeichnet, daß der Amylopektingehalt der kationischen Stärken mindestens 95 % beträgt.
Gegenstand der Erfindung ist außerdem die Verwendung der oben be¬ schriebenen Papierleimungsmittelmischungen als Masse- und Ober- flächenleimungsmittel für Papier, Pappe und Karton.
Für die Herstellung der Komponente (A) geht man von Cι - bis C22-Alkyldiketenen oder von Mischungen solcher Alkyldiketene aus. Alkyldiketene sind bekannt und im Handel erhältlich. Sie werden beispielsweise aus den entsprechenden Carbonsäurechloriden durch Abspaltung von Chlorwasserstoff mit tertiären Aminen hergestellt. Geeignete Fettalkyldiketene sind beispielsweise Tetradecyldike- ten, Hexadecyldiketen, Octadecyldiketen, Alkosyldiketen, Docosyl- diketen, Palmityldiketen, Stearyldiketen und Behenyldiketen. Ge¬ eignet sind außerdem Diketene mit unterschiedlichen Alkylgruppen, z.B. Stearylpalmithyldiketen, Behenylstearyldiketen, Behenyl- oleyldiketen oder Palmithylbehenyldiketen. Vorzugsweise verwendet man Stearyldiketen, Palmithtyldiketen, Behenyldiketen oder Mischungen aus Stearyldiketen und Palmithyldiketen oder Mischungen aus Behenyldiketen und Stearyldiketen. Die Diketene sind in Konzentrationen von 5 bis 60, vorzugsweise 10 bis 40 Gew.-% in den wäßrigen Emulsionen enthalten. Die Alkyldiketene werden in Wasser in Gegenwart von kationischer Stärke emulgiert, die erfindungsgemäß einen Amylopektingehalt von mindestens 95, vorzugsweise 98 bis 100 %, aufweist. Solche Stär¬ ken können beispielsweise durch eine Fraktionierung üblicher na- tiver Stärken oder durch Züchtungsmaßnahmen aus solchen Pflanzen gewonnen werden, die praktisch reine Amylopektinstärke produzie¬ ren, vgl. Günther Tegge, Stärke und Stärkederivate, Hamburg, Bers-Verlag 1984, Seiten 157 bis 160. Kationische Stärken mit einem Amylopektingehalt von mindestens 95, vorzugsweise 98 bis 100 Gew.-%, sind auf dem Markt erhältlich. Die Amylopektinstärke haben eine verzweigte Struktur und besitzen einen hohen Polyme¬ risationsgrad. Die Molekulargewichte (Zahlenmittel) betragen bei¬ spielsweise 200 Millionen bis 400 Millionen. Für Wachsmaisstärke mit einem Amylopektingehalt von 99 bis 100 % werden in der Literatur durchschnittliche Molmassen (Zahlenmittel) von etwa
320 Millionen angegeben. Gemäß der Erfindung werden kationisierte Stärken eingesetzt, deren Amylopektingehalt mindestens 95 % be¬ trägt. Der Kationisierungsgrad der Stärke wird mit Hilfe des Sub¬ stitutionsgrades (D.S.) angegeben. Dieser Wert gibt die Anzahl der kationischen Gruppen pro Monosaccharideinheit in der kat¬ ionischen Stärke wieder. Der Substitutionsgrad (D.S.-Wert) der kationischen Stärken beträgt beispielsweise 0,010 bis 0,150. In den meisten Fällen liegt er unterhalb von 0,045, z.B. weisen die in Betracht kommenden kationischen Stärken vorzugsweise einen Substitutionsgrad (D.S.) von 0,020 bis 0,040 auf.
Die Kationisierung der mindestens 95 Gew.-% Amylopektin enthal¬ tenden Starke erfolgt durch Einführung von Gruppen, die tertiäre oder quaternäre Stickstoffatome enthalten, z.B. durch Umsetzung der in Betracht kommenden Stärken, insbesondere Wachsmaisstärke, mit Dialkylaminoalkylepoxiden der Formel
Figure imgf000006_0001
oder mit Dialkylaminoalkylchloriden der Formel
Figure imgf000006_0002
oder vorzugsweise mit epoxidgruppenhaltigen quartären Ammonium- salzen der Formel R2
„θ
CH2 CH R1 N - R3 ( III )
^ 0^ |
R4
oder der entsprechenden Halogenhydrine der Formel
R2
C1CH2 CH2 CH Rl N R3 X® ( IV)
OH R4
In den Formeln I bis IV stehen die Substituenten R2, R3 und R4 für Alkyl, Aryl, Aralkyl oder Wasserstoff, R1 bedeutet eine Alkylen- gruppe, z.B. Ci-Cß-Alkylen. Beispiele für solche Verbindungen sind 3-Chlor-2-Hydroxypropyltrimethylammoniumchlorid oder Glycidyltri- methylammoniumchlorid.
Außer der bevorzugt in Betracht kommenden Wachsmaisstärke eignen sich Wachskartoffelstärke, Wachsweizenstärke oder Mischungen aus den genannten Stärken in jeweils kationisierter Form.
Die kationischen Stärken mit Amylopektingehalten von mindestens 95 % sind zu 0,5 bis 5, vorzugsweise 1 bis 3 Gew.-% in der wäßri¬ gen Alkyldiketen-Dispersion enthalten, üblicherweise werden die feinteiligen, wäßrigen Dispersionen der Komponente (A) in der Weise hergestellt, daß man zunächst die mindestens 95 % Amylo¬ pektin enthaltenden Stärken in eine in Wasser lösliche Form über¬ führt. Dies kann beispielsweise mit Hilfe eines oxidativen oder hydrolytischen Abbaus in Gegenwart von Säuren oder durch bloßes Erhitzen der kationischen Stärken erfolgen. Das Aufschließen der Stärke wird bevorzugt in einem Jet-Kocher bei Temperaturen in dem Bereich von 100 bis 150°C vorgenommen. In der so erhältlichen wä߬ rigen Lösung der kationischen Stärke mit einem Mindestgehalt an Amylopektin von mindestens 95 Gew. -% dispergiert man dann minde- stens ein Cι - bis C22-Alkyldiketen bei Temperaturen oberhalb von 70°C, z.B. in dem Bereich von 70 bis 85°C. Die Alkyldiketen-Dis¬ persion wird dann abgekühlt, so daß die Alkyldiketene in fester Form vorliegen. Man erhält feinteilige wäßrige Alkyldiketen- Dispersionen mit einem mittleren Teilchendurchmesser von bei- spielsweise 0,5 bis 2,5, vorzugsweise 0,8 bis 1,5 μ . Das Disper¬ gieren der Alkyldiketene in Wasser kann gegebenenfalls zusätzlich in Gegenwart von Ligninsulfonsäure, Kondensaten aus Formaldehyd und Naphthalinsulfonsäuren, Styrolsulfonsäuregruppen enthaltenden Polymeren oder den Alkalimetall- und/oder Ammoniumsalzen der ge¬ nannten Sulfonsäuregruppen enthaltenden Verbindungen erfolgen. Diese Stoffe wirken als Dispergiermittel und stabilisieren die entstehenden Alkyldiketen-Dispersionen. Falls diese Dispergier¬ mittel bei der Herstellung der Alkyldiketen-Dispersionen einge¬ setzt werden, betragen die eingesetzte Mengen beispielsweise 0,01 bis 1, vorzugsweise 0,02 bis 0,2 Gew.-%, bezogen auf die Alkyldi- keten-Dispersion.
Bei der Herstellung der Alkyldiketen-Emulsionen kann man außer den kationischen Wachsstärken gegebenenfalls noch andere übliche Schutzkolloide mitverwenden, die bei der Herstellung von Alkyldi- keten-Emulsionen bisher verwendet worden sind, z.B. wasserlösli- ehe Celluloseether, Polyacrylamide, Polyvinylalkohole, Polyvinyl- pyrrolidone, Polyamide, Polyamidoamine sowie Mischungen der ge¬ nannten Verbindungen. Die Komponente (A) kann gegebenenfalls wei¬ tere Stoffe enthalten, die in Alkyldiketen-Dispersionen üblich sind, z.B. Ci- bis Cio-Carbonsäuren, z.B. Ameisensäure, Essigsäure oder Propionsäure. Die Säuren werden, falls sie in den Alkyldike¬ ten-Dispersionen enthalten sind, in Mengen von 0,01 bis 1 Gew.-% eingesetzt. Die Alkyldiketen-Dispersionen können gegebenenfalls noch übliche Biozide enthalten, die in Mengen bis zu 1 Gew.-% an¬ gewendet werden können.
Die Komponente (B) der erfindungsgemäßen Papierleimungsmittel¬ mischungen besteht aus feinteiligen, wäßrigen Polymer- dispersionen, die ein Leimungsmittel für Papier sind. Solche Polymerdispersionen sind beispielsweise aus der EP-B-0 051 144, der EP-B-0 257 412, der EP-B-0 276 770, der EP-B-0 058 313 und der EP-B-0 150 003 bekannt. Solche als Papierleimungsmittel wir¬ kenden Polymerdispersionen sind beispielsweise dadurch erhält¬ lich, daß man 1 bis 32 Gew.-Teile einer Mischung aus
(a) Styrol, Acrylnitril und/oder Methacrylnitril,
(b) Acrylsäure- und/oder Methacrylsäureester von Ci- bis Ciβ-Alko- holen und/oder Vinylester von gesättigtem C2- bis C -Carbon- säuren und gegebenenfalls
(c) anderen monoethylenisch ungesättigten copolymerisierbaren Mo¬ nomeren
in wäßriger Lösung in Gegenwart von 1 Gew.-Teil eines Lösungsco- polymerisats aus (1) Di-Ci- bis C4-Alkylamino-C2- bis C -Alkyl (meth)acrylaten, die gegebenenfalls protoniert oder quaterniert sein können,
(2) nichtionischen, hydrophoben, ethylenisch ungesättigten Mono- meren, bei diesen Monomeren, wenn sie für sich alleine poly- merisiert werden, hydrophobe Polymerisate bilden und gegebe¬ nenfalls
(3) monoethylenisch ungesättigten C - bis Cs-Carbonsäuren oder ih- ren Anhydriden, wobei das Molverhältnis von (1) : (2) : (3) =
1 : 2,5 bis 10 : 0 bis 1,5 beträgt, copolymerisiert .
Man stellt zunächst ein Lösungscopolymerisat her, in dem man die Monomeren der Gruppen (1) und (2) sowie ggf. (3) in einem mit Wasser mischbaren organischen Lösemittel copolymerisiert. Geei¬ gnete Lösemittel sind beispielsweise Ci- bis C3-Carbonsäuren, wie Ameisensäure, Essigsäure und Propionsäure oder Ci- bis C4-Alko- hole, wie Methanol, Ethanol, n-Propanol oder Isopropanol und Ke- tone wie Aceton. Als Monomere der Gruppe (1) verwendet man vor- zugsweise Dimethylaminoethylacrylat, Dimethylaminoethylmethacry- lat, Dimethylaminopropylmethacrylat und Dimethylaminopropylacry- lat. Die Monomeren der Gruppe (1) werden vorzugsweise in proto- nierter oder in quaternierter Form eingesetzt. Geeignete Quater- nierungsmittel sind beispielsweise MethylChlorid, Dimethylsulfat oder Benzylchlorid.
Als Monomere der Gruppe (2) verwendet man nichtionische, hydro¬ phobe, ethylenisch ungesättigte Verbindungen, die, wenn sie für sich allein polymerisiert werden, hydrophobe Polymerisate bilden. Hierzu gehören beispielsweise Styrol, Methylstyrol, Ci- bis
Ciβ-Alkylester von Acrylsäure oder Methacrylsäure, beispielsweise Methylacrylat, Ethylacrylat, N-Propylacrylat, Isopropylacrylat, n-Butylacrylat, tert.Butylacrylat und Isobutylacrylat sowie Iso- butylmethacrylat, n-Butylmethacrylat und tert.Butylmethacrylat . Außerdem eignen sich Acrylnitril, Methacrylnitril, Vinylacetat, Vinylpropionat und Vinylbutyrat. Man kann auch Mischungen der Mo¬ nomeren der Gruppe 2 bei der Copolymerisation einsetzen, z.B. Mi¬ schungen aus Styrol und Isobutylacrylat. Die als Emulgator die¬ nenden Lösungscopolymerisate können ggf. noch Monomeren der Gruppe (3) einpolymerisiert enthalten, z.B. monoethylenisch unge¬ sättigte C3- bis Cs-Carbonsäuren oder ihre Anhydride, z.B. Acryl¬ säure, Methacrylsäure, Itakonsäure, Maleinsäure, Maleinsäureanhy¬ drid oder Itakonsäureanhydrid. Das Molverhältnis von (1) : (2) : (.3) beträgt 1 : 2,5 bis 10 : 0 bis 1,5. Die so erhal- tenen Copolymerisatlösungen werden mit Wasser verdünnt und dienen in dieser Form als Schutzkolloid für die Polymerisation der obenangegebenen Monomermischungen aus den Komponenten (a) und (b) und gegebenenfalls (c) . Als Monomere der Gruppe (a) kommen Sty¬ rol, Acrylnitril, Methacrylnitril oder Mischungen aus Styrol und Acrylnitril oder aus Styrol und Methacrylnitril in Betracht. Als Monomere der Gruppe (b) verwendet man Acrylsäure- und/oder Meth- acrylsäureester von Ci- bis C^-Alkoholen und/oder Vinylester von gesättigten C2- bis C -Carbonsäuren. Diese Gruppe von Monomeren entspricht den Monomeren der Gruppe (2), die oben bereits be¬ schrieben wurde. Vorzugsweise verwendet man als Monomer der Gruppe (b) Acrylsäurebutylester und Methacrylsäurebutylester, z.B. Acrylsäureisobutylacrylat, Acrylsäure-n-butylacrylat und Methacrylsäureisobutylacryla . Monomere der Gruppe (c) sind bei¬ spielsweise C3- bis C5-monoethylenisch ungesättigte Carbonsäuren, Acrylamidomethylpropansulfonsäure, Natriumvinylsulfonat, Vinyl- imidazol, N-Vinylformamid, Acrylamid, Methacrylamid und N-Vinyl- imidazolin. Pro 1 Gew.-Teil des Copolymerisates verwendet man 1 bis 32 Gew.-Teile einer Monomermischung aus den Komponenten (a) bis (c) . Die Monomeren der Komponenten (a) und (b) können dabei in einem beliebigen Verhältnis copolymerisiert werden, z.B. im Molverhältnis 0,1 : 1 bis 1 : 0,1.
Die Monomeren der Gruppe (c) werden im Bedarfsfalls zur Modifi¬ zierung der Eigenschaften der Copolymerisate verwendet.
Vorzugsweise werden die als Leimungsmittel für Papier beschriebe- nen feinteiligen, wäßrigen Dispersionen eingesetzt, die aus der EP-0 257 412 und der EP-B-0 276 770 bekannt sind. Diese Disper¬ sionen werden durch Copolymerisieren von
(a) 20 bis 65 Gew.-% Styrol, Acrylnitril und/oder Methacrylni- tril,
(b) 80 bis 35 Gew.-% Acrylsäure- und/oder MethacrylSäureestern von einwertigen gesättigten C3- bis Ce-Alkoholen und
(c) 0 bis 10 Gew.-% anderen monoethylenisch ungesättigten copoly- merisierbaren Monomeren
in Gegenwart von Radikale bildenden Initiatoren nach Art einer Emulsionspolymerisation in einer wäßrigen Lösung einer abgebauten Stärke als Schutzkolloid hergestellt. Die abgebaute Stärke hat vorzugsweise Viskositäten ηi = 0,04 bis 0,50 dl/g. Diese Stärken sind einem oxidativen, thermischen, azidolytischem oder einem en- zymatischen Abbau unterworfen worden. Für diesen Abbau können sämtliche nativen Stärken eingesetzt werden, z.B. Stärken aus Kartoffeln, Weizen, Reis, Tapioka und Mais sowie Stärken mit Amy¬ lopektingehalten von mindestens 95, vorzugsweise 98 bis 100 Gew.-%, z.B. Wachsmaisstärke, Wachskartoffelstarke, Wachswei- zenstärke oder Mischungen der genannten Stärken. Außerdem sind chemisch modifizierte Stärken einsetzbar, wie Hydroxyethyl-, Hy- droxypropyl- oder quaternisierter Aminoalkylgruppen enthaltende Stärken mit Viskositäten in dem obenangegebenen Bereich. Beson- 5 ders geeignet sind oxidativ abgebaute Kartoffelstärken, kationi- sierte, abgebaute Kartoffelstärken oder Hydroxyethylstärke. Die Mischung aus leimend wirkender Copolymerisatdispersion und einer nicht aufgeschlossenen Stärke wird vorzugsweise mindestens 10 Mi¬ nuten bei 85°C gerührt. Dadurch wird die Stärke aufgeschlossen.
10
Die abgebauten Stärken wirken als Emulgatoren bei der Copolymeri- sation der Monomeren (a) bis (c) in wäßrigem Medium nach Art ei¬ ner Emulsionspolymerisation. Die Monomeren werden in einer wäßri¬ gen Lösung copolymerisiert, die 1 bis 21, vorzugsweise 3 bis
15 15 Gew.-% abgebaute Stärke enthält. In 100 Gew.-Teilen einer sol¬ chen Lösung polymerisiert man üblicherweise 10 bis 140, vorzugs¬ weise 40 bis 100 Gew.-Teile der Monomermischung aus (a) und (b) und ggf. (c) . Der Durchmesser der dispergierten Polymerteilchen beträgt 50 bis 350, vorzugsweise 100 bis 250 nm. Als Monomer der
20 Gruppe (b) kommen außerdem noch Vinylester von C2- bis C4-gesät- tigten Carbonsäuren in Betracht. Geeignete Monomere der Gruppe (c) sind beispielsweise Acrylamid, Methacrylamid, Stearylacrylat, Stearylmethacrylat, Palmitylacrylat, Acrylsäure, Methacrylsäure, Maleinsäure, Maleinsäureanhydrid, Itakonsäure,
25 Vinylsulfonsäure, Acrylamidopropansulfonsäure und Acrylsäure- und Methacrylsäureester von Aminoalkoholen, z.B. Dimethylaminoethyl¬ acrylat, Dimethylaminoethylmethacrylat, Dimethylaminopropylacry- lat und Dimethylaminomethacrylat.
30 Die erfindungsgemäßen Papierleimungsmittelmischungen werden nach bekannten Verfahren hergestellt, vgl. DE-A-32 35 529 und W0-A-94/05855. Man geht hierbei beispielsweise so vor, daß man (A) feinteilige, wäßrige Dispersionen von C14- bis C22-Alkyldi- ketenen, die durch Dispergieren der Alkyldiketene in Wasser in
35 Gegenwart von kationischer Stärke mit einem Amylopektingehalt von mindestens 95 % erhältlich sind, mit (B) feinteiligen, wäßrigen Polymerdispersionen, die ein Leimungsmittel für Papier sind, mit¬ einander mischt oder Cχ4- bis C22~Alkyldiketene in einer Mischung aus wäßrigen Lösungen von kationischen Stärken mit einem Amylo-
40 pektingehalt von mindestens 95 %, wobei die Stärken in eine was¬ serlösliche Form überführt worden sind und feinteiligen, wäßrigen Polymerdispersionen, die ein Leimungsmittel für Papier sind, bei Temperaturen von mindestens 70°C emulgiert. Das Emulgieren erfolgt hier vorzugsweise unter Einwirkung hoher Scherkräfte, z.B. in so-
45 genannten Homogenisatoren. Die entstehenden Emulsionen werden vorzugsweise rasch auf Raumtemperatur abgekühlt. Die so anfallen¬ den Dispersionen von Papierleimungsmittelmischungen haben einen pH-Wert im Bereich von 2 bis 4, vorzugsweise liegt der pH-Wert bei 3. Die Papierleimungsmittelmischungen können auch in der Weise hergestellt werden, daß man die Komponenten (A) und (B) mischt, z.B. in einem Rührkessel und diese Mischung gegebenen- 5 falls unter Einwirkung hoher Scherkräfte bei Temperaturen von beispielsweise 20 bis 70°C homogenisiert. Die erfindungsgemäßen Papierleimungsmittelmischungen enthalten beispielsweise 1 bis 55, vorzugsweise 10 bis 30 Gew.-% an Alkyldiketenen und 1 bis 60, vorzugsweise 3 bis 25 Gew.-% an feinteiligen Polymerdispersionen, 10 jeweils bezogen auf die Feststoffe.
Zur Herstellung der erfindungsgemäßen Papierleimungsmittelmi¬ schungen verwendet man beispielsweise auf 1 Gew.-Teil (Diketen) der Komponente (A) 0,1 bis 1,2, vorzugsweise 0,3 bis 0,9 Gew.-
15 Teile Polymerdispersion der der Komponente (B) , bezogen auf die Feststoffe. Man kann beispielsweise eine einzige feinteilige wä߬ rige Polymerdispersion oder eine Mischung von 2 oder mehreren Polymerdispersionen einsetzen, die jeweils ein Leimungsmittel für Papier sind. Der Teilchendurchmesser der feinteiligen wäßrigen
20 Polymerdispersionen beträgt beispielsweise 50 bis 400, vorzugs¬ weise 100 bis 250 nm. Die erfindungsgemäßen Leimungsmittelmi¬ schungen sind lagerstabil, d.h., sie neigen nicht zum Entmischen und werden auch nicht fest. Sie haben darüber hinaus eine sehr niedrige Viskosität (beispielsweise nach einer Lagerung von
25 90 Tagen bei Raumtemperatur liegen die Viskositäten unterhalb von 100 mPas, gemessen in einem Brookfield-Viskosimeter bei 100 U/min, und einer Temperatur von 25°C mit Spindel Nr. 1) und zeichnen sich außerdem durch eine hohe Stabilität gegenüber der Einwirkung von Scherkräften aus, wie sie beispielsweise beim Pum-
30 pen auftreten. Die Leimungsmittelmischungen werden als Masse- und Oberflächenleimungsmittel für Papier, Pappe und Karton verwendet. Bevorzugt ist die Anwendung als Masseleimungsmittel bei der Her¬ stellung von Papier.
35 Die Prozentangaben in den Beispielen bedeuten Gew.-%, die Teile sind Gew.-Teile.
40
45 Beispiele
Polymerdispersion 1
In einem 1 1 Vierhalskolben, der mit Rührer, Rückflußkühler, Do¬ siervorrichtung und einer Einrichtung zum Arbeiten unter Stick¬ stoffatmosphäre ausgestattet ist, werden 34,0 g Stärke A sowie 8,4 g Stärke B in 148 g Wasser suspendiert und unter Rühren auf 85°C erhitzt.
10
Stärke A ist eine abgebaute kationische Kartoffelstärke mit einer Viskosität ηi von 0,47 dl/g, einem Substitutionsgrad von 0,015-COOH- und 0,027 N Mol/Mol Glucoseeinheiten und einem Fest¬ stoffgehalt von 83 %.
15
Stärke B ist eine abgebaute, kationische Kartoffelstärke mit ei¬ ner Viskosität ηι von 1,16, einem Substitutionsgrad von 0,07 N Mol/Mol Glucoseeinheiten und einem Feststoffgehalt von 83 %.
20 Nach 30 Minuten bei 85°C werden 2,6 g einer wäßrigen 10%igen Cal- ciumacetatlösung und 10 g einer l%igen Enzymlösung (α-Amylase A) zugefügt. Nach weiteren 20 Minuten bei 85°C wird der enzymatische Starkeabbau durch Zugabe von 1,5 g Eisessig abgestoppt. Anschlie¬ ßend weren 16,5 g einer l%igen Eisen(II)sulfatlösung und 1,75 g
25 30%iges Wasserstoffperoxid zugesetzt. Nach 20 Minuten ist das Wasserstoffperoxid zersetzt und der oxidative Stärkeabbau been¬ det. Die Intrinsic-Viskosität der Starkemischung beträgt dann 0,08 dl/g. Dann gibt man 1,8 g 30%iges Wasserstoffperoxid zu und beginnt sofort damit, eine Emulsion, die aus 93,7 g Acrylnitril,
30 76,4 g n-Butylacrylat und einer Lösung von 0,2 g Na-Cι4-alkylsul- fonat in 50 g Wasser besteht, gleichmäßig innerhalb von 1 Stunde sowie gleichzeitig separat davon 50 g einer 3,12 %igen Wasser¬ stoffperoxidlösung innerhalb von 1,75 Stunden zuzufügen. Während dieser Zeit und noch 60 Minuten nach dem Ende der Monomerdosie-
35 rung wird die Temperatur des Reaktionsgemisches auf 85°C gehalten. Man erhält eine Dispersion mit einem Feststoffgehalt von 41,0 % und einem Teilchendurchmesser (ohne Stärkehülle) von 100 - 150 nm. Die Dispersion wird durch Zugabe von Wasser auf ei¬ nen Feststoffgehalt von 33 % verdünnt.
40
Polymerdispersion 2
Eine Mischung aus 20 Teilen (1,92 Mol) Styrol, 7 Teilen (0,41 Mol) Dimethylaminopropylmethacryla id. 3,5 Teilen 45 (0,486 Mol) Acrylsäure und 10 Teilen Essigsäure wurde innerhalb von 1 Stunde mit Hilfe einer Pumpe in einen auf 90°C erhitzten Kessel gepumpt. Gleichzeitig und ebenfalls innerhalb 1 Stunde fügte man mit Hilfe einer anderen Dosiervorrichtung 2 Teile Azo- isobuttersäuredinitril und 10 Teile Essigsäure zu. Das Gemisch wurde 30 min auf eine Temperatur von 90°C erhitzt und danach in 180 Teilen Wasser gelöst. Dann setzte man 0,01 Teile Eisensulfat zu und polymerisierte bei einer Temperatur von 85°C darin eine Mi¬ schung von 32 Teilen Styrol und 32 Teilen Isobutylacrylat. Sepa¬ rat davon gab man 33 Teile einer 6%igen Wasserstoffperoxidlösung kontinuierlich innerhalb von 2 Stunden zum Vorpolymerisat zu. Nach lstündiger Nachpolymerisation bei einer Temperatur von 85°C resultierte eine feinteilige Dispersion mit einem Feststoffgehalt von 31,4 % und einem Teilchendurchmesser von 150 - 250 nm. Die Dispersion wird durch Zugabe von Wasser auf einen Feststoffgehalt von 20 % verdünnt.
Beispiel 1
Man stellt eine 2,80 %ige wäßrige Lösung einer handelsüblichen kationischen Wachsmaisstärke (D.S. 0,03, Amylopektingehalt
> 98 %) her, indem man die erforderliche Stärkemenge in Wasser suspendiert und die Suspension 15 Minuten bei einer Temperatur von 95°C rührt. Zu 85 Teilen der so erhältlichen Stärkelösung fügt man bei einer Temperatur von 85°C 15 Teile der Polymerdispersion 1 zu. Die Mischung wird 10 Minuten gerührt.
Zu 84 Teile der oben beschriebenen Mischung aus Wachsmaisstärke und Polymerdispersion 1 gibt man 16 Teile einer Cι&/Ci8-Alkyldike- ten-Schmelze und behandelt die Mischung kurz mit einem Ultratur- rax. Diese Mischung wird anschließend zweimal bei 150 bar in einem Intensivmischer homogenisiert. Die Emulsion wird dann rasch auf Raumtemperatur abgekühlt. Die Eigenschaften der Leimungsmit- teldispersion sind in Tabelle 1 angegeben.
Beispiel 2
Man stellt eine 3,66 %ige wäßrige Lösung einer handelsüblichen kationischen Wachsmaisstärke (D.S. 0,03, Amylopektingehalt
> 98 %) her, indem man die erforderliche Menge an Stärke in Was¬ ser suspendiert und die Suspension im Jet-Kocher bei einer Temperatur von 125°C aufschließt. Zu 65 Teilen der so erhältlichen Stärkelösung fügt man bei einer Temperatur von 85°C 35 Teile der Polymerdispersion 2 zu. Die Mischung wird anschließend 10 Min. gerührt.
84 Teile der oben beschriebenen Mischung aus der wäßrigen Lösung der aufgeschlossenen kationischen Stärke und der Polymer- dispersion 2 gibt man 16 Teile einer Ci6/Ci8-Alkyldiketenschmelze und behandelt die Mischung kurz mit einem Ultraturrax. Diese Mischung wird dann zweimal in einem Homogenisator bei 150 bar be¬ handelt und danach rasch auf Raumtemperatur abgekühlt. Die Eigen¬ schaften der Papierleimungsmittelmischung sind in Tabelle 1 ange¬ geben. 5
Beispiel 3
Man stellt eine 4,17 %ige wäßrige Lösung einer handelsüblichen kationischen Wachsmaisstärke (D.S. 0,04, Amylopektingehalt
10 > 98 %) her, in dem man die Stärke zunächst in Wasser suspendiert und in einem Jet-Kocher bei einer Temperatur von 125°C auf¬ schließt. Zu der Stärkelösung fügt man dann 0,1 Teile des Natriumsalzes einer Ligninsulfonsäure und anschließend 20 Teile einer Ci6/Ci8-Alkyldiketenschmelze zu und behandelt die Mischung
15 mit einem Ultraturrax. Die zunächst grobteilige Suspension wird zweimal durch einen Homogenisator bei einer Temperatur von 85°C und einem Druck von 150 bar durchgesetzt und anschließend rasch auf Raumtemperatur abgekühlt.
20 90 Teile der oben beschriebenen Alkyldiketendispersion werden dann mit 10 Teilen der Polymerdispersion 1 unter Rühren miteinan¬ der vermischt und zweimal in einem Homogenisator unter einem Druck von 150 bar behandelt. Die Eigenschaften der Papierlei¬ mungsmittelmischung sind in Tabelle 1 angegeben.
25
Beispiel 4
Eine handelsübliche kationische Wachsmaisstärke (D.S. 0,04, Amy¬ lopektingehalt 100 %) wird in einer solchen Menge in Wasser ein-
30 getragen, daß eine 4,17 %ige wäßrige Suspension entsteht. Diese Suspension wird dann in einem Jet-Kocher bei einer Temperatur von 125°C aufgeschlossen, so daß eine wäßrige Stärkelösung anfällt, zu der man 0,15 Teile des Natriumsalzes einer Ligninsulfonsäure und danach 25 Teile einer Cie/Ciβ-Alkyldiketenschmelze zufügt. Die
35 Mischung wird zunächst mit einem Ultraturrax und danach zweimal in einem Homogenisator unter einem Druck von 150 bar und einer Temperatur von 85°C behandelt und anschließend rasch auf Raumtem¬ peratur abgekühlt.
40 Zu 70 Teilen der oben beschriebenen Alkyldiketenemulsion fügt man 30 Teile Polymerdispersion 2 zu und homogenisiert die entstehende Mischung zweimal in einem Homogenisator bei einem Druck von 150 bar. Die Eigenschaften der so erhältlichen Papierleimungsmit¬ telmischung sind in Tabelle 1 angegeben.
45 Vergleichsbeispiel 1
Man stellt zunächst eine 5,13 %ige wäßrige Suspension einer han¬ delsüblichen kationischen Stärke (D.S. 0,02, Amylopektingehalt 70 %) her, gab zu 50 Teilen dieser Suspension 50 Teile der
Polymerdispersion 1 zu und schloß die Stärke durch 10-minütiges Erhitzen in der Mischung mit der Polymerdispersion 1 auf eine Temperatur von 85°C auf.
Zu 78 Teilen der Mischung aus der aufgeschlossenen Stärke und der Polymerdispersion 1 gab man eine auf 90°C erhitzte Schmelze aus 20 Teilen Stearyldiketen und 2 Teilen Stearinsäureoleylester und homogenisierte die Mischung anschließend wie in Beispiel 1 be¬ schrieben. Man erhielt eine stabile, 20-%ige wäßrige Stearyldike- tenemulsion, die außer Stearyldiketen 2 % Stärke, 2 % Stearinsäu¬ reoleylester als Stabilisator und 12, 9 % der Polymerdispersion 1 enthielt. Die Eigenschaften der Dispersion sind in Tabelle 1 an¬ gegeben.
Vergleichsbeispiel 2
Beispiel 1 wurde mit den Änderungen wiederholt, daß man eine 5,13 %ige wäßrige Suspension einer handelsüblichen kationischen Stärke (Substitutionsgrad 0,02, Amylopektingehalt 75 %) her- stellte, mit 50 Teilen der Polymerdispersion 2 mischte und die
Stärke durch Erhitzen der Mischung auf 85°C für insgesamt 10 Minu¬ ten aufschloß. Zu 78 Teilen der so erhaltenen Mischung aus aufge¬ schlossener Stärke und Polymerdispersion 2 gab man dann eine auf 90°C erhitzte Schmelze aus 20 Teilen Stearyldiketen und 2 Teilen Stearinsäureoleylester und emulgierte die Schmelze darin wie in Beispiel 1 angegeben. Die Eigenschaften der Leimungsmittelmi- schung sind in Tabelle 1 angegeben.
Tabelle 1
Bei¬ Viskosität Viskosität mittl. End- Stabilität spiel nach Her¬ nach Teilchen¬ leimung bei Lagerung stellung 3 Monaten größen¬ (Cobb) (3 Mon.) verteilung
[mPas] [mPas] [μm]
1 14,0 16,1 1,21 25 stabil
2 22,8 32,8 1,65 27 stabil
3 13,9 45,3 2,05 30 stabil
4 30,8 43,7 2,62 30 stabil
Vgl. 39,2 135 2,20 27 Phasen- Bsp.l rennung
Vgl. 27,1 236 2,45 27 Phasen- Bsp.2 trennung
Die Scherstabilität der in den Beispielen und Vergleichs¬ beispielen beschriebenen Leimungsmittelmischungen wurde bestimmt, in dem man die Mischungen mit Hilfe einer Kreiselpumpe durch ein 400 μm-Filter pumpte. Man verwendete jeweils 500 ml der Papierlei- mungsmittelmischung und hielt die Temperatur der Mischung während des Tests auf 25°C. In Tabelle 2 sind jeweils die Zeiten angege¬ ben, nach der der Filter verstopfte bzw. der Versuch abgebrochen wurde.
Tabelle 2: Test für die Scherstabilität (Pumpentest)
Leimungsmittel- Abbruch nach Bemerkungen mischung gemäß [min] Beispiel
1 60 Filter frei
2 55 Filter verstopft
3 60 Filter frei
4 44 Filter verstopft
Vergl.Bsp. 1 15 Filter verstopft
Vergl.Bsp. 2 23 Filter verstopft

Claims

PatentanSprüche
1. Papierleimungsmittelmischungen aus
(A) feinteiligen, wäßrigen Dispersionen von Cι4- bis C22- Alkyldiketenen, die durch Dispergieren der Alkyldiketene in Wasser in Gegenwart von kationischer Stärke erhältlich sind, und
(B) feinteiligen, wäßrigen Polymerdispersionen, die ein Lei¬ mungsmittel für Papier sind,
dadurch gekennzeichnet, daß der Amylopektingehalt der kat- ionischen Stärke der Komponente (A) mindestens 95 % beträgt.
2. Papierleimungsmittelmischungen nach Anspruch 1, dadurch ge¬ kennzeichnet, daß der Amylopektingehalt der kationischen Stärke 98 bis 100 % beträgt.
3. Papierleimungsmittelmischungen nach Anspruch 1, dadurch ge¬ kennzeichnet, daß die kationische Stärke eine kationische Wachsmaisstärke ist.
4. Papierleimungsmittelmischungen nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß bei der Herstellung der Kompo¬ nente (A) das Dispergieren der Alkyldiketene in Wasser zu¬ sätzlich in Gegenwart von Ligninsulfonsäure, Kondensaten aus Formaldehyd und Naphthalinsulfonsäuren, Styrolsulfonsäure- gruppen enthaltenden Polymeren oder den Alkalimetall- und/ oder Ammoniumsalzen der genannten Sulfonsäuregruppen enthal¬ tenden Verbindungen erfolgt .
5. Verfahren zur Herstellung von Papierleimungsmittelmischungen durch Mischen von
(A) feinteiligen, wäßrigen Dispersionen von Cχ4- bis C22- Alkyldiketenen, die durch Dispergieren der Alkyldiketene in Wasser in Gegenwart von kationischer Stärke erhältlich sind, mit
(B) feinteiligen, wäßrigen Polymerdispersionen, die ein Lei¬ mungsmittel für Papier sind,
oder durch Emulgieren von Cι4- bis C22-Alkyldiketenen in einer Mischung aus wäßrigen Suspensionen von kationischen Stärken und feinteiligen, wäßrigen Polymerdispersionen, die ein Lei- mungsmittel für Papier sind, bei Temperaturen von mindestens 70°C, dadurch gekennzeichnet, daß der Amylopektingehalt der kationischen Stärken mindestens 95 % beträgt.
5 6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß der Amylopektingehalt der kationischen Stärken 98 bis 100 % be¬ trägt.
7. Verfahren nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß 10 man als Stärken kationische Wachsmaisstärken einsetzt.
8. Verfahren nach einem der Ansprüche 5 bis 7, dadurch gekenn¬ zeichnet, daß der Substitutionsgrad (D.S.) der kationischen Stärken 0,010 bis 0,150 beträgt.
15
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß der Substitutionsgrad (D.S.) der kationischen Stärken unterhalb von 0,045 liegt.
20 10. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß der Substitutionsgrad (D.S.) der kationischen Stärken 0,020 bis 0,040 beträgt.
11. Verwendung der Papierleimungsmittelmischungen nach den An- 25 Sprüchen 1 bis 4 als Masse- und Oberflächenleimungsmittel für Papier, Pappe und Karton.
30
35
40
45
PCT/EP1996/001315 1995-04-03 1996-03-26 Papierleimungsmittelmischungen WO1996031650A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE59602009T DE59602009D1 (de) 1995-04-03 1996-03-26 Papierleimungsmittelmischungen
EP96908139A EP0819193B1 (de) 1995-04-03 1996-03-26 Papierleimungsmittelmischungen
DK96908139T DK0819193T3 (da) 1995-04-03 1996-03-26 Papirlimningsmiddelblandinger
JP52994296A JP3805367B2 (ja) 1995-04-03 1996-03-26 紙サイズ剤混合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19512399.9 1995-04-03
DE19512399A DE19512399A1 (de) 1995-04-03 1995-04-03 Papierleimungsmittelmischungen

Publications (1)

Publication Number Publication Date
WO1996031650A1 true WO1996031650A1 (de) 1996-10-10

Family

ID=7758633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1996/001315 WO1996031650A1 (de) 1995-04-03 1996-03-26 Papierleimungsmittelmischungen

Country Status (7)

Country Link
EP (1) EP0819193B1 (de)
JP (1) JP3805367B2 (de)
AT (1) ATE180526T1 (de)
DE (2) DE19512399A1 (de)
DK (1) DK0819193T3 (de)
ES (1) ES2133193T3 (de)
WO (1) WO1996031650A1 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997017491A1 (de) * 1995-11-03 1997-05-15 Basf Aktiengesellschaft Wässrige alkyldiketen-dispersionen und ihre verwendung als leimungsmittel für papier
EP0824161A3 (de) * 1996-08-12 1998-04-08 Südzucker Aktiengesellschaft Mannheim/Ochsenfurt Stärke und Stärkederivate für die Papierindustrie
WO2001051708A1 (en) * 2000-01-11 2001-07-19 Raisio Chemicals Ltd Method for improving printability and coatability of paper and board
EP1344866A1 (de) * 1996-08-12 2003-09-17 Südzucker Aktiengesellschaft Mannheim/Ochsenfurt Beschichtungsmittel
WO2004037867A1 (de) * 2002-10-18 2004-05-06 Basf Aktiengesellschaft Alkyldiketene enthaltende wässrige polymerdispersionen, verfahren zu ihrer herstellung und ihre verwendung
WO2004101279A1 (de) * 2003-05-16 2004-11-25 Basf Aktiengesellschaft Verpackungsmaterial aus einem mindestens zweischichtigen verbundmaterial zur herstellung von behältern für die verpackungen von flüssigkeiten
WO2012089981A1 (fr) * 2010-12-31 2012-07-05 Saint-Gobain Adfors Composition ignifuge aqueuse pour mat a base de fibres minerales, et mats obtenus.
EP3205673A1 (de) 2016-02-12 2017-08-16 Coöperatie Avebe U.A. Oxidation von stärke

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10008930A1 (de) * 2000-02-25 2001-08-30 Basf Ag Antiknitterausrüstung von cellulosehaltigen Textilien und Wäschenachbehandlungsmittel
DE102004055507A1 (de) * 2004-11-17 2006-05-18 Basf Ag Verfahren zur Herstellung feinteiliger flüssig-flüssig Formulierungen und Vorrichtung zur Herstellung feinteiliger flüssig-flüssig Formulierungen
US20100016478A1 (en) * 2006-12-20 2010-01-21 Basf Se Paper size mixtures
DE102007043922A1 (de) * 2007-09-14 2009-04-02 Emsland-Stärke GmbH Beschichtungsmittel für Faserstoffe, Verfahren zu dessen Herstellung und Verwendung desselben

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0353212A1 (de) * 1988-06-22 1990-01-31 W.R. Grace & Co.-Conn. Leimzusammensetzung, Verfahren zu ihrer Herstellung und Verfahren zu ihrer Verwendung
WO1994005855A1 (de) * 1992-09-01 1994-03-17 Basf Aktiengesellschaft Papierleimungsmittelmischungen

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4382129A (en) * 1981-12-08 1983-05-03 Hercules Incorporated Dicyandiamide-formaldehyde condensates modified with acrylamide and process for preparing the same
US4861376A (en) * 1988-11-10 1989-08-29 Hercules Incorporated High-solids alkyl ketene dimer dispersion

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0353212A1 (de) * 1988-06-22 1990-01-31 W.R. Grace & Co.-Conn. Leimzusammensetzung, Verfahren zu ihrer Herstellung und Verfahren zu ihrer Verwendung
WO1994005855A1 (de) * 1992-09-01 1994-03-17 Basf Aktiengesellschaft Papierleimungsmittelmischungen

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6001166A (en) * 1995-11-03 1999-12-14 Basf Aktiengesellschaft Aqueous alkyldiketene dispersions and their use as size for paper
WO1997017491A1 (de) * 1995-11-03 1997-05-15 Basf Aktiengesellschaft Wässrige alkyldiketen-dispersionen und ihre verwendung als leimungsmittel für papier
EP0824161A3 (de) * 1996-08-12 1998-04-08 Südzucker Aktiengesellschaft Mannheim/Ochsenfurt Stärke und Stärkederivate für die Papierindustrie
EP1344866A1 (de) * 1996-08-12 2003-09-17 Südzucker Aktiengesellschaft Mannheim/Ochsenfurt Beschichtungsmittel
WO2001051708A1 (en) * 2000-01-11 2001-07-19 Raisio Chemicals Ltd Method for improving printability and coatability of paper and board
RU2266995C2 (ru) * 2000-01-11 2005-12-27 Циба Спешиэлти Кемикалз Холдинг, Инк. Способ улучшения печатных свойств и покрываемости бумаги и картона
US7709052B2 (en) 2002-10-18 2010-05-04 Basf Aktiengesellschaft Aqueous polymer dispersions containing alkyldiketenes, methods for the production thereof, and their use
WO2004037867A1 (de) * 2002-10-18 2004-05-06 Basf Aktiengesellschaft Alkyldiketene enthaltende wässrige polymerdispersionen, verfahren zu ihrer herstellung und ihre verwendung
WO2004101279A1 (de) * 2003-05-16 2004-11-25 Basf Aktiengesellschaft Verpackungsmaterial aus einem mindestens zweischichtigen verbundmaterial zur herstellung von behältern für die verpackungen von flüssigkeiten
WO2012089981A1 (fr) * 2010-12-31 2012-07-05 Saint-Gobain Adfors Composition ignifuge aqueuse pour mat a base de fibres minerales, et mats obtenus.
US9447254B2 (en) 2010-12-31 2016-09-20 Saint-Gobain Adfors Aqueous flame retardant composition for mineral fiber-based mat, and mats obtained
EP3205673A1 (de) 2016-02-12 2017-08-16 Coöperatie Avebe U.A. Oxidation von stärke
WO2017138814A1 (en) 2016-02-12 2017-08-17 Coöperatie Avebe U.A. Oxidation of starch

Also Published As

Publication number Publication date
ES2133193T3 (es) 1999-09-01
DE59602009D1 (de) 1999-07-01
EP0819193A1 (de) 1998-01-21
ATE180526T1 (de) 1999-06-15
JP3805367B2 (ja) 2006-08-02
JPH11502575A (ja) 1999-03-02
DE19512399A1 (de) 1996-10-10
DK0819193T3 (da) 1999-11-08
EP0819193B1 (de) 1999-05-26

Similar Documents

Publication Publication Date Title
EP0257412B1 (de) Leimungsmittel für Papier auf Basis feinteiliger wässriger Dispersionen
EP0658228B1 (de) Papierleimungsmittelmischungen
DE60016186T2 (de) Polymerdispersion und verfahren zu deren herstellung
EP0972110B2 (de) Verfahren zur herstellung von papier, pappe und karton mit hoher trockenfestigkeit
EP0276770B1 (de) Leimungsmittel für Papier auf Basis feinteiliger wässriger Dispersionen
EP0728072B1 (de) Verfahren zur herstellung von aufzeichnungsmaterialien für tintenstrahldrucker
EP1501880B1 (de) Wässrige polymerdispersionen auf basis von copolymerisaten aus vinylaromaten und butadien, verfahren zu ihrer herstellung und ihre verwendung als leimungsmittel für papier
EP0788516B1 (de) Verfahren zur kationischen modifizierung von stärke und verwendung der kationisch modifizierten stärke
EP0406461B1 (de) Neue kationische Dispergiermittel enthaltende Papierleimungsmittel
EP0307816A2 (de) Verfahren zur Verbesserung der Bedruckbarkeit von Papier
EP2258735B1 (de) Kationische Stärke-Pfropfcopolymere
DE60009072T2 (de) Durch niedrigmolekulare maleimidcopolymere stabilisierte hydrophobe kationische dispersionen für die papierleimung
WO1996031650A1 (de) Papierleimungsmittelmischungen
EP1819876B1 (de) Papierleimungsmittel
EP1556416A1 (de) Alkyldiketene enthaltende wässrige polymerdispersionen, verfahren zu ihrer herstellung und ihre verwendung
DE69725779T2 (de) Leimung von Papier mit Latexdispersionen aus Copolymeren aus hydrophoben Monomeren und niedermolecularen Styrol/Maleinanhydride-Polymeren
WO2000023651A1 (de) Wässrige, anionisch oder kationisch eingestellte leimungsmittel-dispersionen für die leimung von papier
DE3826825C2 (de)
EP0357866B1 (de) Kationische Leimungsmittel für Papier
DE3235529A1 (de) Leimungsmittel fuer papier
DE2026241A1 (de) Verfahren zur Aufbringung von Polymeren auf faserartigen Substraten
WO1999028553A1 (de) Verfahren zur masseleimung von papier, pappe und karton

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1996908139

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 1996 529942

Kind code of ref document: A

Format of ref document f/p: F

ENP Entry into the national phase

Ref country code: US

Ref document number: 1997 930426

Date of ref document: 19971003

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1996908139

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1996908139

Country of ref document: EP